1
|
Guo X, Zhang S, Patel S, Sun X, Zhu YL, Wei Z, Wang R, He X, Wang Z, Yu C, Tan SC. A skin-mimicking multifunctional hydrogel via hierarchical, reversible noncovalent interactions. SCIENCE ADVANCES 2025; 11:eadv8523. [PMID: 40378220 PMCID: PMC12083530 DOI: 10.1126/sciadv.adv8523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/15/2025] [Indexed: 05/18/2025]
Abstract
Artificial skin is essential for bionic robotics, facilitating human skin-like functions such as sensation, communication, and protection. However, replicating a skin-matched all-in-one material with excellent mechanical properties, self-healing, adhesion, and multimodal sensing remains a challenge. Herein, we developed a multifunctional hydrogel by establishing a consolidated organic/metal bismuth ion architecture (COMBIA). Benefiting from hierarchical reversible noncovalent interactions, the COMBIA hydrogel exhibits an optimal combination of mechanical and functional properties, particularly its integrated mechanical properties, including unprecedented stretchability, fracture toughness, and resilience. Furthermore, these hydrogels demonstrate superior conductivity, optical transparency, freezing tolerance, adhesion capability, and spontaneous mechanical and electrical self-healing. These unified functions render our hydrogel exceptional properties such as shape adaptability, skin-like perception, and energy harvesting capabilities. To demonstrate its potential applications, an artificial skin using our COMBIA hydrogel was configured for stimulus signal recording, which, as a promising soft electronics platform, could be used for next-generation human-machine interfaces.
Collapse
Affiliation(s)
- Xingkui Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Songlin Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Institute of Fiber Materials and Devices, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Shubham Patel
- The Grainger College of Engineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering, Department of Mechanical Science and Engineering, Departments of Bioengineering, The Grainger College of Engineering, Beckman Institute for Advanced Science and Technology, Materials Research Laboratory, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaolu Sun
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Zechang Wei
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Rongguo Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, P. R. China
- Shenzhen Research Institute of The Hong Kong Polytechnic University, Shenzhen, P. R. China
| | - Cunjiang Yu
- The Grainger College of Engineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering, Department of Mechanical Science and Engineering, Departments of Bioengineering, The Grainger College of Engineering, Beckman Institute for Advanced Science and Technology, Materials Research Laboratory, Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore
| |
Collapse
|
2
|
Duan C, Ma Q, Ma R, Liu X, Yang K, Nie X, Chen Y. A bio-based Janus hydrogel from cellulose and lignin with bilayer structure and asymmetric adhesion for accurate and sensitive human motion monitoring. Int J Biol Macromol 2025; 306:141718. [PMID: 40054822 DOI: 10.1016/j.ijbiomac.2025.141718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/16/2025] [Accepted: 03/02/2025] [Indexed: 05/11/2025]
Abstract
Janus hydrogels for human motion monitoring are thriving due to their conductivity, flexibility, anisotropy and self-adhesion, etc. However, most of them face challenges such as complex processes, interlayer detachment, and surface contamination, which degrade their sensing accuracy and sensitivity. Hence, this study proposes a facile strategy using the cellulose and lignin as building blocks to construct a Janus hydrogel for accurate and sensitive sensing. The proposed process involves sequential pouring and in-situ thermal-induced polymerization. Initially, the cellulose dissolved in ZnCl2 solution, along with acrylic acid (Cel/ZnCl2-AA), forms the antifouling and conductive precursors in the top layer, while lignosulfonate and acrylamide (LS-AM) function as the adhesive precursor in the bottom layer. The viscosity difference of the two precursors allows local diffusion and polymerization at the interlayer interface, thereby developing a bilayer structure with strong interface bonds. Consequently, the Janus hydrogel exhibits high conductivity (1.2 S/m), excellent asymmetric adhesion, good stretchability (520 %) and compressive strain (∼70 %). These properties enable the hydrogel to accurately monitor both large (elbow and wrist bending) and small (swallowing and frowning) human movements with accurate sensitivity (gauge factor up to 2). This work offers new insight and synthesis strategy to design the bilayer hydrogels for practical applications in electronic skin and flexible sensing.
Collapse
Affiliation(s)
- Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Qiang Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ruoteng Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoshuang Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Kang Yang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaoran Nie
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yuan Chen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Wang S, Li J, Zhang L, Ren F, Zhang J, Ren L. A highly stretchable, self-adhesive, anti-freezing dual-network conductive carboxymethyl chitosan based hydrogel for flexible wearable strain sensor. Int J Biol Macromol 2025; 308:142301. [PMID: 40132289 DOI: 10.1016/j.ijbiomac.2025.142301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/14/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Achieving the integration of multiple properties in a single hydrogel system faces significant challenges. This research presents a simple approach to developing a multifunctional conductive hydrogel with high stretchability (>740 %), electrical conductivity, frost resistance and self-adhesiveness. It serves as a wearable, flexible electronic material, it remains functional even in low-temperature environments. The hydrogel is synthesized by incorporating a uniformly mixed solution of carboxymethyl cellulose (CMC) and aminated carbon nanotubes (NH2-CNTs) into a polyacrylamide (PAM)/gelatin dual-network hydrogel. By adjusting the CMC mass fraction, the optimal composite hydrogel is obtained within a specified gradient. After cross-linking modification with a calcium chloride (CaCl2) solution, enhances its mechanical properties, resulting in a final hydrogel with excellent stretchability (strain = 749 %), strong adhesion, frost resistance, moisture retention, and conductivity. Additionally, this research explores the hydrogel's potential for anti-counterfeiting and salt ion monitoring by analyzing changes in mechanical properties and transparency. The hydrogel exhibits high sensitivity to external strains and effectively monitors human signals such as finger bending, head movement, and speech, even at low temperatures. This research provides new insights into flexible electronic skin, wearable sensors and human-computer interaction, expanding the potential applications of multifunctional conductive hydrogels.
Collapse
Affiliation(s)
- Shuai Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, College of Bionic Science and Engineering, Jilin University, Changchun 130022, China
| | - Jinyang Li
- The First Bethune Hospital of Jilin University, Changchun 130012, China
| | - Li Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, College of Bionic Science and Engineering, Jilin University, Changchun 130022, China
| | - Fazhan Ren
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, China
| | - Jiale Zhang
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, College of Bionic Science and Engineering, Jilin University, Changchun 130022, China.
| |
Collapse
|
4
|
Du Z, Wang N, Du J. Recent Progress in Cellulose-Based Conductive Hydrogels. Polymers (Basel) 2025; 17:1089. [PMID: 40284353 PMCID: PMC12030236 DOI: 10.3390/polym17081089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/12/2025] [Accepted: 04/14/2025] [Indexed: 04/29/2025] Open
Abstract
Cellulose, a widely abundant natural polymer, is well recognized for its remarkable properties, such as biocompatibility, degradability, and mechanical strength. Conductive hydrogels, with their unique ability to conduct electricity, have attracted significant attention in various fields. The combination of cellulose and conductive hydrogels has led to the emergence of cellulose-based conductive hydrogels, which show great potential in flexible electronics, biomedicine, and energy storage. This review article comprehensively presents the latest progress in cellulose-based conductive hydrogels. Firstly, it provides an in-depth overview of cellulose, covering aspects like its structure, diverse sources, and classification. This emphasizes cellulose's role as a renewable and versatile material. The development and applications of different forms of cellulose, including delignified wood, bacterial cellulose, nanocellulose, and modified cellulose, are elaborated. Subsequently, cellulose-based hydrogels are introduced, with a focus on their network structures, such as single-network, interpenetrating network, and semi-interpenetrating network. The construction of cellulose-based conductive hydrogels is then discussed in detail. This includes their conductive forms, which are classified into electronic and ionic conductive hydrogels, and key performance requirements, such as cost-effectiveness, mechanical property regulation, sensitive response to environmental stimuli, self-healing ability, stable conductivity, and multifunctionality. The applications of cellulose-based conductive hydrogels in multiple areas are also presented. In wearable sensors, they can effectively monitor human physiological signals in real time. In intelligent biomedicine, they contribute to wound healing, tissue engineering, and nerve regeneration. In flexible supercapacitors, they offer potential for green and sustainable energy storage. In gel electrolytes for conventional batteries, they help address critical issues like lithium dendrite growth. Despite the significant progress, there are still challenges to overcome. These include enhancing the multifunctionality and intelligence of cellulose-based conductive hydrogels, strengthening their connection with artificial intelligence, and achieving simple, green, and intelligent large-scale industrial production. Future research directions should center around exploring new synthesis methods, optimizing material properties, and expanding applications in emerging fields, aiming to promote the widespread commercialization of these materials.
Collapse
Affiliation(s)
| | | | - Jie Du
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China; (Z.D.); (N.W.)
| |
Collapse
|
5
|
Guo X, Zhang H, Wu M, Tian Z, Chen Y, Bao R, Hao J, Cheng X, Zhou C. Silicon-Enhanced PVA Hydrogels in Flexible Sensors: Mechanism, Applications, and Recycling. Gels 2024; 10:788. [PMID: 39727546 DOI: 10.3390/gels10120788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/23/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Hydrogels, known for their outstanding water absorption, flexibility, and biocompatibility, have been widely utilized in various fields. Nevertheless, their application is still limited by their relatively low mechanical performance. This study has successfully developed a dual-network hydrogel with exceptional mechanical properties by embedding amino-functionalized polysiloxane (APSi) networks into a polyvinyl alcohol (PVA) matrix. This hydrogel effectively dissipates energy through dense sacrificial bonds between the networks, allowing for precise control over its tensile strength (ranging from 0.07 to 1.46 MPa) and toughness (from 0.06 to 2.17 MJ/m3) by adjusting the degree of crosslinking in the polysiloxane network. Additionally, the hydrogel exhibits excellent conductivity (10.97 S/cm) and strain sensitivity (GF = 1.43), indicating its potential for use in wearable strain sensors. Moreover, at the end of its life (EOL), the sensor waste can be repurposed as an adsorbent material for metal ions in water treatment, achieving the recycling of hydrogel materials and maximizing resource utilization.
Collapse
Affiliation(s)
- Xiaolei Guo
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Hao Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Manman Wu
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Zhan Tian
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Yanru Chen
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Rui Bao
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Jinghao Hao
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
| | - Xiao Cheng
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| | - Chuanjian Zhou
- Research Institute of Polymer Materials, School of Materials Science and Engineering, Shandong University, Jinan 250061, China
- Weihai Research Institute of Industrial Technology, Shandong University, Weihai 264209, China
| |
Collapse
|
6
|
Wu D, Xing Y, Liu L, Dong Q, Wang M, Zhang R. Structural design of "straw and clay" based on cellulose nanofiber/polydopamine and its interfacial stress dissipation mechanisms. Int J Biol Macromol 2024; 283:138040. [PMID: 39586442 DOI: 10.1016/j.ijbiomac.2024.138040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/07/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
Cellulose nanofiber (CNF) is often incorporated as reinforcements into various matrices to optimize the mechanical properties of composites. However, the role of CNF in structural design interface components has been mostly neglected. Inspired by the architectural structure of "straw and clay", CNF and polydopamine (PDA) were used as the "straw phase" and "clay phase", respectively, to construct PDA/CNF self-assembled coatings on the carbon fiber (CF) surface via covalent bonding and non-covalent self-assembly. The organic coatings endowed the CF with high specific surface area, roughness and polarity, as well as a broad and gentle interfacial layer of the CF/epoxy resin composites. After self-assembly, the monofilament tensile strength (TS) of the fiber and the interlaminar shear strength (ILSS) of the CF/epoxy resin composites were increased by 13.44 % and 31.88 %, respectively. This investigation furnishes ideas for improving the mechanical performances of composites from the viewpoint of surface structure design and interface modulation.
Collapse
Affiliation(s)
- Dongliang Wu
- School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Yuxuan Xing
- School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Lei Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao, China
| | - Qi Dong
- School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao, China.
| | - Maoju Wang
- Qingdao Huashijie Environment Technology Co., Ltd., 266510 Qingdao, China
| | - Ruliang Zhang
- School of Materials Science and Engineering, Shandong University of Science and Technology, 266590 Qingdao, China.
| |
Collapse
|
7
|
Zhang X, Zhu C, Yang X, Ye Y, Zhang G, Yu F, Chen P, Zhu Y, Kang Q. Conductive, sensitivity, flexibility, anti-freezing and anti-drying silica/carbon nanotubes/sodium ions modified sodium alginate hydrogels for wearable strain sensing applications. Int J Biol Macromol 2024; 280:135880. [PMID: 39317286 DOI: 10.1016/j.ijbiomac.2024.135880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
The biocompatibility and salient gelling feature of alginate via forming the interpenetrating network structure has received extensive interests for different applications. Traditional alginate hydrogels freeze at low temperature and evaporate easily at room temperature, leading to reduced performance. Consequently, it is crucial to develop methods to prevent alginate hydrogel from freezing at subzero temperature and dehydration at normal temperature to maintain the performance stability. Utilizing polyacrylic acid, sodium alginate, and acrylamide-hydroxyethyl methacrylate copolymers as flexible matrix materials, this study develops a wearable silica (SiO2)/carbon nanotubes (CNT)/sodium ions (SiO2/CNT/Na+) modified sodium alginate hydrogel strain sensor characterized by high sensitivity, flexibility, and anti-freezing and anti-drying properties. The hydrogel doped with NaCl (50 mg), CNT (10 mg) and M-SiO2 (200 mg) shows excellent mechanical and electrical properties, the tensile strength is 436 KPa, the break elongation is 426 %, the elastic modulus is 99 KPa, and the toughness is 897 kJ/m3. The modified sodium alginate hydrogel used as strain sensor shows fast response time (∼100 ms), high sensitivity factor and excellent stability. The strain sensor exhibits excellent flexibility, ductility, self-adhesion, anti-freezing and anti-drying properties, significantly enhancing its strain sensing application field.
Collapse
Affiliation(s)
- Xiaomin Zhang
- College of Materials Engineering, Jinling Institute of Technology, No.99, Hong Jing Road, Nanjing 211100, China; Jiande Baisha Chemical Co., Ltd, No. 9 Fenghe Road, Zhejiang 311606, China.
| | - Chengfei Zhu
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China.
| | - Xiaoli Yang
- College of Materials Engineering, Jinling Institute of Technology, No.99, Hong Jing Road, Nanjing 211100, China
| | - Yuanfeng Ye
- College of Materials Engineering, Jinling Institute of Technology, No.99, Hong Jing Road, Nanjing 211100, China.
| | - Guozhen Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Feng Yu
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Peng Chen
- College of Materials Science and Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, China; Fuyang Normal University, Fuyang City, Anhui Province 236041, China
| | - Yong Zhu
- Fuyang Normal University, Fuyang City, Anhui Province 236041, China
| | - Qiannan Kang
- College of Materials Engineering, Jinling Institute of Technology, No.99, Hong Jing Road, Nanjing 211100, China
| |
Collapse
|
8
|
Li X, Wang Y, Tian Y, Wang Z, Zhang L, Ma J. Aqueous AlCl 3/ZnCl 2 solution room-induced the self-growing strategy of expanded topological network for cellulose/polyacrylamide-based solid-state electrolytes. J Colloid Interface Sci 2024; 670:311-322. [PMID: 38763027 DOI: 10.1016/j.jcis.2024.05.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The green synthesis strategy for cellulose-containing hydrogel electrolytes is significant for effectively managing resources, energy, and environmental concerns in the contemporary world. Herein, we propose an all-green strategy using AlCl3/ZnCl2/H2O solvent to create cellulose/polyacrylamide-based hydrogel (AZ-Cel/PAM) with expanded hierarchical topologies. The aqueous AlCl3/ZnCl2 facilitates the efficient dissolution of cellulose at room temperature, and the dispersed Al3+-Zn2+ ions autocatalytic system catalyzes in-situ polymerization of acrylamide (AM) monomer. This expands the AM network within the cellulose framework, forming multiple bonding interactions and stable ion channels. The resulting hybrid hydrogel exhibits improved mechanical properties (tensile strength of 56.54 kPa and compressive strength of 359.43 kPa) and enhanced ionic conductivity (1.99 S/m). Furthermore, it also demonstrates excellent adhesion, freeze resistance (-45 °C), and water retention capabilities. Quantum simulations further clarify the mechanical composition and ion transport mechanism of AZ-Cel/PAM hydrogels. The assembled supercapacitor with the hydrogel electrolyte, demonstrates an ideal area-specific capacitance of 203.80 mF/cm2. This all-green strategy presents a novel approach to developing sustainable energy storage devices.
Collapse
Affiliation(s)
- Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Youlong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yahui Tian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Wan Y, Zhang L, Wu T, Tang C, Song H, Cao Q. High-performance and frost-resistance MXene co-ionic liquid conductive hydrogel printed by electrohydrodynamic for flexible strain sensor. J Colloid Interface Sci 2024; 669:688-698. [PMID: 38733880 DOI: 10.1016/j.jcis.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/01/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Conductive hydrogels with high performance and frost resistance are essential for flexible electronics, electronic skin, and soft robots. Nonetheless, the preparation of hydrogel-based flexible strain sensors with rapid response, wide strain detection range, and high sensitivity remains a considerable challenge. Furthermore, the inevitable freezing and evaporation of water in sub-zero temperatures and dry environments lead to the loss of flexibility and conductivity in hydrogels, which seriously limits their practical application. In this work, ionic liquids (ILs) and MXene are introduced into gelatin/polyacrylamide (PAM) precursor solution, and a PAM/gelatin/ILs/MXene/glycerol (PGIMG) hydrogel-based flexible strain sensor with MXene co-ILs ion-electron composite conductive network is prepared by combining the electrohydrodynamic (EHD) printing method and in-situ photopolymerization. The introduction of ILs provides an ionic conductive channel for the hydrogel. The introduction of MXene nanosheets forms an interpenetrating network with gelatin and PAM, which not only provides a conductive channel, but also improves the mechanical and sensing properties of the hydrogel-based flexible strain sensor. The prepared PGIMG hydrogel with the MXene co-ILs ion-electron composite conductive network demonstrates a tensile strength of 0.21 MPa at 602.82 % strain, the conductivity of 1.636 × 10-3 S/cm, high sensitivity (Gauge Factor, GF = 4.17), a wide strain detection range (1-600 %), and the response/recovery times (73 ms and 74 ms). In addition, glycerol endows the hydrogel with excellent freezing (-60 °C) and water retention properties. The application of the hydrogel-based flexible strain sensor in the field of human motion detection and information transmission shows the great potential of wearable devices, electronic skin, and information encryption transmission.
Collapse
Affiliation(s)
- Yu Wan
- School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Libing Zhang
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Ting Wu
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Chengli Tang
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Haijun Song
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Qianqian Cao
- College of Information Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
10
|
Pardo A, Gomez‐Florit M, Davidson MD, Öztürk‐Öncel MÖ, Domingues RMA, Burdick JA, Gomes ME. Hierarchical Design of Tissue-Mimetic Fibrillar Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2303167. [PMID: 38400658 PMCID: PMC11209813 DOI: 10.1002/adhm.202303167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Most tissues of the human body present hierarchical fibrillar extracellular matrices (ECMs) that have a strong influence over their physicochemical properties and biological behavior. Of great interest is the introduction of this fibrillar structure to hydrogels, particularly due to the water-rich composition, cytocompatibility, and tunable properties of this class of biomaterials. Here, the main bottom-up fabrication strategies for the design and production of hierarchical biomimetic fibrillar hydrogels and their most representative applications in the fields of tissue engineering and regenerative medicine are reviewed. For example, the controlled assembly/arrangement of peptides, polymeric micelles, cellulose nanoparticles (NPs), and magnetically responsive nanostructures, among others, into fibrillar hydrogels is discussed, as well as their potential use as fibrillar-like hydrogels (e.g., those from cellulose NPs) with key biofunctionalities such as electrical conductivity or remote stimulation. Finally, the major remaining barriers to the clinical translation of fibrillar hydrogels and potential future directions of research in this field are discussed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manuel Gomez‐Florit
- Health Research Institute of the Balearic Islands (IdISBa)Palma07010Spain
- Research Unit, Son Espases University Hospital (HUSE)Palma07010Spain
- Group of Cell Therapy and Tissue Engineering (TERCIT)Research Institute on Health Sciences (IUNICS)University of the Balearic Islands (UIB)Ctra. Valldemossa km 7.5Palma07122Spain
| | - Matthew D. Davidson
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Meftune Özgen Öztürk‐Öncel
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| |
Collapse
|
11
|
Chenani H, Saeidi M, Rastkhiz MA, Bolghanabadi N, Aghaii AH, Orouji M, Hatamie A, Simchi A. Challenges and Advances of Hydrogel-Based Wearable Electrochemical Biosensors for Real-Time Monitoring of Biofluids: From Lab to Market. A Review. Anal Chem 2024; 96:8160-8183. [PMID: 38377558 DOI: 10.1021/acs.analchem.3c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Affiliation(s)
- Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hossein Aghaii
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
| | - Amir Hatamie
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden; Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO Box 45195-1159, Zanjan 45137-66731, Iran
| | - Abdolreza Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, 14588 89694 Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
12
|
Xu S, Jia Q, Zhang K, Lu C, Wang C, Wang J, Yong Q, Chu F. Recyclable and mechanically tough nanocellulose reinforced natural rubber composite conductive elastomers for flexible multifunctional sensor. Int J Biol Macromol 2024; 268:131946. [PMID: 38692545 DOI: 10.1016/j.ijbiomac.2024.131946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/20/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
The development of flexible wearable multifunctional electronics has gained great attention in the field of human motion monitoring. However, developing mechanically tough, highly stretchable, and recyclable composite conductive materials for application in multifunctional sensors remained great challenges. In this work, a mechanically tough, highly stretchable, and recyclable composite conductive elastomer with the dynamic physical-chemical dual-crosslinking network was fabricated by the combination of multiple hydrogen bonds and dynamic ester bonds. To prepare the proposed composite elastomers, the polyaniline-modified carboxylate cellulose nanocrystals (C-CNC@PANI) were used as both conductive filler to yield high conductivity of 15.08 mS/m, and mechanical reinforcement to construct the dynamic dual-crosslinking network with epoxidized natural rubber latex to realize the high mechanical strength (8.65 MPa) and toughness (29.57 MJ/m3). Meanwhile, the construction of dynamic dual-crosslinking network endowed the elastomer with satisfactory recyclability. Based on these features, the composite conductive elastomers were used as strain sensors, and electrode material for assembling flexible and recyclable self-powered sensors for monitoring human motions. Importantly, the composite conductive elastomers maintained reliable sensing and energy harvesting performance even after multiple recycling process. This study provides a new strategy for the preparation of recyclable, mechanically tough composite conductive materials for wearable sensors.
Collapse
Affiliation(s)
- Shijian Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 29937, China
| | - Qianqian Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 29937, China
| | - Kai Zhang
- State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chuanwei Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 29937, China; State Key Laboratory of Biobased Materials and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Chunpeng Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| | - Jifu Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 29937, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), Jiangsu Province, No 16, Suojin Wucun, Nanjing 210042, China
| |
Collapse
|
13
|
Meng X, Qi L, Xia C, Jin X, Zhou J, Dong A, Li J, Yang R. Preparation of environmentally friendly, high strength, adhesion and stability hydrogel based on lignocellulose framework. Int J Biol Macromol 2024; 263:130158. [PMID: 38368986 DOI: 10.1016/j.ijbiomac.2024.130158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/25/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
Hydrogels are extensively utilized in the fields of electronic skin, environmental monitoring, biological dressings due to their excellent flexibility and conductivity. However, traditional hydrogel materials possess drawbacks such as environmental toxicity, low strength, poor stability, and water loss deactivation, which limited its frequent applications. Here, a flexible conductive hydrogel called wood-based DES hydrogel (WDH) with high strength, high adhesion, high stability, and high sensitivity was successfully synthesized by using environmentally friendly lignocellulose as skeleton and deep eutectic solvent as matrix. The strength of WDH prepared from lignocellulose framework is approximately 50 times higher than poly deep eutectic solvent hydrogel, and about 4.5 times higher than that prepared from cellulose skeleton. The WDH exhibits stable adhesion to most common materials and demonstrates exceptional dimensional stability. Its conductivity remains unaffected by water, even after prolonged exposure to air, maintaining a value of 0.0245 S/m. The anisotropy inherent in the system results in three distinct linear sensing intervals for WDH, exhibiting a maximum sensitivity of 5.45. This paper verified the advantages of lignocellulose framework in improving the strength and stability of hydrogels, which provided a new strategy for the development of sensor materials.
Collapse
Affiliation(s)
- Xiangzhen Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Linghui Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xin Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Anran Dong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jianzhang Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China
| | - Rui Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; China Jiangsu Key Open Laboratory of Wood Processing and Wood-Based Panel Technology, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
14
|
Zhang S, Guo F, Li M, Yang M, Zhang D, Han L, Li X, Zhang Y, Cao A, Shang Y. Fast gelling, high performance MXene hydrogels for wearable sensors. J Colloid Interface Sci 2024; 658:137-147. [PMID: 38100970 DOI: 10.1016/j.jcis.2023.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/27/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Hydrogel-based functional materials had attracted great attention in the fields of artificial intelligence, soft robotics, and motion monitoring. However, the gelation of hydrogels induced by free radical polymerization typically required heating, light exposure, and other conditions, limiting their practical applications and development in real-life scenarios. In this study, a simple and direct method was proposed to achieve rapid gelation at room temperature by incorporating reductive MXene sheets in conjunction with metal ions into the chitosan network and inducing the formation of a polyacrylamide network in an extremely short time (10 s). This resulted in a dual-network MXene-crosslinked conductive hydrogel composite that exhibited exceptional stretchability (1350 %), remarkably low dissipated energy (0.40 kJ m-3 at 100 % strain), high sensitivity (GF = 2.86 at 300-500 % strain), and strong adhesion to various substrate surfaces. The study demonstrated potential applications in the reliable detection of various motions, including repetitive fine movements and large-scale human body motions. This work provided a feasible platform for developing integrated wearable health-monitoring electronic systems.
Collapse
Affiliation(s)
- Shipeng Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Fengmei Guo
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Meng Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mengdan Yang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Ding Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Lei Han
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China; School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Xinjian Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yingjiu Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
15
|
Deng Y, Yang M, Xiao G, Jiang X. Preparation of strong, tough and conductive soy protein isolate/poly(vinyl alcohol)-based hydrogel via the synergy of biomineralization and salting out. Int J Biol Macromol 2024; 257:128566. [PMID: 38056752 DOI: 10.1016/j.ijbiomac.2023.128566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Conductive hydrogels have shown a great potential in the field of flexible electronic devices. However, conductive hydrogels prepare by traditional methods are difficult to combine high strength and toughness, which limits their application in various fields. In this study, a strategy for preparing conductive hydrogels with high strength and toughness by using the synergistic effect of biomineralization and salting-out was pioneered. In simple terms, by immersing the CaCl2 doped soy protein isolate/poly(vinyl alcohol)/dimethyl sulfoxide (SPI/PVA/DMSO) hydrogel in Na2CO3 and Na3Cit complex solution, the biomineralization aroused by Ca2+ and CO32-, and the salting-out effect of both NaCl and Na3Cit would enhance the mechanical properties of SPI/PVA/DMSO hydrogel. Meanwhile, the ionic conductivity of the hydrogel would also increase due the introduction of cation and anion. The mechanical and electrical properties of SPI/PVA/DMSO/CaCO3/Na3Cit hydrogels were significantly enhanced by the synergistic effect of biomineralization and salting-out. The optimum tensile strength, toughness, Young's modulus and ionic conductivity of the hydrogel were 1.4 ± 0.08 MPa, 0.51 ± 0.04 MPa and 1.46 ± 0.01 S/m, respectively. The SPI/PVA/DMSO/CaCO3/Na3Cit hydrogel was assembled into a strain sensor. The strain sensor had good sensitivity (GF = 3.18, strain in 20 %-500 %) and could be used to accurately detect various human movements.
Collapse
Affiliation(s)
- Yingxue Deng
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Mohan Yang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Gao Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Xiancai Jiang
- School of Chemical Engineering, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362114, China.
| |
Collapse
|
16
|
Zhang X, Liang S, Li F, Ding H, Ding L, Bai Y, Zhang L. Flexible Strain-Sensitive Sensors Assembled from Mussel-inspired Hydrogel with Tunable Mechanical Properties and Wide Temperature Tolerance in Multiple Application Scenarios. ACS APPLIED MATERIALS & INTERFACES 2023; 15:50400-50412. [PMID: 37862705 DOI: 10.1021/acsami.3c12735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Conductive hydrogels, exhibiting wide applications in electronic skins and soft wearable sensors, often require maturely regulating of the hydrogel mechanical properties to meet specific demands and work for a long-term or under extreme environment. However, in situ regulation of the mechanical properties of hydrogels is still a challenge, and regular conductive hydrogels will inevitably freeze at subzero temperature and easily dehydrate, which leads to a short service life. Herein, a novel adhesive hydrogel (PAA-Dopa-Zr4+) capable of strain sensing is proposed with antifreezing, nondrying, strong surface adhesion, and tunable mechanical properties. 3,4-Dihydroxyphenyl-l-alanine (l-Dopa)-grafted poly(acrylic acid) (PAA) and Zr4+ ion are introduced into the hydrogel, which broadly alters the mechanical properties via tuning the in situ aggregation state of polymer chains by ions based on the complexation effect. The catechol groups of l-Dopa and viscous glucose endow the hydrogel with high adhesiveness for skin and device interface (including humid and dry environments) and exhibit an outstanding temperature tolerance under extreme wide temperature spectrum (-35 to 65 °C) or long-lasting moisture retention (60 days). Furthermore, this PAA-Dopa-Zr4+ can be assembled as a flexible strain-sensitive sensor to detect human motions based on specific mechanical properties requirements. This work, enabling superior adhesive and temperature tolerance performance and broad mechanical tenability, presents a new paradigm for numerous applications to wearable sensing and personalized healthcare monitoring.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Shengyue Liang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Fan Li
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Haoran Ding
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, P. R. China
| | - Liping Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226007, P. R. China
| | - Yongping Bai
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150000, P. R. China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
17
|
Omidian H, Chowdhury SD. High-Performing Conductive Hydrogels for Wearable Applications. Gels 2023; 9:549. [PMID: 37504428 PMCID: PMC10379850 DOI: 10.3390/gels9070549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Conductive hydrogels have gained significant attention for their extensive applications in healthcare monitoring, wearable sensors, electronic devices, soft robotics, energy storage, and human-machine interfaces. To address the limitations of conductive hydrogels, researchers are focused on enhancing properties such as sensitivity, mechanical strength, electrical performance at low temperatures, stability, antibacterial properties, and conductivity. Composite materials, including nanoparticles, nanowires, polymers, and ionic liquids, are incorporated to improve the conductivity and mechanical strength. Biocompatibility and biosafety are emphasized for safe integration with biological tissues. Conductive hydrogels exhibit unique properties such as stretchability, self-healing, wet adhesion, anti-freezing, transparency, UV-shielding, and adjustable mechanical properties, making them suitable for specific applications. Researchers aim to develop multifunctional hydrogels with antibacterial characteristics, self-healing capabilities, transparency, UV-shielding, gas-sensing, and strain-sensitivity.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sumana Dey Chowdhury
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
18
|
Wu X, Yang Q, Zhang X, Tsou C, De Guzman MR, Li X, Yuan L, Xia Y, Sheng Y, Li Q, Gao C. A tough conductive hydrogel with triple physical cross-linking, pH-Responsive swelling behaviors, and excellent strain sensitivity. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
19
|
Xin Y, Liang J, Ren L, Gao W, Qiu W, Li Z, Qu B, Peng A, Ye Z, Fu J, Zeng G, He X. Tough, Healable, and Sensitive Strain Sensor Based on Multiphysically Cross-Linked Hydrogel for Ionic Skin. Biomacromolecules 2023; 24:1287-1298. [PMID: 36745900 DOI: 10.1021/acs.biomac.2c01335] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ion conductive hydrogels (ICHs) have attracted great interest in the application of ionic skin because of their superior characteristics. However, it remains a challenge for ICHs to achieve balanced properties of high strength, large fracture strain, self-healing and freezing tolerance. In this study, a strong, stretchable, self-healing and antifreezing ICH was demonstrated by rationally designing a multiphysically cross-linked network structure consisting of the hydrophobic association, metal-ion coordination and chain entanglement among poly(acrylic acid) (PAA) polymer chains. The deliberately designed Brij S 100 acrylate (Brij-100A) micelle cross-linker can effectively dissipate energy and endow hydrogels with desirable stretchability. The self-healing ability of hydrogels originates from the reversible hydrophobic association in micelles and Fe3+-COO- coordination. After the addition of NaCl, the chain-entangled physical network caused by the salting-out effect can both enhance mechanical strength and promote electron transport. With the synergy of hydrophobic association, mental-ligand coordination and chain entanglement, the PAA/Brij-100A/Fe3+/NaCl (PAA/BA/Fe3+/NaCl) hydrogels exhibited a high tensile strain of 1140%, a tensile strength of 0.93 MPa and a toughness of 3.48 MJ m-3. Besides, the PAA/BA/Fe3+/NaCl hydrogels exhibited a high conductivity of 0.43 S m-1 and good freezing resistance. The ionic skin based on the PAA/BA/Fe3+/NaCl hydrogels showed high sensitivity (GF = 5.29), wide strain range (0-950%), fast response time (220 ms) and good stability. Also, the self-healing ability of the ionic skin can significantly prolong its service time, and the antifreezing property can broaden its applicable temperature. This study offers new insight into the design of multifunctional ionic skin for wearable electronics.
Collapse
Affiliation(s)
- Yue Xin
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
- School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, Guangdong, P. R. China
| | - Jionghong Liang
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Lantu Ren
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Wenshuo Gao
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Weicheng Qiu
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Zhenhan Li
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Baoliu Qu
- School of Textile Materials and Engineering, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Aijian Peng
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Zhixin Ye
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| | - Jun Fu
- School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, Guangdong, P. R. China
| | - Guang Zeng
- School of Electronic and Computer Engineering, Peking University Shenzhen Graduate School, 2199 Lishui Road, Shenzhen 518055, Guangdong, P. R. China
| | - Xin He
- School of Applied Physics and Materials, Wuyi University, 22 Dongcheng Village, Jiangmen 529020, Guangdong, P. R. China
| |
Collapse
|
20
|
Wei X, Li J, Hu Z, Wang C, Gao Z, Cao Y, Han J, Li Y. Carbon Quantum Dot/Chitosan-Derived Hydrogels with Photo-stress-pH Multiresponsiveness for Wearable Sensors. Macromol Rapid Commun 2023; 44:e2200928. [PMID: 36786588 DOI: 10.1002/marc.202200928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Indexed: 02/15/2023]
Abstract
In recent years, hydrogels have attracted extensive attention in smart sensing owing to their biocompatibility and high elasticity. However, it is still a challenge to develop hydrogels with excellent multiple responsiveness for smart wearable sensors. In this paper, a facile synthesis of carbon quantum dots (CQDs)-doped cross-linked chitosan quaternary/carboxymethylcellulose hydrogels (CCCDs) is presented. Designing of dual network hydrogels decorated with CQDs provides abundant crosslinking and improves the mechanical properties of the hydrogels. The hydrogel-based strain sensor exhibits excellent sensitivity (gauge factor: 9.88), linearity (R2 : 0.97), stretchable ability (stress: 0.67 MPa; strain: 404%), good cyclicity, and durability. The luminescent properties are endowed by the CQDs further broaden the application of hydrogels for realizing flexible electronics. More interestingly, the strain sensor based on CCCDs hydrogel demonstrates photo responsiveness (ΔR/R0 ≈20%) and pH responsiveness (pH range ≈4-7) performance. CCCDs hydrogels can be used for gesture recognition and light sensing switch. As a proof-of-concept, a smart wearable sensor is designed for monitoring human activities and detecting pH variation in human sweat during exercise. This study reveals new possibilities for further applications in wearable health monitoring.
Collapse
Affiliation(s)
- Xiaotong Wei
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Jie Li
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Zhirui Hu
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Chen Wang
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Zhiqiang Gao
- School of Mechatronic Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Yang Cao
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Jing Han
- School of Mechatronic Engineering, North University of China, Taiyuan, 030051, P. R. China
| | - Yingchun Li
- School of Materials Science and Engineering, North University of China, Taiyuan, 030051, P. R. China
| |
Collapse
|
21
|
Xiong J, Zhan T, Hu Y, Guo Z, Wang S. A tough, stretchable, freeze-tolerated double-cross-linked conductive hydrogel and its application in flexible strain sensors. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Kang L, Wang X, Liu S, Zhang Q, Zou J, Gong Z, Jun SC, Zhang J. Bio-inspired interface engineering of Ag2O rooted on Au, Ni-modified filter paper for highly robust Zn–Ag2O batteries. J Colloid Interface Sci 2022; 623:744-751. [DOI: 10.1016/j.jcis.2022.05.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
23
|
Zhao T, E Y, Cui J, Hao J, Wang X. Nonequilibrium regulation of interfacial chemistry for transient macroscopic supramolecular assembly. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Highly stretchable, elastic, antimicrobial conductive hydrogels with environment-adaptive adhesive property for health monitoring. J Colloid Interface Sci 2022; 622:612-624. [DOI: 10.1016/j.jcis.2022.04.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/13/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
|
25
|
Bai H, Chen D, Zhu H, Zhang S, Wang W, Ma P, Dong W. Photo-crosslinking ionic conductive PVA-SbQ/FeCl3 hydrogel sensors. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Yang J, Kang Q, Zhang B, Tian X, Liu S, Qin G, Chen Q. Robust, fatigue resistant, self-healing and antifreeze ionic conductive supramolecular hydrogels for wearable flexible sensors. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Zhou C, Wu T, Xie X, Song G, Ma X, Mu Q, Huang Z, Liu X, Sun C, Xu W. Advances and challenges in conductive hydrogels: From properties to applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|