1
|
Wu Y, Sha Y, Guo X, Gao L, Huang J, Liu SB. Organoid models: applications and research advances in colorectal cancer. Front Oncol 2025; 15:1432506. [PMID: 39990692 PMCID: PMC11842244 DOI: 10.3389/fonc.2025.1432506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
This review summarizes the applications and research progress of organoid models in colorectal cancer research. First, the high incidence and mortality rates of colorectal cancer are introduced, emphasizing the importance of organoids as a research model. Second, this review provides a detailed introduction to the concept, biological properties, and applications of organoids, including their strengths in mimicking the structural and functional aspects of organs. This article further analyzes the applications of adult stem cell-derived and pluripotent stem cell-derived organoids in colorectal cancer research and discusses advancements in organoids for basic research, drug research and development, personalized treatment evaluation and prediction, and regenerative medicine. Finally, this review summarizes the prospects for applying organoid technology in colorectal cancer research, emphasizing its significant value in improving patient survival rates. In conclusion, this review systematically explains the applications of organoids in colorectal cancer research, highlighting their tremendous potential and promising prospects in basic research, drug research and development, personalized treatment evaluation and prediction, and regenerative medicine.
Collapse
Affiliation(s)
- Yijie Wu
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| | - Yu Sha
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| | - Xingpo Guo
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ling Gao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Huang
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| | - Song-Bai Liu
- College of Life Science, North China University of Science and Technology, Tangshan, China
- Jiangsu Province Engineering Research Center of Molecular Target Therapy and Companion Diagnostics in Oncology, Suzhou Vocational Health College, Suzhou, China
| |
Collapse
|
2
|
Chen L, Dai Z, Zhang Y, Sheng H, Hu B, Du J, Chang J, Xu W, Hu Y. Integrative metabolome and transcriptome analyses provide insights into PHGDH in colon cancer organoids. Biosci Rep 2025; 45:1-12. [PMID: 39670663 PMCID: PMC12096955 DOI: 10.1042/bsr20240842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 12/14/2024] Open
Abstract
As a rate-limiting enzyme in the endogenous serine de novo synthesis pathway, 3-Phosphoglycerate dehydrogenase (PHGDH) has been widely concerned about its role in a variety of tumors including colon cancer and the development of inhibitors. In our previous study, we studied PHGDH in colon cancer cell lines. However, with the development of personalized therapy, we realized that in scientific research, two-dimensional cell lines lost a lot of original characteristic information during long-term culture, and the results obtained may not be enough to support the conclusion. Patient-derived tumor organoids maintain genomic stability and make up for information missing from cell lines due to monoclonal growth. Therefore, in our study, a colon cancer organoid with high PHGDH expression was selected and analyzed for transcriptomic and metabolomic changes through targeted inhibition of PHGDH. The results showed that inhibition of PHGDH significantly inhibited the proliferation of colon cancer organoids. The transcriptome, metabolome, and combined omics analysis showed that the changes in colon cancer organoids after inhibition of PHGDH were mainly involved in PRSS1 and PRSS56, steroid hormone biosynthesis, phenylalanine metabolism, ascorbate and aldarate metabolism, and tyrosine metabolism. In our study, the role of PHGDH in serine metabolism in colon cancer organoids was clarified by multi-omics analysis to provide new knowledge for an in-depth understanding of serine metabolism and PHGDH function in colon cancer.
Collapse
Affiliation(s)
- Lin Chen
- Central Laboratory, Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
| | - Zhihui Dai
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Yanfei Zhang
- Department of Pathology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
| | - Huichao Sheng
- Department of Pathology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
| | - Bin Hu
- Department of Pathology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
| | - Jinlin Du
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
| | - Jie Chang
- Central Laboratory, Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
| | - Wenxia Xu
- Central Laboratory, Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
| | - Yuqing Hu
- Central Laboratory, Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
- Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, 321000, China
| |
Collapse
|
3
|
Li Y, Wu W, Yao J, Wang S, Wu X, Yan J. Patient-Derived Tumor Organoids: A Platform for Precision Therapy of Colorectal Cancer. Cell Transplant 2025; 34:9636897251314645. [PMID: 39953837 PMCID: PMC11829288 DOI: 10.1177/09636897251314645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 02/17/2025] Open
Abstract
Colorectal cancer (CRC) represents a significant cause of cancer-related mortality on a global scale. It is a highly heterogeneous cancer, and the response of patients to homogeneous drug therapy varies considerably. Patient-derived tumor organoids (PDTOs) represent an optimal preclinical model for cancer research. A substantial body of evidence from numerous studies has demonstrated that PDTOs can accurately predict a patient's response to different drug treatments. This article outlines the utilization of PDTOs in the management of CRC across a range of therapeutic contexts, including postoperative adjuvant chemotherapy, palliative chemotherapy, neoadjuvant chemoradiotherapy, targeted therapy, third-line and follow-up treatment, and the treatment of elderly patients. This article delineates the manner in which PDTOs can inform therapeutic decisions at all stages of CRC, thereby assisting clinicians in selecting treatment options and reducing the risk of toxicity and resistance associated with clinical drugs. Moreover, it identifies shortcomings of existing PDTOs, including the absence of consistent criteria for assessing drug sensitivity tests, the lack of vascular and tumor microenvironment models, and the high cost of the technology. In conclusion, despite their inherent limitations, PDTOs offer several advantages, including rapid culture, a high success rate, high consistency, and high throughput, which can be employed as a personalized treatment option for CRC. The use of PDTOs in CRC allows for the prediction of responses to different treatment modalities at various stages of disease progression. This has the potential to reduce adverse drug reactions and the emergence of resistance associated with clinical drugs, facilitate evidence-based clinical decision-making, and guide CRC patients in the selection of personalized medications, thereby advancing the individualized treatment of CRC.
Collapse
Affiliation(s)
- Yiran Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Wei Wu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jiaxin Yao
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Suidong Wang
- Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiufeng Wu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, P.R. China
| | - Jun Yan
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| |
Collapse
|
4
|
Zhang Y, Meng R, Sha D, Gao H, Wang S, Zhou J, Wang X, Li F, Li X, Song W. Advances in the application of colorectal cancer organoids in precision medicine. Front Oncol 2024; 14:1506606. [PMID: 39697234 PMCID: PMC11653019 DOI: 10.3389/fonc.2024.1506606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
Colorectal cancer (CRC) ranks among the most prevalent gastrointestinal tumors globally and poses a significant threat to human health. In recent years, tumor organoids have emerged as ideal models for clinical disease research owing to their ability to closely mimic the original tumor tissue and maintain a stable phenotypic structure. Organoid technology has found widespread application in basic tumor research, precision therapy, and new drug development, establishing itself as a reliable preclinical model in CRC research. This has significantly advanced individualized and precise tumor therapies. Additionally, the integration of single-cell technology has enhanced the precision of organoid studies, offering deeper insights into tumor heterogeneity and treatment response, thereby contributing to the development of personalized treatment approaches. This review outlines the evolution of colorectal cancer organoid technology and highlights its strengths in modeling colorectal malignancies. This review also summarizes the progress made in precision tumor medicine and addresses the challenges in organoid research, particularly when organoid research is combined with single-cell technology. Furthermore, this review explores the future potential of organoid technology in the standardization of culture techniques, high-throughput screening applications, and single-cell multi-omics integration, offering novel directions for future colorectal cancer research.
Collapse
Affiliation(s)
- Yanan Zhang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Department of Oncology, Zibo Hospital of Traditional Chinese Medicine, Zibo, China
| | - Ruoyu Meng
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Dan Sha
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huiquan Gao
- Department of Radiotherapy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Shengxi Wang
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Zhou
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoshan Wang
- The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Fuxia Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wei Song
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
5
|
Deng L, Wang R, Xu X, Jiang H, Han J, Liu W. Characterization, in vitro elderly digestion, and organoids cell uptake of curcumin-loaded nanoparticles. Food Chem 2024; 458:140292. [PMID: 38959794 DOI: 10.1016/j.foodchem.2024.140292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/17/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Curcumin, a bioactive compound, showed versatile in anti-inflammatory and anti-cancer ability, while their biological fate in elderly is unclear. In this study, curcumin-loaded nanoparticles based on octyl succinate hydrate (OSA) starch and sodium caseinate were prepared and the in vitro elderly digestion and absorption fate was investigated. The loading capacity of curcumin-loaded nanoparticles prepared from OSA starch (HI), sodium caseinate (SC) and OSA starch‑sodium caseinate (HS) were all higher than 15%. Curcumin release behavior of the three nanoparticles during in vitro digestion conformed to first-order kinetics. Meanwhile, the transport efficiency of curcumin for HI, SC, and HS increased significantly than the free curcumin (near 1-fold), and the permeability were 1.9, 2.0, and 2.0 times, respectively. The gene expressions of TNF-α, SREBP2 and NPC1L1 in the organoids were enhanced than control group. This study provided scientific reference and guidance for encapsulation of curcumin and digestion and absorption properties in elderly.
Collapse
Affiliation(s)
- Leiyu Deng
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Ruijie Wang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanyun Jiang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
6
|
Niederreiter M, Klein J, Schmitz SBM, Werner J, Mayer B. Anti-Cancer Properties of Two Intravenously Administrable Curcumin Formulations as Evaluated in the 3D Patient-Derived Cancer Spheroid Model. Int J Mol Sci 2024; 25:8543. [PMID: 39126111 PMCID: PMC11313667 DOI: 10.3390/ijms25158543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Curcumin (Cur) is a heavily used complementary derived drug from cancer patients. Spheroid samples derived from 82 patients were prepared and treated after 48 h with two Cur formulations (CurA, CurB) in mono- and combination therapy. After 72 h, cell viability and morphology were assessed. The Cur formulations had significant inhibitory effects of -8.47% (p < 0.001), CurA of -10.01% (-50.14-23.11%, p = 0.001) and CurB of -6.30% (-33.50-19.30%, p = 0.006), compared to their solvent controls Polyethylene-glycol, β-Cyclodextrin (CurA) and Kolliphor-ELP, Citrate (CurB). Cur formulations were more effective in prostate cancer (-19.54%) and less effective in gynecological non-breast cancers (0.30%). CurA showed better responses in samples of patients <40 (-13.81%) and >70 years of age (-17.74%). CurB had stronger effects in metastasized and heavily pretreated tumors. Combinations of Cur formulations and standard therapies were superior in 20/47 samples (42.55%) and inferior in 7/47 (14.89%). CurB stimulated chemo-doublets more strongly than monotherapies (-0.53% vs. -6.51%, p = 0.022) and more effectively than CurA (-6.51% vs. 3.33%, p = 0.005). Combinations of Cur formulations with Artesunate, Resveratrol and vitamin C were superior in 35/70 (50.00%) and inferior in 16/70 (22.86%) of samples. Cur formulations were significantly enhanced by combination with Artesunate (p = 0.020). Cur formulations showed a high variance in their anti-cancer effects, suggesting a need for individual testing before administration.
Collapse
Affiliation(s)
- Marlene Niederreiter
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
| | - Julia Klein
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
| | - Sebastian B. M. Schmitz
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
| | - Jens Werner
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
| | - Barbara Mayer
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University Munich, Marchioninistraße 15, 81377 Munich, Germany; (M.N.); (J.K.); (S.B.M.S.); (J.W.)
- German Cancer Consortium (DKTK), Partner Site Munich, Pettenkoferstraße 8a, 80336 Munich, Germany
- SpheroTec GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| |
Collapse
|
7
|
Lin H, Luo Y, Gong T, Fang H, Li H, Ye G, Zhang Y, Zhong M. GDF15 induces chemoresistance to oxaliplatin by forming a reciprocal feedback loop with Nrf2 to maintain redox homeostasis in colorectal cancer. Cell Oncol (Dordr) 2024; 47:1149-1165. [PMID: 38386232 DOI: 10.1007/s13402-024-00918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/23/2024] Open
Abstract
PURPOSE Growth differentiating Factor 15 (GDF15) is linked to several cancers, but its effect on chemoresistance in colorectal cancer (CRC) remains unclear. Here, we investigated the role of GDF15 in the chemotherapeutic response of CRC patients to oxaliplatin (L-OHP). METHODS GDF15 levels in serum and tumour tissues were detected in CRC patients have received L-OHP-based neoadjuvant chemotherapy. The effects of GDF15 neutralization or GDF15 knockdown on cell proliferation, apoptosis and intracellular reactive oxygen species (ROS) levels were analysed in vitro and in vivo. Co-immunoprecipitation (Co-IP), Chromatin Immunoprecipitation (ChIP) and luciferase reporter assays were used to explore the interaction between GDF15 and Nrf2. RESULTS In this study, we found that GDF15 alleviates oxidative stress to induce chemoresistance of L-OHP in CRC. Mechanically, GDF15 posttranscriptionally regulates protein stability of Nrf2 through the canonical PI3K/AKT/GSK3β signaling pathway, and in turn, Nrf2 acts as a transcription factor to regulate GDF15 expression to form a positive feedback loop, resulting in the maintenance of redox homeostasis balance in CRC. Furthermore, a positive correlation between GDF15 and Nrf2 was observed in clinical CRC samples, and simultaneous overexpression of both GDF15 and Nrf2 was associated with poor prognosis in CRC patients treated with L-OHP. Simultaneous inhibition of both GDF15 and Nrf2 significantly increases the response to L-OHP in an L-OHP-resistant colorectal cancer cells-derived mouse xenograft model. CONCLUSION This study identified a novel GDF15-Nrf2 positive feedback loop that drives L-OHP resistance and suggested that the GDF15-Nrf2 axis is a potential therapeutic target for the treatment of L-OHP-resistant CRC.
Collapse
Affiliation(s)
- Haiping Lin
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingyue Gong
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongsheng Fang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hao Li
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangyao Ye
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiaotong University, Shanghai, China.
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
8
|
Jose A, Kulkarni P, Thilakan J, Munisamy M, Malhotra AG, Singh J, Kumar A, Rangnekar VM, Arya N, Rao M. Integration of pan-omics technologies and three-dimensional in vitro tumor models: an approach toward drug discovery and precision medicine. Mol Cancer 2024; 23:50. [PMID: 38461268 PMCID: PMC10924370 DOI: 10.1186/s12943-023-01916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/15/2023] [Indexed: 03/11/2024] Open
Abstract
Despite advancements in treatment protocols, cancer is one of the leading cause of deaths worldwide. Therefore, there is a need to identify newer and personalized therapeutic targets along with screening technologies to combat cancer. With the advent of pan-omics technologies, such as genomics, transcriptomics, proteomics, metabolomics, and lipidomics, the scientific community has witnessed an improved molecular and metabolomic understanding of various diseases, including cancer. In addition, three-dimensional (3-D) disease models have been efficiently utilized for understanding disease pathophysiology and as screening tools in drug discovery. An integrated approach utilizing pan-omics technologies and 3-D in vitro tumor models has led to improved understanding of the intricate network encompassing various signalling pathways and molecular cross-talk in solid tumors. In the present review, we underscore the current trends in omics technologies and highlight their role in understanding genotypic-phenotypic co-relation in cancer with respect to 3-D in vitro tumor models. We further discuss the challenges associated with omics technologies and provide our outlook on the future applications of these technologies in drug discovery and precision medicine for improved management of cancer.
Collapse
Affiliation(s)
- Anmi Jose
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pallavi Kulkarni
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Jaya Thilakan
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Murali Munisamy
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Anvita Gupta Malhotra
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Jitendra Singh
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India
| | - Vivek M Rangnekar
- Markey Cancer Center and Department of Radiation Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Neha Arya
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Bhopal, Madhya Pradesh, 462020, India.
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
9
|
Demerdash MS, Attia RT, El-Sherei MM, Aziz WM, Fahmy SA, Issa MY. Unveiling the functional components and anti-Alzheimer's activity of Koelreuteria elegans (Seem.) A.C. Sm. using UHPLC-MS/MS and molecular networking. MATERIALS ADVANCES 2024; 5:3432-3449. [DOI: 10.1039/d4ma00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The metabolomic profiles of Koelreuteria elegans leaf and fruit methanol extracts using UHPLC-MS/MS analysis aided by molecular networking were explored. Both extracts reduced all the examined markers of inflammation and neurodegeneration in the injured streptozotocin (STZ)-induced AD mice.
Collapse
Affiliation(s)
- Mohamed S. Demerdash
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Reem T. Attia
- Department of Pharmacology, Toxicology, and Biochemistry, Faculty of Pharmacy, Future University in Egypt, Cairo 11865, Egypt
| | - Moshera M. El-Sherei
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Wafaa M. Aziz
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative Capital, AL109AB, Cairo 11835, Egypt
| | - Marwa Y. Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
10
|
Dai Z, Chen L, Pan K, Zhao X, Xu W, Du J, Xing C. Multi-omics Analysis of the Role of PHGDH in Colon Cancer. Technol Cancer Res Treat 2023; 22:15330338221145994. [PMID: 36707056 PMCID: PMC9896097 DOI: 10.1177/15330338221145994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Objectives: Serine metabolism is essential for tumor cells. Endogenous serine arises from de novo synthesis pathways. As the rate-limiting enzyme of this pathway, PHGDH is highly expressed in a variety of tumors including colon cancer. Therefore, targeted inhibition of PHGDH is an important strategy for anti-tumor therapy research. However, the specific gene expression and metabolic pathways regulated by PHGDH in colon cancer are still unclear. Our study was aimed to clarified the role of PHGDH in serine metabolism in colon cancer to provide new knowledge for in-depth understanding of serine metabolism and PHGDH function in colon cancer. Methods: In this study, we analyzed the gene expression and metabolic remodeling process of colon cancer cells (SW620) after targeted inhibition of PHGDH by gene transcriptomics and metabolomics. LC-MS analysis was performed in 293T cells to PHGDH gene transcription and protein post-translational modification under depriving exogenous serine. Results: We found that amino acid transporters, amino acid metabolism, lipid synthesis related pathways compensation and other processes are involved in the response process after PHGDH inhibition. And ATF4 mediated the transcriptional expression of PHGDH under exogenous serine deficiency conditions. While LC-MS analysis of post-translational modification revealed that PHGDH produced changes in acetylation sites after serine deprivation that the K289 site was lost, and a new acetylation site K21was produced. Conclusion: Our study performed transcriptomic and metabolomic analysis by inhibiting PHGDH, thus clarifying the role of PHGDH in gene transcription and metabolism in colon cancer cells. The mechanism of high PHGDH expression in colon cancer cells and the acetylation modification that occurs in PHGDH protein were also clarified by serine deprivation. In our study, the role of PHGDH in serine metabolism in colon cancer was clarified by multi-omics analysis to provide new knowledge for in-depth understanding of serine metabolism and PHGDH function in colon cancer.
Collapse
Affiliation(s)
- Zhihui Dai
- Department of General Surgery, The Second Affiliated Hospital of Soochow
University, Suzhou, China,Department of Colorectal Surgery, Affiliated Jinhua Hospital,
Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Lin Chen
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University
School of Medicine, Jinhua, Zhejiang Province, China
| | - KaiLing Pan
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University
School of Medicine, Jinhua, Zhejiang Province, China
| | - XiaoYa Zhao
- Jiangsu Key Laboratory of Molecular Medicine,
Medical
School of Nanjing University, Nanjing,
Jiangsu Province, China
| | - WenXia Xu
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University
School of Medicine, Jinhua, Zhejiang Province, China
| | - JinLin Du
- Department of Colorectal Surgery, Affiliated Jinhua Hospital,
Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China,JinLin Du, Department of Colorectal
Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine,
Jinhua 321000, Zhejiang Province, China.
Chungen Xing, Department of General Surgery, The Second Affiliated Hospital of
Soochow University, Suzhou, China.
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow
University, Suzhou, China
| |
Collapse
|
11
|
Emerging biotechnology applications in natural product and synthetic pharmaceutical analyses. Acta Pharm Sin B 2022; 12:4075-4097. [DOI: 10.1016/j.apsb.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
|