1
|
Hidaka Y, Jo N, Kikuchi O, Fukahori M, Sawada T, Shimazu Y, Yamamoto M, Kometani K, Nagao M, Nakajima TE, Muto M, Morita S, Hamazaki Y. Effect of prevaccination blood and T-cell phenotypes on antibody responses to a COVID-19 mRNA vaccine. Int Immunol 2025; 37:403-416. [PMID: 40110889 DOI: 10.1093/intimm/dxaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/15/2025] [Indexed: 03/22/2025] Open
Abstract
Despite the high effectiveness of the coronavirus disease 2019 (COVID-19) mRNA vaccines, both immunogenicity and reactogenicity show substantial interindividual variability. One key challenge is predicting high and low responders using easily measurable parameters. In this study, we performed multivariate linear regression analysis, which allows adjustment for confounding, to explore independent predictive factors for antibody responses. Using data from 216 healthy vaccinated donors aged 23-81 years, we evaluated baseline characteristics, prevaccination blood and T-cell phenotypes, and post-vaccination T-cell responses as variables, with anti-receptor-binding domain (RBD) immunoglobulin G (IgG) titers following two doses of BNT162b2 vaccination as the primary outcome. Consistent with previous reports, higher age, a history of allergic disease, and autoimmune disease were associated with lower peak IgG titers. Additionally, the frequencies of interferon-γ+ spike-specific CD4+ T cells (T-cell response) following the first vaccination strongly correlated with higher IgG responses, while those of pre-existing spike-reactive T cells showed no association with peak IgG titers. Furthermore, we identified lower percentages of naïve CD8+ T cells, lower hemoglobin levels, lower lymphocyte counts, and higher mean corpuscular volume as independent pre-vaccination predictors of lower peak IgG levels. Notably, the frequency of naïve CD8+ T cells showed a positive correlation with the peak IgG levels even in univariate analysis. These findings contribute to the individualized prediction of mRNA vaccine efficacy and may provide insights into the mechanisms underlying individual heterogeneity in immune responses.
Collapse
Affiliation(s)
- Yu Hidaka
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Norihide Jo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Alliance Laboratory for Advanced Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Osamu Kikuchi
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Clinical Bio-Resource Center, Kyoto University Hospital, Kyoto, Japan
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University, Kyoto, Japan
| | - Masaru Fukahori
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Takeshi Sawada
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Yutaka Shimazu
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Masaki Yamamoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kohei Kometani
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takako E Nakajima
- Department of Early Clinical Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Manabu Muto
- Department of Medical Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Clinical Bio-Resource Center, Kyoto University Hospital, Kyoto, Japan
- Kyoto Innovation Center for Next Generation Clinical Trials and iPS Cell Therapy (Ki-CONNECT), Kyoto University Hospital, Kyoto, Japan
| | - Satoshi Morita
- Department of Biomedical Statistics and Bioinformatics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoko Hamazaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Kyoto University Immunomonitoring Center (KIC), Kyoto, Japan
| |
Collapse
|
2
|
Bean DJ, Liang YM, Avila F, He X, Asundi A, Sagar M. Endemic coronavirus infection is associated with SARS-CoV-2 Fc receptor-binding antibodies. J Virol 2025; 99:e0055025. [PMID: 40387363 DOI: 10.1128/jvi.00550-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 05/20/2025] Open
Abstract
Recent documented infection with an endemic coronavirus (eCoV) is associated with less severe coronavirus disease 2019 (COVID-19), yet the immune mechanism behind this protection has not been fully explored. We measured both antibody and T-cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in SARS-CoV-2-naïve individuals, classified into two groups: those with or without presumed recent eCoV infections. There was no difference in neutralizing antibodies and T-cell responses against SARS-CoV-2 antigens between the two groups. SARS-CoV-2-naïve individuals with recent presumed eCoV infection, however, had higher and significantly correlated levels of Fc receptor (FcR)-binding antibodies against eCoV spikes (S) and SARS-CoV-2 S2. Recent eCoV infection boosts cross-reactive antibodies that can mediate Fc effector functions, and this may play a role in the observed heterotypic immune protection against severe COVID-19. IMPORTANCE With the recent emergence of SARS-CoV-2 and other pathogenic coronaviruses, it is important to understand how the immune system may protect against disease from future coronavirus outbreaks. We investigated the adaptive immune responses elicited from a "common cold" eCoV and measured the cross-reactivity against SARS-CoV-2 in individuals classified as having or not having a recent eCoV infection. Although both groups had similar cross-reactive T-cell and neutralizing antibody responses, individuals with a recent eCoV infection had higher antibody levels capable of Fc receptor binding. Antibodies with enhanced Fc receptor binding could mediate the killing of virally infected cells through mechanisms such as antibody-dependent cellular cytotoxicity, which may reduce the severity of COVID-19. Antibodies capable of mediating Fc effector functions may be critical for therapies and vaccines against future pathogenic coronavirus outbreaks.
Collapse
Affiliation(s)
- David J Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Frida Avila
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Xianbao He
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Archana Asundi
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Adhikari B, Oltz EM, Gumina RJ, Kick MK, Saif LJ, Vlasova AN. Circulating Antibodies Against Common Cold Coronaviruses Do Not Interfere with Immune Responses to Primary or Booster SARS-CoV-2 mRNA Vaccines. Vaccines (Basel) 2025; 13:547. [PMID: 40432156 PMCID: PMC12115401 DOI: 10.3390/vaccines13050547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/01/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND Pre-existing cross-reactive antibodies (Abs) against common cold coronaviruses (CCCoVs) have been hypothesized to influence the immune responses to SARS-CoV-2 vaccine-induced Ab responses. METHODS Serum samples from healthy healthcare workers (HCWs, n = 64) receiving mRNA vaccines were collected at seven time points: pre-COVID-19-vaccination (Pre), post-first dose (Vax1), post-second dose (Vax2), and 6-, 9-, 12-, and 15-months post-Vax2. Booster vaccine doses (n = 23) were received 1-80 days prior to the 9 m sample collection time point. We used peptide-based enzyme-linked immunosorbent assays (ELISAs) to measure SARS-CoV-2/CCCoV-specific IgG/IgA/IgM and SARS-CoV-2 IgG4 (associated with immune tolerance) Ab levels in the HCW serum samples. Additionally, we measured Epstein-Barr/influenza A (unrelated pathogens) virus-specific IgG Ab levels. RESULTS We observed that vaccination significantly increased SARS-CoV-2 IgG Ab levels at the Vax1 (p ≤ 0.0001) and Vax2 (p ≤ 0.0001) time points compared to Pre-Vax. These Ab levels declined at 6 months post-vaccination but increased again following the booster vaccine dose around the 9-month post-Vax2 time point in a cohort (n = 23) of the HCWs. However, this increase was modest compared to those induced by the primary vaccine series. Interestingly, a moderate but continuous increase in SARS-CoV-2 S IgG4 Ab levels was observed throughout this study, becoming statistically significant by the 15-month time point (p = 0.03). Further, a significant increase in CCCoV IgG (but not IgA/IgM) Ab levels was observed at the Vax1 time point, suggestive of cross-reactive or non-specific immune responses. Finally, we observed no negative correlation between the levels of pre-existing CCCoV-specific Abs and the vaccine-induced Ab response (Vax1/Vax2). CONCLUSIONS Pre-existing CCCoV Abs do not interfere with the development of vaccine-induced immunity. However, vaccine-associated Abs wane over time, which may be associated with the increasing IgG4 Ab response.
Collapse
Affiliation(s)
- Bindu Adhikari
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA; (B.A.); (L.J.S.)
- Center for Food Animal Health, Department of Animal Sciences, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA;
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA;
| | - Maryssa K. Kick
- Center for Food Animal Health, Department of Animal Sciences, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Linda J. Saif
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA; (B.A.); (L.J.S.)
- Center for Food Animal Health, Department of Animal Sciences, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Anastasia N. Vlasova
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Wooster, OH 44691, USA; (B.A.); (L.J.S.)
- Center for Food Animal Health, Department of Animal Sciences, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, OH 44691, USA;
| |
Collapse
|
4
|
Yao Z, Feng Z, Zhang H, Zhang B. ScRNA-Seq reveals T cell immunity in COVID-19 patients and implications for immunotherapy. Int Immunopharmacol 2025; 155:114663. [PMID: 40233451 DOI: 10.1016/j.intimp.2025.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
SARS-CoV-2, the virus causing COVID-19, poses significant health threats due to its high transmissibility and potential for severe respiratory complications. T cells, central to adaptive immunity, also interact with innate immunity, playing a pivotal role in coordinating defenses and eliminating infected cells. Single-cell RNA sequencing (scRNA-seq) has provided more subtle heterogeneity, rare subpopulations, or new subpopulations that are at the district differentiation stage or with specific function. Thus, elucidating how T cell heterogeneity impacts COVID-19 disease severity remains a critical question requiring comprehensive analysis. This review revealed the heterogeneity of the host T cells, including conventional T cells (CD8+, CD4+ T cells) and unconventional T cells, including natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) and gamma-delta T (γδT) cells in COVID-19 patients with different clinical manifestations. Severe COVID-19 had marked lymphopenia, excessive activation, elevated exhaustion and reduced functional diversity of T cells. Pathogenic contributions arise from dysregulated cytotoxic T cells, Treg cells and unconventional T cells collectively driving systemic hyperinflammation and tissue injury. Current therapeutic strategies targeting T cells-such as enhancing virus-specific T cell responses, reverting T-cell exhaustion and alleviating inflammation-exhibit inconsistent efficacy, underscoring the need for combinatorial approaches. This review highlights how scRNA-seq deciphers T cell heterogeneity and dysfunction in COVID-19. By targeting T cell exhaustion, inflammation, and subset-specific deficits, these insights pave the way for therapies and vaccines.
Collapse
Affiliation(s)
- Zhihong Yao
- Faculty of Clinical Medicine, Hanzhong Vocational and Technical College, Hanzhong 723002, China; Affiliated Hospital, Hanzhong Vocational and Technical College, Hanzhong 723012, China; Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hui Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
5
|
Counoupas C, Chan E, Pino P, Armitano J, Johansen MD, Smith LJ, Ashley CL, Estapé E, Troyon J, Alca S, Miemczyk S, Hansbro NG, Scandurra G, Britton WJ, Courant T, Dubois PM, Collin N, Mohan VK, Hansbro PM, Wurm MJ, Wurm FM, Steain M, Triccas JA. An adjuvanted chimeric spike antigen boosts lung-resident memory T-cells and induces pan-sarbecovirus protective immunity. NPJ Vaccines 2025; 10:89. [PMID: 40341541 PMCID: PMC12062434 DOI: 10.1038/s41541-025-01144-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
Next-generation vaccines are essential to address the evolving nature of SARS-CoV-2 and to protect against emerging pandemic threats from other coronaviruses. These vaccines should elicit broad protection, provide long-lasting immunity and ensure equitable access for all populations. In this study, we developed a panel of chimeric, full-length spike antigens incorporating mutations from previous, circulating and predicted SARS-CoV-2 variants. The lead candidate (CoVEXS5) was produced through a high-yield production process in stable CHO cells achieving >95% purity, demonstrated long-term stability and elicited broadly cross-reactive neutralising antibodies when delivered to mice in a squalene emulsion adjuvant (Sepivac SWE™). In both mice and hamsters, CoVEXS5 immunisation reduced clinical disease signs, lung inflammation and organ viral titres after SARS-CoV-2 infection, including following challenge with the highly immunoevasive Omicron XBB.1.5 subvariant. In mice previously primed with a licenced mRNA vaccine (Comirnaty XBB.1.5, termed mRNA-XBB), CoVEXS5 boosting significantly increased neutralising antibody (nAb) levels against viruses from three sarbecoviruses clades. Boosting with CoVEXS5 via systemic delivery elicited CD4+ lung-resident memory T cells, typically associated with mucosal immunisation strategies, which were not detected following mRNA-XBB boosting. Vaccination of hamsters with CoVEXS5 conferred significant protection against weight loss after SARS-CoV-1 challenge, compared to mRNA-XBB immunisation, that correlated with anti-SARS-CoV-1 nAbs in the sera of vaccinated animals. These findings highlight the potential of a chimeric spike antigen, formulated in an open-access adjuvant, as a next-generation vaccine candidate to enhance cross-protection against emerging sarbecoviruses in vaccinated populations globally.
Collapse
Affiliation(s)
- Claudio Counoupas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Elizabeth Chan
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | | | | | - Matt D Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Lachlan J Smith
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Caroline L Ashley
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | | | | | - Sibel Alca
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Stefan Miemczyk
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Nicole G Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Gabriella Scandurra
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Warwick J Britton
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Thomas Courant
- Vaccine Formulation Institute, Plan-Les-Ouates, Switzerland
| | | | - Nicolas Collin
- Vaccine Formulation Institute, Plan-Les-Ouates, Switzerland
| | - V Krishna Mohan
- Bharat Biotech International Limited, Genome Valley, Hyderabad, Telangana, India
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | | | - Florian M Wurm
- ExcellGene SA, Monthey, Switzerland
- Life Science Faculty, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Megan Steain
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Charles Perkin Centre, The University of Sydney, Camperdown, NSW, Australia
| | - James A Triccas
- Sydney Infectious Diseases Institute (Sydney ID), Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
- Centre for Infection and Immunity, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
- Charles Perkin Centre, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
6
|
Nideffer J, Bach F, Nankya F, Musinguzi K, Borna Š, Mantilla M, Zedi M, Garcia Romero A, Gerungan C, Yang N, Kim S, van der Ploeg K, Camanag K, Lopez L, Nansubuga E, Nankabirwa JI, Arinaitwe E, Boonrat P, Strubbe S, Cepika AM, Takahashi S, Dorsey G, Greenhouse B, Rodriguez-Barraquer I, Kamya MR, Bacchetta R, Ssewanyana I, Haque A, Roncarolo MG, Jagannathan P. Clone tracking through repeated malaria identifies high-fidelity memory CD4 T cell responses. Sci Immunol 2025; 10:eads2957. [PMID: 40279404 DOI: 10.1126/sciimmunol.ads2957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 04/02/2025] [Indexed: 04/27/2025]
Abstract
Few studies have tracked human CD4+ T cell clones through repeated infections. We used longitudinal single-cell RNA and T cell receptor (TCR) tracking to study the functional stability and memory potential of CD4+ T cell clonotypes during repeated Plasmodium falciparum (Pf) infections in Ugandan children and adults. Nearly all clonotypes displayed a strong preference for one of seven CD4+ subsets. This phenomenon of "clonal fidelity" was influenced by clonal expansion, linking T cell polarization and proliferation in vivo. Using clone tracking, we characterized subset-specific activation trajectories and identified antigen-specific clones. Type 1 regulatory T (TR1) cells accounted for nearly 90% of Pf-specific CD4+ T cells in blood. Tracking these clones longitudinally for hundreds of days, we observed malaria-induced expansion of TR1 effectors, long-term persistence of TR1 memory cells, and high-fidelity recall responses after reinfection. This work establishes clonal fidelity as a natural phenomenon and demonstrates the stable, long-term memory potential of TR1 cells.
Collapse
Affiliation(s)
- Jason Nideffer
- Department of Medicine, Stanford University, Stanford, CA, USA
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Florian Bach
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Šimon Borna
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Michelle Mantilla
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Maato Zedi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Chloe Gerungan
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Nora Yang
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Soyeon Kim
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Kylie Camanag
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Luis Lopez
- Department of Medicine, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Steven Strubbe
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Alma-Martina Cepika
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Saki Takahashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Grant Dorsey
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Isabel Rodriguez-Barraquer
- Department of Medicine, Division of HIV, ID, and Global Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Rosa Bacchetta
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | | | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Maria Grazia Roncarolo
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
7
|
Kim AR, Koh JY, Rha MS, Jung JH, Ko JH, Choi HK, Jeon JH, Seok H, Park DW, Peck KR, Choi JY, Park SH, Choi WS, Jeong HW, Shin EC. Patients With Mild COVID-19 Exhibit Low Functional Avidity of SARS-CoV-2 Membrane Protein-Reactive CD4 + T Cells. Immune Netw 2025; 25:e4. [PMID: 40342838 PMCID: PMC12056292 DOI: 10.4110/in.2025.25.e4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/28/2024] [Accepted: 01/06/2025] [Indexed: 05/11/2025] Open
Abstract
Herein, we found that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-unexposed individuals exhibited an increased frequency of CD4+ T cells against SARS-CoV-2 membrane (M) protein, suggesting that SARS-CoV-2 M-reactive cells may be primed by previous infection with common cold coronaviruses (CCCoVs). We confirmed that CCCoV M-reactive CD4+ T cells cross-recognize SARS-CoV-2 M in unexposed individuals. Among coronavirus disease 2019 (COVID-19) convalescents and unexposed individuals, SARS-CoV-2 M-reactive CD4+ T cells exhibited significantly lower functional avidity than CD4+ T cells reactive to other viruses. Importantly, convalescents from mild COVID-19 had SARS-CoV-2 M-reactive CD4+ T cells with significantly lower functional avidity than convalescents from severe COVID-19. The current data suggest that pre-existing CCCoV M-specific memory CD4+ T cells may contribute to controlling SARS-CoV-2 infection by cross-reactivity, leading to mild disease but leaving memory cells with low functional avidity to SARS-CoV-2 M due to incomplete homology. These data provide indirect evidence that pre-existing cross-reactive CD4+ T cells contribute to protection from severe COVID-19.
Collapse
Affiliation(s)
- A-Reum Kim
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Min-Seok Rha
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jae Hyung Jung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Hee Kyoung Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
| | - Ji Hoon Jeon
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
| | - Hyeri Seok
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
| | - Dae Won Park
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
| | - Kyong Ran Peck
- Division of Infectious Diseases, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- The Center for Epidemic Preparedness, KAIST, Daejeon 34141, Korea
| | - Won Suk Choi
- Division of Infectious Diseases, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan 15355, Korea
| | - Hye Won Jeong
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Eui-Cheol Shin
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon 34126, Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| |
Collapse
|
8
|
Yuan L, Stoddard M, Sarkar S, van Egeren D, Mangalaganesh S, Nolan RP, Rogers MS, Hather G, White LF, Chakravarty A. The Impact of Vaccination Frequency on COVID-19 Public Health Outcomes: A Model-Based Analysis. Vaccines (Basel) 2025; 13:368. [PMID: 40333247 PMCID: PMC12031506 DOI: 10.3390/vaccines13040368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 05/09/2025] Open
Abstract
Background: While the rapid deployment of SARS-CoV-2 vaccines had a significant impact on the ongoing COVID-19 pandemic, rapid viral immune evasion and waning neutralizing antibody titers have degraded vaccine efficacy. Nevertheless, vaccine manufacturers and public health authorities have a number of options at their disposal to maximize the benefits of vaccination. In particular, the effect of booster schedules on vaccine performance bears further study. Methods: To better understand the effect of booster schedules on vaccine performance, we used an agent-based modeling framework and a population pharmacokinetic model to simulate the impact of boosting frequency on the durability of vaccine protection against infection and severe acute disease. Results: Our work suggests that repeated dosing at frequent intervals (three or more times a year) may offset the degradation of vaccine efficacy, preserving the utility of vaccines in managing the ongoing pandemic. Conclusions: Given the practical significance of potential improvements in vaccine utility, clinical research to better understand the effects of repeated vaccination would be highly impactful. These findings are particularly relevant as public health authorities worldwide have reduced the frequency of boosters to once a year or less.
Collapse
Affiliation(s)
- Lin Yuan
- Fractal Therapeutics, Lexington, MA 02420, USA; (L.Y.); (M.S.)
| | | | - Sharanya Sarkar
- Department of Microbiology and Immunology, Dartmouth College, Hanover, NH 03755, USA;
| | - Debra van Egeren
- Department of Oncology, School of Medicine, Stanford University, Stanford, CA 94305, USA;
| | - Shruthi Mangalaganesh
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia;
| | | | - Michael S. Rogers
- Department of Surgery, Harvard Medical School, Boston, MA 02114, USA;
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Greg Hather
- Sage Therapeutics, Cambridge, MA 02142, USA;
| | - Laura F. White
- School of Public Health, Boston University, Boston, MA 02118, USA;
| | | |
Collapse
|
9
|
Aiello A, Calabrò A, Ligotti ME, Accardi G, Azgomi MS, Caccamo N, Caruso C, Dieli F, Manna MPL, Procopio A, Candore G. Enhancing flu vaccine responses in older adults: preliminary insights from the ISOLDA study on immunosenescence and antioxidant and anti-inflammatory approaches. Immun Ageing 2025; 22:13. [PMID: 40140897 PMCID: PMC11938677 DOI: 10.1186/s12979-025-00506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/28/2025]
Abstract
Aging is frequently characterized by an inadequate primary vaccine response, likely due to immunosenescence and inflamm-aging, a low-level, chronic inflammatory state. Both aspects increase the susceptibility of older adults to viral and bacterial infections, resulting in a higher frequency and severity of infectious diseases. In this preliminary study, a cohort of 52 individuals was recruited and divided into two groups: young (age range 21-35) and older adults (> 60 years old). Peripheral blood mononuclear cells (PBMCs) were collected before (time 0, T0) and after (time 1, T1) the immunization with a tetravalent influenza vaccine. Then, T cell immunophenotyping analysis was conducted to investigate how aging and influenza vaccination influence T cell responses. Additionally, the anti-inflammatory and antioxidant effects of oleuropein (OLE), a secoiridoid extracted from extra virgin olive oil, alone or in combination with BIRB 796, a potent inhibitor of p38 MAPK, were explored to enhancing the impact of influenza virus on T cell activation, aiming to identify potential alternatives or complementary strategies to improve traditional flu-vaccine formulations. Statistically significant observations were noted for a decrement in CD8 + T naïve and an increase of effector memory between the young and older adults after flu-vaccination. Moreover, preliminary findings indicate anti-inflammatory and antioxidant properties of OLE and BIRB 796 on T cell responses, particularly regarding Reactive Oxygen Species/Reactive Nitrogen Species modulation, with a trend toward the decrease of pro-inflammatory cytokines (i.e., Interferon-γ (INF-γ), Tumor Necrosis Factor-α (TNF-α)), αalthough without statistical significance.
Collapse
Affiliation(s)
- Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Anna Calabrò
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
- Department of Research, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), 90127, Palermo, Italy
| | - Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy.
| | - Mojtaba Shekarkar Azgomi
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, University of Palermo, 90127, Palermo, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127, Palermo, Italy
| | - Nadia Caccamo
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, University of Palermo, 90127, Palermo, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127, Palermo, Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, University of Palermo, 90127, Palermo, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127, Palermo, Italy
| | - Marco Pio La Manna
- Department of Biomedicine, Neuroscience and Advanced Diagnosis, University of Palermo, 90127, Palermo, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), AOUP Paolo Giaccone, 90127, Palermo, Italy
| | - Antonio Procopio
- Department of Health Sciences, University Magna Graecia of Catanzaro, Viale Europa - Campus Universitario S. Venuta - Loc. Germaneto, 88100, Cosenza, Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90127, Palermo, Italy
| |
Collapse
|
10
|
Sop J, Mercado A, Figueroa A, Beckey TP, Traut CC, Zhang L, Smith KN, Blankson JN. The XBB.1.5 mRNA booster vaccine does not significantly increase the percentage of XBB.1.5 mono-reactive T cells. Front Immunol 2025; 16:1513175. [PMID: 40145092 PMCID: PMC11936820 DOI: 10.3389/fimmu.2025.1513175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Recent efforts in vaccine development have targeted spike proteins from evolving SARS-CoV-2 variants. In this study, we analyzed T cell responses to the XBB.1.5 and BA.2.86 subvariants in individuals who previously received bivalent vaccines containing mRNA for ancestral and BA.5 spike proteins. T cell-mediated cytokine responses to spike proteins from both variants were largely preserved. To determine the mechanism of this preserved recognition, we utilized the functional expansion of specific T cells (FEST) assay to distinguish between the presence of T cells that cross-recognized ancestral and variant epitopes versus distinct populations of T cells that were mono-reactive for ancestral or variant epitopes. We found the majority of spike-specific T cells cross-recognized the ancestral spike and the XBB.1.5 and BA.2.86 subvariants, with less than 10% of T cells being mono-reactive for either variant. Interestingly, immunization with the XBB.1.5 monovalent booster vaccine did not significantly increase the percentage of XBB.1.5 mono-reactive T cells. Our results suggest a potential limitation in the induction of mono-reactive T cell responses by variant-specific booster vaccines.
Collapse
Affiliation(s)
- Joel Sop
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Alicia Mercado
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Alexis Figueroa
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Tyler P. Beckey
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Caroline C. Traut
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Li Zhang
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Kellie N. Smith
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Medicine, Baltimore, MD, United States
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, United States
| | - Joel N. Blankson
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Tu TH, Bennani FE, Masroori N, Liu C, Nemati A, Rozza N, Grunbaum AM, Kremer R, Milhalcioiu C, Roy DC, Rudd CE. The identification of a SARs-CoV2 S2 protein derived peptide with super-antigen-like stimulatory properties on T-cells. Commun Biol 2025; 8:14. [PMID: 39762551 PMCID: PMC11704208 DOI: 10.1038/s42003-024-07350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Severe COVID-19 can trigger a cytokine storm, leading to acute respiratory distress syndrome (ARDS) with similarities to superantigen-induced toxic shock syndrome. An outstanding question is whether SARS-CoV-2 protein sequences can directly induce inflammatory responses. In this study, we identify a region in the SARS-CoV-2 S2 spike protein with sequence homology to bacterial super-antigens (termed P3). Computational modeling predicts P3 binding to sites on MHC class I/II and the TCR that partially overlap with sites for the binding of staphylococcal enterotoxins B and H. Like SEB and SEH derived peptides, P3 stimulated 25-40% of human CD4+ and CD8 + T-cells, increasing IFN-γ and granzyme B production. viSNE and SPADE profiling identified overlapping and distinct IFN-γ+ and GZMB+ subsets. The super-antigenic properties of P3 were further evident by its selective expansion of T-cells expressing specific TCR Vα and Vβ chain repertoires. In vivo experiments in mice revealed that the administration of P3 led to a significant upregulation of proinflammatory cytokines IL-1β, IL-6, and TNF-α. While the clinical significance of P3 in COVID-19 remains unclear, its homology to other mammalian proteins suggests a potential role for this peptide family in human inflammation and autoimmunity.
Collapse
Affiliation(s)
- Thai Hien Tu
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada
| | - Fatima Ezzahra Bennani
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Nasser Masroori
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Institut Universitaire d'Hématologie-Oncologie & Thérapie Cellulaire de Montréal, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Chen Liu
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada
| | - Atena Nemati
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada
| | - Nicholas Rozza
- Division of Experimental Medicine, Department of Medicine & Health Sciences, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Amichai Meir Grunbaum
- Division of Experimental Medicine, Department of Medicine & Health Sciences, McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Richard Kremer
- Division of Experimental Medicine, Department of Medicine & Health Sciences, McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Catalin Milhalcioiu
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
- Department of Medical Oncology, McGill University Health Center, Montreal, QC, Canada
| | - Denis-Claude Roy
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada
- Institut Universitaire d'Hématologie-Oncologie & Thérapie Cellulaire de Montréal, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada
| | - Christopher E Rudd
- Department of Medicine, Universite de Montreal, Montreal, QC, Canada.
- Centre de Researche-Hopital Maisonneuve-Rosemont (CR-HMR), Montreal, QC, Canada.
- Department of Microbiology, Infection and Immunology, Universite de Montreal, Montreal, QC, Canada.
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco.
- Institut Universitaire d'Hématologie-Oncologie & Thérapie Cellulaire de Montréal, Hôpital Maisonneuve-Rosemont, Montreal, QC, Canada.
- Division of Experimental Medicine, Department of Medicine & Health Sciences, McGill University Health Centre, McGill University, Montreal, QC, Canada.
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada.
| |
Collapse
|
12
|
Davis-Porada J, George AB, Lam N, Caron DP, Gray JI, Huang J, Hwu J, Wells SB, Matsumoto R, Kubota M, Lee Y, Morrison-Colvin R, Jensen IJ, Ural BB, Shaabani N, Weiskopf D, Grifoni A, Sette A, Szabo PA, Teijaro JR, Sims PA, Farber DL. Maintenance and functional regulation of immune memory to COVID-19 vaccines in tissues. Immunity 2024; 57:2895-2913.e8. [PMID: 39510068 PMCID: PMC11634668 DOI: 10.1016/j.immuni.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/28/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Memory T and B cells in tissues are essential for protective immunity. Here, we performed a comprehensive analysis of the tissue distribution, phenotype, durability, and transcriptional profile of COVID-19 mRNA vaccine-induced immune memory across blood, lymphoid organs, and lungs obtained from 63 vaccinated organ donors aged 23-86, some of whom experienced SARS-CoV-2 infection. Spike (S)-reactive memory T cells were detected in lymphoid organs and lungs and variably expressed tissue-resident markers based on infection history, and S-reactive B cells comprised class-switched memory cells resident in lymphoid organs. Compared with blood, S-reactive tissue memory T cells persisted for longer times post-vaccination and were more prevalent with age. S-reactive T cells displayed site-specific subset compositions and functions: regulatory cell profiles were enriched in tissues, while effector and cytolytic profiles were more abundant in circulation. Our findings reveal functional compartmentalization of vaccine-induced T cell memory where surveilling effectors and in situ regulatory responses confer protection with minimal tissue damage.
Collapse
Affiliation(s)
- Julia Davis-Porada
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alex B George
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nora Lam
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Daniel P Caron
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joshua I Gray
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jenny Huang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jennifer Hwu
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rei Matsumoto
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Masaru Kubota
- Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - YoonSeung Lee
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Rory Morrison-Colvin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Isaac J Jensen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Basak B Ural
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Namir Shaabani
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Daniela Weiskopf
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alba Grifoni
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Alessandro Sette
- Center of Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Pathology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - John R Teijaro
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
13
|
Peters C, Simeonov J, Gombert D, Kabelitz D. Specific selection of stimulation-responsive γδ T-cells utilizing a short-term activation assay. Methods Cell Biol 2024; 191:79-91. [PMID: 39824565 DOI: 10.1016/bs.mcb.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
T cells expressing the γδ T-cell receptor (TCR) represent a numerically small proportion of total T cells. Unlike αβ T cells they are activated by non-peptide antigens independently of MHC-presentation. γδ T cells have been recognized as a favorable prognostic marker across different tumor entities. Recently, γδ T cells (in particular Vδ2 T cells), have gained attention because of their effective intrinsic anti-tumor reactivity. Moreover, their ability for MHC-independent activation and in vitro expansion to high numbers makes them attractive candidates for tumor immunotherapy by adoptive transfer. In this regard, the ex vitro identification of highly reactive γδ T cells upon stimulation enables us to specifically identify, isolate and expand γδ T cells which potentially represent those with high anti-tumor reactivity. CD137 and CD154 represent suitable markers for identifying specifically activated γδ T cells. In humans, the surface mobilization of CD137 and CD154 reveals antigen-specific activation of regulatory (Treg) and conventional CD4 T cells, respectively. We adapted this method for the analysis of Vδ2 T cells, in which the mobilization of both CD137 and CD154 can be used to investigate their activation, whereby CD137 and CD154 do not discriminate regulatory from conventional cells. Thus, this method provides a new way to rapidly analyze quick changes in Vδ2 T-cell activation and allows for using these markers for cell sorting and subsequent expansion of the specifically reacting Vδ2 T cells.
Collapse
Affiliation(s)
- Christian Peters
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Jara Simeonov
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Daniel Gombert
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dieter Kabelitz
- Institute of Immunology, Christian-Albrechts University and University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany.
| |
Collapse
|
14
|
Stoicescu ER, Ghenciu LA, Iacob R, Ardelean AI, Dăescu E, Hațegan OA, Manolescu D, Tudorache E, Boru C, Dima M. CMV Retinitis in the Context of SARS-CoV-2 Infection: A Case Study and Comprehensive Review of Viral Interactions. Pathogens 2024; 13:938. [PMID: 39599491 PMCID: PMC11597558 DOI: 10.3390/pathogens13110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
PURPOSE Cytomegalovirus (CMV) retinitis is a sight-threatening condition predominantly affecting immunocompromised individuals, such as those with Human Immunodeficiency Virus (HIV)/Acquired Immunodeficiency Syndrome (AIDS). We aimed to present an observational case report on CMV retinitis following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and to review the literature on the molecular and cellular changes in CMV and SARS-CoV-2 infections and how they may influence each other. Case Description: A 32-year-old man with a history of AIDS presented with decreased vision and ocular pain exacerbated by movement, beginning a day prior. Ocular examination revealed anterior uveitis, corneal endothelial edema, and retinal necrosis in the left eye. CMV retinitis was diagnosed based on positive serologic testing and a low cluster of differentiation 4 (CD4) count, with concurrent SARS-CoV-2 infection detected. Treatment included valganciclovir and topical agents, with a focus on managing CMV complications. This case highlights the potential role of SARS-CoV-2 in reactivating dormant CMV in severely immunocompromised individuals. We also discuss the implications of this interaction for immunocompromised patients, emphasizing the need for vigilant monitoring and personalized treatment strategies. Conclusions: Our case suggests that SARS-CoV-2 may trigger reactivation of CMV infection, leading to bilateral involvement in patients with low CD4 lymphocyte counts, which can result in severe visual impairment. The review discusses the molecular and cellular interactions between CMV and SARS-CoV-2, as well as risk factors, pathophysiology, and diagnostic methods for CMV retinitis, providing recommendations based on the literature findings.
Collapse
Affiliation(s)
- Emil Robert Stoicescu
- Radiology and Medical Imaging University Clinic, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (E.R.S.); (D.M.)
- Research Center for Medical Communication, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
| | - Laura Andreea Ghenciu
- Department of Functional Sciences, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
- Center for Translational Research and Systems Medicine, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Iacob
- Research Center for Medical Communication, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Field of Applied Engineering Sciences, Specialization Statistical Methods and Techniques in Health and Clinical Research, Faculty of Mechanics, ‘Politehnica’ University Timisoara, Mihai Viteazul Boulevard No. 1, 300222 Timisoara, Romania
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Adina Iuliana Ardelean
- Discipline of Ophtalmology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Ecaterina Dăescu
- Department of Anatomy and Embriology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Ovidiu Alin Hațegan
- Discipline of Anatomy and Embriology, Medicine Faculty, “Vasile Goldis” Western University of Arad, Revolution Boulevard 94, 310025 Arad, Romania; (O.A.H.); (C.B.)
| | - Diana Manolescu
- Radiology and Medical Imaging University Clinic, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (E.R.S.); (D.M.)
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Emanuela Tudorache
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases (CRIPMRD), ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania;
| | - Casiana Boru
- Discipline of Anatomy and Embriology, Medicine Faculty, “Vasile Goldis” Western University of Arad, Revolution Boulevard 94, 310025 Arad, Romania; (O.A.H.); (C.B.)
| | - Mirabela Dima
- Department of Neonatology, ‘Victor Babes’ University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
15
|
Paran FJ, Oyama R, Khasawneh A, Ai T, Ismanto HS, Sherif AA, Saputri DS, Ono C, Saita M, Takei S, Horiuchi Y, Yagi K, Matsuura Y, Okazaki Y, Takahashi K, Standley DM, Tabe Y, Naito T. BCR, not TCR, repertoire diversity is associated with favorable COVID-19 prognosis. Front Immunol 2024; 15:1405013. [PMID: 39530088 PMCID: PMC11550956 DOI: 10.3389/fimmu.2024.1405013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction The SARS-CoV-2 pandemic has had a widespread and severe impact on society, yet there have also been instances of remarkable recovery, even in critically ill patients. Materials and methods In this study, we used single-cell RNA sequencing to analyze the immune responses in recovered and deceased COVID-19 patients during moderate and critical stages. Results Expanded T cell receptor (TCR) clones were predominantly SARS-CoV-2-specific, but represented only a small fraction of the total repertoire in all patients. In contrast, while deceased patients exhibited monoclonal B cell receptor (BCR) expansions without COVID-19 specificity, survivors demonstrated diverse and specific BCR clones. These findings suggest that neither TCR diversity nor BCR monoclonal expansions are sufficient for viral clearance and subsequent recovery. Differential gene expression analysis revealed that protein biosynthetic processes were enriched in survivors, but that potentially damaging mitochondrial ATP metabolism was activated in the deceased. Conclusion This study underscores that BCR repertoire diversity, but not TCR diversity, correlates with favorable outcomes in COVID-19.
Collapse
MESH Headings
- Humans
- COVID-19/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- SARS-CoV-2/immunology
- Prognosis
- Male
- Female
- Middle Aged
- Aged
- Single-Cell Analysis
- Adult
- B-Lymphocytes/immunology
Collapse
Affiliation(s)
- Faith Jessica Paran
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Rieko Oyama
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Abdullah Khasawneh
- Leading Center for the Development and Research of Cancer Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University, Urayasu Hospital, Chiba, Japan
| | - Hendra Saputra Ismanto
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Aalaa Alrahman Sherif
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Dianita Susilo Saputri
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Mizue Saita
- Department of General Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Satomi Takei
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Yuki Horiuchi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Ken Yagi
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN, Yokohama, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Laboratory for Genome Exploration Research Group, RIKEN Genomic Sciences Center, RIKEN, Yokohama, Japan
| | - Kazuhisa Takahashi
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Daron M. Standley
- Department of Genome Informatics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Tabe
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshio Naito
- Department of Research Support Utilizing Bioresource Bank, Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of General Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
16
|
Cossu C, Franceschi V, Di Lorenzo A, Bolli E, Minesso S, Cotti C, Conti L, Donofrio G. Cross-Reactive Immune Response of Bovine Coronavirus Spike Glycoprotein to SARS-CoV-2 Variants of Concern. Int J Mol Sci 2024; 25:11509. [PMID: 39519062 PMCID: PMC11546235 DOI: 10.3390/ijms252111509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The high variability observed in the clinical symptoms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has been attributed to the presence, in a proportion of infection-naive subjects, of pre-existing cross-reactive immune responses. Here, we demonstrate that the bovine coronavirus spike protein (BoS) may represent a source of protective immunity to SARS-CoV-2. Indeed, vaccination of BALB/c mice with a Bovine herpesvirus 4 (BoHV-4)-based vector expressing BoS induced both cell-mediated and humoral immune responses that cross-react with SARS-CoV-2 spike protein. Although the spike-specific antibodies induced by BoS did not neutralize SARS-CoV-2, the T lymphocytes activated by BoS were able to induce cytotoxicity of cells expressing spike proteins derived from several SARS-CoV-2 variants. These results demonstrate that immunization with BoS may represent a source of cross-reactive immunity to SARS-CoV-2, and that these cross-reactive immune responses may exert protective functions. These results contribute to deciphering the mechanisms responsible for lack or mildness of symptoms observed in many individuals upon SARS-CoV-2 infection and may open new ways for the development of new vaccines for coronaviruses.
Collapse
Affiliation(s)
- Chiara Cossu
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44, 10126 Turino, Italy; (C.C.); (A.D.L.); (E.B.)
| | - Valentina Franceschi
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (V.F.); (S.M.); (C.C.)
| | - Antonino Di Lorenzo
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44, 10126 Turino, Italy; (C.C.); (A.D.L.); (E.B.)
| | - Elisabetta Bolli
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44, 10126 Turino, Italy; (C.C.); (A.D.L.); (E.B.)
| | - Sergio Minesso
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (V.F.); (S.M.); (C.C.)
| | - Camilla Cotti
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (V.F.); (S.M.); (C.C.)
| | - Laura Conti
- Molecular Biotechnology Center “Guido Tarone”, Department of Molecular Biotechnology and Health Sciences, University of Turin, Piazza Nizza 44, 10126 Turino, Italy; (C.C.); (A.D.L.); (E.B.)
| | - Gaetano Donofrio
- Department of Veterinary Science, University of Parma, 43126 Parma, Italy; (V.F.); (S.M.); (C.C.)
| |
Collapse
|
17
|
Bean DJ, Liang YM, Sagar M. Recent Endemic Coronavirus Infection Associates With Higher SARS-CoV-2 Cross-Reactive Fc Receptor Binding Antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.23.619886. [PMID: 39484477 PMCID: PMC11527020 DOI: 10.1101/2024.10.23.619886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Recent documented infection with an endemic coronavirus (eCoV) associates with less severe coronavirus disease 2019 (COVID-19), yet the immune mechanism behind this protection has not been fully explored. We measured both antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in SARS-CoV-2 naïve individuals classified into two groups, either with or without presumed recent eCoV infections. There was no difference in neutralizing antibodies and T cell responses against SARS-CoV-2 antigens between the two groups. SARS-CoV-2 naïve individuals with recent presumed eCoV infection, however, had higher levels of Fc receptor (FcR) binding antibodies against eCoV spikes (S) and SARS-CoV-2 S2. There was also a significant correlation between eCoV and SARS-CoV-2 FcR binding antibodies. Recent eCoV infection boosts cross-reactive antibodies that can mediate Fc effector functions, and this may play a role in the observed heterotypic immune protection against severe COVID-19.
Collapse
Affiliation(s)
- David J. Bean
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| | - Yan Mei Liang
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| | - Manish Sagar
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine; Boston, MA
| |
Collapse
|
18
|
Deng S, Xu Z, Hu J, Yang Y, Zhu F, Liu Z, Zhang H, Wu S, Jin T. The molecular mechanisms of CD8 + T cell responses to SARS-CoV-2 infection mediated by TCR-pMHC interactions. Front Immunol 2024; 15:1468456. [PMID: 39450171 PMCID: PMC11499136 DOI: 10.3389/fimmu.2024.1468456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/16/2024] [Indexed: 10/26/2024] Open
Abstract
Cytotoxic CD8+ T lymphocytes (CTLs) have been implicated in the severity of COVID-19. The TCR-pMHC ternary complex, formed by the T cell receptor (TCR) and peptide-MHC (major histocompatibility complex), constitutes the molecular basis of CTL responses against SARS-CoV-2. While numerous studies have been conducted on T cell immunity, the molecular mechanisms underlying CTL-mediated immunity against SARS-CoV-2 infection have not been well elaborated. In this review, we described the association between HLA variants and different immune responses to SARS-CoV-2 infection, which may lead to varying COVID-19 outcomes. We also summarized the specific TCR repertoires triggered by certain SARS-CoV-2 CTL epitopes, which might explain the variations in disease outcomes among different patients. Importantly, we have highlighted the primary strategies used by SARS-CoV-2 variants to evade T-cell killing: disrupting peptide-MHC binding, TCR recognition, and antigen processing. This review provides valuable insights into the molecule mechanism of CTL responses during SARS-CoV-2 infection, aiding efforts to control the pandemic and prepare for future challenges.
Collapse
Affiliation(s)
- Shasha Deng
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jing Hu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunru Yang
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Zhu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhuan Liu
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Laboratory of Structural Immunology, the Chinese Academy of Sciences (CAS) Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, China
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, China
| |
Collapse
|
19
|
Saggau C, Bacher P, Esser D, Rasa M, Meise S, Mohr N, Kohlstedt N, Hutloff A, Schacht SS, Dargvainiene J, Martini GR, Stürner KH, Schröder I, Markewitz R, Hartl J, Hastermann M, Duchow A, Schindler P, Becker M, Bautista C, Gottfreund J, Walter J, Polansky JK, Yang M, Naghavian R, Wendorff M, Schuster EM, Dahl A, Petzold A, Reinhardt S, Franke A, Wieczorek M, Henschel L, Berger D, Heine G, Holtsche M, Häußler V, Peters C, Schmidt E, Fillatreau S, Busch DH, Wandinger KP, Schober K, Martin R, Paul F, Leypoldt F, Scheffold A. Autoantigen-specific CD4 + T cells acquire an exhausted phenotype and persist in human antigen-specific autoimmune diseases. Immunity 2024; 57:2416-2432.e8. [PMID: 39226901 DOI: 10.1016/j.immuni.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Pro-inflammatory autoantigen-specific CD4+ T helper (auto-Th) cells are central orchestrators of autoimmune diseases (AIDs). We aimed to characterize these cells in human AIDs with defined autoantigens by combining human leukocyte antigen (HLA)-tetramer-based and activation-based multidimensional ex vivo analyses. In aquaporin4-antibody-positive neuromyelitis optica spectrum disorder (AQP4-NMOSD) patients, auto-Th cells expressed CD154, but proliferative capacity and pro-inflammatory cytokines were strongly reduced. Instead, exhaustion-associated co-inhibitory receptors were expressed together with FOXP3, the canonical regulatory T cell (Treg) transcription factor. Auto-Th cells responded in vitro to checkpoint inhibition and provided potent B cell help. Cells with the same exhaustion-like (ThEx) phenotype were identified in soluble liver antigen (SLA)-antibody-autoimmune hepatitis and BP180-antibody-positive bullous pemphigoid, AIDs of the liver and skin, respectively. While originally described in cancer and chronic infection, our data point to T cell exhaustion as a common mechanism of adaptation to chronic (self-)stimulation across AID types and link exhausted CD4+ T cells to humoral autoimmune responses, with implications for therapeutic targeting.
Collapse
Affiliation(s)
- Carina Saggau
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Daniela Esser
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Mahdi Rasa
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Silja Meise
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Nicola Mohr
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Nora Kohlstedt
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Andreas Hutloff
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sarah-Sophie Schacht
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Justina Dargvainiene
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Gabriela Rios Martini
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Klarissa H Stürner
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein Kiel, Kiel, Germany
| | - Ina Schröder
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Robert Markewitz
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Johannes Hartl
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Hastermann
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ankelien Duchow
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patrick Schindler
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Mareike Becker
- Institute of Experimental Dermatology, Lübeck, Germany; Department of Pediatric Dermatology, Catholic Children's Hospital Wilhelmstift, Hamburg, Germany
| | - Carolin Bautista
- Department of Dermatology, Allergy and Venerology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Judith Gottfreund
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, Saarbrücken, Germany
| | - Julia K Polansky
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany; German Rheumatism Research Centre, a Leibniz Institute (DRFZ), Charité Platz 1, 10117 Berlin, Germany
| | - Mingxing Yang
- Berlin Institute of Health (BIH) at Charité Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353 Berlin, Germany
| | - Reza Naghavian
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland; Cellerys AG, Wagistrasse 21, 8952 Schlieren, Switzerland
| | - Mareike Wendorff
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany; Leibniz Institute for Science and Mathematics Education, Kiel, Germany
| | - Ev-Marie Schuster
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering (CMCB), Technical University of Dresden, Dresden, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Marek Wieczorek
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Lea Henschel
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Daniel Berger
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429 Bergisch Gladbach, Germany
| | - Guido Heine
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Maike Holtsche
- Institute of Experimental Dermatology, University of Lübeck, Department of Dermatology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Vivien Häußler
- Clinic and Polyclinic for Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Peters
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - Enno Schmidt
- Institute of Experimental Dermatology, University of Lübeck, Department of Dermatology, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Simon Fillatreau
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, 75015 Paris, France; Université Paris Cité, Faculté de Médecine, Paris, France; AP-HP, Hôpital Necker-Enfants Malades, Paris, France
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Munich, Germany
| | - Klaus-Peter Wandinger
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Kilian Schober
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstr. 3/5, 91054 Erlangen, Germany; Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054 Erlangen, Germany
| | - Roland Martin
- Neuroimmunology and MS Research Section (NIMS), Neurology Clinic, University of Zurich, University Hospital Zurich, Zurich, Switzerland; Cellerys AG, Wagistrasse 21, 8952 Schlieren, Switzerland; Institute of Experimental Immunology, University of Zurich, Wintherturerstrasse 191, 8057 Zurich, Switzerland; Department of Clinical Neuroscience, Karolinska Institute, Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Leypoldt
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Lübeck, Germany; Department of Neurology, University Hospital Schleswig-Holstein Kiel, Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts-University of Kiel and University Hospital Schleswig-Holstein (UKSH), Kiel, Germany.
| |
Collapse
|
20
|
Notarbartolo S. T-Cell Immune Responses to SARS-CoV-2 Infection and Vaccination. Vaccines (Basel) 2024; 12:1126. [PMID: 39460293 PMCID: PMC11511197 DOI: 10.3390/vaccines12101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
The innate and adaptive immune systems collaborate to detect SARS-CoV-2 infection, minimize the viral spread, and kill infected cells, ultimately leading to the resolution of the infection. The adaptive immune system develops a memory of previous encounters with the virus, providing enhanced responses when rechallenged by the same pathogen. Such immunological memory is the basis of vaccine function. Here, we review the current knowledge on the immune response to SARS-CoV-2 infection and vaccination, focusing on the pivotal role of T cells in establishing protective immunity against the virus. After providing an overview of the immune response to SARS-CoV-2 infection, we describe the main features of SARS-CoV-2-specific CD4+ and CD8+ T cells, including cross-reactive T cells, generated in patients with different degrees of COVID-19 severity, and of Spike-specific CD4+ and CD8+ T cells induced by vaccines. Finally, we discuss T-cell responses to SARS-CoV-2 variants and hybrid immunity and conclude by highlighting possible strategies to improve the efficacy of COVID-19 vaccination.
Collapse
Affiliation(s)
- Samuele Notarbartolo
- Infectious Diseases Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
21
|
Raybould MIJ, Greenshields-Watson A, Agarwal P, Aguilar-Sanjuan B, Olsen TH, Turnbull OM, Quast NP, Deane CM. The Observed T Cell Receptor Space database enables paired-chain repertoire mining, coherence analysis, and language modeling. Cell Rep 2024; 43:114704. [PMID: 39216000 DOI: 10.1016/j.celrep.2024.114704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
T cell activation is governed through T cell receptors (TCRs), heterodimers of two sequence-variable chains (often an α and β chain) that synergistically recognize antigen fragments presented on cell surfaces. Despite this, there only exist repositories dedicated to collecting single-chain, not paired-chain, TCR sequence data. We addressed this gap by creating the Observed TCR Space (OTS) database, a source of consistently processed and annotated, full-length, paired-chain TCR sequences. Currently, OTS contains 5.35 million redundant (1.63 million non-redundant), predominantly human sequences from across 50 studies and at least 75 individuals. Using OTS, we identify pairing biases, public TCRs, and distinct chain coherence patterns relative to antibodies. We also release a paired-chain TCR language model, providing paired embedding representations and a method for residue in-filling conditional on the partner chain. OTS will be updated as a central community resource and is freely downloadable and available as a web application.
Collapse
Affiliation(s)
- Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK.
| | - Alexander Greenshields-Watson
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Parth Agarwal
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Broncio Aguilar-Sanjuan
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Tobias H Olsen
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Oliver M Turnbull
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Nele P Quast
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, 24-29 St Giles', OX1 3LB Oxford, UK.
| |
Collapse
|
22
|
Manfroi B, Cuc BT, Sokal A, Vandenberghe A, Temmam S, Attia M, El Behi M, Camaglia F, Nguyen NT, Pohar J, Salem-Wehbe L, Pottez-Jouatte V, Borzakian S, Elenga N, Galeotti C, Morelle G, de Truchis de Lays C, Semeraro M, Romain AS, Aubart M, Ouldali N, Mahuteau-Betzer F, Beauvineau C, Amouyal E, Berthaud R, Crétolle C, Arnould MD, Faye A, Lorrot M, Benoist G, Briand N, Courbebaisse M, Martin R, Van Endert P, Hulot JS, Blanchard A, Tartour E, Leite-de-Moraes M, Lezmi G, Ménager M, Luka M, Reynaud CA, Weill JC, Languille L, Michel M, Chappert P, Mora T, Walczak AM, Eloit M, Bacher P, Scheffold A, Mahévas M, Sermet-Gaudelus I, Fillatreau S. Preschool-age children maintain a distinct memory CD4 + T cell and memory B cell response after SARS-CoV-2 infection. Sci Transl Med 2024; 16:eadl1997. [PMID: 39292802 DOI: 10.1126/scitranslmed.adl1997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/19/2024] [Indexed: 09/20/2024]
Abstract
The development of the human immune system lasts for several years after birth. The impact of this maturation phase on the quality of adaptive immunity and the acquisition of immunological memory after infection at a young age remains incompletely defined. Here, using an antigen-reactive T cell (ARTE) assay and multidimensional flow cytometry, we profiled circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-reactive CD3+CD4+CD154+ T cells in children and adults before infection, during infection, and 11 months after infection, stratifying children into separate age groups and adults according to disease severity. During SARS-CoV-2 infection, children younger than 5 years old displayed a lower antiviral CD4+ T cell response, whereas children older than 5 years and adults with mild disease had, quantitatively and phenotypically, comparable virus-reactive CD4+ T cell responses. Adults with severe disease mounted a response characterized by higher frequencies of virus-reactive proinflammatory and cytotoxic T cells. After SARS-CoV-2 infection, preschool-age children not only maintained neutralizing SARS-CoV-2-reactive antibodies postinfection comparable to adults but also had phenotypically distinct memory T cells displaying high inflammatory features and properties associated with migration toward inflamed sites. Moreover, preschool-age children had markedly fewer circulating virus-reactive memory B cells compared with the other cohorts. Collectively, our results reveal unique facets of antiviral immunity in humans at a young age and indicate that the maturation of adaptive responses against SARS-CoV-2 toward an adult-like profile occurs in a progressive manner.
Collapse
Affiliation(s)
- Benoît Manfroi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Bui Thi Cuc
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Aurélien Sokal
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine interne, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris (AP-HP), 92110 Clichy, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Alexis Vandenberghe
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Sarah Temmam
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, and Institut Pasteur, the WOAH Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
| | - Mikaël Attia
- Molecular Genetics of RNA Viruses, Department of Virology, Institut Pasteur, Université Paris-Cité, CNRS UMR 3569, 75015 Paris, France
| | - Mohamed El Behi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Francesco Camaglia
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Ngan Thu Nguyen
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Jelka Pohar
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Immunology and Cellular Immunotherapy (ICI) Group, Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Layale Salem-Wehbe
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Valentine Pottez-Jouatte
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Sibyline Borzakian
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Narcisse Elenga
- Service de Pédiatrie, Centre Hospitalier de Cayenne, 97300 French Guiana
| | - Caroline Galeotti
- Department of Pediatric Rheumatology, Bicêtre Hospital, AP-HP, Paris-Saclay University, 94275 Le Kremlin-Bicêtre, France
| | - Guillaume Morelle
- Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, 94275 Le Kremlin-Bicêtre, France
| | - Camille de Truchis de Lays
- Service de Pédiatrie. Hôpital Jean-Verdier, AP-HP, Hôpitaux Universitaires Paris Seine-Saint-Denis, 93140 Bondy, France
| | - Michaela Semeraro
- University of Paris Cité, and Clinical Investigation Center, Clinical Research Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Anne-Sophie Romain
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, General Paediatrics Department, 75012 Paris, France
| | - Mélodie Aubart
- INSERM U1163, Genetic Predisposition to Infectious Diseases, Imagine Institute, Université Paris Cité, Paris F-75015, France
- Pediatric Neurology Department, Necker-Enfants Malades Universitary Hospital, AP-HP, Paris-Cité University, 75015 Paris, France
| | - Naim Ouldali
- Department of General Pediatrics, Pediatric Infectious Disease and Internal Medicine, Robert Debré University Hospital, Assistance Publique-Hôpitaux de Paris, 75019 Paris, France
- Paris Cité University, INSERM UMR 1137, Infection, Antimicrobials, Modelling, Evolution (IAME), 75018 Paris, France
| | - Florence Mahuteau-Betzer
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Claire Beauvineau
- CNRS UMR 9187, INSERM U1196, Chemistry and Modeling for the Biological of Cancer, Institut Curie, PSL Research University, 91405 Orsay, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Elsa Amouyal
- SIREDO Pediatric Oncology Center, Institut Curie, Paris-Science Lettres University, 75005 Paris, France
| | - Romain Berthaud
- Pediatric Nephrology, Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA) Reference Center, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Célia Crétolle
- Département de Pédiatrie, Service de Chirurgie viscérale pédiatrique, Hôpital Universitaire Necker-Enfants Malades, GH Paris Centre, 75015 Paris, France
| | - Marc Duval Arnould
- Department of General Paediatrics, Hôpital Bicêtre, AP-HP, University of Paris Saclay, 94275 Le Kremlin-Bicêtre, France
| | - Albert Faye
- Pediatric Neurology Department, Necker-Enfants Malades Universitary Hospital, AP-HP, Paris-Cité University, 75015 Paris, France
| | - Mathie Lorrot
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, General Paediatrics Department, 75012 Paris, France
| | - Grégoire Benoist
- Service de pédiatrie générale et hôpital de jour allergologie, CHU Ambroise-Paré, AP-HP, 92100 Boulogne-Billancourt, France
| | - Nelly Briand
- University of Paris Cité, and Clinical Investigation Center, Clinical Research Unit, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
| | - Marie Courbebaisse
- Faculté de Médecine, Université Paris Cité, 75015 Paris, France
- Explorations fonctionnelles rénales, Physiologie, Hôpital européen Georges-Pompidou, Assistance Publique-Hôpitaux de Paris, 75908 Paris Cedex 15, France
| | - Roland Martin
- Institute of Experimental Immunology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Therapeutic Immune Design, Center for Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Peter Van Endert
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| | - Jean-Sébastien Hulot
- PARCC, INSERM, Université Paris Cité, 75015 Paris, France
- Centre d'Investigation Clinique, AP-HP, INSERM CIC-1418, Européen Georges Pompidou Hospital, 75015 Paris, France
| | - Anne Blanchard
- Centre d'Investigation Clinique, AP-HP, INSERM CIC-1418, Européen Georges Pompidou Hospital, 75015 Paris, France
- Sorbonne Paris Cité, Paris Descartes University, 75015 Paris, France
| | - Eric Tartour
- Pediatric Nephrology, Maladies Rénales Héréditaires de l'Enfant et de l'Adulte (MARHEA) Reference Center, Necker-Children's Hospital, Assistance Publique-Hôpitaux de Paris, 75015 Paris, France
- PARCC, INSERM, Université Paris Cité, 75015 Paris, France
- Department of Immunology, Hôpital Européen Georges-Pompidou, AP-HP, CEDEX 15, 75908 Paris, France
| | - Maria Leite-de-Moraes
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
| | - Guillaume Lezmi
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- AP-HP, Hôpital Necker-Enfants Malades, Service de Pneumologie et Allergologie Pédiatriques, 75015 Paris, France
| | - Mickael Ménager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, Université Paris Cité, Imagine Institute, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, 75015 Paris, France
| | - Marine Luka
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, Université Paris Cité, Imagine Institute, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, 75015 Paris, France
| | - Claude-Agnès Reynaud
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
| | - Jean-Claude Weill
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
| | - Laetitia Languille
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Marc Michel
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Pascal Chappert
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Thierry Mora
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Aleksandra M Walczak
- Laboratoire de physique de l'École normale supérieure, CNRS, Paris Sciences et Lettres (PSL) University, Sorbonne Université, and Université de Paris, 75005 Paris, France
| | - Marc Eloit
- Pathogen Discovery Laboratory, Institut Pasteur, Université Paris Cité, and Institut Pasteur, the WOAH Collaborating Center for the Detection and Identification in Humans of Emerging Animal Pathogens, Université Paris Cité, 75015 Paris, France
- Ecole Nationale Vétérinaire d'Alfort, University of Paris-Est, 94700 Maisons-Alfort, France
| | - Petra Bacher
- Institute of Immunology, Christian-Albrecht Universität zu Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Christian-Albrecht University of Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrecht Universität zu Kiel and UKSH Schleswig-Holstein, 24105 Kiel, Germany
| | - Matthieu Mahévas
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Action thématique incitative sur programme-Avenir Team, Auto-Immune and Immune B cells, F-75015 Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
- INSERM U955, équipe 2. Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil (UPEC), 94000 Créteil, France
| | - Isabelle Sermet-Gaudelus
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Reference Center for Rare Diseases: Cystic Fibrosis and Other Epithelial Respiratory Protein Misfolding Diseases, Hôpital Necker-Enfants Malades, AP-HP Centre Université Paris Cité, 75015 Paris, France
| | - Simon Fillatreau
- Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France
- Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), 75015 Paris, France
- Faculté de Médecine, Université Paris Cité, 75015 Paris, France
- Service Immunologie Biologique, AP-HP, Hôpital Universitaire Necker-Enfants Malades, F-75015 Paris, France
| |
Collapse
|
23
|
Hastings J, Lee D, O’Connell MJ. Batch-effect correction in single-cell RNA sequencing data using JIVE. BIOINFORMATICS ADVANCES 2024; 4:vbae134. [PMID: 39387061 PMCID: PMC11461915 DOI: 10.1093/bioadv/vbae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/17/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Motivation In single-cell RNA sequencing analysis, addressing batch effects-technical artifacts stemming from factors such as varying sequencing technologies, equipment, and capture times-is crucial. These factors can cause unwanted variation and obfuscate the underlying biological signal of interest. The joint and individual variation explained (JIVE) method can be used to extract shared biological patterns from multi-source sequencing data while adjusting for individual non-biological variations (i.e. batch effect). However, its current implementation is originally designed for bulk sequencing data, making it computationally infeasible for large-scale single-cell sequencing datasets. Results In this study, we enhance JIVE for large-scale single-cell data by boosting its computational efficiency. Additionally, we introduce a novel application of JIVE for batch-effect correction on multiple single-cell sequencing datasets. Our enhanced method aims to decompose single-cell sequencing datasets into a joint structure capturing the true biological variability and individual structures, which capture technical variability within each batch. This joint structure is then suitable for use in downstream analyses. We benchmarked the results against four popular tools, Seurat v5, Harmony, LIGER, and Combat-seq, which were developed for this purpose. JIVE performed best in terms of preserving cell-type effects and in scenarios in which the batch sizes are balanced. Availability and implementation The JIVE implementation used for this analysis can be found at https://github.com/oconnell-statistics-lab/scJIVE.
Collapse
Affiliation(s)
- Joseph Hastings
- Department of Statistics, Miami University, Oxford, OH 45056, United States
| | - Donghyung Lee
- Department of Statistics, Miami University, Oxford, OH 45056, United States
| | | |
Collapse
|
24
|
Wang Y, Wang Q, He F, Qiao N, Li X, Wei L, Sun L, Dai W, Li Y, Pang X, Hu J, Huang C, Yang G, Pang C, Hu Z, Xing M, Wan C, Zhou D. Age-dependent decrease of circulating T follicular helper cells correlates with disease severity in elderly patients with COVID-19. Clin Immunol 2024; 266:110329. [PMID: 39067679 DOI: 10.1016/j.clim.2024.110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Overwhelming evidence has shown that aging is a significant risk factor for COVID-19-related hospitalizations, death and other adverse health outcomes. Particular T cell subsets that susceptible to aging and associated with COVID-19 disease severity requires further elucidation. Our study recruited 57 elderly patients with acute COVID-19 and 27 convalescent donors. Adaptive immunity was assessed across the COVID-19 severity spectrum. Patients underwent age-dependent CD4+ T lymphopenia, preferential loss of circulating T follicular regulatory cells (cTfh) subsets including cTfh-em, cTfh-cm, cTfh1, cTfh2, cTfh17 and circulating T follicular regulatory cells (cTfr), which regulated antibody production through different pathways and correlated with COVID-19 severity, were observed. Moreover, vaccination improved cTfh-cm, cTfh2, cTfr proportion and promoted NAb production. In conclusion, the elderly had gone through age-dependent cTfh subsets deficiency, which impeded NAb production and enabled aggravation of COVID-19 to critical illness, whereas SARS-CoV-2 vaccine inoculation helped to rejuvenate cTfh, cTfr and intensify NAb responses.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Qiu Wang
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Nan Qiao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Xuejun Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Liqun Wei
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Lingjin Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Weiqian Dai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Xueyang Pang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Jiayi Hu
- Department of Clinical Medicine, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Chuan Huang
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Guangchen Yang
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Chongjie Pang
- Department of Infectious Diseases, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Zhidong Hu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China.
| | - Chunxiao Wan
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China.
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China; Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Shanghai 201508, China.
| |
Collapse
|
25
|
Markov NS, Ren Z, Senkow KJ, Grant RA, Gao CA, Malsin ES, Sichizya L, Kihshen H, Helmin KA, Jovisic M, Arnold JM, Pérez-Leonor XG, Abdala-Valencia H, Swaminathan S, Nwaezeapu J, Kang M, Rasmussen L, Ozer EA, Lorenzo-Redondo R, Hultquist JF, Simons LM, Rios-Guzman E, Misharin AV, Wunderink RG, Budinger GRS, Singer BD, Morales-Nebreda L. Distinctive evolution of alveolar T cell responses is associated with clinical outcomes in unvaccinated patients with SARS-CoV-2 pneumonia. Nat Immunol 2024; 25:1607-1622. [PMID: 39138384 PMCID: PMC11490290 DOI: 10.1038/s41590-024-01914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
The evolution of T cell molecular signatures in the distal lung of patients with severe pneumonia is understudied. Here, we analyzed T cell subsets in longitudinal bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia, including unvaccinated patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or with respiratory failure not linked to pneumonia. In patients with SARS-CoV-2 pneumonia, activation of interferon signaling pathways, low activation of the NF-κB pathway and preferential targeting of spike and nucleocapsid proteins early after intubation were associated with favorable outcomes, whereas loss of interferon signaling, activation of NF-κB-driven programs and specificity for the ORF1ab complex late in disease were associated with mortality. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize individuals who recover, whereas responses against nonstructural proteins and activation of NF-κB are associated with poor outcomes.
Collapse
Affiliation(s)
- Nikolay S Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karolina J Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine A Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth S Malsin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hermon Kihshen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason M Arnold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xóchitl G Pérez-Leonor
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Suchitra Swaminathan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julu Nwaezeapu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luke Rasmussen
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Estefany Rios-Guzman
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
26
|
Serdyuk YV, Zornikova KV, Dianov DV, Ivanova NO, Davydova VD, Fefelova EI, Nenasheva TA, Sheetikov SA, Bogolyubova AV. T-Cell Receptors Cross-Reactive to Coronaviral Epitopes Homologous to the SPR Peptide. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1631-1642. [PMID: 39418521 DOI: 10.1134/s0006297924090098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024]
Abstract
The COVID-19 pandemic caused by the rapid spread of the novel coronavirus SARS-CoV-2, has promoted an interest in studying the T-cell immune response. It was found that the polyclonal and cross-reactive T-cell response against seasonal coronaviruses and other SARS-CoV-2 strains reduced disease severity. We investigated the immunodominant T-cell epitope SPRWYFYYYL from the nucleocapsid protein of SARS-CoV-2. The immune response to this epitope is characterized by the formation of highly homologous (convergent) receptors that have been found in the T-cell receptor (TCR) repertoires of different individuals. This epitope belongs to a group of highly conserved peptides that are rarely mutated in novel SARS-CoV-2 strains and are homologous to the epitopes of seasonal coronaviruses. It has been suggested that the cross-reactive response to homologous peptides contributes to the reduction of COVID-19 severity. However, some investigators have questioned this hypothesis, suggesting that the low affinity of the cross-reactive receptors reduces the strength of the immune response. The aim of this study was to evaluate the effect of amino acid substitutions in the SPR epitope on its binding affinity to specific TCRs. For this, we performed antigen-dependent cellular expansions were performed using samples from four COVID-19-transfected donors and sequenced their TCR repertoires. The resulting SPR-specific repertoire of β-chains in TCRs had a greater sequence diversity than the repertoire of α-chains. However, the TCR repertoires of all four donors contained public receptors, three of which were cloned and used to generate the Jurkat E6-1 TPR cell line. Only one of these receptors was activated by the SPR peptide and recognized with the same affinity by its mutant homologue LPRWYFYYY from seasonal coronaviruses. This indicates that the presence of the mutation did not affect the strength of the immune response, which may explain why the cross-reactive response to the SPR epitope is so frequent and contributes positively to COVID-19 infection.
Collapse
Affiliation(s)
- Yana V Serdyuk
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ksenia V Zornikova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Dmitry V Dianov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Nataliia O Ivanova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Vassa D Davydova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Ekaterina I Fefelova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Tatiana A Nenasheva
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Saveliy A Sheetikov
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia
| | - Apollinariya V Bogolyubova
- National Medical Research Center for Hematology, Ministry of Health of the Russian Federation, Moscow, 125167, Russia.
| |
Collapse
|
27
|
Page L, Dennehy K, Mueller K, Girl P, Loell E, Buijze H, Classen JM, Messmann H, Roemmele C, Hoffmann R, Wurster S, Fuchs A. Antigen-specific T helper cells and cytokine profiles predict intensity and longevity of cellular and humoral responses to SARS-CoV-2 booster vaccination. Front Immunol 2024; 15:1423766. [PMID: 39267758 PMCID: PMC11390417 DOI: 10.3389/fimmu.2024.1423766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024] Open
Abstract
Introduction Pre-existent pools of coronavirus-specific or cross-reactive T cells were shown to shape the development of cellular and humoral immune responses after primary mRNA vaccination against SARS-CoV-2. However, the cellular determinants of responses to booster vaccination remain incompletely understood. Therefore, we phenotypically and functionally characterized spike antigen-specific T helper (Th) cells in healthy, immunocompetent individuals and correlated the results with cellular and humoral immune responses to BNT162b2 booster vaccination over a six-month period. Methods Blood of 30 healthy healthcare workers was collected before, 1, 3, and 6 months after their 3rd BNT162b2 vaccination. Whole blood was stimulated with spike peptides and analyzed using flow cytometry, a 13-plex cytokine assay, and nCounter-based transcriptomics. Results Spike-specific IgG levels at 1 month after booster vaccination correlated with pre-existing CD154+CD69+IFN-γ+CD4+ effector memory cells as well as spike-induced IL-2 and IL-17A secretion. Early post-booster (1-month) spike IgG levels (r=0.49), spike-induced IL‑2 (r=0.58), and spike-induced IFN‑γ release (r=0.43) correlated moderately with their respective long-term (6-month) responses. Sustained robust IgG responses were significantly associated with S-specific (CD69+±CD154+±IFN-γ+) Th-cell frequencies before booster vaccination (p=0.038), especially double/triple-positive type-1 Th cells. Furthermore, spike IgG levels, spike-induced IL‑2 release, and spike-induced IFN‑γ release after 6 months were significantly associated with increased IL‑2 & IL‑4, IP‑10 & MCP1, and IFN‑γ & IP‑10 levels at 1 month post-booster, respectively. On the transcriptional level, induction of pathways associated with both T-cell proliferation and antigen presentation was indicative of sustained spike-induced cytokine release and spike-specific IgG production 6 months post-booster. Using support vector machine models, pre-booster spike-specific T-cell frequencies and early post-booster cytokine responses predicted sustained (6-month) responses with F1 scores of 0.80-1.00. Discussion In summary, spike-specific Th cells and T-cellular cytokine signatures present before BNT162b2 booster vaccination shape sustained adaptive cellular and humoral responses post-booster. Functional T-cell assays might facilitate early identification of potential non-responders.
Collapse
Affiliation(s)
- Lukas Page
- Institute for Laboratory Medicine and Microbiology, University Hospital of Augsburg, Augsburg, Germany
| | - Kevin Dennehy
- Institute for Laboratory Medicine and Microbiology, University Hospital of Augsburg, Augsburg, Germany
| | | | - Philipp Girl
- Bundeswehr Institute of Microbiology, Munich, Germany
- Central Institute of the Bundeswehr Medical Service, Munich, Germany
- Institute for Infectious Diseases and Zoonoses, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Eva Loell
- Institute for Laboratory Medicine and Microbiology, University Hospital of Augsburg, Augsburg, Germany
| | - Hellen Buijze
- Institute for Laboratory Medicine and Microbiology, University Hospital of Augsburg, Augsburg, Germany
| | - Johanna-Maria Classen
- Internal Medicine III - Gastroenterology and Infectious Diseases, University Hospital of Augsburg, Augsburg, Germany
| | - Helmut Messmann
- Internal Medicine III - Gastroenterology and Infectious Diseases, University Hospital of Augsburg, Augsburg, Germany
| | - Christoph Roemmele
- Internal Medicine III - Gastroenterology and Infectious Diseases, University Hospital of Augsburg, Augsburg, Germany
| | - Reinhard Hoffmann
- Institute for Laboratory Medicine and Microbiology, University Hospital of Augsburg, Augsburg, Germany
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andre Fuchs
- Internal Medicine III - Gastroenterology and Infectious Diseases, University Hospital of Augsburg, Augsburg, Germany
| |
Collapse
|
28
|
Ghosh T, Baxter RM, Seal S, Lui VG, Rudra P, Vu T, Hsieh EW, Ghosh D. cytoKernel: Robust kernel embeddings for assessing differential expression of single cell data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608287. [PMID: 39229233 PMCID: PMC11370373 DOI: 10.1101/2024.08.16.608287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
High-throughput sequencing of single-cell data can be used to rigorously evlauate cell specification and enable intricate variations between groups or conditions. Many popular existing methods for differential expression target differences in aggregate measurements (mean, median, sum) and limit their approaches to detect only global differential changes. We present a robust method for differential expression of single-cell data using a kernel-based score test, cytoKernel. cytoKernel is specifically designed to assess the differential expression of single cell RNA sequencing and high-dimensional flow or mass cytometry data using the full probability distribution pattern. cytoKernel is based on kernel embeddings which employs the probability distributions of the single cell data, by calculating the pairwise divergence/distance between distributions of subjects. It can detect both patterns involving aggregate changes, as well as more elusive variations that are often overlooked due to the multimodal characteristics of single cell data. We performed extensive benchmarks across both simulated and real data sets from mass cytometry data and single-cell RNA sequencing. The cytoKernel procedure effectively controls the False Discovery Rate (FDR) and shows favourable performance compared to existing methods. The method is able to identify more differential patterns than existing approaches. We apply cytoKernel to assess gene expression and protein marker expression differences from cell subpopulations in various publicly available single-cell RNAseq and mass cytometry data sets. The methods described in this paper are implemented in the open-source R package cytoKernel, which is freely available from Bioconductor at http://bioconductor.org/packages/cytoKernel.
Collapse
Affiliation(s)
- Tusharkanti Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan M Baxter
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Souvik Seal
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Victor G Lui
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Pratyaydipta Rudra
- Department of Statistics, Oklahoma State University, Stillwater, OK, USA
| | - Thao Vu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elena Wy Hsieh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Debashis Ghosh
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
29
|
Du P, Li N, Tang S, Zhou Z, Liu Z, Wang T, Li J, Zeng S, Chen J. Development and evaluation of vaccination strategies for addressing the continuous evolution SARS-CoV-2 based on recombinant trimeric protein technology: Potential for cross-neutralizing activity and broad coronavirus response. Heliyon 2024; 10:e34492. [PMID: 39148990 PMCID: PMC11324815 DOI: 10.1016/j.heliyon.2024.e34492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Given the significant decline in vaccine efficacy against Omicron, the development of novel vaccines with specific or broad-spectrum effectiveness is paramount. In this study, we formulated four monovalent vaccines based on recombinant spike trimer proteins, along with three bivalent vaccines, and five monovalent vaccines based on recombinant spike proteins. We evaluated the efficacy of different vaccination regimens in eliciting neutralizing antibodies in mice through pseudovirus neutralization assays. Following two doses of primary immunization with D614G, mice received subsequent immunizations with Omicron (BA.1, BA.2, BA.4/5) boosters individually, which led to the generation of broader and more potent cross-neutralizing activity compared to D614G boosters. Notably, the BA.4/5 booster exhibited superior efficacy. Following two doses of primary immunization with Omicron (BA.1, BA.2, BA.4/5), mice were subsequently immunized with one dose of D614G booster which resulted in broader neutralizing activity compared to one dose of Omicron (BA.1, BA.2, or BA.4/5). In unvaccinated mice, full-course immunization with different bivalent vaccines induced broad neutralizing activity against Omicron and pre-Omicron variants, with D614G&BA.4/5 demonstrating superior efficacy. However, compared to other variants, the neutralizing activity against XBB.1.5/1.9.1 is notably reduced. This observation emphasizes the necessity of timely updates to the vaccine antigen composition. Based on these findings and existing studies, we propose a vaccination strategy aimed at preserving the epitope repertoire to its maximum potential: (1) Individuals previously vaccinated or infected with pre-Omicron variants should inoculate a monovalent vaccine containing Omicron components; (2) Individuals who have only been vaccinated or infected with Omicron should be inoculated a monovalent vaccine containing pre-Omicron variants components; (3) Individuals without SARS-CoV-2 infection and vaccination should inoculate a bivalent vaccine comprising both pre-Omicron and Omicron components for primary immunization. Additionally, through cross-inoculation of SARS-CoV-2 D614G spike trimer protein and SARS-CoV-1 spike protein in mice, we preliminarily demonstrated the possibility of cross-reaction between different coronavirus vaccines to produce resistance to the pan-coronavirus.
Collapse
Affiliation(s)
- Peng Du
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Ning Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Shengjun Tang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Zhongcheng Zhou
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Zhihai Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Taorui Wang
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Jiahui Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Simiao Zeng
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510620, China
| | - Juan Chen
- Reproductive Medicine Center, Guangdong Second Provincial General Hospital, #466 Xin-Gang-Zhong-Lu, Haizhu District, Guangzhou, 510317, China
| |
Collapse
|
30
|
Klinmalai C, Srisala S, Sahakijpicharn T, Apiwattanakul N. Monitoring of adaptive immune responses in healthcare workers who received a Coronavirus disease 2019 vaccine booster dose. Health Sci Rep 2024; 7:e2250. [PMID: 39015422 PMCID: PMC11250167 DOI: 10.1002/hsr2.2250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Background and Aims Coronavirus disease 2019 (COVID-19) has become a global pandemic and led to increased mortality and morbidity. Vaccines against the etiologic agent; severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) were approved for emergency use on different platforms. In the early phase of the pandemic, Thai healthcare workers (HCWs) received CoronaVac, an inactivated vaccine, as the first vaccine against SARS-CoV-2, followed by ChAdOx1 nCoV-19, a viral vector-based vaccine, or BNT162b2, an mRNA vaccine, as a booster dose. This preliminary study evaluated the immunogenicity of ChAdOx1 nCoV-19 and BNT162b2 as a booster dose in HCWs who previously received two doses of CoronaVac. Methods Ten HCW participants received ChAdOx1 nCoV-19 and another 10 HCWs received BNT162b2 as a booster dose after two doses of CoronaVac. Anti-RBD IgG, neutralizing antibodies (NAb), and cellular immunity, including interferon-gamma (IFN-γ)-releasing CD4, CD8, double negative T cells, and NK cells, were measured at 3 and 5 months after the booster dose. Results There was no significant difference in anti-RBD IgG levels at 3 and 5 months between the two different types of booster vaccine. The levels of anti-RBD IgG and NAb were significantly decreased at 5 months. HCWs receiving BNT162b2 had significantly higher NAb levels than those receiving ChAdOx1 nCoV-19 at 5 months after the booster dose. IFN-γ release from CD4 T cells was detected at 3 months with no significant difference between the two types of booster vaccines. However, IFN-γ-releasing CD4 T cells were present at 5 months in the ChAdOx1 nCoV-19 group only. Conclusion ChAdOx1 nCoV-19 or BNT162b2 can be used as a booster dose after completion of the primary series primed by inactivated vaccine. Although the levels of immunity decline at 5 months, they may be adequate during the first 3 months after the booster dose.
Collapse
Affiliation(s)
- Chompunuch Klinmalai
- Department of Paediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Supanart Srisala
- Research Center, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Thiantip Sahakijpicharn
- Department of Paediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Nopporn Apiwattanakul
- Department of Paediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
31
|
Ameratunga R, Jordan A, Lehnert K, Leung E, Mears ER, Snell R, Steele R, Woon ST. SARS-CoV-2 evolution has increased resistance to monoclonal antibodies and first-generation COVID-19 vaccines: Is there a future therapeutic role for soluble ACE2 receptors for COVID-19? Antiviral Res 2024; 227:105894. [PMID: 38677595 DOI: 10.1016/j.antiviral.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
COVID-19 has caused calamitous health, economic and societal consequences. Although several COVID-19 vaccines have received full authorization for use, global deployment has faced political, financial and logistical challenges. The efficacy of first-generation COVID-19 vaccines is waning and breakthrough infections are allowing ongoing transmission and evolution of SARS-CoV-2. Furthermore, COVID-19 vaccine efficacy relies on a functional immune system. Despite receiving three primary doses and three or more heterologous boosters, some immunocompromised patients may not be adequately protected by COVID-19 vaccines and remain vulnerable to severe disease. The evolution of new SARS-CoV-2 variants has also resulted in the rapid obsolescence of monoclonal antibodies. Convalescent plasma from COVID-19 survivors has produced inconsistent results. New drugs such as Paxlovid (nirmatrelvir/ritonavir) are beyond the reach of low- and middle-income countries. With widespread use of Paxlovid, it is likely nirmatrelvir-resistant clades of SARS-CoV-2 will emerge in the future. There is thus an urgent need for new effective anti-SARS-CoV-2 treatments. The in vitro efficacy of soluble ACE2 against multiple SARS-CoV-2 variants including omicron (B.1.1.529), was recently described using a competitive ELISA assay as a surrogate marker for virus neutralization. This indicates soluble wild-type ACE2 receptors are likely to be resistant to viral evolution. Nasal and inhaled treatment with soluble ACE2 receptors has abrogated severe disease in animal models of COVID-19. There is an urgent need for clinical trials of this new class of antiviral therapeutics, which could complement vaccines and Paxlovid.
Collapse
Affiliation(s)
- Rohan Ameratunga
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| | - Anthony Jordan
- Department of Clinical Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - Klaus Lehnert
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Emily R Mears
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Russell Snell
- Applied Translational Genetics Group, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Richard Steele
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand
| | - See-Tarn Woon
- Department of Virology and Immunology, Auckland Hospital, Park Rd, Grafton, 1010, Auckland, New Zealand; Department of Molecular Medicine and Pathology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Hernandez-Galicia G, Gomez-Morales L, Lopez-Bailon LU, Valdovinos-Torres H, Contreras-Ochoa CO, Díaz Benítez CE, Martinez-Barnetche J, Alpuche-Aranda C, Ortiz-Navarrete V. Presence of SARS-CoV-2-specific T cells before vaccination in the Mexican population. J Leukoc Biol 2024; 116:95-102. [PMID: 38717738 DOI: 10.1093/jleuko/qiae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 06/30/2024] Open
Abstract
The immune response to SARS-CoV-2 has been extensively studied following the pandemic outbreak in 2020; however, the presence of specific T cells against SARS-CoV-2 before vaccination has not been evaluated in Mexico. In this study, we estimated the frequency of T CD4+ and T CD8+ cells that exhibit a specific response to S (spike) and N (nucleocapsid) proteins in a Mexican population. We collected 78 peripheral blood samples from unvaccinated subjects, and the presence of antibodies against spike (RBD) and N protein was determined. Peripheral blood mononuclear cells were isolated and stimulated with a pool of S or N protein peptides (Wuhan-Hu-1 strain). IL-1β, IL-4, IL-6, IL-10, IL-2, IL-8, TNF-α, IFN-γ, and GM-CSF levels were quantified in the supernatant of the activated cells, and the cells were stained to assess the activation and memory phenotypes. Differential activation frequency dependent on serological status was observed in CD4+ cells but not in CD8+ cells. The predominantly activated population was the central memory T CD4+ cells. Only 10% of the population exhibited the same phenotype with respect to the response to nucleocapsid peptides. The cytokine profile differed between the S and N responses. S peptides induced a more proinflammatory response compared with the N peptides. In conclusion, in a Mexican cohort before vaccination, there was a significant response to the S and N SARS-CoV-2 proteins resulting from previous infections with seasonal coronaviruses or previous undetected exposure to SARS-CoV-2.
Collapse
Affiliation(s)
- Gabriela Hernandez-Galicia
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, 2508 Instituto Politécnico Nacional Avenue, 07360, Mexico City, Mexico
| | - Luis Gomez-Morales
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, 2508 Instituto Politécnico Nacional Avenue, 07360, Mexico City, Mexico
- Department of Immunology, National School of Biological Sciences, National Polytechnic Institute, Manuel Carpio and Plan de Ayala St, 11340, Mexico City, Mexico
| | - Luis Uriel Lopez-Bailon
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, 2508 Instituto Politécnico Nacional Avenue, 07360, Mexico City, Mexico
- Department of Immunology, National School of Biological Sciences, National Polytechnic Institute, Manuel Carpio and Plan de Ayala St, 11340, Mexico City, Mexico
| | - Humberto Valdovinos-Torres
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Carla O Contreras-Ochoa
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Cinthya Estefhany Díaz Benítez
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Jesus Martinez-Barnetche
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Celia Alpuche-Aranda
- Center for Infectious Diseases Research, National Institute of Public Health, 655 Universidad Avenue, 62100, Cuernavaca, Mexico
| | - Vianney Ortiz-Navarrete
- Department of Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute, 2508 Instituto Politécnico Nacional Avenue, 07360, Mexico City, Mexico
| |
Collapse
|
33
|
Li Y, Tang Y, Wang X, Zhu A, Liu D, He Y, Guo H, Zheng J, Liu X, Chi F, Wang Y, Zhuang Z, Zhang Z, Liu D, Chen Z, Li F, Ran W, Yu K, Wang D, Wen L, Zhuo J, Zhang Y, Xi Y, Zhao J, Zhao J, Sun J. Characterization of humoral immune responses against SARS-CoV-2 accessory proteins in infected patients and mouse model. Virol Sin 2024; 39:414-421. [PMID: 38677713 PMCID: PMC11280257 DOI: 10.1016/j.virs.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, encodes several accessory proteins that have been shown to play crucial roles in regulating the innate immune response. However, their expressions in infected cells and immunogenicity in infected humans and mice are still not fully understood. This study utilized various techniques such as luciferase immunoprecipitation system (LIPS), immunofluorescence assay (IFA), and western blot (WB) to detect accessory protein-specific antibodies in sera of COVID-19 patients. Specific antibodies to proteins 3a, 3b, 7b, 8 and 9c can be detected by LIPS, but only protein 3a antibody was detected by IFA or WB. Antibodies against proteins 3a and 7b were only detected in ICU patients, which may serve as a marker for predicting disease progression. Further, we investigated the expression of accessory proteins in SARS-CoV-2-infected cells and identified the expressions of proteins 3a, 6, 7a, 8, and 9b. We also analyzed their ability to induce antibodies in immunized mice and found that only proteins 3a, 6, 7a, 8, 9b and 9c were able to induce measurable antibody productions, but these antibodies lacked neutralizing activities and did not protect mice from SARS-CoV-2 infection. Our findings validate the expression of SARS-CoV-2 accessory proteins and elucidate their humoral immune response, providing a basis for protein detection assays and their role in pathogenesis.
Collapse
Affiliation(s)
- Yuming Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yanhong Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China; Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan Normal University, Changsha, 410005, China
| | - Xiaoqian Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Airu Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Dongdong Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yiyun He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Hu Guo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jie Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xinzhuo Liu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Fengyu Chi
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China; Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, 250117, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Wei Ran
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Kuai Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Dong Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Liyan Wen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Jianfen Zhuo
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yanjun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Yin Xi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| | - Jingxian Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China; Guangzhou National Laboratory, Guangzhou, Guangdong, 510005, China.
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China; Guangzhou National Laboratory, Guangzhou, Guangdong, 510005, China; Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China; Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518005, China.
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China.
| |
Collapse
|
34
|
Lu X, Hayashi H, Ishikawa E, Takeuchi Y, Dychiao JVT, Nakagami H, Yamasaki S. Early acquisition of S-specific Tfh clonotypes after SARS-CoV-2 vaccination is associated with the longevity of anti-S antibodies. eLife 2024; 12:RP89999. [PMID: 38716629 PMCID: PMC11078543 DOI: 10.7554/elife.89999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024] Open
Abstract
SARS-CoV-2 vaccines have been used worldwide to combat COVID-19 pandemic. To elucidate the factors that determine the longevity of spike (S)-specific antibodies, we traced the characteristics of S-specific T cell clonotypes together with their epitopes and anti-S antibody titers before and after BNT162b2 vaccination over time. T cell receptor (TCR) αβ sequences and mRNA expression of the S-responded T cells were investigated using single-cell TCR- and RNA-sequencing. Highly expanded 199 TCR clonotypes upon stimulation with S peptide pools were reconstituted into a reporter T cell line for the determination of epitopes and restricting HLAs. Among them, we could determine 78 S epitopes, most of which were conserved in variants of concern (VOCs). After the 2nd vaccination, T cell clonotypes highly responsive to recall S stimulation were polarized to follicular helper T (Tfh)-like cells in donors exhibiting sustained anti-S antibody titers (designated as 'sustainers'), but not in 'decliners'. Even before vaccination, S-reactive CD4+ T cell clonotypes did exist, most of which cross-reacted with environmental or symbiotic microbes. However, these clonotypes contracted after vaccination. Conversely, S-reactive clonotypes dominated after vaccination were undetectable in pre-vaccinated T cell pool, suggesting that highly responding S-reactive T cells were established by vaccination from rare clonotypes. These results suggest that de novo acquisition of memory Tfh-like cells upon vaccination may contribute to the longevity of anti-S antibody titers.
Collapse
Affiliation(s)
- Xiuyuan Lu
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka UniversitySuitaJapan
| | - Hiroki Hayashi
- Department of Health Development and Medicine, Osaka University Graduate School of MedicineSuitaJapan
| | - Eri Ishikawa
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka UniversitySuitaJapan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
| | - Yukiko Takeuchi
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka UniversitySuitaJapan
| | | | - Hironori Nakagami
- Department of Health Development and Medicine, Osaka University Graduate School of MedicineSuitaJapan
| | - Sho Yamasaki
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka UniversitySuitaJapan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka UniversitySuitaJapan
- Center for Infectious Disease Education and Research (CiDER), Osaka UniversitySuitaJapan
| |
Collapse
|
35
|
Croce G, Bobisse S, Moreno DL, Schmidt J, Guillame P, Harari A, Gfeller D. Deep learning predictions of TCR-epitope interactions reveal epitope-specific chains in dual alpha T cells. Nat Commun 2024; 15:3211. [PMID: 38615042 PMCID: PMC11016097 DOI: 10.1038/s41467-024-47461-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/03/2024] [Indexed: 04/15/2024] Open
Abstract
T cells have the ability to eliminate infected and cancer cells and play an essential role in cancer immunotherapy. T cell activation is elicited by the binding of the T cell receptor (TCR) to epitopes displayed on MHC molecules, and the TCR specificity is determined by the sequence of its α and β chains. Here, we collect and curate a dataset of 17,715 αβTCRs interacting with dozens of class I and class II epitopes. We use this curated data to develop MixTCRpred, an epitope-specific TCR-epitope interaction predictor. MixTCRpred accurately predicts TCRs recognizing several viral and cancer epitopes. MixTCRpred further provides a useful quality control tool for multiplexed single-cell TCR sequencing assays of epitope-specific T cells and pinpoints a substantial fraction of putative contaminants in public databases. Analysis of epitope-specific dual α T cells demonstrates that MixTCRpred can identify α chains mediating epitope recognition. Applying MixTCRpred to TCR repertoires from COVID-19 patients reveals enrichment of clonotypes predicted to bind an immunodominant SARS-CoV-2 epitope. Overall, MixTCRpred provides a robust tool to predict TCRs interacting with specific epitopes and interpret TCR-sequencing data from both bulk and epitope-specific T cells.
Collapse
Affiliation(s)
- Giancarlo Croce
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Sara Bobisse
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Dana Léa Moreno
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Julien Schmidt
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Philippe Guillame
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
- Agora Cancer Research Centre, Lausanne, Switzerland.
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
36
|
Coulon PG, Prakash S, Dhanushkodi NR, Srivastava R, Zayou L, Tifrea DF, Edwards RA, Figueroa CJ, Schubl SD, Hsieh L, Nesburn AB, Kuppermann BD, Bahraoui E, Vahed H, Gil D, Jones TM, Ulmer JB, BenMohamed L. High frequencies of alpha common cold coronavirus/SARS-CoV-2 cross-reactive functional CD4 + and CD8 + memory T cells are associated with protection from symptomatic and fatal SARS-CoV-2 infections in unvaccinated COVID-19 patients. Front Immunol 2024; 15:1343716. [PMID: 38605956 PMCID: PMC11007208 DOI: 10.3389/fimmu.2024.1343716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Background Cross-reactive SARS-CoV-2-specific memory CD4+ and CD8+ T cells are present in up to 50% of unexposed, pre-pandemic, healthy individuals (UPPHIs). However, the characteristics of cross-reactive memory CD4+ and CD8+ T cells associated with subsequent protection of asymptomatic coronavirus disease 2019 (COVID-19) patients (i.e., unvaccinated individuals who never develop any COVID-19 symptoms despite being infected with SARS-CoV-2) remains to be fully elucidated. Methods This study compares the antigen specificity, frequency, phenotype, and function of cross-reactive memory CD4+ and CD8+ T cells between common cold coronaviruses (CCCs) and SARS-CoV-2. T-cell responses against genome-wide conserved epitopes were studied early in the disease course in a cohort of 147 unvaccinated COVID-19 patients who were divided into six groups based on the severity of their symptoms. Results Compared to severely ill COVID-19 patients and patients with fatal COVID-19 outcomes, the asymptomatic COVID-19 patients displayed significantly: (i) higher rates of co-infection with the 229E alpha species of CCCs (α-CCC-229E); (ii) higher frequencies of cross-reactive functional CD134+CD137+CD4+ and CD134+CD137+CD8+ T cells that cross-recognized conserved epitopes from α-CCCs and SARS-CoV-2 structural, non-structural, and accessory proteins; and (iii) lower frequencies of CCCs/SARS-CoV-2 cross-reactive exhausted PD-1+TIM3+TIGIT+CTLA4+CD4+ and PD-1+TIM3+TIGIT+CTLA4+CD8+ T cells, detected both ex vivo and in vitro. Conclusions These findings (i) support a crucial role of functional, poly-antigenic α-CCCs/SARS-CoV-2 cross-reactive memory CD4+ and CD8+ T cells, induced following previous CCCs seasonal exposures, in protection against subsequent severe COVID-19 disease and (ii) provide critical insights into developing broadly protective, multi-antigen, CD4+, and CD8+ T-cell-based, universal pan-Coronavirus vaccines capable of conferring cross-species protection.
Collapse
Affiliation(s)
- Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Cesar J. Figueroa
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Sebastian D. Schubl
- Department of Surgery, Divisions of Trauma, Burns and Critical Care, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Lanny Hsieh
- Department of Medicine, Division of Infectious Diseases and Hospitalist Program, School of Medicine, University of California Irvine, Irvine, CA, United States
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | | | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Université Paul Sabatier, Infinity, Inserm, Toulouse, France
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Institute for Immunology, The University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
37
|
Aoki H, Kitabatake M, Abe H, Xu P, Tsunoda M, Shichino S, Hara A, Ouji-Sageshima N, Motozono C, Ito T, Matsushima K, Ueha S. CD8 + T cell memory induced by successive SARS-CoV-2 mRNA vaccinations is characterized by shifts in clonal dominance. Cell Rep 2024; 43:113887. [PMID: 38458195 DOI: 10.1016/j.celrep.2024.113887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/27/2023] [Accepted: 02/14/2024] [Indexed: 03/10/2024] Open
Abstract
mRNA vaccines against the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) elicit strong T cell responses. However, a clonal-resolution analysis of T cell responses to mRNA vaccination has not been performed. Here, we temporally track the CD8+ T cell repertoire in individuals who received three shots of the BNT162b2 mRNA vaccine through longitudinal T cell receptor sequencing with peptide-human leukocyte antigen (HLA) tetramer analysis. We demonstrate a shift in T cell responses between the clonotypes with different kinetics: from early responders that expand rapidly after the first shot to main responders that greatly expand after the second shot. Although the main responders re-expand after the third shot, their clonal diversity is skewed, and newly elicited third responders partially replace them. Furthermore, this shift in clonal dominance occurs not only between, but also within, clonotypes specific for spike epitopes. Our study will be a valuable resource for understanding vaccine-induced T cell responses in general.
Collapse
Affiliation(s)
- Hiroyasu Aoki
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan; Department of Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Masahiro Kitabatake
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Haruka Abe
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Peng Xu
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Mikiya Tsunoda
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Atsushi Hara
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Noriko Ouji-Sageshima
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Chihiro Motozono
- Division of Infection and Immunity, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto City, Kumamoto 8600811, Japan
| | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara City, Nara 6348521, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda City, Chiba 2780022, Japan.
| |
Collapse
|
38
|
Peng M, Lin B, Zhang J, Zhou Y, Lin B. scFSNN: a feature selection method based on neural network for single-cell RNA-seq data. BMC Genomics 2024; 25:264. [PMID: 38459442 PMCID: PMC10924397 DOI: 10.1186/s12864-024-10160-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/25/2024] [Indexed: 03/10/2024] Open
Abstract
While single-cell RNA sequencing (scRNA-seq) allows researchers to analyze gene expression in individual cells, its unique characteristics like over-dispersion, zero-inflation, high gene-gene correlation, and large data volume with many features pose challenges for most existing feature selection methods. In this paper, we present a feature selection method based on neural network (scFSNN) to solve classification problem for the scRNA-seq data. scFSNN is an embedded method that can automatically select features (genes) during model training, control the false discovery rate of selected features and adaptively determine the number of features to be eliminated. Extensive simulation and real data studies demonstrate its excellent feature selection ability and predictive performance.
Collapse
Affiliation(s)
- Minjiao Peng
- School of Mathematical Sciences, Shenzhen University, Nanshan, Shenzhen, 518060, Guangdong, China
- School of Mathematics and Statistics and KLAS, Northeast Normal University, Renmin Street, Changchun, 130000, Jilin, China
| | - Baoqin Lin
- Experimental Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Jun Zhang
- School of Mathematical Sciences, Shenzhen University, Nanshan, Shenzhen, 518060, Guangdong, China
| | - Yan Zhou
- School of Mathematical Sciences, Shenzhen University, Nanshan, Shenzhen, 518060, Guangdong, China
| | - Bingqing Lin
- School of Mathematical Sciences, Shenzhen University, Nanshan, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
39
|
Malani A, Aiyar J, Sant A, Kamran N, Mohanan M, Taneja S, Woda B, Zhao W, Acharya A. Comparing population-level humoral and cellular immunity to SARS-Cov-2 in Bangalore, India. Sci Rep 2024; 14:5758. [PMID: 38459035 PMCID: PMC10923858 DOI: 10.1038/s41598-024-54922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
Two types of immunity, humoral and cellular, offer protection against COVID. Humoral protection, contributed by circulating neutralizing antibodies, can provide immediate protection but decays more quickly than cellular immunity and can lose effectiveness in the face of mutation and drift in the SARS-CoV-2 spike protein. Therefore, population-level seroprevalence surveys used to estimate population-level immunity may underestimate the degree to which a population is protected against COVID. In early 2021, before India began its vaccination campaign, we tested for humoral and cellular immunity to SARS-Cov-2 in representative samples of slum and non-slum populations in Bangalore, India. We found that 29.7% of samples (unweighted) had IgG antibodies to the spike protein and 15.5% had neutralizing antibodies, but at up to 46% showed evidence of cellular immunity. We also find that prevalence of cellular immunity is significantly higher in slums than in non-slums. These findings suggest (1) that a significantly larger proportion of the population in Bangalore, India, had cellular immunity to SARS-CoV-2 than had humoral immunity, as measured by serological surveys, and (2) that low socio-economic status communities display higher frequency of cellular immunity, likely because of greater exposure to infection due to population density.
Collapse
Affiliation(s)
| | | | - Andrea Sant
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Manoj Mohanan
- Sanford School of Public Policy, Duke University, Durham, NC, USA
| | - Saloni Taneja
- University of Southern California, Los Angeles, CA, USA
| | - Bartek Woda
- University of Chicago, Chicago, IL, USA
- Amazon, Chicago, IL, USA
| | | | | |
Collapse
|
40
|
Eggenhuizen PJ, Ooi JD. The Influence of Cross-Reactive T Cells in COVID-19. Biomedicines 2024; 12:564. [PMID: 38540178 PMCID: PMC10967880 DOI: 10.3390/biomedicines12030564] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/28/2024] [Accepted: 03/01/2024] [Indexed: 01/22/2025] Open
Abstract
Memory T cells form from the adaptive immune response to historic infections or vaccinations. Some memory T cells have the potential to recognise unrelated pathogens like severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and generate cross-reactive immune responses. Notably, such T cell cross-reactivity has been observed between SARS-CoV-2 and other human coronaviruses. T cell cross-reactivity has also been observed between SARS-CoV-2 variants from unrelated microbes and unrelated vaccinations against influenza A, tuberculosis and measles, mumps and rubella. Extensive research and debate is underway to understand the mechanism and role of T cell cross-reactivity and how it relates to Coronavirus disease 2019 (COVID-19) outcomes. Here, we review the evidence for the ability of pre-existing memory T cells to cross-react with SARS-CoV-2. We discuss the latest findings on the impact of T cell cross-reactivity and the extent to which it can cross-protect from COVID-19.
Collapse
Affiliation(s)
- Peter J. Eggenhuizen
- Centre for Inflammatory Diseases, Department of Medicine, School of Clinical Sciences, Monash University, Clayton, VIC 3800, Australia
| | | |
Collapse
|
41
|
Collins CP, Longo DL, Murphy WJ. The immunobiology of SARS-CoV-2 infection and vaccine responses: potential influences of cross-reactive memory responses and aging on efficacy and off-target effects. Front Immunol 2024; 15:1345499. [PMID: 38469293 PMCID: PMC10925677 DOI: 10.3389/fimmu.2024.1345499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Immune responses to both SARS-CoV-2 infection and its associated vaccines have been highly variable within the general population. The increasing evidence of long-lasting symptoms after resolution of infection, called post-acute sequelae of COVID-19 (PASC) or "Long COVID," suggests that immune-mediated mechanisms are at play. Closely related endemic common human coronaviruses (hCoV) can induce pre-existing and potentially cross-reactive immunity, which can then affect primary SARS-CoV-2 infection, as well as vaccination responses. The influence of pre-existing immunity from these hCoVs, as well as responses generated from original CoV2 strains or vaccines on the development of new high-affinity responses to CoV2 antigenic viral variants, needs to be better understood given the need for continuous vaccine adaptation and application in the population. Due in part to thymic involution, normal aging is associated with reduced naïve T cell compartments and impaired primary antigen responsiveness, resulting in a reliance on the pre-existing cross-reactive memory cell pool which may be of lower affinity, restricted in diversity, or of shorter duration. These effects can also be mediated by the presence of down-regulatory anti-idiotype responses which also increase in aging. Given the tremendous heterogeneity of clinical data, utilization of preclinical models offers the greatest ability to assess immune responses under a controlled setting. These models should now involve prior antigen/viral exposure combined with incorporation of modifying factors such as age on immune responses and effects. This will also allow for mechanistic dissection and understanding of the different immune pathways involved in both SARS-CoV-2 pathogen and potential vaccine responses over time and how pre-existing memory responses, including potential anti-idiotype responses, can affect efficacy as well as potential off-target effects in different tissues as well as modeling PASC.
Collapse
Affiliation(s)
- Craig P. Collins
- Graduate Program in Immunology, University of California (UC) Davis, Davis, CA, United States
| | - Dan L. Longo
- Harvard Medical School, Brigham and Women’s Hospital, Boston, MA, United States
| | - William J. Murphy
- Departments of Dermatology and Internal Medicine (Hematology/Oncology), University of California (UC) Davis School of Medicine, Sacramento, CA, United States
| |
Collapse
|
42
|
Le Bert N, Samandari T. Silent battles: immune responses in asymptomatic SARS-CoV-2 infection. Cell Mol Immunol 2024; 21:159-170. [PMID: 38221577 PMCID: PMC10805869 DOI: 10.1038/s41423-024-01127-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024] Open
Abstract
SARS-CoV-2 infections manifest with a broad spectrum of presentations, ranging from asymptomatic infections to severe pneumonia and fatal outcomes. This review centers on asymptomatic infections, a widely reported phenomenon that has substantially contributed to the rapid spread of the pandemic. In such asymptomatic infections, we focus on the role of innate, humoral, and cellular immunity. Notably, asymptomatic infections are characterized by an early and robust innate immune response, particularly a swift type 1 IFN reaction, alongside a rapid and broad induction of SARS-CoV-2-specific T cells. Often, antibody levels tend to be lower or undetectable after asymptomatic infections, suggesting that the rapid control of viral replication by innate and cellular responses might impede the full triggering of humoral immunity. Even if antibody levels are present in the early convalescent phase, they wane rapidly below serological detection limits, particularly following asymptomatic infection. Consequently, prevalence studies reliant solely on serological assays likely underestimate the extent of community exposure to the virus.
Collapse
Affiliation(s)
- Nina Le Bert
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Taraz Samandari
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
43
|
Dos Santos Alves RP, Timis J, Miller R, Valentine K, Pinto PBA, Gonzalez A, Regla-Nava JA, Maule E, Nguyen MN, Shafee N, Landeras-Bueno S, Olmedillas E, Laffey B, Dobaczewska K, Mikulski Z, McArdle S, Leist SR, Kim K, Baric RS, Ollmann Saphire E, Elong Ngono A, Shresta S. Human coronavirus OC43-elicited CD4 + T cells protect against SARS-CoV-2 in HLA transgenic mice. Nat Commun 2024; 15:787. [PMID: 38278784 PMCID: PMC10817949 DOI: 10.1038/s41467-024-45043-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024] Open
Abstract
SARS-CoV-2-reactive T cells are detected in some healthy unexposed individuals. Human studies indicate these T cells could be elicited by the common cold coronavirus OC43. To directly test this assumption and define the role of OC43-elicited T cells that are cross-reactive with SARS-CoV-2, we develop a model of sequential infections with OC43 followed by SARS-CoV-2 in HLA-B*0702 and HLA-DRB1*0101 Ifnar1-/- transgenic mice. We find that OC43 infection can elicit polyfunctional CD8+ and CD4+ effector T cells that cross-react with SARS-CoV-2 peptides. Furthermore, pre-exposure to OC43 reduces subsequent SARS-CoV-2 infection and disease in the lung for a short-term in HLA-DRB1*0101 Ifnar1-/- transgenic mice, and a longer-term in HLA-B*0702 Ifnar1-/- transgenic mice. Depletion of CD4+ T cells in HLA-DRB1*0101 Ifnar1-/- transgenic mice with prior OC43 exposure results in increased viral burden in the lung but no change in virus-induced lung damage following infection with SARS-CoV-2 (versus CD4+ T cell-sufficient mice), demonstrating that the OC43-elicited SARS-CoV-2 cross-reactive T cell-mediated cross-protection against SARS-CoV-2 is partially dependent on CD4+ T cells. These findings contribute to our understanding of the origin of pre-existing SARS-CoV-2-reactive T cells and their effects on SARS-CoV-2 clinical outcomes, and also carry implications for development of broadly protective betacoronavirus vaccines.
Collapse
Affiliation(s)
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Andrew Gonzalez
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jose Angel Regla-Nava
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Microbiology and Pathology, University Center for Health Science (CUCS), University of Guadalajara, Guadalajara, 44340, Mexico
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara Landeras-Bueno
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Eduardo Olmedillas
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Brett Laffey
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Katarzyna Dobaczewska
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA
| | - Annie Elong Ngono
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
44
|
Prakash S, Dhanushkodi NR, Zayou L, Ibraim IC, Quadiri A, Coulon PG, Tifrea DF, Suzer B, Shaik AM, Chilukuri A, Edwards RA, Singer M, Vahed H, Nesburn AB, Kuppermann BD, Ulmer JB, Gil D, Jones TM, BenMohamed L. Cross-protection induced by highly conserved human B, CD4 +, and CD8 + T-cell epitopes-based vaccine against severe infection, disease, and death caused by multiple SARS-CoV-2 variants of concern. Front Immunol 2024; 15:1328905. [PMID: 38318166 PMCID: PMC10839970 DOI: 10.3389/fimmu.2024.1328905] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) pandemic has created one of the largest global health crises in almost a century. Although the current rate of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections has decreased significantly, the long-term outlook of COVID-19 remains a serious cause of morbidity and mortality worldwide, with the mortality rate still substantially surpassing even that recorded for influenza viruses. The continued emergence of SARS-CoV-2 variants of concern (VOCs), including multiple heavily mutated Omicron sub-variants, has prolonged the COVID-19 pandemic and underscores the urgent need for a next-generation vaccine that will protect from multiple SARS-CoV-2 VOCs. METHODS We designed a multi-epitope-based coronavirus vaccine that incorporated B, CD4+, and CD8+ T- cell epitopes conserved among all known SARS-CoV-2 VOCs and selectively recognized by CD8+ and CD4+ T-cells from asymptomatic COVID-19 patients irrespective of VOC infection. The safety, immunogenicity, and cross-protective immunity of this pan-variant SARS-CoV-2 vaccine were studied against six VOCs using an innovative triple transgenic h-ACE-2-HLA-A2/DR mouse model. RESULTS The pan-variant SARS-CoV-2 vaccine (i) is safe , (ii) induces high frequencies of lung-resident functional CD8+ and CD4+ TEM and TRM cells , and (iii) provides robust protection against morbidity and virus replication. COVID-19-related lung pathology and death were caused by six SARS-CoV-2 VOCs: Alpha (B.1.1.7), Beta (B.1.351), Gamma or P1 (B.1.1.28.1), Delta (lineage B.1.617.2), and Omicron (B.1.1.529). CONCLUSION A multi-epitope pan-variant SARS-CoV-2 vaccine bearing conserved human B- and T- cell epitopes from structural and non-structural SARS-CoV-2 antigens induced cross-protective immunity that facilitated virus clearance, and reduced morbidity, COVID-19-related lung pathology, and death caused by multiple SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Nisha R. Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Latifa Zayou
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Izabela Coimbra Ibraim
- High Containment Facility, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Afshana Quadiri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Pierre Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Delia F. Tifrea
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
| | - Berfin Suzer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Amin Mohammed Shaik
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Amruth Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Robert A. Edwards
- Department of Pathology and Laboratory Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
| | - Mahmoud Singer
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Hawa Vahed
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Anthony B. Nesburn
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Baruch D. Kuppermann
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
| | - Jeffrey B. Ulmer
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Daniel Gil
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Trevor M. Jones
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA, United States
- Department of Vaccines and Immunotherapies, TechImmune, LLC, University Lab Partners, Irvine, CA, United States
- Division of Infectious Diseases and Hospitalist Program, Department of Medicine, School of Medicine, the University of California Irvine, Irvine, CA, United States
- Institute for Immunology; University of California Irvine, School of Medicine, Irvine, CA, United States
| |
Collapse
|
45
|
Sattler A, Gamradt S, Proß V, Thole LML, He A, Schrezenmeier EV, Jechow K, Gold SM, Lukassen S, Conrad C, Kotsch K. CD3 downregulation identifies high-avidity, multipotent SARS-CoV-2 vaccine- and recall antigen-specific Th cells with distinct metabolism. JCI Insight 2024; 9:e166833. [PMID: 38206757 PMCID: PMC11143931 DOI: 10.1172/jci.insight.166833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/09/2024] [Indexed: 01/13/2024] Open
Abstract
Functional avidity is supposed to critically shape the quality of immune responses, thereby influencing host protection against infectious agents including SARS-CoV-2. Here we show that after human SARS-CoV-2 vaccination, a large portion of high-avidity spike-specific CD4+ T cells lost CD3 expression after in vitro activation. The CD3- subset was enriched for cytokine-positive cells, including elevated per-cell expression levels, and showed increased polyfunctionality. Assessment of key metabolic pathways by flow cytometry revealed that superior functionality was accompanied by a shift toward fatty acid synthesis at the expense of their oxidation, whereas glucose transport and glycolysis were similarly regulated in SARS-CoV-2-specific CD3- and CD3+ subsets. As opposed to their CD3+ counterparts, frequencies of vaccine-specific CD3- T cells positively correlated with both the size of the naive CD4+ T cell pool and vaccine-specific IgG levels. Moreover, their frequencies negatively correlated with advancing age and were impaired in patients under immunosuppressive therapy. Typical recall antigen-reactive T cells showed a comparable segregation into functionally and metabolically distinct CD3+ and CD3- subsets but were quantitatively maintained upon aging, likely due to earlier recruitment in life. In summary, our data identify CD3- T helper cells as correlates of high-quality immune responses that are impaired in at-risk populations.
Collapse
Affiliation(s)
- Arne Sattler
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Stefanie Gamradt
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Neurosciences – Campus Benjamin Franklin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine – Campus Benjamin Franklin, Berlin, Germany
| | - Vanessa Proß
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Linda Marie Laura Thole
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - An He
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| | - Eva Vanessa Schrezenmeier
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Nephrology and Medical Intensive Care, Berlin, Germany
| | - Katharina Jechow
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Digital Health, Berlin, Germany
| | - Stefan M. Gold
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Neurosciences – Campus Benjamin Franklin, Berlin, Germany
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine – Campus Benjamin Franklin, Berlin, Germany
- Universitätsklinikum Hamburg Eppendorf, Institut für Neuroimmunologie und Multiple Sklerose, Hamburg, Germany
| | - Sören Lukassen
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Digital Health, Berlin, Germany
| | - Christian Conrad
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Center for Digital Health, Berlin, Germany
| | - Katja Kotsch
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for General and Visceral Surgery, Berlin, Germany
| |
Collapse
|
46
|
Proß V, Sattler A, Lukassen S, Tóth L, Thole LML, Siegle J, Stahl C, He A, Damm G, Seehofer D, Götz C, Bayerl C, Jäger P, Macke A, Eggeling S, Kirzinger B, Mayr T, Herbst H, Beyer K, Laue D, Krönke J, Braune J, Rosseck F, Kittner B, Friedersdorff F, Hubatsch M, Weinberger S, Lachmann N, Hofmann VM, Schrezenmeier E, Ludwig C, Schrezenmeier H, Jechow K, Conrad C, Kotsch K. SARS-CoV-2 mRNA vaccination-induced immunological memory in human nonlymphoid and lymphoid tissues. J Clin Invest 2023; 133:e171797. [PMID: 37815874 PMCID: PMC10721158 DOI: 10.1172/jci171797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/05/2023] [Indexed: 10/12/2023] Open
Abstract
Tissue-resident lymphocytes provide organ-adapted protection against invading pathogens. Whereas their biology has been examined in great detail in various infection models, their generation and functionality in response to vaccination have not been comprehensively analyzed in humans. We therefore studied SARS-CoV-2 mRNA vaccine-specific T cells in surgery specimens of kidney, liver, lung, bone marrow, and spleen compared with paired blood samples from largely virus-naive individuals. As opposed to lymphoid tissues, nonlymphoid organs harbored significantly elevated frequencies of spike-specific CD4+ T cells compared with blood showing hallmarks of tissue residency and an expanded memory pool. Organ-derived CD4+ T cells further exhibited increased polyfunctionality over those detected in blood. Single-cell RNA-Seq together with T cell receptor repertoire analysis indicated that the clonotype rather than organ origin is a major determinant of transcriptomic state in vaccine-specific CD4+ T cells. In summary, our data demonstrate that SARS-CoV-2 vaccination entails acquisition of tissue memory and residency features in organs distant from the inoculation site, thereby contributing to our understanding of how local tissue protection might be accomplished.
Collapse
Affiliation(s)
- Vanessa Proß
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Sattler
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sören Lukassen
- Center of Digital Health, Berlin Institute of Health and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Tóth
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Linda Marie Laura Thole
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Janine Siegle
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carolin Stahl
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - An He
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Christina Götz
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Christian Bayerl
- Department of Radiology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Pia Jäger
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | | | | | | | | | - Hermann Herbst
- Department of Pathology, Vivantes Klinikum Neukölln, Berlin, Germany
| | - Katharina Beyer
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dominik Laue
- Department of Traumatology and Reconstructive Surgery, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Braune
- Department of Hematology, Oncology and Cancer Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friederike Rosseck
- Institute of Pathology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Beatrice Kittner
- Department of Urology, Evangelisches Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Frank Friedersdorff
- Department of Urology, Evangelisches Krankenhaus Königin Elisabeth Herzberge, Berlin, Germany
| | - Mandy Hubatsch
- Department of Urology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah Weinberger
- Department of Urology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nils Lachmann
- Institute of Transfusion Medicine, Berlin Institute of Health, Charité – Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Veit Maria Hofmann
- Department of Otolaryngology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- BIH Charité Clinician Scientist Program, BIH Biomedical Innovation Academy, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Carolin Ludwig
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Katharina Jechow
- Center of Digital Health, Berlin Institute of Health and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Conrad
- Center of Digital Health, Berlin Institute of Health and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Katja Kotsch
- Department of General and Visceral Surgery, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
47
|
Markov NS, Ren Z, Senkow KJ, Grant RA, Gao CA, Malsin ES, Sichizya L, Kihshen H, Helmin KA, Jovisic M, Arnold JM, Pérez-Leonor XG, Abdala-Valencia H, Swaminathan S, Nwaezeapu J, Kang M, Rasmussen L, Ozer EA, Lorenzo-Redondo R, Hultquist JF, Simons LM, Rios-Guzman E, Misharin AV, Wunderink RG, Budinger GS, Singer BD, Morales-Nebreda L, The NU SCRIPT Study Investigators. A distinctive evolution of alveolar T cell responses is associated with clinical outcomes in unvaccinated patients with SARS-CoV-2 pneumonia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571479. [PMID: 38168346 PMCID: PMC10760069 DOI: 10.1101/2023.12.13.571479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Pathogen clearance and resolution of inflammation in patients with pneumonia require an effective local T cell response. Nevertheless, local T cell activation may drive lung injury, particularly during prolonged episodes of respiratory failure characteristic of severe SARS-CoV-2 pneumonia. While T cell responses in the peripheral blood are well described, the evolution of T cell phenotypes and molecular signatures in the distal lung of patients with severe pneumonia caused by SARS-CoV-2 or other pathogens is understudied. Accordingly, we serially obtained 432 bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia and respiratory failure, including 74 unvaccinated patients with COVID-19, and performed flow cytometry, transcriptional, and T cell receptor profiling on sorted CD8+ and CD4+ T cell subsets. In patients with COVID-19 but not pneumonia secondary to other pathogens, we found that early and persistent enrichment in CD8+ and CD4+ T cell subsets correlated with survival to hospital discharge. Activation of interferon signaling pathways early after intubation for COVID-19 was associated with favorable outcomes, while activation of NF-κB-driven programs late in disease was associated with poor outcomes. Patients with SARS-CoV-2 pneumonia whose alveolar T cells preferentially targeted the Spike and Nucleocapsid proteins tended to experience more favorable outcomes than patients whose T cells predominantly targeted the ORF1ab polyprotein complex. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize patients who recover, yet these responses progress to NF-κB activation against non-structural proteins in patients who go on to experience poor clinical outcomes.
Collapse
Affiliation(s)
- Nikolay S. Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Karolina J. Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Rogan A. Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Catherine A. Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Elizabeth S. Malsin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Hermon Kihshen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Kathryn A. Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Jason M. Arnold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Suchitra Swaminathan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Julu Nwaezeapu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Luke Rasmussen
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Lacy M. Simons
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Estefany Rios-Guzman
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - G.R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | | |
Collapse
|
48
|
Muñoz-Ruiz M, Llorian M, D'Antuono R, Pavlova A, Mavrigiannaki AM, McKenzie D, García-Cassani B, Iannitto ML, Wu Y, Dart R, Davies D, Jamal-Hanjani M, Jandke A, Ushakov DS, Hayday AC. IFN-γ-dependent interactions between tissue-intrinsic γδ T cells and tissue-infiltrating CD8 T cells limit allergic contact dermatitis. J Allergy Clin Immunol 2023; 152:1520-1540. [PMID: 37562754 DOI: 10.1016/j.jaci.2023.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Elicitation of allergic contact dermatitis (ACD), an inflammatory type 4 hypersensitivity disease, induces skin infiltration by polyclonal effector CD8 αβ T cells and precursors of tissue-resident memory T (TRM) cells. Because TRM have long-term potential to contribute to body-surface immunoprotection and immunopathology, their local regulation needs a fuller understanding. OBJECTIVE We sought to investigate how TRM-cell maturation might be influenced by innate-like T cells pre-existing within many epithelia. METHODS This study examined CD8+ TRM-cell maturation following hapten-induced ACD in wild-type mice and in strains harboring altered compartments of dendritic intraepidermal γδ T cells (DETCs), a prototypic tissue-intrinsic, innate-like T-cell compartment that reportedly regulates ACD, but by no elucidated mechanism. RESULTS In addition to eliciting CD8 TRM, ACD induced DETC activation and an intimate coregulatory association of the 2 cell types. This depended on DETC sensing IFN-γ produced by CD8 cells and involved programmed death-ligand 1 (PD-L1). Thus, in mice lacking DETC or lacking IFN-γ receptor solely on γδ cells, ACD-elicited CD8 T cells showed enhanced proliferative and effector potentials and reduced motility, collectively associated with exaggerated ACD pathology. Comparable dysregulation was elicited by PD-L1 blockade in vitro, and IFN-γ-regulated PD-L1 expression was a trait of human skin-homing and intraepithelial γδ T cells. CONCLUSIONS The size and quality of the tissue-infiltrating CD8 T-cell response during ACD can be profoundly regulated by local innate-like T cells responding to IFN-γ and involving PD-L1. Thus, interindividual and tissue-specific variations in tissue-intrinsic lymphocytes may influence responses to allergens and other challenges and may underpin inflammatory pathologies such as those repeatedly observed in γδ T-cell-deficient settings.
Collapse
Affiliation(s)
- Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Department of Immunology, Ophthalmology and Ear, Nose and Throat, Complutense University School of Medicine and 12 de Octubre Health Research Institute, Madrid, Spain
| | - Miriam Llorian
- Bioinformatics and Biostatistics science technology platform (STP), The Francis Crick Institute, London, United Kingdom
| | - Rocco D'Antuono
- Light Microscopy STP, The Francis Crick Institute, London, United Kingdom
| | - Anna Pavlova
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Erlangen, Germany
| | | | - Duncan McKenzie
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Bethania García-Cassani
- Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Maria Luisa Iannitto
- Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Yin Wu
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Robin Dart
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Daniel Davies
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - Anett Jandke
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom
| | - Dmitry S Ushakov
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Adrian C Hayday
- Immunosurveillance Laboratory, The Francis Crick Institute, London, United Kingdom; Peter Gorer Department of Immunobiology, King's College London, London, United Kingdom; Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom.
| |
Collapse
|
49
|
Paniskaki K, Goretzki S, Anft M, Konik MJ, Meister TL, Pfaender S, Lechtenberg K, Vogl M, Dogan B, Dolff S, Westhoff TH, Rohn H, Felderhoff-Mueser U, Stervbo U, Witzke O, Dohna-Schwake C, Babel N. Increased SARS-CoV-2 reactive low avidity T cells producing inflammatory cytokines in pediatric post-acute COVID-19 sequelae (PASC). Pediatr Allergy Immunol 2023; 34:e14060. [PMID: 38146118 DOI: 10.1111/pai.14060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND A proportion of the convalescent SARS-CoV-2 pediatric population presents nonspecific symptoms, mental health problems, and a reduction in quality of life similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID-19 symptomatic. However, data regarding its clinical manifestation and immune mechanisms are currently scarce. METHODS In this study, we perform a comprehensive clinical and immunological profiling of 17 convalescent COVID-19 children with post-acute COVID-19 sequelae (PASC) manifestation and 13 convalescent children without PASC manifestation. A detailed medical history, blood and instrumental tests, and physical examination were obtained from all patients. SARS-CoV-2 reactive T-cell response was analyzed via multiparametric flow cytometry and the humoral immunity was addressed via pseudovirus neutralization and ELISA assay. RESULTS The most common PASC symptoms were shortness of breath/exercise intolerance, paresthesia, smell/taste disturbance, chest pain, dyspnea, headache, and lack of concentration. Blood count and clinical chemistry showed no statistical differences among the study groups. We detected higher frequencies of spike (S) reactive CD4+ and CD8+ T cells among the PASC study group, characterized by TNFα and IFNγ production and low functional avidity. CRP levels are positively correlated with IFNγ producing reactive CD8+ T cells. CONCLUSIONS Our data might indicate a possible involvement of a persistent cellular inflammatory response triggered by SARS-CoV-2 in the development of the observed sequelae in pediatric PASC. These results may have implications on future therapeutic and prevention strategies.
Collapse
Affiliation(s)
- Krystallenia Paniskaki
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Sarah Goretzki
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Pediatrics I, Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Moritz Anft
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Margarethe J Konik
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Toni L Meister
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany
| | - Klara Lechtenberg
- Department of Pediatrics I, Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Vogl
- Department of Pediatrics III, Pediatric Pulmonology and Sleep Medicine, Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Burcin Dogan
- Department of Pediatrics I, Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Dolff
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Timm H Westhoff
- Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Herne, Germany
| | - Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ursula Felderhoff-Mueser
- Department of Pediatrics I, Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences C-TNBS, University of Duisburg-Essen, Essen, Germany
| | - Ulrik Stervbo
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christian Dohna-Schwake
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Pediatrics I, Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Center for Translational Neuro- and Behavioral Sciences C-TNBS, University of Duisburg-Essen, Essen, Germany
| | - Nina Babel
- Center for Translational Medicine and Immune Diagnostics Laboratory, Medical Department I, Marien Hospital Herne, University Hospital of the Ruhr-University Bochum, Bochum, Germany
- Berlin Institute of Health at Charité - University Clinic Berlin, BIH Center for Regenerative Therapies (BCRT) Berlin, Berlin, Germany
| |
Collapse
|
50
|
Wang L, Nicols A, Turtle L, Richter A, Duncan CJA, Dunachie SJ, Klenerman P, Payne RP. T cell immune memory after covid-19 and vaccination. BMJ MEDICINE 2023; 2:e000468. [PMID: 38027416 PMCID: PMC10668147 DOI: 10.1136/bmjmed-2022-000468] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
The T cell memory response is a crucial component of adaptive immunity responsible for limiting or preventing viral reinfection. T cell memory after infection with the SARS-CoV-2 virus or vaccination is broad, and spans multiple viral proteins and epitopes, about 20 in each individual. So far the T cell memory response is long lasting and provides a high level of cross reactivity and hence resistance to viral escape by variants of the SARS-CoV-2 virus, such as the omicron variant. All current vaccine regimens tested produce robust T cell memory responses, and heterologous regimens will probably enhance protective responses through increased breadth. T cell memory could have a major role in protecting against severe covid-19 disease through rapid viral clearance and early presentation of epitopes, and the presence of cross reactive T cells might enhance this protection. T cell memory is likely to provide ongoing protection against admission to hospital and death, and the development of a pan-coronovirus vaccine might future proof against new pandemic strains.
Collapse
Affiliation(s)
- Lulu Wang
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Alex Nicols
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| | - Lance Turtle
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Tropical and Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Alex Richter
- Institute of Immunology and Immunotherapy, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Christopher JA Duncan
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
- Department of Infection and Tropical Medicine, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
| | - Susanna J Dunachie
- NDM Centre For Global Health Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University Faculty of Science, Bangkok, Thailand
| | - Paul Klenerman
- Oxford University Hospitals NHS Foundation Trust, Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, Oxfordshire, UK
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK
| | - Rebecca P Payne
- Translational and Clinical Research Institute, Immunity and Inflammation Theme, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|