1
|
Zhang Q, Niu Y, Li Y, Xia C, Chen Z, Chen Y, Feng H. Meningeal lymphatic drainage: novel insights into central nervous system disease. Signal Transduct Target Ther 2025; 10:142. [PMID: 40320416 PMCID: PMC12050339 DOI: 10.1038/s41392-025-02177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 12/04/2024] [Accepted: 02/06/2025] [Indexed: 05/08/2025] Open
Abstract
In recent years, increasing evidence has suggested that meningeal lymphatic drainage plays a significant role in central nervous system (CNS) diseases. Studies have indicated that CNS diseases and conditions associated with meningeal lymphatic drainage dysfunction include neurodegenerative diseases, stroke, infections, traumatic brain injury, tumors, functional cranial disorders, and hydrocephalus. However, the understanding of the regulatory and damage mechanisms of meningeal lymphatics under physiological and pathological conditions is currently limited. Given the importance of a profound understanding of the interplay between meningeal lymphatic drainage and CNS diseases, this review covers seven key aspects: the development and structure of meningeal lymphatic vessels, methods for observing meningeal lymphatics, the function of meningeal lymphatics, the molecular mechanisms of meningeal lymphatic injury, the relationships between meningeal lymphatic vessels and CNS diseases, potential regulatory mechanisms of meningeal lymphatics, and conclusions and outstanding questions. We will explore the relationship between the development, structure, and function of meningeal lymphatics, review current methods for observing meningeal lymphatic vessels in both animal models and humans, and identify unresolved key points in meningeal lymphatic research. The aim of this review is to provide new directions for future research and therapeutic strategies targeting meningeal lymphatics by critically analyzing recent advancements in the field, identifying gaps in current knowledge, and proposing innovative approaches to address these gaps.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Department of Neurosurgery, The 961st Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Qiqihar Medical University, Qiqihar, 161000, Heilongjiang, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yin Niu
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yingpei Li
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chenyang Xia
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Zhi Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Yujie Chen
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Hua Feng
- Department of Neurosurgery and State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Key Laboratory of Intelligent Diagnosis, Treatment and Rehabilitation of Central Nervous System Injuries, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Chongqing Clinical Research Center for Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
2
|
Lütge M, Kurz L, Stanossek Y, Meili S, Cheng HW, De Martin A, Brandstadter J, Maillard I, Robinson MD, Stoeckli SJ, Pikor NB, Onder L, Ludewig B. Fibroblastic reticular cells form reactive myeloid cell niches in human lymph nodes. Sci Immunol 2025; 10:eads6820. [PMID: 40315298 DOI: 10.1126/sciimmunol.ads6820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/07/2025] [Indexed: 05/04/2025]
Abstract
Lymph nodes play a key role in maintaining fluid balance in homeostatic and inflamed tissues and provide fibroblastic niche environments for optimal immune cell positioning and interaction. Here, we used single-cell and spatial transcriptomic analyses in combination with high-resolution imaging to molecularly define and functionally characterize niche-forming cells that control inflammation-driven remodeling in human lymph nodes. Fibroblastic reticular cells responded to inflammatory perturbation with activation and expansion of poised niche environments. Inflammation-induced adaptation of lymph node infrastructure and topography included the expansion of peptidase inhibitor 16 (PI16)-expressing reticular cell (PI16+ RC) networks that enwrap the perivenular conduit system. Interactome analyses indicated that macrophage-derived oncostatin M directs PI16+ RC activation in inflamed lymph nodes and thereby promotes immune cell aggregation in the perivenular space. In conclusion, these data demonstrate that the inflammatory remodeling of human lymph nodes results in the formation of reactive myeloid cell niches by PI16+ RCs.
Collapse
Affiliation(s)
- Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lisa Kurz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Samuel Meili
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Joshua Brandstadter
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ivan Maillard
- Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Sandro J Stoeckli
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Natalia B Pikor
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Polacheck WJ, Dixon JB, Aw WY. Understanding the Lymphatic System: Tissue-on-Chip Modeling. Annu Rev Biomed Eng 2025; 27:73-100. [PMID: 39841937 DOI: 10.1146/annurev-bioeng-110222-100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The lymphatic vasculature plays critical roles in maintaining fluid homeostasis, transporting lipid, and facilitating immune surveillance. A growing body of work has identified lymphatic dysfunction as contributing to the severity of myriad diseases and to systemic inflammation, as well as modulating drug responses. Here, we review efforts to reconstruct lymphatic vessels in vitro toward establishing humanized, functional models to advance understanding of lymphatic biology and pathophysiology. We first review lymphatic endothelial cell biology and the biophysical lymphatic microenvironment, with a focus on features that are unique to the lymphatics and that have been used as design parameters for lymphatic-on-chip devices. We then discuss the state of the art for recapitulating lymphatic function in vitro, and we acknowledge limitations and challenges to current approaches. Finally, we discuss opportunities and the need for further development of microphysiological lymphatic systems to bridge the gap in model systems between lymphatic cell culture and animal physiology.
Collapse
Affiliation(s)
- William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina, USA;
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - J Brandon Dixon
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Wen Yih Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill and Raleigh, North Carolina, USA;
| |
Collapse
|
4
|
Tazawa K, Chen D, Fujimura A, King PD, Sasaki H. Dental pulp lymphatic vessel dynamics during tooth development and pulp stimulation in rodents. Int Endod J 2025. [PMID: 40277146 DOI: 10.1111/iej.14244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/26/2025]
Abstract
AIM The anatomy and functions of lymphatic vessels (LV) in mammals remain poorly understood compared to the blood vascular system. In particular, whether or not LV exist in the dental pulp is still controversial. This study aims to identify the existence of LV in the mouse dental pulp using a Prox1 (Prospero homeobox 1)-eGFP transgenic mouse model combined with a tissue-clearing technique. METHODOLOGY Mandible or mandibular first molars of Prox1-eGFP mice were extracted, cleared for whole-mount observation and imaged using confocal microscopy. Dylight 594-lectin was injected intracardially to differentiate Prox1-eGFP+ LV from the blood vascular network. To further determine if pulpal LV act as an interstitial fluid drainage system, we examined ink absorption in surgically exposed dental pulp of mandibular first molars. RESULTS At the early stage of tooth development, abundant Prox1-eGFP+ LV distinct from lectin-labelled blood vessels were present in a dental pulp. However, after the initiation of root development, the expression of Prox1-eGFP in dental pulp decreased. In mature dental pulp, Prox1-eGFP+ LV was scattered with a discontinuous lumen. In response to a non-infectious transient pulp stimulation (TPS), the Prox1-eGFP+ LV increased in number and diameter with continuous lumen reaching the apical foramen. Ink particles applied to exposed dental pulp are distributed throughout the dental pulp via interstitial spaces and vessel-like structures. Histological evaluation revealed that ink particles were mainly present in the cell-free zone. However, due to TPS, ink particles were taken up into Prox1-eGFP+ LV. CONCLUSION Our findings suggest the presence of LV in the mature dental pulp that contributes to fluid drainage in this tissue together with the extravascular pathway.
Collapse
Affiliation(s)
- Kento Tazawa
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
- Department of Pulp Biology and Endodontics, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo (Science Tokyo; formerly Tokyo Medical and Dental University (TMDU)), Tokyo, Japan
| | - Di Chen
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Akira Fujimura
- Division of Dental Education, Department of Oral Medicine, School of Dentistry, Iwate Medical University, Iwate, Japan
| | - Philip D King
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Hajime Sasaki
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Piao W, Lee ZL, Zapas G, Wu L, Jewell CM, Abdi R, Bromberg JS. Regulatory T cell and endothelial cell crosstalk. Nat Rev Immunol 2025:10.1038/s41577-025-01149-2. [PMID: 40169744 DOI: 10.1038/s41577-025-01149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2025] [Indexed: 04/03/2025]
Abstract
Regulatory T (Treg) cells have a central role in the maintenance of immune surveillance and tolerance. They can migrate from lymphoid organs to blood and then into tissues and egress from tissues into draining lymph nodes. Specialized endothelial cells of blood and lymphatic vessels are the key gatekeepers for these processes. Treg cells that transmigrate across single-cell layers of endothelial cells engage in bidirectional crosstalk with these cells and regulate vascular permeability by promoting structural modifications of blood and lymphatic endothelial cells. In turn, blood and lymphatic endothelial cells can modulate Treg cell recirculation and residency. Here, we discuss recent insights into the cellular and molecular mechanisms of the crosstalk between Treg cells and endothelial cells and explore potential therapeutic strategies to target these interactions in autoimmunity, transplantation and cancer.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Gregory Zapas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Long Wu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Jewell
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
- Department of Veterans Affairs, VA Maryland Health Care System, Baltimore, MD, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan S Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA.
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
6
|
Sun M, Angelillo J, Hugues S. Lymphatic transport in anti-tumor immunity and metastasis. J Exp Med 2025; 222:e20231954. [PMID: 39969537 PMCID: PMC11837853 DOI: 10.1084/jem.20231954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Although lymphatic vessels (LVs) are present in many tumors, their importance in cancer has long been underestimated. In contrast to the well-studied tumor-associated blood vessels, LVs were previously considered to function as passive conduits for tumor metastasis. However, emerging evidence over the last two decades has shed light on their critical role in locally shaping the tumor microenvironment (TME). Here we review the involvement of LVs in tumor progression, metastasis, and modulation of anti-tumor immune response.
Collapse
Affiliation(s)
- Mengzhu Sun
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Julien Angelillo
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| | - Stéphanie Hugues
- Department of Pathology and Immunology, Geneva Medical School, Geneva, Switzerland
| |
Collapse
|
7
|
Ng YY, Tay A. Exploring Lymph Node Stroma Ageing: Immune Implications and Future Directions. Aging Cell 2025; 24:e70000. [PMID: 39954244 PMCID: PMC11896299 DOI: 10.1111/acel.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/28/2024] [Accepted: 01/21/2025] [Indexed: 02/17/2025] Open
Abstract
Ageing is an inevitable biological process that impacts the immune system, leading to immunosenescence and inflammaging, which contribute to increased susceptibility to infections, autoimmune diseases and cancers in individuals over the age of 65. This review focuses on the ageing of lymph node stromal cells (LNSCs), which are crucial for maintaining lymph node (LN) structure and function. Age-related changes in LNs, such as fibrosis and lipomatosis, disrupt the LN architecture and reduce immune cell recruitment and function, impairing immune responses to infections and vaccinations. The review discusses the structural and functional decline of various LNSC subsets, including fibroblastic reticular cells (FRCs), lymphatic endothelial cells (LECs) and blood endothelial cells (BECs), highlighting their roles in immune cell activation and homeostasis. Potential strategies to restore aged LNSC function, such as enhancing LNSC activation during vaccination and using senotherapeutics, are explored. Outstanding questions regarding the mechanisms of LNSC ageing and how ageing of the LN stroma might impact autoimmune disorders are also addressed. This review aims to stimulate further research into the characterisation of aged LNSCs and the development of therapeutic interventions to improve immune function in the older adults.
Collapse
Affiliation(s)
- Yu Yang Ng
- Department of Biomedical EngineeringNational University of SingaporeSingapore CitySingapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore CitySingapore
- Institute for Health Innovation & TechnologyNational University of SingaporeSingapore CitySingapore
- Tissue Engineering ProgrammeNational University of SingaporeSingapore CitySingapore
| |
Collapse
|
8
|
Fernandes LM, Griswold-Wheeler D, Tresemer JD, Vallejo A, Vishlaghi N, Levi B, Shapiro A, Scallan JP, Dellinger MT. A single-cell atlas of normal and KRASG12D-malformed lymphatic vessels. JCI Insight 2025; 10:e185181. [PMID: 39874106 PMCID: PMC11949019 DOI: 10.1172/jci.insight.185181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels. We identified 6 subtypes of lymphatic endothelial cells (LECs) in the lungs of adult wild-type mice (Ptx3, capillary, collecting, valve, mixed, and proliferating). To determine when the LEC subtypes were specified during development, we integrated our data with data from 4 stages of development. We found that proliferating and Ptx3 LECs were prevalent during early lymphatic development and that collecting and valve LECs emerged later in development. Additionally, we discovered that the proportion of Ptx3 LECs decreased as the lymphatic network matured but remained high in KrasG12D mice. We also observed that the proportion of collecting and valve LECs was lower in KrasG12D mice than in wild-type mice. Last, we found that immature lymphatic vessels in young mice were more sensitive to the pathologic effects of KrasG12D than mature lymphatic vessels in older mice. Together, our results expand the current model for the development of the lymphatic system and suggest that KRAS mutations impair the maturation of lymphatic vessels.
Collapse
Affiliation(s)
| | | | | | | | - Neda Vishlaghi
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin Levi
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Abigail Shapiro
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Joshua P. Scallan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael T. Dellinger
- Hamon Center for Therapeutic Oncology Research, and
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Summers B, Kim K, Trivedi A, Lu TM, Houghton S, Palmer-Johnson J, Rojas-Quintero J, Cala-Garcia J, Pannellini T, Polverino F, Lis R, Reed HO. Mice with lymphatic dysfunction develop pathogenic lung tertiary lymphoid organs that model an autoimmune emphysema phenotype of COPD. Am J Physiol Lung Cell Mol Physiol 2025; 328:L1-L14. [PMID: 39437762 PMCID: PMC11905800 DOI: 10.1152/ajplung.00209.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024] Open
Abstract
We have previously shown that mice with a loss of C-type lectin-like type II (CLEC2), which have lymphatic dysfunction due to the role of CLEC2 in platelets for maintaining separation between the venous and lymphatic system, develop lung tertiary lymphoid organ (TLO) formation and lung injury that resembles an emphysema phenotype of chronic obstructive pulmonary disease (COPD). We now sought to investigate whether and how TLOs in these mice may play a pathogenic role in lung injury that is relevant to human disease. We found that inhibiting TLO formation using an anti-CD20 antibody in CLEC2-deficient mice partially blocked the development of emphysema. TLOs in CLEC2-deficient mice were rich in plasma cells and were a source of a broad array of autoantibodies. Chronic cigarette smoke exposure increased the size and number of lung TLOs in CLEC2-deficient mice and was associated with increased markers of antigen presentation and maturation, leading to increased autoantibody deposition. Using lung tissue from patients with COPD, we found an increase in lymphatic markers in patients with an emphysema phenotype and autoreactive TLOs compared with patients with COPD without emphysema that lack prominent TLOs. Taken together, these results demonstrate that emphysema in mice with lymphatic dysfunction can be partially rescued by blocking TLO formation and that these TLOs are the source of autoantibodies that are exacerbated by cigarette smoke. Our work suggests that lymphatic dysfunction in mice may recapitulate some aspects of an autoimmune emphysema phenotype that is seen in a subset of patients with COPD.NEW & NOTEWORTHY The lymphatic vasculature has been implicated in the pathogenesis of lung disease but remains understudied. Here, the authors use a mouse model to show that lymphatic dysfunction leads to a phenotype of emphysema that is characterized by lung tertiary lymphoid organs that are autoreactive and pathogenic. Analysis of human tissue showed increased lymphatic markers in autoimmune emphysema with prominent TLOs, compared with other COPD phenotypes.
Collapse
Affiliation(s)
- Barbara Summers
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Kihwan Kim
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Anjali Trivedi
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Tyler M Lu
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, United States
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, United States
- Molecular and Cellular Biology Program, SUNY Downstate School of Graduate Studies, Brooklyn, New York, United States
| | - Sean Houghton
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, United States
| | - Jade Palmer-Johnson
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Joselyn Rojas-Quintero
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Juan Cala-Garcia
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Tania Pannellini
- Department of Pathology, Weill Cornell Medicine, New York, New York, United States
| | - Francesca Polverino
- Department of Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, Texas, United States
| | - Raphaël Lis
- Division of Regenerative Medicine, Department of Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, New York, United States
- Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, New York, United States
| | - Hasina Outtz Reed
- Division of Pulmonary and Critical Care, Department of Medicine, Weill Cornell Medicine, New York, New York, United States
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
10
|
Glinton K, Thakkar AV, Jones R, Inui H, Ge ZD, Thorp EB. Leukocyte-lymphatic intersections during cardiac inflammation. J Mol Cell Cardiol 2025; 198:13-20. [PMID: 39592090 PMCID: PMC11717605 DOI: 10.1016/j.yjmcc.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/09/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Advances in genetic, pharmacologic, and sequencing technology have led to new insight into the role of lymphatics in health and disease. This includes fundamental aspects of the crosstalk between immune cells with cardiac lymphatics. At the interface between leukocytes and lymphatic endothelial cells, myeloid populations are sources of lymphatic growth factors during inflammation. Lymphatic endothelial cells also secrete signals that activate leukocytes, including to antigen presenting cells. Taken together, a view of the lymphatic vasculature as a supplemental cardiac immune hub is emerging. Herein, we discuss reciprocal cell and molecular crosstalk between leukocytes and lymphatics in the myocardium, with implications for health and cardiac inflammation.
Collapse
Affiliation(s)
- Kristofor Glinton
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Abhishek V Thakkar
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Rebecca Jones
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Hiroyasu Inui
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America
| | - Zhi-Dong Ge
- The Heart Center and Cardiovascular-Thoracic Surgery, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, Ill, United States of America
| | - Edward B Thorp
- Feinberg School of Medicine, Department of Pathology, Northwestern University, Chicago, IL 60611, United States of America.
| |
Collapse
|
11
|
Tamburini B, Sheridan R, Doan T, Lucas C, Forward T, Fleming I, Uecker-Martin A, Morrison T, Hesselberth J. A specific gene expression program underlies antigen archiving by lymphatic endothelial cells in mammalian lymph nodes. RESEARCH SQUARE 2024:rs.3.rs-5493746. [PMID: 39711554 PMCID: PMC11661310 DOI: 10.21203/rs.3.rs-5493746/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Lymph node (LN) lymphatic endothelial cells (LEC) actively acquire and archive foreign antigens. Here, we address questions of how LECs achieve durable antigen archiving and whether LECs with high levels of antigen express unique transcriptional programs. We used single cell sequencing in dissociated LN tissue and spatial transcriptomics to quantify antigen levels in LEC subsets and dendritic cell populations at multiple time points after immunization and determined that ceiling and floor LECs archive antigen for the longest duration. We identify, using spatial transcriptomics, antigen positive LEC-dendritic cell interactions. Using a prime-boost strategy we find increased antigen levels within LECs after a second immunization demonstrating that LEC antigen acquisition and archiving capacity can be improved over multiple exposures. Using machine learning we defined a unique transcriptional program within archiving LECs that predicted LEC archiving capacity in mouse and human independent data sets. We validated this modeling, showing we could predict lower levels of LEC antigen archiving in chikungunya virus-infected mice and demonstrated in vivo the accuracy of our prediction. Collectively, our findings establish unique properties of LECs and a defining transcriptional program for antigen archiving that can predict antigen archiving capacity in different disease states and organisms.
Collapse
Affiliation(s)
| | | | - Thu Doan
- University of Colorado Anschutz Medical Campus
| | | | | | | | | | | | | |
Collapse
|
12
|
Lodha P, Acari A, Rieck J, Hofmann S, Dieterich LC. The Lymphatic Vascular System in Extracellular Vesicle-Mediated Tumor Progression. Cancers (Basel) 2024; 16:4039. [PMID: 39682225 DOI: 10.3390/cancers16234039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Tumor growth and progression require molecular interactions between malignant and host cells. In recent years, extracellular vesicles (EVs) emerged as an important pillar of such interactions, carrying molecular information from their donor cells to distant recipient cells. Thereby, the phenotype and function of the recipient cells are altered, which may facilitate tumor immune escape and tumor metastasis to other organs through the formation of pre-metastatic niches. A prerequisite for these effects of tumor cell-derived EVs is an efficient transport system from the site of origin to the body periphery. Here, we highlight the role of the lymphatic vascular system in the distribution and progression-promoting functions of tumor cell-derived EVs. Importantly, the lymphatic vascular system is the primary drainage system for interstitial fluid and its soluble, particulate, and cellular contents, and therefore represents the principal route for regional (i.e., to tumor-draining lymph nodes) and systemic distribution of EVs derived from solid tumors. Furthermore, recent studies highlighted the tumor-draining lymph node as a crucial site where tumor-derived EVs exert their effects. A deeper mechanistic understanding of how EVs gain access to the lymphatic vasculature, how they interact with their recipient cells in tumor-draining lymph nodes and beyond, and how they induce phenotypic and functional maladaptation will be instrumental to identify new molecular targets and conceive innovative approaches for cancer therapy.
Collapse
Affiliation(s)
- Pragati Lodha
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Heidelberg Bioscience International Graduate School (HBIGS), Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Alperen Acari
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Heidelberg Bioscience International Graduate School (HBIGS), Faculty of Bioscience, Heidelberg University, 69120 Heidelberg, Germany
| | - Jochen Rieck
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Sarah Hofmann
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Lothar C Dieterich
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
13
|
Doni A, Sironi M, Del Prete A, Pasqualini F, Valentino S, Cuccovillo I, Parente R, Calvi M, Tosoni A, Vago G, Nebuloni M, Garlanda C, Vecchi A, Bottazzi B, Mantovani A. PTX3 is expressed in terminal lymphatics and shapes their organization and function. Front Immunol 2024; 15:1426869. [PMID: 39640269 PMCID: PMC11617523 DOI: 10.3389/fimmu.2024.1426869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The lymphatic system is a multifaceted regulator of tissue homeostasis and an integral part of immune responses. Previous studies had shown that subsets of lymphatic endothelial cells (LEC) express PTX3, an essential component of humoral innate immunity and tissue homeostasis. Methods In the present study using whole-mount imaging and image-based morphometric quantifications, Ptx3-targeted mice and in vivo functional analysis, we investigated the involvement of PTX3 in shaping and function of the lymphatic vasculature. Results We found that PTX3 is localized in the extracellular matrix (ECM) surrounding human and murine lymphatic vessels (LV). In murine tissues, PTX3 was localized in the ECM close to LV terminals and sprouting. Ptx3-deficient mice showed LV abnormalities in the colon submucosa and diaphragm, including a disorganized pattern and hyperplasia of initial LV capillaries associated with altered distribution of tight junction-associated molecules. Mice with LEC-restricted PTX3 gene inactivation showed morphological and organization abnormalities similar to those observed in Ptx3-deficient animals. Ptx3-deficient mice showed defective fluid drainage from footpads and defective dendritic cell (DC) trafficking. Discussion Thus, PTX3 is strategically localized in the ECM of specialized LV, playing an essential role in their structural organization and immunological function.
Collapse
Affiliation(s)
- Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marina Sironi
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Annalisa Del Prete
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Pasqualini
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Sonia Valentino
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Ivan Cuccovillo
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Raffaella Parente
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Michela Calvi
- Clinical and Experimental Immunology Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Antonella Tosoni
- Pathology Unit, L. Sacco Hospital, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Gianluca Vago
- Pathology Unit, L. Sacco Hospital, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Manuela Nebuloni
- Pathology Unit, L. Sacco Hospital, Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Cecilia Garlanda
- Experimental Immunopathology Lab, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Annunciata Vecchi
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Barbara Bottazzi
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Alberto Mantovani
- Cellular and Humoral Innate Immunity Lab, IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
14
|
Saha S, Graham F, Knopp J, Patzke C, Hanjaya-Putra D. Robust Differentiation of Human Pluripotent Stem Cells into Lymphatic Endothelial Cells Using Transcription Factors. Cells Tissues Organs 2024; 213:464-474. [PMID: 39197437 PMCID: PMC11633880 DOI: 10.1159/000539699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/31/2024] [Indexed: 09/01/2024] Open
Abstract
INTRODUCTION Generating new lymphatic vessels has been postulated as an innovative therapeutic strategy for various disease phenotypes, including neurodegenerative diseases, metabolic syndrome, cardiovascular disease, and lymphedema. Yet, compared to the blood vascular system, protocols to differentiate human induced pluripotent stem cells (hiPSCs) into lymphatic endothelial cells (LECs) are still lacking. METHODS Transcription factors, ETS2 and ETV2 are key regulators of embryonic vascular development, including lymphatic specification. While ETV2 has been shown to efficiently generate blood endothelial cells, little is known about ETS2 and its role in lymphatic differentiation. Here, we describe a method for rapid and efficient generation of LECs using transcription factors, ETS2 and ETV2. RESULTS This approach reproducibly differentiates four diverse hiPSCs into LECs with exceedingly high efficiency. Timely activation of ETS2 was critical, to enable its interaction with Prox1, a master lymphatic regulator. Differentiated LECs express key lymphatic markers, VEGFR3, LYVE-1, and Podoplanin, in comparable levels to mature LECs. The differentiated LECs are able to assemble into stable lymphatic vascular networks in vitro, and secrete key lymphangiocrine, reelin. CONCLUSION Overall, our protocol has broad applications for basic study of lymphatic biology, as well as toward various approaches in lymphatic regeneration and personalized medicine.
Collapse
Affiliation(s)
- Sanjoy Saha
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Francine Graham
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - James Knopp
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
- Department of Biological Science, University of Notre Dame, Notre Dame, IN, USA
| | - Christopher Patzke
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
- Department of Biological Science, University of Notre Dame, Notre Dame, IN, USA
- Boler-Parseghian Center for Rare Diseases, University of Notre Dame, Notre Dame, IN, USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
15
|
Lei PJ, Fraser C, Jones D, Ubellacker JM, Padera TP. Lymphatic system regulation of anti-cancer immunity and metastasis. Front Immunol 2024; 15:1449291. [PMID: 39211044 PMCID: PMC11357954 DOI: 10.3389/fimmu.2024.1449291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer dissemination to lymph nodes (LN) is associated with a worse prognosis, increased incidence of distant metastases and reduced response to therapy. The LN microenvironment puts selective pressure on cancer cells, creating cells that can survive in LN as well as providing survival advantages for distant metastatic spread. Additionally, the presence of cancer cells leads to an immunosuppressive LN microenvironment, favoring the evasion of anti-cancer immune surveillance. However, recent studies have also characterized previously unrecognized roles for tumor-draining lymph nodes (TDLNs) in cancer immunotherapy response, including acting as a reservoir for pre-exhausted CD8+ T cells and stem-like CD8+ T cells. In this review, we will discuss the spread of cancer cells through the lymphatic system, the roles of TDLNs in metastasis and anti-cancer immune responses, and the therapeutic opportunities and challenges in targeting LN metastasis.
Collapse
Affiliation(s)
- Pin-Ji Lei
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Cameron Fraser
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Jessalyn M. Ubellacker
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Timothy P. Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
16
|
Cinti I, Vezyrgianni K, Denton AE. Unravelling the contribution of lymph node fibroblasts to vaccine responses. Adv Immunol 2024; 164:1-37. [PMID: 39523027 DOI: 10.1016/bs.ai.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Vaccination is one of the most effective medical interventions, saving millions of lives and reducing the morbidity of infections across the lifespan, from infancy to older age. The generation of plasma cells and memory B cells that produce high affinity class switched antibodies is central to this protection, and these cells are the ultimate output of the germinal centre response. Optimal germinal centre responses require different immune cells to interact with one another in the right place and at the right time and this delicate cellular ballet is coordinated by a network of interconnected stromal cells. In this review we will discuss the various types of lymphoid stromal cells and how they coordinate immune cell homeostasis, the induction and maintenance of the germinal centre response, and how this is disorganised in older bodies.
Collapse
Affiliation(s)
- Isabella Cinti
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Kassandra Vezyrgianni
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom.
| |
Collapse
|
17
|
Nathanson SD, Dieterich LC, Zhang XHF, Chitale DA, Pusztai L, Reynaud E, Wu YH, Ríos-Hoyo A. Associations amongst genes, molecules, cells, and organs in breast cancer metastasis. Clin Exp Metastasis 2024; 41:417-437. [PMID: 37688650 DOI: 10.1007/s10585-023-10230-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/18/2023] [Indexed: 09/11/2023]
Abstract
This paper is a cross fertilization of ideas about the importance of molecular aspects of breast cancer metastasis by basic scientists, a pathologist, and clinical oncologists at the Henry Ford Health symposium. We address four major topics: (i) the complex roles of lymphatic endothelial cells and the molecules that stimulate them to enhance lymph node and systemic metastasis and influence the anti-tumor immunity that might inhibit metastasis; (ii) the interaction of molecules and cells when breast cancer spreads to bone, and how bone metastases may themselves spread to internal viscera; (iii) how molecular expression and morphologic subtypes of breast cancer assist clinicians in determining which patients to treat with more or less aggressive therapies; (iv) how the outcomes of patients with oligometastases in breast cancer are different from those with multiple metastases and how that could justify the aggressive treatment of these patients with the hope of cure.
Collapse
Affiliation(s)
- S David Nathanson
- Department of Surgery, Henry Ford Health, 2799 W. Grand Blvd, Detroit, MI, 48202, USA.
- Cancer Center, Henry Ford Health, Detroit, MI, USA.
| | - Lothar C Dieterich
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | | - Lajos Pusztai
- Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emma Reynaud
- European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Yi-Hsuan Wu
- Lester and Sue Smith Breast Center, Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
18
|
Michalaki E, Chin R, Jeong K, Qi Z, Liebman LN, González-Vargas Y, Echeverri ES, Paunovska K, Muramatsu H, Pardi N, Tamburini BJ, Jakus Z, Dahlman JE, Dixon JB. Lymphatic endothelial cell-targeting lipid nanoparticles delivering VEGFC mRNA improve lymphatic function after injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.605343. [PMID: 39131391 PMCID: PMC11312618 DOI: 10.1101/2024.07.31.605343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Dysfunction of the lymphatic system following injury, disease, or cancer treatment can lead to lymphedema, a debilitating condition with no cure. Advances in targeted therapy have shown promise for treating diseases where conventional therapies have been ineffective and lymphatic vessels have recently emerged as a new therapeutic target. Lipid nanoparticles (LNPs) have emerged as a promising strategy for tissue specific delivery of nucleic acids. Currently, there are no approaches to target LNPs to lymphatic endothelial cells, although it is well established that intradermal (ID) injection of nanoparticles will drain to lymphatics with remarkable efficiency. To design an LNP that would effectively deliver mRNA to LEC after ID delivery, we screened a library of 150 LNPs loaded with a reporter mRNA, for both self-assembly and delivery in vivo to lymphatic endothelial cells (LECs). We identified and validated several LNP formulations optimized for high LEC uptake when administered ID and compared their efficacy for delivery of functional mRNA with that of free mRNA and mRNA delivered with a commercially available MC3-based LNP (Onpattro™). The lead LEC-specific LNP was then loaded with VEGFC mRNA to test the therapeutic advantage of the LEC-specific LNP (namely, LNP7) for treating a mouse tail lymphatic injury model. A single dose of VEGFC mRNA delivered via LNP7 resulted in enhanced LEC proliferation at the site of injury, and an increase in lymphatic function up to 14-days post-surgery. Our results suggest a therapeutic potential of VEGFC mRNA lymphatic-specific targeted delivery in alleviating lymphatic dysfunction observed during lymphatic injury and could provide a promising approach for targeted, transient lymphangiogenic therapy.
Collapse
Affiliation(s)
- Eleftheria Michalaki
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology; Atlanta, GA, USA
| | - Rachel Chin
- Department of Biology, Georgia Institute of Technology; Atlanta, GA, USA
| | - Kiyoung Jeong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - Zhiming Qi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - Lauren N. Liebman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - Yarelis González-Vargas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - Elisa Schrader Echeverri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - Kalina Paunovska
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Beth Jiron Tamburini
- University of Colorado School of Medicine, Department of Medicine, Aurora, CO, USA
| | - Zoltan Jakus
- Semmelweis University School of Medicine, Department of Physiology, Budapest, Hungary
| | - James E. Dahlman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
| | - J. Brandon Dixon
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology; Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University; Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology; Atlanta, GA, USA
| |
Collapse
|
19
|
Roet JEG, Morrison AI, Mikula AM, de Kok M, Panocha D, Roest HP, van der Laan LJW, de Winde CM, Mebius RE. Human lymph node fibroblastic reticular cells maintain heterogeneous characteristics in culture. iScience 2024; 27:110179. [PMID: 38989462 PMCID: PMC11233964 DOI: 10.1016/j.isci.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
Fibroblastic reticular cells (FRCs) are mesenchymal stromal cells in human lymph nodes (LNs) playing a pivotal role in adaptive immunity. Several FRC subsets have been identified, yet it remains to be elucidated if their heterogeneity is maintained upon culture. Here, we established a protocol to preserve and culture FRCs from human LNs and characterized their phenotypic profile in fresh LN suspensions and upon culture using multispectral flow cytometry. We found nine FRC subsets in fresh human LNs, independent of donor, of which four persisted in culture throughout several passages. Interestingly, the historically FRC-defining marker podoplanin (PDPN) was not present on all FRC subsets. Therefore, we propose that CD45negCD31neg human FRCs are not restricted by PDPN expression, as we found CD90, BST1, and CD146/MCAM to be more widely expressed. Together, our data provide insight into FRC heterogeneity in human LNs, enabling further investigation into the function of individual FRC subsets.
Collapse
Affiliation(s)
- Janna E G Roet
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
| | - Andrew I Morrison
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
| | - Aleksandra M Mikula
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, the Netherlands
| | - Michael de Kok
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
| | - Daphne Panocha
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, the Netherlands
| | - Henk P Roest
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Luc J W van der Laan
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Charlotte M de Winde
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, the Netherlands
| | - Reina E Mebius
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology & Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious diseases, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology & Immunology, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
21
|
Houbaert D, Nikolakopoulos AP, Jacobs KA, Meçe O, Roels J, Shankar G, Agrawal M, More S, Ganne M, Rillaerts K, Boon L, Swoboda M, Nobis M, Mourao L, Bosisio F, Vandamme N, Bergers G, Scheele CLGJ, Agostinis P. An autophagy program that promotes T cell egress from the lymph node controls responses to immune checkpoint blockade. Cell Rep 2024; 43:114020. [PMID: 38554280 DOI: 10.1016/j.celrep.2024.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/21/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking. Intravital imaging combined with immune phenotyping shows that LEC-specific deletion of the essential autophagy gene Atg5 alters intranodal positioning of lymphocytes and accrues their persistence in the LNs by increasing the availability of the main egress signal sphingosine-1-phosphate. Single-cell RNA sequencing of tumor-draining LNs shows that loss of ATG5 remodels niche-specific LEC phenotypes involved in molecular pathways regulating lymphocyte trafficking and LEC-T cell interactions. Functionally, loss of LEC autophagy prevents recruitment of tumor-infiltrating T and natural killer cells and abrogates response to immunotherapy. Thus, an LEC-autophagy program boosts immune-checkpoint responses by guiding systemic T cell dynamics.
Collapse
Affiliation(s)
- Diede Houbaert
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Apostolos Panagiotis Nikolakopoulos
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kathryn A Jacobs
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Odeta Meçe
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Jana Roels
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gautam Shankar
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Madhur Agrawal
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Sanket More
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Kristine Rillaerts
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | | | - Magdalena Swoboda
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium
| | - Max Nobis
- Intravital Imaging Expertise Center, VIB-CCB, Leuven, Belgium
| | - Larissa Mourao
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Niels Vandamme
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; VIB Single Cell Core, Leuven, Belgium
| | - Gabriele Bergers
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Tumor Microenvironment and Therapeutic Resistance, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Colinda L G J Scheele
- VIB Center for Cancer Biology Research (CCB), Leuven, Belgium; Laboratory of Intravital Microscopy and Dynamics of Tumor Progression, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Group, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology Research (CCB), Leuven, Belgium.
| |
Collapse
|
22
|
Sheridan RM, Doan TA, Lucas C, Forward TS, Uecker-Martin A, Morrison TE, Hesselberth JR, Tamburini BAJ. A specific and portable gene expression program underlies antigen archiving by lymphatic endothelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587647. [PMID: 38617225 PMCID: PMC11014631 DOI: 10.1101/2024.04.01.587647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Antigens from protein subunit vaccination traffic from the tissue to the draining lymph node, either passively via the lymph or carried by dendritic cells at the local injection site. Lymph node (LN) lymphatic endothelial cells (LEC) actively acquire and archive foreign antigens, and archived antigen can be released during subsequent inflammatory stimulus to improve immune responses. Here, we answer questions about how LECs achieve durable antigen archiving and whether there are transcriptional signatures associated with LECs containing high levels of antigen. We used single cell sequencing in dissociated LN tissue to quantify antigen levels in LEC and dendritic cell populations at multiple timepoints after immunization, and used machine learning to define a unique transcriptional program within archiving LECs that can predict LEC archiving capacity in independent data sets. Finally, we validated this modeling, showing we could predict antigen archiving from a transcriptional dataset of CHIKV infected mice and demonstrated in vivo the accuracy of our prediction. Collectively, our findings establish a unique transcriptional program in LECs that promotes antigen archiving that can be translated to other systems.
Collapse
Affiliation(s)
- Ryan M. Sheridan
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine
| | - Thu A. Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine
- Immunology Graduate Program, University of Colorado School of Medicine
| | - Cormac Lucas
- Department of Immunology and Microbiology, Aurora, CO, USA
| | - Tadg S. Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine
| | - Aspen Uecker-Martin
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine
| | | | - Jay R. Hesselberth
- Department of Biochemistry and Molecular Genetics, RNA Bioscience Initiative, University of Colorado School of Medicine
| | - Beth A. Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine
- Immunology Graduate Program, University of Colorado School of Medicine
- Department of Immunology and Microbiology, Aurora, CO, USA
| |
Collapse
|
23
|
Doan TA, Forward TS, Schafer JB, Lucas ED, Fleming I, Uecker-Martin A, Ayala E, Guthmiller JJ, Hesselberth JR, Morrison TE, Tamburini BAJ. Immunization-induced antigen archiving enhances local memory CD8+ T cell responses following an unrelated viral infection. NPJ Vaccines 2024; 9:66. [PMID: 38514656 PMCID: PMC10957963 DOI: 10.1038/s41541-024-00856-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/29/2024] [Indexed: 03/23/2024] Open
Abstract
Antigens from viruses or immunizations can persist or are archived in lymph node stromal cells such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration resulted in cross-presentation of archived antigens and boosted memory CD8 + T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8 + T cells specific to the archived antigen from the immunization were significantly higher than memory CD8 + T cells of a different antigen specificity. Finally, the boosted memory CD8 + T cells resulted in increased protection against Listeria monocytogenes expressing the antigen from the immunization, but only for the duration that the antigen was archived. These findings outline an important mechanism by which lymph node stromal cell archived antigens, in addition to bystander activation, can augment memory CD8 + T cell responses during repeated inflammatory insults.
Collapse
Affiliation(s)
- Thu A Doan
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Tadg S Forward
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Johnathon B Schafer
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Erin D Lucas
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Immunology Graduate Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ira Fleming
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Aspen Uecker-Martin
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Edgardo Ayala
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jenna J Guthmiller
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Jay R Hesselberth
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Beth A Jirón Tamburini
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Colorado School of Medicine, Aurora, CO, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
24
|
Ju W, Cai HH, Zheng W, Li DM, Zhang W, Yang XH, Yan ZX. Cross‑talk between lymphangiogenesis and malignant melanoma cells: New opinions on tumour drainage and immunization (Review). Oncol Lett 2024; 27:81. [PMID: 38249813 PMCID: PMC10797314 DOI: 10.3892/ol.2024.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024] Open
Abstract
Malignant melanoma (MM) is a highly aggressive tumour that can easily metastasize through the lymphatic system at the early stages. Lymph node (LN) involvement and lymphatic vessel (LV) density (LVD) represent a harbinger of an adverse prognosis, indicating a strong link between the state of the lymphatic system and the advancement of MM. Permeable capillary lymphatic vessels are the optimal conduits for melanoma cell (MMC) invasion, and lymphatic endothelial cells (LECs) can also release a variety of chemokines that actively attract MMCs expressing chemokine ligands through a gradient orientation. Moreover, due to the lower oxidative stress environment in the lymph compared with the blood circulation, MMCs are more likely to survive and colonize. The number of LVs surrounding MM is associated with tumour-infiltrating lymphocytes (TILs), which is crucial for the effectiveness of immunotherapy. On the other hand, MMCs can release various endothelial growth factors such as VEGF-C/D-VEGFR3 to mediate LN education and promote lymphangiogenesis. Tumour-derived extracellular vesicles are also used to promote lymphangiogenesis and create a microenvironment that is more conducive to tumour progression. MM is surrounded by a large number of lymphocytes. However, both LECs and MMCs are highly plastic, playing multiple roles in evading immune surveillance. They achieve this by expressing inhibitory ligands or reducing antigen recognition. In recent years, tertiary lymphoid structures have been shown to be associated with response to anti-immune checkpoint therapy, which is often a positive prognostic feature in MM. The present review discusses the interaction between lymphangiogenesis and MM metastasis, and it was concluded that the relationship between LVD and TILs and patient prognosis is analogous to a dynamically tilted scale.
Collapse
Affiliation(s)
- Wei Ju
- Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Hong-Hua Cai
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Wei Zheng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - De-Ming Li
- Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Wei Zhang
- Department of Burns and Plastic Surgery, The Fourth People's Hospital of Taizhou, Taizhou, Jiangsu 225300, P.R. China
| | - Xi-Hu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| | - Zhi-Xin Yan
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212000, P.R. China
| |
Collapse
|
25
|
Long H, Steimle JD, Grisanti Canozo FJ, Kim JH, Li X, Morikawa Y, Park M, Turaga D, Adachi I, Wythe JD, Samee MAH, Martin JF. Endothelial cells adopt a pro-reparative immune responsive signature during cardiac injury. Life Sci Alliance 2024; 7:e202201870. [PMID: 38012001 PMCID: PMC10681909 DOI: 10.26508/lsa.202201870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023] Open
Abstract
Modulation of the heart's immune microenvironment is crucial for recovery after ischemic events such as myocardial infarction (MI). Endothelial cells (ECs) can have immune regulatory functions; however, interactions between ECs and the immune environment in the heart after MI remain poorly understood. We identified an EC-specific IFN responsive and immune regulatory gene signature in adult and pediatric heart failure (HF) tissues. Single-cell transcriptomic analysis of murine hearts subjected to MI uncovered an EC population (IFN-ECs) with immunologic gene signatures similar to those in human HF. IFN-ECs were enriched in regenerative-stage mouse hearts and expressed genes encoding immune responsive transcription factors (Irf7, Batf2, and Stat1). Single-cell chromatin accessibility studies revealed an enrichment of these TF motifs at IFN-EC signature genes. Expression of immune regulatory ligand genes by IFN-ECs suggests bidirectional signaling between IFN-ECs and macrophages in regenerative-stage hearts. Our data suggest that ECs may adopt immune regulatory signatures after cardiac injury to accompany the reparative response. The presence of these signatures in human HF and murine MI models suggests a potential role for EC-mediated immune regulation in responding to stress induced by acute injury in MI and chronic adverse remodeling in HF.
Collapse
Affiliation(s)
- Hali Long
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey D Steimle
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | | | - Jong Hwan Kim
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Xiao Li
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Yuka Morikawa
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
| | - Minjun Park
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Diwakar Turaga
- Section of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Iki Adachi
- Section of Cardiothoracic Surgery, Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Joshua D Wythe
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Md Abul Hassan Samee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - James F Martin
- Interdepartmental Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Cardiomyocyte Renewal Laboratory, The Texas Heart Institute, Houston, TX, USA
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
26
|
Zhou YW, Ren Y, Lu MM, Xu LL, Cheng WX, Zhang MM, Ding LP, Chen D, Gao JG, Du J, Jin CL, Chen CX, Li YF, Cheng T, Jiang PL, Yang YD, Qian PX, Xu PF, Jin X. Crohn's disease as the intestinal manifestation of pan-lymphatic dysfunction: An exploratory proposal based on basic and clinical data. World J Gastroenterol 2024; 30:34-49. [PMID: 38293325 PMCID: PMC10823898 DOI: 10.3748/wjg.v30.i1.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/08/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Crohn's disease (CD) is caused by immune, environmental, and genetic factors. It can involve the entire gastrointestinal tract, and although its prevalence is rapidly increasing its etiology remains unclear. Emerging biological and small-molecule drugs have advanced the treatment of CD; however, a considerable proportion of patients are non-responsive to all known drugs. To achieve a breakthrough in this field, innovations that could guide the further development of effective therapies are of utmost urgency. In this review, we first propose the innovative concept of pan-lymphatic dysfunction for the general distribution of lymphatic dysfunction in various diseases, and suggest that CD is the intestinal manifestation of pan-lymphatic dysfunction based on basic and clinical preliminary data. The supporting evidence is fully summarized, including the existence of lymphatic system dysfunction, recognition of the inside-out model, disorders of immune cells, changes in cell plasticity, partial overlap of the underlying mechanisms, and common gut-derived fatty and bile acid metabolism. Another benefit of this novel concept is that it proposes adopting the zebrafish model for studying intestinal diseases, especially CD, as this model is good at presenting and mimicking lymphatic dysfunction. More importantly, the ensuing focus on improving lymphatic function may lead to novel and promising therapeutic strategies for CD.
Collapse
Affiliation(s)
- Yu-Wei Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yue Ren
- Department of Gastroenterology, The Second Hospital of Jiaxing, Jiaxing 314000, Zhejiang Province, China
| | - Miao-Miao Lu
- Endoscopy Center, Children’s Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ling-Ling Xu
- Department of Gastroenterology, The Second People’s Hospital of Yuhang District, Hangzhou 310000, Zhejiang Province, China
| | - Wei-Xin Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Meng-Meng Zhang
- Department of Gastroenterology, Hangzhou Shangcheng District People’s Hospital, Hangzhou 310003, Zhejiang Province, China
| | - Lin-Ping Ding
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian-Guo Gao
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Juan Du
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ci-Liang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang Province, China
| | - Chun-Xiao Chen
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yun-Fei Li
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Tao Cheng
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Peng-Lei Jiang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Yi-Da Yang
- Department of Infectious Disease, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Peng-Xu Qian
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Peng-Fei Xu
- Women’s Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Xi Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
27
|
Montenegro-Navarro N, García-Báez C, García-Caballero M. Molecular and metabolic orchestration of the lymphatic vasculature in physiology and pathology. Nat Commun 2023; 14:8389. [PMID: 38104163 PMCID: PMC10725466 DOI: 10.1038/s41467-023-44133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023] Open
Abstract
Lymphangiogenesis refers to the generation of new lymphatic vessels from pre-existing ones. During development and particular adult states, lymphatic endothelial cells (LEC) undergo reprogramming of their transcriptomic and signaling networks to support the high demands imposed by cell proliferation and migration. Although there has been substantial progress in identifying growth factors and signaling pathways controlling lymphangiogenesis in the last decades, insights into the role of metabolism in lymphatic cell functions are just emerging. Despite numerous similarities between the main metabolic pathways existing in LECs, blood ECs (BEC) and other cell types, accumulating evidence has revealed that LECs acquire a unique metabolic signature during lymphangiogenesis, and their metabolic engine is intertwined with molecular regulatory networks, resulting in a tightly regulated and interconnected process. Considering the implication of lymphatic dysfunction in cancer and lymphedema, alongside other pathologies, recent findings hold promising opportunities to develop novel therapeutic approaches. In this review, we provide an overview of the status of knowledge in the molecular and metabolic network regulating the lymphatic vasculature in health and disease.
Collapse
Affiliation(s)
- Nieves Montenegro-Navarro
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Claudia García-Báez
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, University of Málaga, Andalucía Tech, Málaga, Spain.
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain.
| |
Collapse
|
28
|
Lei PJ, Ruscic KJ, Roh K, Rajotte JJ, O'Melia MJ, Bouta EM, Marquez M, Pereira ER, Kumar AS, Arroyo-Ataz G, Razavi MS, Zhou H, Menzel L, Kumra H, Duquette M, Huang P, Baish JW, Munn LL, Ubellacker JM, Jones D, Padera TP. Lymphatic muscle cells are unique cells that undergo aging induced changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.18.567621. [PMID: 38014141 PMCID: PMC10680808 DOI: 10.1101/2023.11.18.567621] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Lymphatic muscle cells (LMCs) within the wall of collecting lymphatic vessels exhibit tonic and autonomous phasic contractions, which drive active lymph transport to maintain tissue-fluid homeostasis and support immune surveillance. Damage to LMCs disrupts lymphatic function and is related to various diseases. Despite their importance, knowledge of the transcriptional signatures in LMCs and how they relate to lymphatic function in normal and disease contexts is largely missing. We have generated a comprehensive transcriptional single-cell atlas-including LMCs-of collecting lymphatic vessels in mouse dermis at various ages. We identified genes that distinguish LMCs from other types of muscle cells, characterized the phenotypical and transcriptomic changes in LMCs in aged vessels, and uncovered a pro-inflammatory microenvironment that suppresses the contractile apparatus in advanced-aged LMCs. Our findings provide a valuable resource to accelerate future research for the identification of potential drug targets on LMCs to preserve lymphatic vessel function as well as supporting studies to identify genetic causes of primary lymphedema currently with unknown molecular explanation.
Collapse
|
29
|
Summers B, Kim K, Lu TM, Houghton S, Trivedi A, Quintero JR, Cala-Garcia J, Pannellini T, Polverino F, Lis R, Reed HO. Lymphatic Dysfunction Models an Autoimmune Emphysema Phenotype of Chronic Obstructive Pulmonary Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564938. [PMID: 37961242 PMCID: PMC10635025 DOI: 10.1101/2023.10.31.564938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease that is characterized by many clinical phenotypes. One such phenotype of COPD is defined by emphysema, pathogenic lung tertiary lymphoid organs (TLOs), and autoantibody production. We have previously shown that lymphatic dysfunction can cause lung TLO formation and lung injury in mice. We now sought to uncover whether underlying lymphatic dysfunction may be a driver of lung injury in cigarette smoke (CS)-induced COPD. We found that lung TLOs in mice with lymphatic dysfunction produce autoantibodies and are associated with a lymphatic endothelial cell subtype that expresses antigen presentation genes. Mice with underlying lymphatic dysfunction develop increased emphysema after CS exposure, with increased size and activation of TLOs. CS further increased autoantibody production in mice with lymphatic dysfunction. B-cell blockade prevented TLO formation and decreased lung injury after CS in mice with lymphatic dysfunction. Using tissue from human COPD patients, we also found evidence of a lymphatic gene signature that was specific to patients with emphysema and prominent TLOs compared to COPD patients without emphysema. Taken together, these data suggest that lymphatic dysfunction may underlie lung injury in a subset of COPD patients with an autoimmune emphysema phenotype.
Collapse
|
30
|
Sonar SA, Watanabe M, Nikolich JŽ. Disorganization of secondary lymphoid organs and dyscoordination of chemokine secretion as key contributors to immune aging. Semin Immunol 2023; 70:101835. [PMID: 37651849 PMCID: PMC10840697 DOI: 10.1016/j.smim.2023.101835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023]
Abstract
Aging is characterized by progressive loss of organ and tissue function, and the immune system is no exception to that inevitable principle. Of all the age-related changes in the body, reduction of the size of, and naïve T (Tn) cell output from, the thymus occurs earliest, being prominent already before or by the time of puberty. Therefore, to preserve immunity against new infections, over much of their lives, vertebrates dominantly rely on peripheral maintenance of the Tn cell pool in the secondary lymphoid organs (SLO). However, SLO structure and function subsequently also deteriorate with aging. Several recent studies have made a convincing case that this deterioration is of major importance to the erosion of protective immunity in the last third of life. Specifically, the SLO were found to accumulate multiple degenerative changes with aging. Importantly, the results from adoptive transfer and parabiosis studies teach us that the old microenvironment is the limiting factor for protective immunity in old mice. In this review, we discuss the extent, mechanisms, and potential role of stromal cell aging in the age-related alteration of T cell homeostatic maintenance and immune function decline. We use that discussion to frame the potential strategies to correct the SLO stromal aging defects - in the context of other immune rejuvenation approaches, - to improve functional immune responses and protective immunity in older adults.
Collapse
Affiliation(s)
- Sandip Ashok Sonar
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA
| | - Janko Ž Nikolich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; The University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ, USA; the Aegis Consortium for Pandemic-free Future, University of Arizona Health Sciences, USA; BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
31
|
Tamburini B, Doan T, Forward T, Lucas E, Fleming I, Uecker-Martin A, Hesselberth J, Morrison T. Vaccine-induced antigen archiving enhances local memory CD8+ T cell responses following an unrelated viral infection. RESEARCH SQUARE 2023:rs.3.rs-3307809. [PMID: 37841845 PMCID: PMC10571600 DOI: 10.21203/rs.3.rs-3307809/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Viral and vaccine antigens persist or are archived in lymph node stromal cells (LNSC) such as lymphatic endothelial cells (LEC) and fibroblastic reticular cells (FRC). Here, we find that, during the time frame of antigen archiving, LEC apoptosis caused by a second, but unrelated, innate immune stimulus such as vaccina viral infection or CpG DNA administration boosted memory CD8+ T cells specific to the archived antigen. In contrast to "bystander" activation associated with unrelated infections, the memory CD8+ T cells specific to the vaccine archived antigen were significantly higher than memory CD8+ T cells of a different antigen specificity. Finally, the boosted memory CD8+ T cells resulted in increased protection against Listeria monocytogenes expressing the vaccine antigen, but only for the duration that the vaccine antigen was archived. These findings outline a novel mechanism by which LNSC archived antigens, in addition to bystander activation, can augment memory CD8+ T cell responses during repeated inflammatory insults.
Collapse
Affiliation(s)
| | - Thu Doan
- University of Colorado Anschutz Medical Campus
| | | | - Erin Lucas
- University of Colorado Anschutz Medical Campus
| | - Ira Fleming
- University of Colorado Anschutz Medical Campus
| | | | | | | |
Collapse
|
32
|
Viúdez-Pareja C, Kreft E, García-Caballero M. Immunomodulatory properties of the lymphatic endothelium in the tumor microenvironment. Front Immunol 2023; 14:1235812. [PMID: 37744339 PMCID: PMC10512957 DOI: 10.3389/fimmu.2023.1235812] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate complex and dynamic structure composed of various cell types, including tumor, stromal and immune cells. Within this complex network, lymphatic endothelial cells (LECs) play a crucial role in regulating immune responses and influencing tumor progression and metastatic dissemination to lymph node and distant organs. Interestingly, LECs possess unique immunomodulatory properties that can either promote or inhibit anti-tumor immune responses. In fact, tumor-associated lymphangiogenesis can facilitate tumor cell dissemination and metastasis supporting immunoevasion, but also, different molecular mechanisms involved in LEC-mediated anti-tumor immunity have been already described. In this context, the crosstalk between cancer cells, LECs and immune cells and how this communication can shape the immune landscape in the TME is gaining increased interest in recent years. In this review, we present a comprehensive and updated report about the immunomodulatory properties of the lymphatic endothelium within the TME, with special focus on primary tumors and tumor-draining lymph nodes. Furthermore, we outline emerging research investigating the potential therapeutic strategies targeting the lymphatic endothelium to enhance anti-tumor immune responses. Understanding the intricate mechanisms involved in LEC-mediated immune modulation in the TME opens up new possibilities for the development of innovative approaches to fight cancer.
Collapse
Affiliation(s)
- Cristina Viúdez-Pareja
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Ewa Kreft
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
33
|
Brandstadter JD, De Martin A, Lϋtge M, Ferreira A, Gaudette BT, Stanossek Y, Wang S, Gonzalez MV, Camiolo E, Wertheim G, Austin B, Allman D, Bagg A, Lim MS, Fajgenbaum DC, Aster JC, Ludewig B, Maillard I. A novel cryopreservation and biobanking strategy to study lymphoid tissue stromal cells in human disease. Eur J Immunol 2023; 53:e2250362. [PMID: 37366295 PMCID: PMC10529925 DOI: 10.1002/eji.202250362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Nonhematopoietic lymph node stromal cells (LNSCs) regulate lymphocyte trafficking, survival, and function for key roles in host defense, autoimmunity, alloimmunity, and lymphoproliferative disorders. However, the study of LNSCs in human diseases is complicated by a dependence on viable lymphoid tissues, which are most often excised prior to establishment of a specific diagnosis. Here, we demonstrate that cryopreservation can be used to bank lymphoid tissue for the study of LNSCs in human disease. Using human tonsils and lymph nodes (LN), lymphoid tissue fragments were cryopreserved for subsequent enzymatic digestion and recovery of viable nonhematopoietic cells. Flow cytometry and single-cell transcriptomics identified comparable proportions of LN stromal cell types in fresh and cryopreserved tissue. Moreover, cryopreservation had little effect on transcriptional profiles, which showed significant overlap between tonsils and LN. The presence and spatial distribution of transcriptionally defined cell types were confirmed by in situ analyses. Our broadly applicable approach promises to greatly enable research into the roles of LNSCs in human disease.
Collapse
Affiliation(s)
- Joshua D Brandstadter
- Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lϋtge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Antonio Ferreira
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yves Stanossek
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Shumei Wang
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael V Gonzalez
- Center for Cytokine Storm Treatment and Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward Camiolo
- Children’s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | - Gerald Wertheim
- Children’s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | - Bridget Austin
- Center for Cytokine Storm Treatment and Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David Allman
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - David C Fajgenbaum
- Center for Cytokine Storm Treatment and Laboratory, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Ivan Maillard
- Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
34
|
Suman S, Markovic SN. Melanoma-derived mediators can foster the premetastatic niche: crossroad to lymphatic metastasis. Trends Immunol 2023; 44:724-743. [PMID: 37573226 PMCID: PMC10528107 DOI: 10.1016/j.it.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 08/14/2023]
Abstract
The natural history of advanced malignant melanoma demonstrates that, in most cases, widespread tumor dissemination is preceded by regional metastases involving tumor-draining lymph nodes [sentinel lymph nodes (SLNs)]. Under physiological conditions, LNs play a central role in immunosurveillance to non-self-antigens to which they are exposed via afferent lymph. The dysfunctional immunity in SLNs is mediated by tumor secretory factors that allow the survival of metastatic melanoma cells within the LN by creating a premetastatic niche (PMN). Recent studies outline the altered microenvironment of LNs shaped by melanoma mediators. Here, we discuss tumor secretory factors involved in subverting tumor immunity and remodeling LNs and highlight emerging therapeutic strategies to reinvigorate antitumoral immunity in SLNs.
Collapse
Affiliation(s)
- Shankar Suman
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Svetomir N Markovic
- Department of Oncology, Mayo Clinic, Rochester, MN, USA; Mayo Clinic Cancer Center, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
35
|
Kumar T, Nee K, Wei R, He S, Nguyen QH, Bai S, Blake K, Pein M, Gong Y, Sei E, Hu M, Casasent AK, Thennavan A, Li J, Tran T, Chen K, Nilges B, Kashikar N, Braubach O, Ben Cheikh B, Nikulina N, Chen H, Teshome M, Menegaz B, Javaid H, Nagi C, Montalvan J, Lev T, Mallya S, Tifrea DF, Edwards R, Lin E, Parajuli R, Hanson S, Winocour S, Thompson A, Lim B, Lawson DA, Kessenbrock K, Navin N. A spatially resolved single-cell genomic atlas of the adult human breast. Nature 2023; 620:181-191. [PMID: 37380767 PMCID: PMC11443819 DOI: 10.1038/s41586-023-06252-9] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Abstract
The adult human breast is comprised of an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue1-3. Although most previous studies have focused on the breast epithelial system4-6, many of the non-epithelial cell types remain understudied. Here we constructed the comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics study profiled 714,331 cells from 126 women, and 117,346 nuclei from 20 women, identifying 12 major cell types and 58 biological cell states. These data reveal abundant perivascular, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Spatial mapping using four different technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide a reference of the adult normal breast tissue for studying mammary biology and diseases such as breast cancer.
Collapse
Affiliation(s)
- Tapsi Kumar
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin Nee
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Runmin Wei
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Siyuan He
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Quy H Nguyen
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Shanshan Bai
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Kerrigan Blake
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
- Math, Computational & Systems Biology, University of California, Irvine, Irvine, CA, USA
| | - Maren Pein
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Yanwen Gong
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Math, Computational & Systems Biology, University of California, Irvine, Irvine, CA, USA
| | - Emi Sei
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Min Hu
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Anna K Casasent
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Aatish Thennavan
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Jianzhuo Li
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Tuan Tran
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA
| | | | | | | | | | | | - Hui Chen
- Department of Pathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Mediget Teshome
- Department of Breast Surgical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Menegaz
- Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA
| | - Huma Javaid
- Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA
| | - Chandandeep Nagi
- Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA
| | - Jessica Montalvan
- Department of Pathology and Immunology, Baylor Medical College, Houston, TX, USA
| | - Tatyana Lev
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
- Math, Computational & Systems Biology, University of California, Irvine, Irvine, CA, USA
| | - Sharmila Mallya
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Delia F Tifrea
- Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Robert Edwards
- Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Erin Lin
- Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Ritesh Parajuli
- Chao Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, USA
| | - Summer Hanson
- Department of Surgery, University of Chicago Medicine, Chicago, IL, USA
| | | | | | - Bora Lim
- Department of Medicine, Section of Hematology and Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Devon A Lawson
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| | - Kai Kessenbrock
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA.
| | - Nicholas Navin
- Department of Systems Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
36
|
Theodoris CV, Xiao L, Chopra A, Chaffin MD, Al Sayed ZR, Hill MC, Mantineo H, Brydon EM, Zeng Z, Liu XS, Ellinor PT. Transfer learning enables predictions in network biology. Nature 2023; 618:616-624. [PMID: 37258680 PMCID: PMC10949956 DOI: 10.1038/s41586-023-06139-9] [Citation(s) in RCA: 247] [Impact Index Per Article: 123.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/27/2023] [Indexed: 06/02/2023]
Abstract
Mapping gene networks requires large amounts of transcriptomic data to learn the connections between genes, which impedes discoveries in settings with limited data, including rare diseases and diseases affecting clinically inaccessible tissues. Recently, transfer learning has revolutionized fields such as natural language understanding1,2 and computer vision3 by leveraging deep learning models pretrained on large-scale general datasets that can then be fine-tuned towards a vast array of downstream tasks with limited task-specific data. Here, we developed a context-aware, attention-based deep learning model, Geneformer, pretrained on a large-scale corpus of about 30 million single-cell transcriptomes to enable context-specific predictions in settings with limited data in network biology. During pretraining, Geneformer gained a fundamental understanding of network dynamics, encoding network hierarchy in the attention weights of the model in a completely self-supervised manner. Fine-tuning towards a diverse panel of downstream tasks relevant to chromatin and network dynamics using limited task-specific data demonstrated that Geneformer consistently boosted predictive accuracy. Applied to disease modelling with limited patient data, Geneformer identified candidate therapeutic targets for cardiomyopathy. Overall, Geneformer represents a pretrained deep learning model from which fine-tuning towards a broad range of downstream applications can be pursued to accelerate discovery of key network regulators and candidate therapeutic targets.
Collapse
Affiliation(s)
- Christina V Theodoris
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School Genetics Training Program, Boston, USA.
| | - Ling Xiao
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Anant Chopra
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA, USA
| | - Mark D Chaffin
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zeina R Al Sayed
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matthew C Hill
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Helene Mantineo
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Zexian Zeng
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - X Shirley Liu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative and Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
37
|
Abstract
Kidney disease is associated with adverse consequences in many organs beyond the kidney, including the heart, lungs, brain, and intestines. The kidney-intestinal cross talk involves intestinal epithelial damage, dysbiosis, and generation of uremic toxins. Recent studies reveal that kidney injury expands the intestinal lymphatics, increases lymphatic flow, and alters the composition of mesenteric lymph. The intestinal lymphatics, like blood vessels, are a route for transporting potentially harmful substances generated by the intestines. The lymphatic architecture and actions are uniquely suited to take up and transport large macromolecules, functions that differentiate them from blood vessels, allowing them to play a distinct role in a variety of physiological and pathological processes. Here, we focus on the mechanisms by which kidney diseases result in deleterious changes in intestinal lymphatics and consider a novel paradigm of a vicious cycle of detrimental organ cross talk. This concept involves kidney injury-induced modulation of intestinal lymphatics that promotes production and distribution of harmful factors, which in turn contributes to disease progression in distant organ systems.
Collapse
Affiliation(s)
- Jianyong Zhong
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Molecular Physiology and Biophysics (A.K.), Vanderbilt University Medical Center, Nashville, TN
- Division of Clinical Pharmacology, Vanderbilt University, Nashville, TN (A.K.)
| | - Hai-Chun Yang
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Agnes B. Fogo
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology (J.Z., H.-C.Y., A.B.F.), Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine (A.B.F.), Vanderbilt University Medical Center, Nashville, TN
| | - Elaine L. Shelton
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| | - Valentina Kon
- Department of Pediatrics (J.Z., H.-C.Y., A.B.F., E.L.S., V.K.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
38
|
Arroz-Madeira S, Bekkhus T, Ulvmar MH, Petrova TV. Lessons of Vascular Specialization From Secondary Lymphoid Organ Lymphatic Endothelial Cells. Circ Res 2023; 132:1203-1225. [PMID: 37104555 PMCID: PMC10144364 DOI: 10.1161/circresaha.123.322136] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Secondary lymphoid organs, such as lymph nodes, harbor highly specialized and compartmentalized niches. These niches are optimized to facilitate the encounter of naive lymphocytes with antigens and antigen-presenting cells, enabling optimal generation of adaptive immune responses. Lymphatic vessels of lymphoid organs are uniquely specialized to perform a staggering variety of tasks. These include antigen presentation, directing the trafficking of immune cells but also modulating immune cell activation and providing factors for their survival. Recent studies have provided insights into the molecular basis of such specialization, opening avenues for better understanding the mechanisms of immune-vascular interactions and their applications. Such knowledge is essential for designing better treatments for human diseases given the central role of the immune system in infection, aging, tissue regeneration and repair. In addition, principles established in studies of lymphoid organ lymphatic vessel functions and organization may be applied to guide our understanding of specialization of vascular beds in other organs.
Collapse
Affiliation(s)
- Silvia Arroz-Madeira
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| | - Tove Bekkhus
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Maria H. Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden (T.B., M.H.U.)
| | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne, Switzerland (S.A.M., T.V.P.)
- Ludwig Institute for Cancer Research Lausanne, Switzerland (S.A.M., T.V.P.)
| |
Collapse
|
39
|
Kumar T, Nee K, Wei R, He S, Nguyen QH, Bai S, Blake K, Gong Y, Pein M, Sei E, Hu M, Casasent A, Thennavan A, Li J, Tran T, Chen K, Nilges B, Kashikar N, Braubach O, Cheikh BB, Nikulina N, Chen H, Teshome M, Menegaz B, Javaid H, Nagi C, Montalvan J, Tifrea DF, Edwards R, Lin E, Parajuli R, Winocour S, Thompson A, Lim B, Lawson DA, Kessenbrock K, Navin N. A spatially resolved single cell genomic atlas of the adult human breast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.22.537946. [PMID: 37163043 PMCID: PMC10168262 DOI: 10.1101/2023.04.22.537946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The adult human breast comprises an intricate network of epithelial ducts and lobules that are embedded in connective and adipose tissue. While previous studies have mainly focused on the breast epithelial system, many of the non-epithelial cell types remain understudied. Here, we constructed a comprehensive Human Breast Cell Atlas (HBCA) at single-cell and spatial resolution. Our single-cell transcriptomics data profiled 535,941 cells from 62 women, and 120,024 nuclei from 20 women, identifying 11 major cell types and 53 cell states. These data revealed abundant pericyte, endothelial and immune cell populations, and highly diverse luminal epithelial cell states. Our spatial mapping using three technologies revealed an unexpectedly rich ecosystem of tissue-resident immune cells in the ducts and lobules, as well as distinct molecular differences between ductal and lobular regions. Collectively, these data provide an unprecedented reference of adult normal breast tissue for studying mammary biology and disease states such as breast cancer.
Collapse
|
40
|
Petkova M, Kraft M, Stritt S, Martinez-Corral I, Ortsäter H, Vanlandewijck M, Jakic B, Baselga E, Castillo SD, Graupera M, Betsholtz C, Mäkinen T. Immune-interacting lymphatic endothelial subtype at capillary terminals drives lymphatic malformation. J Exp Med 2023; 220:e20220741. [PMID: 36688917 PMCID: PMC9884640 DOI: 10.1084/jem.20220741] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Oncogenic mutations in PIK3CA, encoding p110α-PI3K, are a common cause of venous and lymphatic malformations. Vessel type-specific disease pathogenesis is poorly understood, hampering development of efficient therapies. Here, we reveal a new immune-interacting subtype of Ptx3-positive dermal lymphatic capillary endothelial cells (iLECs) that recruit pro-lymphangiogenic macrophages to promote progressive lymphatic overgrowth. Mouse model of Pik3caH1047R-driven vascular malformations showed that proliferation was induced in both venous and lymphatic ECs but sustained selectively in LECs of advanced lesions. Single-cell transcriptomics identified the iLEC population, residing at lymphatic capillary terminals of normal vasculature, that was expanded in Pik3caH1047R mice. Expression of pro-inflammatory genes, including monocyte/macrophage chemokine Ccl2, in Pik3caH1047R-iLECs was associated with recruitment of VEGF-C-producing macrophages. Macrophage depletion, CCL2 blockade, or anti-inflammatory COX-2 inhibition limited Pik3caH1047R-driven lymphangiogenesis. Thus, targeting the paracrine crosstalk involving iLECs and macrophages provides a new therapeutic opportunity for lymphatic malformations. Identification of iLECs further indicates that peripheral lymphatic vessels not only respond to but also actively orchestrate inflammatory processes.
Collapse
Affiliation(s)
- Milena Petkova
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Marle Kraft
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Ines Martinez-Corral
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Henrik Ortsäter
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Vanlandewijck
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, Neo, Huddinge, Sweden
| | - Bojana Jakic
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eulàlia Baselga
- Department of Dermatology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Sandra D. Castillo
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- ICREA, Barcelona, Spain
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Medicine Huddinge, Karolinska Institutet, Campus Flemingsberg, Neo, Huddinge, Sweden
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Bekkhus T, Olofsson A, Sun Y, Magnusson PU, Ulvmar MH. Stromal transdifferentiation drives lipomatosis and induces extensive vascular remodeling in the aging human lymph node. J Pathol 2023; 259:236-253. [PMID: 36367235 PMCID: PMC10108032 DOI: 10.1002/path.6030] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/18/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
Lymph node (LN) lipomatosis is a common but rarely discussed phenomenon associated with aging that involves a gradual exchange of the LN parenchyma into adipose tissue. The mechanisms behind these changes and the effects on the LN are unknown. We show that LN lipomatosis starts in the medullary regions of the human LN and link the initiation of lipomatosis to transdifferentiation of LN fibroblasts into adipocytes. The latter is associated with a downregulation of lymphotoxin beta expression. We also show that isolated medullary and CD34+ fibroblasts, in contrast to the reticular cells of the T-cell zone, display an inherently higher sensitivity for adipogenesis. Progression of lipomatosis leads to a gradual loss of the medullary lymphatic network, but at later stages, collecting-like lymphatic vessels are found inside the adipose tissue. The stromal dysregulation includes a dramatic remodeling and dilation of the high endothelial venules associated with reduced density of naïve T-cells. Abnormal clustering of plasma cells is also observed. Thus, LN lipomatosis causes widespread stromal dysfunction with consequences for the immune contexture of the human LN. Our data warrant an increased awareness of LN lipomatosis as a factor contributing to decreased immune functions in the elderly and in disease. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tove Bekkhus
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Anna Olofsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Ying Sun
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Peetra U Magnusson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria H Ulvmar
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Deng H, Zhang J, Wu F, Wei F, Han W, Xu X, Zhang Y. Current Status of Lymphangiogenesis: Molecular Mechanism, Immune Tolerance, and Application Prospect. Cancers (Basel) 2023; 15:cancers15041169. [PMID: 36831512 PMCID: PMC9954532 DOI: 10.3390/cancers15041169] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The lymphatic system is a channel for fluid transport and cell migration, but it has always been controversial in promoting and suppressing cancer. VEGFC/VEGFR3 signaling has long been recognized as a major molecular driver of lymphangiogenesis. However, many studies have shown that the neural network of lymphatic signaling is complex. Lymphatic vessels have been found to play an essential role in the immune regulation of tumor metastasis and cardiac repair. This review describes the effects of lipid metabolism, extracellular vesicles, and flow shear forces on lymphangiogenesis. Moreover, the pro-tumor immune tolerance function of lymphatic vessels is discussed, and the tasks of meningeal lymphatic vessels and cardiac lymphatic vessels in diseases are further discussed. Finally, the value of conversion therapy targeting the lymphatic system is introduced from the perspective of immunotherapy and pro-lymphatic biomaterials for lymphangiogenesis.
Collapse
Affiliation(s)
- Hongyang Deng
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Jiaxing Zhang
- Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fahong Wu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Fengxian Wei
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Wei Han
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xiaodong Xu
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Youcheng Zhang
- Hepatic-Biliary-Pancreatic Institute, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, China
- Correspondence:
| |
Collapse
|
43
|
Singhal D, Börner K, Chaikof EL, Detmar M, Hollmén M, Iliff JJ, Itkin M, Makinen T, Oliver G, Padera TP, Quardokus EM, Radtke AJ, Suami H, Weber GM, Rovira II, Muratoglu SC, Galis ZS. Mapping the lymphatic system across body scales and expertise domains: A report from the 2021 National Heart, Lung, and Blood Institute workshop at the Boston Lymphatic Symposium. Front Physiol 2023; 14:1099403. [PMID: 36814475 PMCID: PMC9939837 DOI: 10.3389/fphys.2023.1099403] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 02/09/2023] Open
Abstract
Enhancing our understanding of lymphatic anatomy from the microscopic to the anatomical scale is essential to discern how the structure and function of the lymphatic system interacts with different tissues and organs within the body and contributes to health and disease. The knowledge of molecular aspects of the lymphatic network is fundamental to understand the mechanisms of disease progression and prevention. Recent advances in mapping components of the lymphatic system using state of the art single cell technologies, the identification of novel biomarkers, new clinical imaging efforts, and computational tools which attempt to identify connections between these diverse technologies hold the potential to catalyze new strategies to address lymphatic diseases such as lymphedema and lipedema. This manuscript summarizes current knowledge of the lymphatic system and identifies prevailing challenges and opportunities to advance the field of lymphatic research as discussed by the experts in the workshop.
Collapse
Affiliation(s)
- Dhruv Singhal
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Katy Börner
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| | - Elliot L. Chaikof
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Maija Hollmén
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Jeffrey J. Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Healthcare System, Department of Psychiatry and Behavioral Science, Department of Neurology, University of Washington School of Medicine, Seattle, WA, United States
| | - Maxim Itkin
- Center for Lymphatic Imaging and Interventions, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Taija Makinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg School of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, United States
| | - Timothy P. Padera
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Ellen M. Quardokus
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| | - Andrea J. Radtke
- Lymphocyte Biology Section and Center for Advanced Tissue Imaging, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Hiroo Suami
- Department of Clinical Medicine, Australian Lymphoedema Education, Research and Treatment Centre, Macquarie University, Sydney, NSW, Australia
| | - Griffin M. Weber
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Ilsa I. Rovira
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Selen C. Muratoglu
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Zorina S. Galis
- Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
44
|
Filosa A, Sawamiphak S. Heart development and regeneration-a multi-organ effort. FEBS J 2023; 290:913-930. [PMID: 34894086 DOI: 10.1111/febs.16319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/22/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022]
Abstract
Development of the heart, from early morphogenesis to functional maturation, as well as maintenance of its homeostasis are tasks requiring collaborative efforts of cardiac tissue and different extra-cardiac organ systems. The brain, lymphoid organs, and gut are among the interaction partners that can communicate with the heart through a wide array of paracrine signals acting at local or systemic level. Disturbance of cardiac homeostasis following ischemic injury also needs immediate response from these distant organs. Our hearts replace dead muscles with non-contractile fibrotic scars. We have learned from animal models capable of scarless repair that regenerative capability of the heart does not depend only on competency of the myocardium and cardiac-intrinsic factors but also on long-range molecular signals originating in other parts of the body. Here, we provide an overview of inter-organ signals that take part in development and regeneration of the heart. We highlight recent findings and remaining questions. Finally, we discuss the potential of inter-organ modulatory approaches for possible therapeutic use.
Collapse
Affiliation(s)
- Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Suphansa Sawamiphak
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Germany
| |
Collapse
|
45
|
Embracing lipidomics at single-cell resolution: Promises and pitfalls. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
46
|
Niu N, Shen X, Zhang L, Chen Y, Lu P, Yang W, Liu M, Shi J, Xu D, Tang Y, Yang X, Weng Y, Zhao X, Wu L, Sun Y, Xue J. Tumor Cell-Intrinsic SETD2 Deficiency Reprograms Neutrophils to Foster Immune Escape in Pancreatic Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202937. [PMID: 36453584 PMCID: PMC9839845 DOI: 10.1002/advs.202202937] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/15/2022] [Indexed: 06/07/2023]
Abstract
Genetic and epigenetic alterations play central roles in shaping the immunosuppressive tumor microenvironment (TME) to evade immune surveillance. The previous study shows that SETD2-H3K36me3 loss promotes KRAS-induced pancreatic tumorigenesis. However, little is known about its role in remodeling the TME and immune evasion. Here, it is shown that SETD2 deficiency can reprogram neutrophils to an immunosuppressive phenotype, thereby promoting immune escape during pancreatic tumor progression. By comprehensive profiling of the intratumoral immune cells, neutrophils are identified as the subset with the most significant changes upon Setd2 loss. Setd2-deficient pancreatic tumor cells directly enhance neutrophil recruitment and reprogramming, thereby inhibiting the cytotoxicity of CD8+ T cells to foster tumor progression. Mechanistically, it is revealed that Setd2-H3K36me3 loss leads to ectopic gain of H3K27me3 to downregulate Cxadr expression, which boosts the PI3K-AKT pathway and excessive expression of CXCL1 and GM-CSF, thereby promoting neutrophil recruitment and reprogramming toward an immunosuppressive phenotype. The study provides mechanistic insights into how tumor cell-intrinsic Setd2 deficiency strengthens the immune escape during pancreatic tumorigenesis, which may offer potential therapeutic implications for pancreatic cancer patients with SETD2 deficiency.
Collapse
Affiliation(s)
- Ningning Niu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Xuqing Shen
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Li Zhang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yueyue Chen
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Ping Lu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Wenjuan Yang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Mingzhu Liu
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Juanjuan Shi
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Dapeng Xu
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yingying Tang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Xiaotong Yang
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yawen Weng
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Xinxin Zhao
- Department of RadiologyRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Lian‐Ming Wu
- Department of RadiologyRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Yongwei Sun
- Department of Biliary‐Pancreatic SurgeryRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| | - Jing Xue
- State Key Laboratory of Oncogenes and Related GenesStem Cell Research CenterShanghai Cancer InstituteRen Ji HospitalShanghai Jiao Tong University School of Medicine160 Pujian RdShanghai200127P. R. China
| |
Collapse
|
47
|
Takeda A, Salmi M, Jalkanen S. Lymph node lymphatic endothelial cells as multifaceted gatekeepers in the immune system. Trends Immunol 2023; 44:72-86. [PMID: 36463086 DOI: 10.1016/j.it.2022.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022]
Abstract
Single-cell technologies have recently allowed the identification of multiple lymphatic endothelial cell (LEC) subsets in subcapsular, paracortical, medullary, and other lymph node (LN) sinus systems in mice and humans. New analyses show that LECs serve key immunological functions in the LN stroma during immune responses. We discuss the roles of different LEC types in guiding leukocyte and cancer cell trafficking to and from the LN parenchyma, in capturing microbes, and in transporting, presenting, and storing lymph-borne antigens in distinct types of lymphatic sinuses. We underscore specific adaptations of human LECs and raise unanswered questions concerning LEC functions in human disease. Despite our limited understanding of human lymphatics - hampering clinical translation in inflammation and metastasis - we support the potential of LN LECs as putative targets for boosting/inhibiting immunoreactivity.
Collapse
Affiliation(s)
- Akira Takeda
- MediCity and InFLAMES Flagship, University of Turku, Turku, Finland
| | - Marko Salmi
- MediCity and InFLAMES Flagship, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Sirpa Jalkanen
- MediCity and InFLAMES Flagship, University of Turku, Turku, Finland; Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
48
|
MacDonald ME, Weathered RK, Stewart EC, Magold AI, Mukherjee A, Gurbuxani S, Smith H, McMullen P, Mueller J, Husain AN, Salles CM, Briquez PS, Rouhani SJ, Yu J, Trujillo J, Pyzer AR, Gajewski TF, Sperling AI, Kilarski WW, Swartz MA. Lymphatic coagulation and neutrophil extracellular traps in lung-draining lymph nodes of COVID-19 decedents. Blood Adv 2022; 6:6249-6262. [PMID: 35977099 PMCID: PMC9394105 DOI: 10.1182/bloodadvances.2022007798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/12/2022] [Accepted: 08/01/2022] [Indexed: 01/05/2023] Open
Abstract
Clinical manifestations of severe COVID-19 include coagulopathies that are exacerbated by the formation of neutrophil extracellular traps (NETs). Here, we report that pulmonary lymphatic vessels, which traffic neutrophils and other immune cells to the lung-draining lymph node (LDLN), can also be blocked by fibrin clots in severe COVID-19. Immunostained tissue sections from COVID-19 decedents revealed widespread lymphatic clotting not only in the lung but also in the LDLN, where the extent of clotting correlated with the presence of abnormal, regressed, or missing germinal centers (GCs). It strongly correlated with the presence of intralymphatic NETs. In mice, tumor necrosis factor α induced intralymphatic fibrin clots; this could be inhibited by DNase I, which degrades NETs. In vitro, TNF-α induced lymphatic endothelial cell upregulation of ICAM-1 and CXCL8, among other neutrophil-recruiting factors, as well as thrombomodulin downregulation; in decedents, lymphatic clotting in LDLNs. In a separate cohort of hospitalized patients, serum levels of Myeloperoxidase-DNA (MPO-DNA, a NET marker) inversely correlated with antiviral antibody titers, but D-dimer levels, indicative of blood thrombosis, did not correlate with either. Patients with high MPO-DNA but low D-dimer levels generated poor antiviral antibody titers. This study introduces lymphatic coagulation in lungs and LDLNs as a clinical manifestation of severe COVID-19 and suggests the involvement of NETosis of lymphatic-trafficking neutrophils. It further suggests that lymphatic clotting may correlate with impaired formation or maintenance of GCs necessary for robust antiviral antibody responses, although further studies are needed to determine whether and how lymphatic coagulation affects adaptive immune responses.
Collapse
Affiliation(s)
- Margo E. MacDonald
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
- Biophysical Sciences Program, University of Chicago, Chicago, IL
| | - Rachel K. Weathered
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
| | - Emma C. Stewart
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
- Committee on Immunology, University of Chicago, Chicago, IL
| | - Alexandra I. Magold
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
| | - Anish Mukherjee
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
| | | | - Heather Smith
- Department of Pathology, University of Chicago, Chicago, IL
| | | | | | | | - Calixto M. Salles
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
| | | | | | - Jovian Yu
- Department of Medicine, University of Chicago, Chicago, IL
| | | | | | - Thomas F. Gajewski
- Committee on Immunology, University of Chicago, Chicago, IL
- Department of Medicine, University of Chicago, Chicago, IL
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL
| | - Anne I. Sperling
- Committee on Immunology, University of Chicago, Chicago, IL
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL
| | - Witold W. Kilarski
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
| | - Melody A. Swartz
- Pritzker School for Molecular Engineering, University of Chicago, Chicago, IL
- Committee on Immunology, University of Chicago, Chicago, IL
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL
| |
Collapse
|
49
|
He P, Lim K, Sun D, Pett JP, Jeng Q, Polanski K, Dong Z, Bolt L, Richardson L, Mamanova L, Dabrowska M, Wilbrey-Clark A, Madissoon E, Tuong ZK, Dann E, Suo C, Goh I, Yoshida M, Nikolić MZ, Janes SM, He X, Barker RA, Teichmann SA, Marioni JC, Meyer KB, Rawlins EL. A human fetal lung cell atlas uncovers proximal-distal gradients of differentiation and key regulators of epithelial fates. Cell 2022; 185:4841-4860.e25. [PMID: 36493756 DOI: 10.1016/j.cell.2022.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 08/11/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
We present a multiomic cell atlas of human lung development that combines single-cell RNA and ATAC sequencing, high-throughput spatial transcriptomics, and single-cell imaging. Coupling single-cell methods with spatial analysis has allowed a comprehensive cellular survey of the epithelial, mesenchymal, endothelial, and erythrocyte/leukocyte compartments from 5-22 post-conception weeks. We identify previously uncharacterized cell states in all compartments. These include developmental-specific secretory progenitors and a subtype of neuroendocrine cell related to human small cell lung cancer. Our datasets are available through our web interface (https://lungcellatlas.org). To illustrate its general utility, we use our cell atlas to generate predictions about cell-cell signaling and transcription factor hierarchies which we rigorously test using organoid models.
Collapse
Affiliation(s)
- Peng He
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Kyungtae Lim
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Dawei Sun
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Quitz Jeng
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | | | - Ziqi Dong
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK
| | - Liam Bolt
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Lira Mamanova
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | - Elo Madissoon
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Zewen Kelvin Tuong
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Molecular Immunity Unit, University of Cambridge Department of Medicine, Cambridge, UK
| | - Emma Dann
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | - Chenqu Suo
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Paediatrics, Cambridge University Hospitals, Hills Road, Cambridge CB2 0 QQ, UK
| | - Isaac Goh
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Masahiro Yoshida
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Marko Z Nikolić
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, University College London, London, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences and Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - John C Marioni
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK; European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Emma L Rawlins
- Wellcome Trust/CRUK Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 1QN, UK.
| |
Collapse
|
50
|
Yi W, Xiao P, Liu X, Zhao Z, Sun X, Wang J, Zhou L, Wang G, Cao H, Wang D, Li Y. Recent advances in developing active targeting and multi-functional drug delivery systems via bioorthogonal chemistry. Signal Transduct Target Ther 2022; 7:386. [PMID: 36460660 PMCID: PMC9716178 DOI: 10.1038/s41392-022-01250-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Bioorthogonal chemistry reactions occur in physiological conditions without interfering with normal physiological processes. Through metabolic engineering, bioorthogonal groups can be tagged onto cell membranes, which selectively attach to cargos with paired groups via bioorthogonal reactions. Due to its simplicity, high efficiency, and specificity, bioorthogonal chemistry has demonstrated great application potential in drug delivery. On the one hand, bioorthogonal reactions improve therapeutic agent delivery to target sites, overcoming off-target distribution. On the other hand, nanoparticles and biomolecules can be linked to cell membranes by bioorthogonal reactions, providing approaches to developing multi-functional drug delivery systems (DDSs). In this review, we first describe the principle of labeling cells or pathogenic microorganisms with bioorthogonal groups. We then highlight recent breakthroughs in developing active targeting DDSs to tumors, immune systems, or bacteria by bioorthogonal chemistry, as well as applications of bioorthogonal chemistry in developing functional bio-inspired DDSs (biomimetic DDSs, cell-based DDSs, bacteria-based and phage-based DDSs) and hydrogels. Finally, we discuss the difficulties and prospective direction of bioorthogonal chemistry in drug delivery. We expect this review will help us understand the latest advances in the development of active targeting and multi-functional DDSs using bioorthogonal chemistry and inspire innovative applications of bioorthogonal chemistry in developing smart DDSs for disease treatment.
Collapse
Affiliation(s)
- Wenzhe Yi
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Ping Xiao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiaochen Liu
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Zitong Zhao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Xiangshi Sun
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Jue Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Lei Zhou
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Guanru Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Haiqiang Cao
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China
| | - Dangge Wang
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000 China
| | - Yaping Li
- grid.9227.e0000000119573309State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203 China ,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000 China
| |
Collapse
|