1
|
Jia B, Yang W, Li H, Chang G, Zhang X, Zhang N, Wang S, Wei J, Li X, Gao W, Guo L. Ophiopogonis Radix fructan-selenium nanoparticles for dual amelioration of ulcerative colitis and anti-colon cancer. Int J Biol Macromol 2025; 307:142327. [PMID: 40118427 DOI: 10.1016/j.ijbiomac.2025.142327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
Fructans demonstrate significant potential in preclinical models for treating inflammatory bowel disease and colorectal cancer by modulating gut microbiota homeostasis. In this research, ORP-SeNPs were prepared through a redox method. Their roles as colon-targeted delivery carriers and stabilizers were examined for treating inflammatory bowel disease and colorectal cancer. ORP-SeNPs showed potent scavenging activity against ABTS· and DPPH· radicals and dose-dependently inhibited colon cancer Caco-2 cell proliferation by arresting growth in the S phase. Moreover, ORP-SeNPs significantly alleviated intestinal inflammation by modulating inflammatory cytokine homeostasis, reducing oxidative stress, repairing the intestinal barrier, and suppressing NF-κB/STAT-3 pathway activation. This study establishes a theoretical foundation for employing mixed fructans as drug carriers to treat inflammatory bowel disease and colorectal cancer, extending the therapeutic applications of Ophiopogonis Radix in bowel disorders.
Collapse
Affiliation(s)
- Bohan Jia
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China
| | - Wenna Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China
| | - Hongyu Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China
| | - Guanglu Chang
- Tianjin Key Laboratory of Modern Chinese Medicine Resources Research, Tianjin 300402, China
| | - Xuemin Zhang
- Tianjin Key Laboratory of Modern Chinese Medicine Resources Research, Tianjin 300402, China
| | - Nihui Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China
| | - Shirui Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China
| | - Jinchao Wei
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China.
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300193, China.
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
2
|
Chen YC, Lee YR, Chang YC, Wang YH, Fang SY, Lin CH, Chen PJ, Hwang TL. Scutellaria barbata ameliorates acute respiratory distress syndrome by inhibiting neutrophil-mediated inflammatory responses. JOURNAL OF ETHNOPHARMACOLOGY 2025; 346:119653. [PMID: 40122316 DOI: 10.1016/j.jep.2025.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional medicinal herb Scutellaria barbata D. Don (commonly known as Ban Zhi Lian) is renowned for its heat-clearing and detoxifying properties and has been used to treat inflammatory conditions and various cancers. While lung inflammation is an indication for S. barbata, its effects on acute respiratory distress syndrome (ARDS) remain unclear. AIM OF THE STUDY Dysregulated neutrophilic inflammation plays a critical role in the pathogenesis of ARDS. In this study, we aimed to investigate the novel application of S. barbata in treating neutrophilic inflammation and ARDS. We evaluated the therapeutic potential of the ethanol extract of S. barbata (SB-EtOH) in mitigating neutrophil-driven inflammatory responses. MATERIALS AND METHODS The chromatographic fingerprint of SB-EtOH was analyzed, and its ethnopharmacological mechanisms were examined for their effects on inflammatory responses in human neutrophils. The therapeutic potential of SB-EtOH was further assessed using a mouse model of lipopolysaccharide (LPS)-induced ARDS. RESULTS SB-EtOH significantly inhibited respiratory burst, degranulation, and chemotactic responses in activated human neutrophils without cytotoxic effects. Additionally, SB-EtOH attenuated phosphorylation of key inflammatory signaling molecules, Akt and p38, while reducing calcium mobilization in activated human neutrophils. In the LPS-induced ARDS mouse model, SB-EtOH reduced pulmonary neutrophil infiltration, lung tissue damage, and oxidative stress accumulation. CONCLUSION These findings suggest that S. barbata is a promising therapeutic candidate for ARDS and other neutrophil-predominant inflammatory diseases by mitigating neutrophilic inflammation.
Collapse
Affiliation(s)
- Yu-Cheng Chen
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan.
| | - Yao-Rong Lee
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan.
| | - Yu-Chia Chang
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan; Department of Cosmetic Science, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan.
| | - Yi-Hsuan Wang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333323, Taiwan.
| | - Shu-Yen Fang
- Graduate Institute of Biomedical Sciences and Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333323, Taiwan.
| | - Ching-Hsiung Lin
- Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua, 50006, Taiwan; Institute of Genomics and Bioinformatics, National Chung Hsing University, Taichung, 402202, Taiwan; Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, 402202, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402202, Taiwan.
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 824410, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Tsong-Long Hwang
- Center for Drug Research and Development, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan; Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333324, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243303, Taiwan.
| |
Collapse
|
3
|
Wu X, Mei J, Qiao S, Long W, Feng Z, Feng G. Causal relationships between gut microbiota and male reproductive inflammation and infertility: Insights from Mendelian randomization. Medicine (Baltimore) 2025; 104:e42323. [PMID: 40295237 PMCID: PMC12039986 DOI: 10.1097/md.0000000000042323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/08/2024] [Accepted: 10/30/2024] [Indexed: 04/30/2025] Open
Abstract
The study observed interactions between gut microbiota and male reproductive health, noting that the causal relationships were previously unclear. It aimed to explore the potential cause-and-effect relationship between gut bacteria and male reproductive problems such as inflammation, infertility, and sperm functionality, using a two-sample Mendelian randomization method to examine these connections. The analysis found that certain bacterial genera, such as Erysipelatoclostridium (0.71 [0.55-0.92]), Parasutterella (0.74 [0.57-0.96]), Ruminococcaceae UCG-009 (0.77 [0.60-0.98]), and Slackia (0.69 [0.49-0.96]), showed protective effects against prostatitis. In contrast, other genera like Faecalibacterium (1.59 [1.08-2.34]), Lachnospiraceae UCG004 (1.64 [1.15-2.34]), Odoribacter (1.68 [1.01-2.81]), Paraprevotella (1.28 [1.03-1.60]), and Sutterella (1.58 [1.13-2.19]) were detrimental. Additionally, causal relationships were identified between 2 genera and orchitis and epididymitis, 3 genera and male infertility, and 5 genera and abnormal spermatozoa. Further analysis of sperm-related proteins revealed causal associations between specific bacterial genera and proteins such as SPACA3, SPACA7, SPAG11A, SPAG11B, SPATA9, SPATA20, and ZPBP4. The results remained robust after sensitivity analysis and reverse Mendelian randomization analysis. The study concluded that specific bacterial genera have causal roles in reproductive inflammation, infertility, and sperm-associated proteins. This provides a novel strategy for the early diagnosis and identification of therapeutic targets in reproductive inflammation and infertility.
Collapse
Affiliation(s)
- Xiaohong Wu
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pediatric, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jingwen Mei
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pediatric, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shicun Qiao
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pediatric, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Wen Long
- Department of Radiology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhoushan Feng
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Pediatric, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guo Feng
- Department of Neonatology, Guangzhou Key Laboratory of Neonatal Intestinal Diseases, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Lu Y, Maimaiti S, Qin Z, Cheng X, Li J, Zhou C, Xiao Y, Abula S, Kuang L, Mai Z. Effects of Ficus carica L. polysaccharide on the intestinal immune function and microbiota of broilers. Front Immunol 2025; 16:1579046. [PMID: 40264763 PMCID: PMC12011799 DOI: 10.3389/fimmu.2025.1579046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Introduction Ficus carica L. polysaccharides (FLPs) are groups of biologically active compounds extracted from Ficus carica L. Methods In this study, we analyzed the structure of FLPs, predicted their immune enhancement pathway, and detected the impact of FLPs on the growth performance, immune function, and intestinal microflora of broiler chickens. Results The results showed that FLPs are comprised of monosaccharides including rhamnose, arabinose, mannose, glucose, and galactose. Feeding with FLPs significantly promoted the growth performance, slaughtering performance, and immune organs index of chickens compared to the control group (p < 0.05). Moreover, the FLP-h and FLP-m groups had increased levels of sIgA, IgG, IL-4, IL-5, IL-12, and IFN-g; improved immunity and barrier function; and a higher percentage of spleen CD4+ and CD8+ T cell differentiation compared to the control group (p < 0.05). Additionally, the FLP-h group had increased levels of various SCFAs, and increased beneficial bacteria such as Firmicutes at the phylum level and Faecalibacterium, Blautia, Phascolarctobacterium, and Alistipes at the genus level. The results of network pharmacology and KEGG pathway prediction indicate that FLPs may change the structure and metabolism of intestinal microbiota by enhancing carbon fixation pathways in prokaryotes, and promote intestinal immune barrier function through the joint action of bisphenol degradation, retinol metabolism, NODlike signaling pathways, toll-like receptor signaling pathways, and the MAPK signaling pathway. Discussion These results suggest that FLP-h supplementation effectively promotes growth performance and enhances the intestinal mucosal immune barrier function in chickens.
Collapse
Affiliation(s)
- Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Sajidaimu Maimaiti
- Department of Agricultural Economics, Kezilesu Vocational and Technical College, Atushi, Xinjiang, China
| | - Zhanke Qin
- Department of Agricultural Economics, Kezilesu Vocational and Technical College, Atushi, Xinjiang, China
| | - Xinke Cheng
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jianlong Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chuang Zhou
- Department of Agricultural Economics, Kezilesu Vocational and Technical College, Atushi, Xinjiang, China
| | - Ying Xiao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Ling Kuang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| |
Collapse
|
5
|
Li F, Wang B, Fu X, Liang J, Xiao X, Wei X. Protective effects of Scutellaria barbata against hepatocyte apoptosis during hepatic fibrosis progression. Cytotechnology 2025; 77:78. [PMID: 40083900 PMCID: PMC11896960 DOI: 10.1007/s10616-025-00738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Scutellaria barbata is a medicinal plant with anti-inflammatory, antioxidant, and antitumor properties. Limited studies exist on the link between S. barbata and liver fibrosis. The focus of this study is to examine the impact of S. barbata-containing serum on rat hepatocytes undergoing hepatic fibrosis. Molecular mechanisms underlying the observed effects are sought to be predicted. Transforming growth factor β1 (TGF-β1)-treated hepatic stellate cells (HSCs) supernatant was utilized to produce hepatic fibrosis-like conditions in hepatocytes BRL-3A cultured in vitro. S. barbata-containing serum was used as an intervention, with various dosage groups and a positive drug group (N-acetylcysteine). Cell proliferation, mitochondrial membrane potential (MMP), apoptosis, and expression of apoptosis-related proteins and genes were assessed through various assays and techniques. Bioinformatics analysis was employed to predict target genes and signaling pathways affected by S. barbata. Chemical components of S. barbata in the serum were detected by ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-QE-MS) was used to identify. Cellular experiments demonstrated that S. barbata-containing serum restored cell proliferation and reduced apoptotic activity induced by the fibrosis model, with a significant downregulation of apoptosis-related proteins (cleaved-Caspase-3, Bax), a substantial upregulation of the anti-apoptotic protein BCL-2, and a substantial elevation in the level of cellular MMP. Bioinformatics analysis highlighted the involvement of S. barbata in hepatocyte apoptosis during liver fibrosis, possibly through pathways like PI3K-Akt. UHPLC-QE-MS identified 29 chemical components of S. barbata in the bloodstream, suggesting their role in anti-hepatic fibrosis effects. S. barbata was found to effectively inhibit hepatocyte apoptosis during hepatic fibrosis.
Collapse
Affiliation(s)
- Feng Li
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Avenue, Meilan District, Haikou, 570208 Hainan China
- Department of Clinical Laboratory, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, 570311 Hainan China
| | - Bi Wang
- Department of Clinical Laboratory, Hainan Fifth People’s Hospital (Hainan Skin Disease and Plastic Surgery Hospital), Haikou, 570206 Hainan China
| | - Xianxian Fu
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Avenue, Meilan District, Haikou, 570208 Hainan China
| | - Jinqiang Liang
- School of Pharmacy, Hainan University, Haikou, 570228 Hainan China
| | - Xi Xiao
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410000 Hunan China
| | - Xiaobin Wei
- Department of Clinical Laboratory, The Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43 Renmin Avenue, Meilan District, Haikou, 570208 Hainan China
| |
Collapse
|
6
|
Zhang L, Wang Y, Wang W, Wang L, Shi J, Cheng J, Zhang J, Li A, He B, Fan Z. Effects of Deoxynivalenol Detoxifier on Growth Performance, Blood Biochemical Indices, and Microbiota Composition of Piglets. Int J Mol Sci 2025; 26:2045. [PMID: 40076666 PMCID: PMC11900542 DOI: 10.3390/ijms26052045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Deoxynivalenol (DON), also known as vomitoxin, has a high detection and exceeding rate in feed and is prone to causing symptoms such as loss of appetite, weight loss, vomiting, and diarrhoea in animals, which brings great harm to the aquaculture industry. The common mycotoxin adsorbents have low adsorption rates for DON, and the use of biological methods to remove DON in feeds has gradually become a research trend. One hundred and twenty crossbred barrows were randomly divided into four groups, which included the normal diet group (CON), normal diet + detoxifier group (Det), DON-polluted diet group (DON), and DON-polluted diet + DON detoxifier group (DON + Det); the experiment lasted for 28 d. The results showed that, compared with piglets fed a normal diet, those piglets fed DON-polluted diets significantly decreased their average daily gain (ADG) and average daily feed intake (ADFI) during the 1-14 d and 1-28 d periods; the content of immunoglobulin G (IgG), catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-PX), interleukin-4 (IL-4), and interleukin-10 (IL-10) in serum was decreased; and the content of aminotransferase (AST), alanine aminotransferase (ALT), malondialdehyde (MDA), diamine oxidase (DAO), and endotoxin (LPS) was increased in pigs fed DON-polluted diets; meanwhile, feeding piglets DON-polluted diets significantly reduced the levels of acetic acid, propionic acid, and total short-chain fatty acids (SCFAs) as well as gut microbiota health index (GMHI) in piglet faeces, but increased the relative abundance of Treponema, Prevotellaceae_UGG-001, Lachnospiraceae_XPB1014_group, Frisingicoccus and Sphaerochaeta. In contrast, the addition of a composite detoxifier effectively ameliorated the reduction in ADG and ADFI in piglets caused by DON-polluted diets. It suppressed the reduction in CAT, SOD, GSH-PX, IL-4, and IL-10 and the elevation of TNF-α, IL-2, IL-6, IL-12, MDA, LPS, and DAO in serum; the composite detoxifier also restrained the decrease in SCFA in piglet faeces and increased the relative abundance of Ruminococcus, Lachnospiraceae_NK4A136_group, Lachnospiraceae_AC2044_group, UCG-009, and Eubacterium_siraeum_group bacteria. The composite detoxifier effectively mitigated the adverse effects of a DON-polluted diet on piglet growth performance, blood biochemical indices, and gut microbiota composition.
Collapse
Affiliation(s)
- Luyao Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (L.Z.); (Y.W.); (W.W.); (L.W.); (J.S.); (J.C.); (J.Z.); (A.L.)
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410215, China
| | - Yongwei Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (L.Z.); (Y.W.); (W.W.); (L.W.); (J.S.); (J.C.); (J.Z.); (A.L.)
| | - Weiwei Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (L.Z.); (Y.W.); (W.W.); (L.W.); (J.S.); (J.C.); (J.Z.); (A.L.)
| | - Li Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (L.Z.); (Y.W.); (W.W.); (L.W.); (J.S.); (J.C.); (J.Z.); (A.L.)
| | - Jingjing Shi
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (L.Z.); (Y.W.); (W.W.); (L.W.); (J.S.); (J.C.); (J.Z.); (A.L.)
| | - Junlin Cheng
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (L.Z.); (Y.W.); (W.W.); (L.W.); (J.S.); (J.C.); (J.Z.); (A.L.)
| | - Jing Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (L.Z.); (Y.W.); (W.W.); (L.W.); (J.S.); (J.C.); (J.Z.); (A.L.)
| | - Aike Li
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (L.Z.); (Y.W.); (W.W.); (L.W.); (J.S.); (J.C.); (J.Z.); (A.L.)
| | - Beibei He
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China; (L.Z.); (Y.W.); (W.W.); (L.W.); (J.S.); (J.C.); (J.Z.); (A.L.)
| | - Zhiyong Fan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410215, China
| |
Collapse
|
7
|
Zhao J, Tian H, Kong X, Dang D, Liu K, Su C, Lian H, Gao T, Fu T, Zhang L, Li W, Zhang W. Microbiomic and Metabolomic Insights into the Mechanisms of Alfalfa Polysaccharides and Seaweed Polysaccharides in Alleviating Diarrhea in Pre-Weaning Holstein Calves. Animals (Basel) 2025; 15:485. [PMID: 40002967 PMCID: PMC11851682 DOI: 10.3390/ani15040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Neonatal calves' diarrhea, which can be severe enough to cause death, has a significant impact on the global cattle industry. In this study, alfalfa polysaccharides and seaweed polysaccharides were found to significantly improve the diarrhea condition in neonatal calves. To explore the underlying mechanisms, further microbiomic and metabolomic analyses were conducted. This study investigated the impact of alfalfa polysaccharides and seaweed polysaccharides on growth performance, serum metabolites, gut microbiota, and metabolomics in neonatal Holstein calves. A total of 24 newborn calves were randomly assigned to three groups, with 8 calves per treatment group. The control (CON) group was fed a basal diet, the alfalfa polysaccharide (AP) group received a basal diet supplemented with alfalfa polysaccharides (4 g/calf/day), and the seaweed polysaccharide group (SP) received a basal diet supplemented with seaweed polysaccharides (4 g/calf/day). These polysaccharides were plant extracts. Compared to the CON group, the results indicated that SP significantly enhanced the body weight, height, chest circumference, and average daily gain of Holstein calves (p < 0.05), while also reducing the diarrhea rate and improving manure scoring (p < 0.05). Compared to the CON, AP also reduced the diarrhea rate (p < 0.05). In terms of serum biochemistry, supplementation with AP and SP increased serum alkaline phosphatase (ALP) and insulin-like growth factor 1 (IGF-1) levels compared to the CON group (p < 0.05). Both AP and SP elevated serum catalase (CAT) and Total Antioxidant Capacity (T-AOC) levels, indicating enhanced antioxidant status (p < 0.05). Regarding immune responses, supplementation with AP and SP significantly increased serum complement component 3 (C3) and immunoglobulin M (IgM) levels, while significantly reducing pro-inflammatory cytokines interleukin-18 (IL-18), tumor necrosis factor alpha (TNF-α), and interferon-gamma (IFN-γ) compared to the CON group (p < 0.05). Microbiota analysis revealed that AP modulated the abundance of Firmicutes, while SP influenced the abundance of Prevotella and Succiniclasticum. AP and SP differentially influenced intestinal metabolites compared to the CON group, leading to enrichment in pathways related to immunity, antibacterial, and anti-inflammatory functions. These pathways included the biosynthesis of alkaloids from ornithine, lysine, and nicotinic acid, glucocorticoid and mineralocorticoid receptor canothersis/antagonists, secondary metabolite biosynthesis, and alkaloid biosynthesis from histidine and purine, thus alleviating intestinal inflammation. Therefore, by supplementing with AP and SP, the diarrhea rate in calves was reduced, and the immune function of Holstein calves was enhanced, while simultaneously promoting a higher relative abundance of beneficial gut bacteria and suppressing the relative abundance of pathogenic bacteria. Additionally, gut pathways associated with immune response and inflammation were modulated by AP and SP. This study provided valuable insights and theoretical underpinnings for the use of AP and SP in preventing diarrhea in neonatal calves.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wenqing Li
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.Z.); (H.T.); (X.K.); (D.D.); (K.L.); (C.S.); (H.L.); (T.G.); (T.F.); (L.Z.)
| | - Wei Zhang
- Henan International Joint Laboratory of Nutrition Regulation and Ecological Raising of Domestic Animal, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (J.Z.); (H.T.); (X.K.); (D.D.); (K.L.); (C.S.); (H.L.); (T.G.); (T.F.); (L.Z.)
| |
Collapse
|
8
|
Jia M, Lei J, Dong Y, Guo Y, Zhang B. The Interactive Effects of Nutrient Density and Breed on Growth Performance and Gut Microbiota in Broilers. Animals (Basel) 2024; 14:3528. [PMID: 39682493 DOI: 10.3390/ani14233528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigated whether variations in growth response to low nutrient density across breeds are linked to microbiota regulation. Arbor Acres (AA) and Beijing-You (BY) were fed high- (HN) and low-nutrient (LN) diets from day (d) 0 to d42. Body weight, feed intake, and intestinal measurements were recorded, and microbiota from the ileum and cecum were analyzed on d7, d21, and d42. Results showed that AA broilers had greater growth performance with a lower feed conversion ratio (FCR) and greater average daily gain (ADG) than BY chickens. The LN diet negatively affected AA broiler growth due to impaired intestinal development, while BY chickens compensated by increasing feed intake. Microbiota composition was primarily affected by breed than by nutrient density, with AA broilers having more beneficial bacteria and BY chickens having more short-chain fatty acid (SCFA)-producing bacteria. The LN diets reduced anti-inflammatory bacteria such as Shuttleworthia and Eisenbergiella in the cecum on d7. By d21, LN diets decreased Lactobacillus and increased proinflammatory Marvinbryantia, potentially impairing growth. However, LN diets enriched SCFA-producing bacteria like Ruminococcaceae_UCG.013, Eisenbergiella, and Tyzzerella in BY chickens and Faecalitalea in AA broilers by d21, which may benefit gut health. By d42, LN diets reduced genera linked to intestinal permeability and fat deposition, including Ruminococcus_torques_group, Romboutsia, Erysipelatoclostridium, and Oscillibacter. Additionally, LN diets enriched Christensenellaceae_R-7_group in AA broilers, associated with intestinal barrier integrity, and increased anti-inflammatory bacteria Alistipes and Barnesiella in AA broilers and BY chickens, respectively, by d42. Overall, AA broilers were more susceptible to reduced nutrient density due to impaired intestinal development, while BY chickens adapted better by increasing feed intake. The microbiota responses to low nutrient density varied over time, potentially negatively affecting gut health in the early stage and growth in the middle stage but possibly improving lipid deposition and gut health in the middle and late stages.
Collapse
Affiliation(s)
- Meiting Jia
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiaqi Lei
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yuanyang Dong
- College of Animal Science, Shanxi Agricultural University, Taiyuan 030800, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Cheng Y, Cao W, Guo R, Chen R, Li X, Qian D, Xu J. A comparative study of the quality differences and seasonal dynamics of flavonoids between the aerial parts and roots of Scutellaria barbata. FRONTIERS IN PLANT SCIENCE 2024; 15:1497664. [PMID: 39687312 PMCID: PMC11648313 DOI: 10.3389/fpls.2024.1497664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024]
Abstract
Introduction Scutellaria barbata D. Don is a widely cultivated Chinese herbal medicine known for its medicinal properties. However, differences in the spatial distribution of metabolites, accumulation patterns of flavonoids, and pharmacological activities between the aerial parts and roots of S. barbata still remain unclear, posing challenges for its standardized cultivation and quality control. This study aimed to elucidate the quality differences between these plant parts and clarify their seasonal variations. Methods The chemical profiles were qualitatively analyzed by UPLC-QTOF-MS/MS. The accumulation patterns of total flavonoids, scutellarin and baicalin in different parts of S. barbata were quantitatively analyzed by UV and HPLC respectively. The differences of pharmacological efficacy were evaluated by antioxidant assays and CCK-8 assay. Results In this research, there were 46 compounds identified in S. barbata that included 44 flavonoids. The aerial parts primarily accumulate flavonoids with 4'-hydroxyl group, while the root mainly accumulate flavonoids without this group. Additionally, the accumulation and variation of flavonoid components were seasonally dependent, with the aerial parts reaching peak content in spring during vigorous vegetative growth and the roots accumulating most flavonoids in autumn. The extracts from both parts exhibited antioxidant activity and inhibitory effects on cancer cell proliferation, with notable differences between them. Discussion This study provides valuable insights into the quality differences and seasonal dynamics of the different parts of S. barbata, offering a reference for standardized harvesting and quality control.
Collapse
Affiliation(s)
- Yijie Cheng
- Pharmacy Department, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, China
- Central Laboratory, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, China
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Wenxin Cao
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Ru Guo
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Ruihuan Chen
- Pharmacy Department, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, China
| | - Xiaofan Li
- Suzhou Qifan Agricultural Technology Co., Ltd, Changshu, China
| | - Da Qian
- Central Laboratory, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, China
| | - Jingyuan Xu
- Central Laboratory, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People’s Hospital, Changshu, China
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| |
Collapse
|
10
|
de Lima JS, Leão AD, de Jesus Oliveira AC, Chaves LL, Ramos RKLG, Rodrigues CFC, Soares-Sobrinho JL, Soares MFDLR. Potential of plant-based polysaccharides as therapeutic agents in ulcerogenic diseases of the gastrointestinal tract: A review. Int J Biol Macromol 2024; 281:136399. [PMID: 39395521 DOI: 10.1016/j.ijbiomac.2024.136399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/29/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
In recent years, natural polysaccharides (PSs) have attracted increasing interest because of their remarkable biological properties and potential in various areas, such as medicine, and food. This study aimed to present a detailed review of the evidence on the therapeutic potential of PSs for the treatment of gastrointestinal diseases. The main evidence was correlated with their chemical composition, mechanism of action and therapeutic effect. The main results showed that the action can be attributed to their ability to suppress excessive inflammatory responses, regulating the expression of cytokines and interleukins, reducing intestinal inflammation and promoting wound healing. Furthermore, we discussed how PSs help in the repair of the intestinal mucosa and related these effects with the composition of monosaccharides. A detailed analysis was performed on the ability of PSs to modulate the intestinal microbiota, promoting the growth of beneficial bacteria and suppressing inflammatory bacteria, in addition to its probiotic action with production of short-chain fatty acids. All this evidence was also taken into a broader context, in which the main challenges in processing PSs were considered and strategies to circumvent them were pointed out. Therefore, this review sought to demonstrate the great potential and viability of PSs as innovative and effective therapeutic agents.
Collapse
Affiliation(s)
- Jucielma Silva de Lima
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Amanda Damaceno Leão
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luíse Lopes Chaves
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Renata Kelly Luna Gomes Ramos
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - Carla Fernanda Couto Rodrigues
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| | - José Lamartine Soares-Sobrinho
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil.
| | - Mônica Felts de La Roca Soares
- Quality Control Core of Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife, PE, Brazil
| |
Collapse
|
11
|
Pan S, Yan H, Zhu J, Ma Y, Wang P, Liu Y, Chen Z. GYY4137, as a slow-releasing H 2S donor, ameliorates sodium deoxycholate-induced chronic intestinal barrier injury and gut microbiota dysbiosis. Front Pharmacol 2024; 15:1476407. [PMID: 39508040 PMCID: PMC11539038 DOI: 10.3389/fphar.2024.1476407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Numerous studies have revealed that a long-term high-fat diet can raise intestinal deoxycholate acid concentration, which can harm intestinal mucosal barrier function in several ways. This study aims to verify the protective effect of GYY4137, as a slow-releasing H2S donor, on microbiome disturbance and the chronic injury of the intestinal mucosal barrier function caused by sodium deoxycholate. Methods Caco-2 monolayer and mouse models were treated with a relatively high concentration of sodium deoxycholate (1.0 mM and 0.2%, respectively) for longer periods (32 h and 12 weeks, respectively) to understand the effects of GYY4137 on sodium deoxycholate-induced chronic intestinal barrier dysfunction and its fundamental mechanisms. Results A relatively long period of sodium deoxycholate treatment can remarkably increase the intestinal barrier permeability, alter the distribution and expression of tight junction proteins and generate the production of pro-inflammatory cytokines (TNF-α and IL-1β) in the Caco-2 monolayers and mouse models. Moreover, it can activate the MLCK-P-MLC2 pathway in the Caco-2 monolayers, which was further confirmed using RNA sequencing. The body weight, intestinal barrier histological score, and TUNEL index of sodium deoxycholate-treated mice worsened. In addition, an induced microbiome imbalance was observed in these mice. The above variations can be reversed with the administration of GYY4137. Conclusion This study demonstrates that GYY4137 ameliorates sodium deoxycholate-induced chronic intestinal barrier injury by restricting the MLCK-P-MLC2 pathway while elevating the expression level of tight junction proteins, anti-apoptosis and maintaining the microbiome's homeostasis.
Collapse
Affiliation(s)
- Shaorong Pan
- Department of Gastrointestinal Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Han Yan
- Department of Gastrointestinal Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Jing Zhu
- Department of Gastrointestinal Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Yuanyuan Ma
- Animal Experiment Center, Peking University First Hospital, Peking University, Beijing, China
| | - Pengyuan Wang
- Department of Gastrointestinal Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Yucun Liu
- Department of Gastrointestinal Surgery, Peking University First Hospital, Peking University, Beijing, China
| | - Zeyang Chen
- Department of Gastrointestinal Surgery, Peking University First Hospital, Peking University, Beijing, China
| |
Collapse
|
12
|
Tang L, Liu Y, Tao H, Feng W, Ren C, Shu Y, Luo R, Wang X. Combination of Youhua Kuijie Prescription and sulfasalazine can alleviate experimental colitis via IL-6/JAK2/STAT3 pathway. Front Pharmacol 2024; 15:1437503. [PMID: 39318778 PMCID: PMC11420560 DOI: 10.3389/fphar.2024.1437503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Youhua Kuijie prescription (YHKJ) is a hospital preparation that is composed of nine kinds of herbs. Sulfasalazine (SASP) is widely used as a first-line clinical treatment for UC. Traditional Chinese medicine and Western medicine have their own advantages in the treatment of UC, and the mechanism of YHKJ combined with SASP in the treatment of UC needs to be investigated. Methods In this study, the therapeutic mechanism of YHKJ combined with SASP in the treatment of UC was predicted by network pharmacology and molecular docking. The chemical components and related targets of YHKJ were obtained from the TCMSP database. The chemical structure of SASP was obtained from the PubChem server, and related targets of SASP molecules were identified using the PharmMapper database. UC-related targets were obtained from the DisGeNET, GeneCards, OMIM, TTD, DrugBank and PharmGkb databases. Results In total, 197 shared targets were identified by constructing a Venn diagram. PPI network data obtained from the STRING database were imported into Cytoscape to visualize the "drug-disease" target network, and STAT3 was selected as the core target by topological analysis. Gene Ontology revealed the biological functions of target genes, and KEGG analysis revealed that the core target STAT3 was differentially expressed in Th17 cells and the JAK-STAT signaling pathway. Thus, the core target STAT3 was subjected to molecular docking with the top 10 components, including nine YHKJ components (quercetin, luteolin, ursolic acid, daidzein, kaempferol, wogonin, myricetin, formononetin, indirubin) and SASP (C18H14N4O5S). The molecular docking results showed that STAT3 had favorable binding with the nine YHKJ components and SASP; STAT3 had the strongest binding with ursolic acid (-10.26 kcal/mol), followed by SASP (-8.54 kcal/mol). Qualitative analysis of the chemical constituents of YHKJ by HPLC revealed that sitosterol, ursolic acid, myricetin, daidzein, quercetin, kaempferol and formononetin were the main components. Additional experiments verified that YHKJ combined with SASP inhibited activation of the IL-6/JAK2/STAT3 pathway and alleviated inflammation in UC model rats. Discussion Our results showed that seven chemical components in YHKJ cooperate with SASP to interfere with activation of the IL-6/JAK2/STAT3 pathway, thus playing a role in the treatment of UC.
Collapse
Affiliation(s)
- Lili Tang
- Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| | - Yuedong Liu
- The Third Affiliated Hospital of Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| | - Hongwu Tao
- The Second Affiliated Hospital of Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| | - Wenzhe Feng
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xi'an, China
| | - Cong Ren
- Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| | | | - Ruijuan Luo
- Kaifeng Traditional Chinese Medicine Hospital, Kaifeng, China
| | - Xiangyi Wang
- Liaoning University Of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
13
|
Sun J, Cao Y, Liu Q, Zhou Z, Xu Y, Liu C. Chemical Constituents, Anti-Tumor Mechanisms, and Clinical Application: A Comprehensive Review on Scutellaria barbata. Molecules 2024; 29:4134. [PMID: 39274982 PMCID: PMC11397148 DOI: 10.3390/molecules29174134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
With the increasing global incidence and mortality rates of cancer, the development of novel anti-tumor drugs has become particularly urgent. Scutellaria barbata D. Don, a perennial herb belonging to the genus Scutellaria in the family Lamiaceae, has aroused extensive attention for its medicinal value in recent years. This article presents an exhaustive review of the flavonoid, diterpene, and other chemical constituents harbored within Scutellaria barbata, delving into the intricate mechanisms by which these compounds orchestrate their anti-tumor effects via diverse biological pathways. Remarkably, these compounds distinguish themselves through their capability to regulate cellular signaling, inhibit cancer cell proliferation, trigger apoptosis, disrupt angiogenesis, and bolster immune responses. These anti-tumor effects are achieved through strategic modulation of pivotal signaling cascades, particularly the PI3K/Akt/mTOR, MAPK, and NFκB pathways. In addition, this article also summarizes the clinical applications of Scutellaria barbata in tumor treatment, especially its potential in alleviating the side effects of radiotherapy and chemotherapy and improving patients' quality of life. In conclusion, this review comprehensively summarizes and analyzes the chemical constituents, anti-tumor mechanisms, and clinical applications of Scutellaria barbata, with the aim of systematically reviewing the existing research results and exploring potential future research directions.
Collapse
Affiliation(s)
- Jiagui Sun
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Yuqi Cao
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Qiqi Liu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Zhengshu Zhou
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Yanan Xu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| | - Chenggang Liu
- School Basic Medical Sciences, Heilongjiang University of Chinese Medicine, 24 Heping Road, Harbin 150040, China
| |
Collapse
|
14
|
Manafu Z, Du R, Malajiang X, Abulikemu G, Xue L, Bierdelieke A, Xie Y, Liu D, Mai Z, Guo Q, Wusiman A, Li B, Abula S. Effects of Alhagi maurorum Medik polysaccharide derived from different regions on the intestinal immune functions of lambs. Front Pharmacol 2024; 15:1422461. [PMID: 39076595 PMCID: PMC11284127 DOI: 10.3389/fphar.2024.1422461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction: Plant polysaccharide are widely studied as potential prebiotics because of their potential to protect and enhance the immunity of lambs. Methods: In this study, the polysaccharide content of Alhagi maurorum Medik from Aksu (AK) and Shanshan (SS) at different cutting periods was determined, and the functions of Alhagi maurorum Medik polysaccharide were investigated to useas an immunomodulator. Results: Our results indicated that the content of Alhagi maurorum Medik polysaccharide is the highest at the maturity stage, and the polysaccharide content of Alhagi maurorum Medik produced in Shanshan area is higher as compared to the Aksu area. The serum IgG, duodenum IgA, TNF-α, IL-4, IL-10 contents, jejunum IgA, TNF-α, IL-4, IL-17 contents, ileum IgA, IL-17 contents, duodenum villus height, crypt depth and jejunum crypt depth of lambs were significantly adjusted in the SS group as compared to CK control group and AK groups (p < 0.05). Furthemore, the sequencing results showed that SS polysaccharide promoted the release of large amounts of IgA and enhanced the immunal function of intestine by regulating the IgA production pathway and B-cell receptor signaling to activate B cells in the T-dependent pathway. Discussion: Altogether, Alhagi maurorum Medik polysaccharide from SS group holds a promising potential to be used as a valuable immunopotentiator for optimizing the immune system of intestine in lambs.
Collapse
Affiliation(s)
- Zulikeyan Manafu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Ronglijiao Du
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Xieraili Malajiang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Gulimire Abulikemu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Lijun Xue
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Ayibike Bierdelieke
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Yuan Xie
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Dandan Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Zhanhai Mai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Adelijiang Wusiman
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Bin Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| | - Saifuding Abula
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
15
|
Li W, Chen D, Zhu Y, Ye Q, Hua Y, Jiang P, Xiang Y, Xu Y, Pan Y, Yang H, Ma Y, Xu H, Zhao C, Zheng C, Chen C, Zhu Y, Xu G. Alleviating Pyroptosis of Intestinal Epithelial Cells to Restore Mucosal Integrity in Ulcerative Colitis by Targeting Delivery of 4-Octyl-Itaconate. ACS NANO 2024; 18:16658-16673. [PMID: 38907726 DOI: 10.1021/acsnano.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Current therapies primarily targeting inflammation often fail to address the root relationship between intestinal mucosal integrity and the resulting dysregulated cell death and ensuing inflammation in ulcerative colitis (UC). First, UC tissues from human and mice models in this article both emphasize the crucial role of Gasdermin E (GSDME)-mediated pyroptosis in intestinal epithelial cells (IECs) as it contributes to colitis by releasing proinflammatory cytokines, thereby compromising the intestinal barrier. Then, 4-octyl-itaconate (4-OI), exhibiting potential for anti-inflammatory activity in inhibiting pyroptosis, was encapsulated by butyrate-modified liposome (4-OI/BLipo) to target delivery for IECs. In brief, 4-OI/BLipo exhibited preferential accumulation in inflamed colonic epithelium, attributed to over 95% of butyrate being produced and absorbed in the colon. As expected, epithelium barriers were restored significantly by alleviating GSDME-mediated pyroptosis in colitis. Accordingly, the permeability of IECs was restored, and the resulting inflammation, mucosal epithelium, and balance of gut flora were reprogrammed, which offers a hopeful approach to the effective management of UC.
Collapse
Affiliation(s)
- Wenying Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Dong Chen
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Yanmei Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Qiange Ye
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 21008, Jiangsu Province,China
| | - Yang Hua
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Ping Jiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province,China
| | - Ying Xiang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Yuejie Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Yinya Pan
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province,China
| | - Hua Yang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Yichun Ma
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
| | - Hang Xu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Cheng Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province,China
| | - Chang Zheng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province,China
| | - Changrong Chen
- Department of Emergency Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Yun Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 21008, Jiangsu Province,China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province,China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing 21008, Jiangsu Province,China
- Department of Gastroenterology, Taikang Xianlin Drum Tower Hospital, Nanjing 21008, Jiangsu Province,China
| |
Collapse
|
16
|
Chen J, Gao Y, Zhang Y, Wang M. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct 2024; 15:5680-5702. [PMID: 38738935 DOI: 10.1039/d3fo04919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Inflammatory bowel disease (IBD) comprises a group of highly prevalent and chronic inflammatory intestinal tract diseases caused by multiple factors. Despite extensive research into the causes of the disease, IBD's pathogenic mechanisms remain unclear. Moreover, side effects of current IBD therapies restrict their long-term clinical use. In contrast, natural polysaccharides exert beneficial anti-IBD effects and offer advantages over current anti-IBD drugs, including enhanced safety and straightforward isolation from abundant and reliable sources, and thus may serve as components of functional foods and health products for use in IBD prevention and treatment. However, few reviews have explored natural polysaccharides with anti-IBD activities or the relationship between polysaccharide conformation and anti-IBD biological activity. Therefore, this review aims to summarize anti-IBD activities and potential clinical applications of polysaccharides isolated from plant, animal, microorganismal, and algal sources, while also exploring the relationship between polysaccharide conformation and anti-IBD bioactivity for the first time. Furthermore, potential mechanisms underlying polysaccharide anti-IBD effects are summarized, including intestinal microbiota modulation, intestinal inflammation alleviation, and intestinal barrier protection from IBD-induced damage. Ultimately, this review provides a theoretical foundation and valuable insights to guide the development of natural polysaccharide-containing functional foods and nutraceuticals for use as dietary IBD therapies.
Collapse
Affiliation(s)
- Jiaqi Chen
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, 130021, China
| | - Yanqiu Zhang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, 130021, China.
| |
Collapse
|
17
|
Manafu Z, Du R, Kudereti T, Abulikemu G, Lakho SA, Xue L, Bierdelieke A, Khand FM, Leghari A, Xie Y, Abula S, Bake B, Guo Q, Wusiman A. Structure characterization and intestinal immune promotion effect of polysaccharide purified from Alhagi camelorum Fisch. Int J Biol Macromol 2024; 269:132077. [PMID: 38723832 DOI: 10.1016/j.ijbiomac.2024.132077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/04/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
This study investigated the structure of acid Alhagi camelorum Fischa polysaccharide (aAP) and its impact on intestinal activity in mice. The results showed that aAP comprised of the fucose, arabinose, rhamnose, galactose, glucose, xylose, mannose, galacturonic acid, glucuronic acid with the molar ratio of 0.81:14.97:10.84:11.14:3.26:0.80:0.80:54.92:2.47 with the molecular weight (Mw) of 22.734 kDa. Additionally, the composition of aAP was assessed via FT-IR, methylation, and NMR analyses, indicating that the backbone of the aAP was consisted of →4)-α-D-GalpA-6-OMe-(1 → 4)-α-GalpA-(1 → and →4)-α-D-GalpA-6-OMe-(1 → 2)-α-L-Rhap-(1→, as well as →4)-β-D-Galp- and →5)-α-L-Araf- for the branched chain. Furthermore, ICR mice underwent intragastric administration of different concentrations of aAP for 7 consecutive days. The results showed that aAP enhanced the murine spleen and thymus indices, promoted the secretion of serum lgG antibody, intestinal lgA antibody and intestinal cytokines, improved the morphology of intestinal villi and crypts, enhanced quantity of intestinal IELs and IgA+ cells, and activated T lymphocytes and DC cells in MLNs. In summary, these findings suggest that the utilization of aAP could enhance the immune response of the murine intestinal mucosa.
Collapse
Affiliation(s)
- Zulikeyan Manafu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, PR China; College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Ronglijiao Du
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Tuerhong Kudereti
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Gulimire Abulikemu
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Shakeel Ahmed Lakho
- Shaheed Benazir Bhutto University of Veterinary and Animal Science Sakrand, Sindh 67210, Pakistan
| | - Lijun Xue
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Ayibike Bierdelieke
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Faiz Muhammad Khand
- Shaheed Benazir Bhutto University of Veterinary and Animal Science Sakrand, Sindh 67210, Pakistan
| | - Ambreen Leghari
- Shaheed Benazir Bhutto University of Veterinary and Animal Science Sakrand, Sindh 67210, Pakistan
| | - Yuan Xie
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Saifuding Abula
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Bateer Bake
- College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, PR China
| | - Adelijiang Wusiman
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, PR China.
| |
Collapse
|
18
|
Huangfu W, Ma J, Zhang Y, Liu M, Liu B, Zhao J, Wang Z, Shi Y. Dietary Fiber-Derived Butyrate Alleviates Piglet Weaning Stress by Modulating the TLR4/MyD88/NF-κB Pathway. Nutrients 2024; 16:1714. [PMID: 38892647 PMCID: PMC11174469 DOI: 10.3390/nu16111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
During weaning, piglets are susceptible to intestinal inflammation and impairment in barrier function. Dietary fiber (DF) plays an active role in alleviating weaning stress in piglets. However, the effects of different sources of dietary fiber on the performance of weaned piglets are inconsistent, and the mechanisms through which they affect intestinal health need to be explored. Therefore, in this study, sixty weaned piglets were randomly divided into three treatment groups: basal diet (control, CON), beet pulp (BP), and alfalfa meal (AM) according to the feed formulation for a 28-day trial. The results showed that both AM and BP groups significantly reduced diarrhea rate and serum inflammatory factors (IL-1β and TNF-α) and increased antioxidant markers (T-AOC and SOD), in addition to decreasing serum MDA and ROS concentrations in the AM group. At the same time, piglets in the AM group showed a significant reduction in serum intestinal permeability indices (LPS and DAO) and a substantial increase in serum immunoglobulin levels (IgA, IgG, and IgM) and expression of intestinal barrier-associated genes (Claudin1, Occludin, ZO-1, and MUC1), which resulted in an improved growth performance. Interestingly, the effect of DF on intestinal inflammation and barrier function can be attributed to its modulation of gut microbes. Fiber-degrading bacteria enriched in the AM group (Christensenellaceae_R-7_group, Pediococcus and Weissella) inhibited the production of TLR4- through the promotion of SCFAs (especially butyrate). MyD88-NF-κB signaling pathway activation reduces intestinal inflammation and repairs intestinal barrier function. In conclusion, it may provide some theoretical support and rationale for AM to alleviate weaning stress and improve early intestinal dysfunction, which may have implications for human infants.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Jixiang Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Yan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (W.H.); (J.M.); (Y.Z.); (M.L.); (B.L.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
19
|
Qi M, Chu S, Wang W, Fu X, Jiang C, Zhang L, Ali MH, Lu Y, Jia M, Ubul D, Tang H, Li J, Liu M. Safflower polysaccharide ameliorates acute ulcerative colitis by regulating STAT3/NF-κB signaling pathways and repairing intestinal barrier function. Biomed Pharmacother 2024; 174:116553. [PMID: 38593703 DOI: 10.1016/j.biopha.2024.116553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
This study is to investigate the effect of SPS on the UC model. An animal model of UC induced by DSS was developed using C57BL/6 mice. The body weight was recorded every day, and the symptoms related to UC were detected. H&E staining, AB-PAS staining and PSR staining were used to evaluate the histopathological changes of the colon. Inflammation and mucosal barrier indicators were detected by qRT-PCR, and the 16 S rRNA sequence was used to detect the intestinal flora. SPS can significantly prevent and treat DSS-induced ulcerative colitis in animals. SPS significantly improved clinical symptoms, alleviated pathological damage, inhibited the infiltration of intestinal inflammatory cells. SPS treatment can protect goblet cells, enhance the expression of tight junction proteins and mucins, inhibit the expression of antimicrobial peptides, thereby improving intestinal barrier integrity. The prevention and treatment mechanism of SPS may be related to the inhibition of STAT3/NF-κB signaling pathway to regulate intestinal barrier function. In particular, SPS also significantly adjusted the structure of intestinal flora, significantly increasing the abundance of Akkermansia and Limosilactobacillus and inhibiting the abundance of Bacteroides. Overall, SPS has a significant therapeutic effect on ulcerative colitis mice, and is expected to play its value effectively in clinical treatment.
Collapse
Affiliation(s)
- Man Qi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Shenghui Chu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Wenxuan Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Xianglei Fu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Chao Jiang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Liang Zhang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Md Hasan Ali
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Yating Lu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Mengwei Jia
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Dilraba Ubul
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Hui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China
| | - Jian Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China; State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Min Liu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, North 4th Road 221, Shihezi, China.
| |
Collapse
|
20
|
Manafu Z, Zhang Z, Malajiang X, Abula S, Guo Q, Wu Y, Wusiman A, Bake B. Effects of Alhagi camelorum Fisch polysaccharide from different regions on growth performance and gastrointestinal microbiota of sheep lambs. Front Pharmacol 2024; 15:1379394. [PMID: 38746008 PMCID: PMC11091474 DOI: 10.3389/fphar.2024.1379394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
Polysaccharides derived from Alhagi camelorum Fisch possess diverse activities, making them a potential prebiotic candidates for enhancing lamb health. This study investigated the immunomodulatory effects of Alhagi camelorum Fisch polysaccharides from Aksu (AK) and Shanshan (SS) regions on sheep lambs. The results showed that sheep lambs in the SS group exhibited significantly increased (p < 0.05) average daily gain, levels of growth hormone (GH), insulin (INS), IgA and IgM, and cytokines IL-4, IL-10, IL-17, TNF-α and IFN-γ compared to those in the control check (CK) group. Moreover, the SS treatment significantly increased the diversity and abundance of beneficial bacteria, while concurrently diminishing the prevalence of harmful bacteria. Additionally, it modulated various metabolic pathways, promoted lamb growth, improved immunity, reduced the risk of gastrointestinal disease and improved the composition of gastrointestinal microbiota. In summary, our findings highlight the potential of SS treatment in enhancing gastrointestinal health of sheep lambs by improving intestinal function, immunity, and gut microbiome. Consequently, these results suggest that Alhagi camelorum Fisch polysaccharides derived from Shanshan regions holds promising potential as a valuable intervention for optimizing growth performance in sheep lambs.
Collapse
Affiliation(s)
- Zulikeyan Manafu
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Zhenping Zhang
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xieraili Malajiang
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| | - Saifuding Abula
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Qingyong Guo
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yi Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Adelijaing Wusiman
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Batur Bake
- College of Grassland Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
21
|
Wu M, Wang Q, Li X, Yu S, Zhao F, Wu X, Fan L, Liu X, Zhao Q, He X, Li W, Zhang Q, Hu X. Gut microbiota-derived 5-hydroxyindoleacetic acid from pumpkin polysaccharides supplementation alleviates colitis via MAPKs-PPARγ/NF-κB inhibition. Int J Biol Macromol 2024; 264:130385. [PMID: 38395290 DOI: 10.1016/j.ijbiomac.2024.130385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Polysaccharides from Pumpkin (Cucurbita moschata Duchesne) (PPs) have many pharmacological activities, including anti-oxidant, immune, and intestinal microbiota regulation. These activities have provided some reminders of its potential therapeutic effect on ulcerative colitis (UC), but this has not yet been confirmed. This study preliminarily confirmed its significant anti-UC activity superior to Salicylazosulfapyridine. The average molecular weight of PPs was 3.10 × 105 Da, and PPs mainly comprised Mannose, Rhamnose, Galacturonic acid, Galactosamine, Glucose, and Xylose with molar ratios of 1.58:3.51:34.54:1.00:3.25:3.02. PPs (50, 100 mg/kg) could significantly resist dextran sodium sulfate induced UC on C57BL/6 mice by improving gut microbiota dysbiosis, such as the changes of relative abundance of Bacteroides, Culturomica, Mucispirillum, Escherichia-Shigella, Alistipes and Helicobacter. PPs also reverse the abnormal inflammatory reaction, including abnormal level changes of TNF-α, IFN-γ, IL-1β, IL-4, IL-6, IL-10, and IL-18. Metabolomic profiling showed that PPs supplementation resulted in the participation of PPAR and MAPK pathways, as well as the increase of 5-hydroxyindole acetic acid (5-HIAA) level. 5-HIAA also exhibited individual and synergistic anti-UC activities in vivo. Furthermore, combination of PPs and 5-HIAA could also elevate the levels of PPARγ in nuclear and inhibit MAPK/NF-ĸB pathway in the colon. This study revealed that PPs and endogenous metabolite 5-HIAA might be developed to treat UC.
Collapse
Affiliation(s)
- Minglan Wu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaodong Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Songxia Yu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fan Zhao
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xia Wu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Li Fan
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xueling Liu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingwei Zhao
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| | - Qiao Zhang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xingjiang Hu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
22
|
Wang C, Jiang S, Zheng H, An Y, Zheng W, Zhang J, Liu J, Lin H, Wang G, Wang F. Integration of gut microbiome and serum metabolome revealed the effect of Qing-Wei-Zhi-Tong Micro-pills on gastric ulcer in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117294. [PMID: 37839771 DOI: 10.1016/j.jep.2023.117294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Qing-Wei-Zhi-Tong Micro-pills (QWZT) is herbal compound used in the treatment of GU, whose functions include clearing the stomach and fire, softening the liver and relieving pain. However, its mechanistic profile on host intestinal microbiota and metabolism has not been determined. AIM OF THE STUDY The present study aimed to observe the healing effect of QWZT on acetic acid-induced gastric ulcer in a rat model and to preliminarily elucidate its possible therapeutic mechanism from the perspective of host intestinal microbiota and metabolism. MATERIALS AND METHODS The Wistar male rats (7 weeks old; weight 180-200 g) were randomly divided into normal control group (NC), acetic acid-induced gastric ulcer group (GU), and QWZT treatment group (High dose: 1250 mg/kg/day, Middle dose: 625 mg/kg/day, Low dose: 312.5 mg/kg/day) of 6 rats each. An acetic acid-induced gastric ulcer rat model was constructed based on anatomical surgery. QWZT (High dose, Middle dose, and Low dose) was used to treat gastric ulcer rats for 7 days by gavage. At the end of treatment, the body weight, macroscopic condition of gastric tissue ulcers, pathological changes (HE staining), inflammatory factors, oxidative stress factors, and endocrine factors were assessed in each group of rats. Fresh feces and serum from each group of rats were collected for microbiome and metabolome analysis on the machine, respectively. Drug-disease common targets and functional pathways were captured based on network pharmacology. The complex network of Herbs-Targets-Pathways-Metabolites-Microbiota interactions was constructed. Ultimately, Fecal Microbiota Transplantation (FMT) evaluated the contribution of gut microbiota in disease. RESULTS QWZT increased the abundance of beneficial bacteria (Bacteroides, Alloprevotella, Rikenellaceae_RC9_gut_group, Lactobacillus, Lachnospiraceae_NK4A136_group, Parabacteroides, etc.), reduced the abundance of harmful bacteria (Micromonospora, Geobacter, Nocardioides, and Arenimonas, etc.), reduced the levels of inflammatory mediators (12,13-EpOME, 9,10-Epoxyoctadecenoic acid, SM(d18:1/16:0) and Leukotriene A4, etc.), restored host metabolic disorders (Linoleic acid metabolism, Glycerophospholipid metabolism, and Arachidonic acid metabolism), and regulated the level of cytokines (IL-6, TNF-a, SOD, MDA, PEG-2 and NO), ultimately exerting an anti-ulcer effect. Apart from that, FMT improved acetic acid-induced gastric ulcers in rats. CONCLUSION QWZT improved acetic acid-induced gastric ulcers in rats by remodeling intestinal microbiota and regulating host metabolism. This work may promote the process of developing and utilizing clinical applications of QWZT.
Collapse
Affiliation(s)
- Chao Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Shengyu Jiang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Laboratory Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Haoyu Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Yiming An
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Wenxue Zheng
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jiaqi Zhang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Jianming Liu
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| | - Hongqiang Lin
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Guoqiang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Science and Technology Innovation Centre for Secondary Development of Proprietary Chinese Medicines, Changchun, 130021, China; Jilin Provincial Engineering Laboratory of Precision Prevention and Control for Common Diseases, Changchun, 130021, China.
| |
Collapse
|
23
|
Zhang Y, Chen L, Fei Y, Chen P, Pan L. Qingrexiaoji Recipe Regulates the Differentiation of M2 TAM via miR-29 in GC. Comb Chem High Throughput Screen 2024; 27:2764-2775. [PMID: 39428821 DOI: 10.2174/0113862073263776231009115524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 10/22/2024]
Abstract
BACKGROUND Gastric cancer, one of the most familiar adenocarcinomas of the gastrointestinal tract, ranks third in the world in cancer-related deaths. Traditional Chinese medicine can suppress the growth of tumors, and the underlying mechanism may be associated with the tumor microenvironment. Here, we investigated the anti-cancer effects of the Qingrexiaoji recipe on gastric cancer and the underlying molecular mechanism. METHODS An in vivo nude mouse model was established, and the expression of CD206, CD80, and M2 phenotype-related proteins (Arg-1, Fizz1) was obtained by flow cytometry and western blotting. The expressions of the M2 phenotype-related cytokines were examined by ELISA. RESULTS Qingrexiaoji recipe inhibited gastric tumor growth and downregulated the expression of CD206, IFN-γ, IL-13, IL-4, and TNF-α in vivo. Qingrexiaoji recipe deceased M2 phenotypic polarization by upregulating microRNA (miR)-29a-3p level. Luciferase activity assays showed that HDAC4 is a potential target of miR-29a-3p. In cells co-transfected with HDAC4 siRNA and miR-29a-3p inhibitor and treated with IL-4 and Qingrexiaoji recipe, the miR-29a-3p inhibitorinduced increase of M2 phenotypic polarization was reversed. CONCLUSION In summary, these results suggested that the Qingrexiaoji recipe regulated M2 macrophage polarization by regulating miR-29a-3p/HDAC4, providing a different and innovative treatment for gastric cancer.
Collapse
Affiliation(s)
- Yiqiong Zhang
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Luting Chen
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Wenling, Taizhou, Zhejiang, China
| | - Yuchang Fei
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Peifeng Chen
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Lei Pan
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
24
|
Li J, Ma J, Wang W, Du H, Tang S, Li Y, Zhu W, Zhang R, Wan J. Alterations of ileal mucosa-associated microbiota in hypercholesterolemia patients. Heliyon 2023; 9:e22116. [PMID: 38076161 PMCID: PMC10709208 DOI: 10.1016/j.heliyon.2023.e22116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/11/2023] [Accepted: 11/05/2023] [Indexed: 01/03/2025] Open
Abstract
Many metabolic diseases have been demonstrated to be associated with changes in the microbiome. However, no studies have yet been conducted to examine the characteristics of the mucosal microbiota of patients with hypercholesterolemia. We aimed to examine mucosa-associated microbiota in subjects with hypercholesterolemia. We conducted a case-control study, in which ileal mucosal samples were collected from 13 hypercholesterolemia patients and 13 controls for 16S rRNA gene sequencing. There were differences in the composition of ileal mucosal microbiota based on beta diversity between the hypercholesterolemia and control groups (P < 0.05). Compared with the control group, the phylum Bacteroidetes and the genera Bacteroides, Butyricicoccus, Parasutterella, Candidatus_Soleaferrea, and norank_f__norank_o__Izemoplasmatales were less abundant in the hypercholesterolemia group (P < 0.05), while the genus Anaerovibrio was enriched in the hypercholesterolemia group (P < 0.05). The relative abundance of Bacteroides was negatively correlated with total cholesterol and low-density lipoprotein cholesterol (P < 0.01). The relative abundance of Coprococcus was negatively correlated with triglycerides and body mass index (all P < 0.05). PICRUSt functional prediction analysis showed that pathways related to Glycerophospholipid metabolism, ABC transporters, Phosphotransferase system, and Biofilm formation - Escherichia coli, and infectious diseases of pathogenic Escherichia coli were enriched in the hypercholesterolemia group. This work suggests a potential role of ileal mucosal microbiota in the development of hypercholesterolemia.
Collapse
Affiliation(s)
- Jia Li
- Department of Gastroenterology, The 983rd Hospital of Joint Logistic Support Force of PLA, No. 60, Huangwei Road, Hebei District, Tianjin 300142, China
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Jinxia Ma
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Weihua Wang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Haitao Du
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuai Tang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Yi Li
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Wenya Zhu
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Ru Zhang
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| | - Jun Wan
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, No. 28, Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
25
|
Zhu M, Song Y, Xu Y, Xu H. Manipulating Microbiota in Inflammatory Bowel Disease Treatment: Clinical and Natural Product Interventions Explored. Int J Mol Sci 2023; 24:11004. [PMID: 37446182 DOI: 10.3390/ijms241311004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a complex multifactorial chronic inflammatory disease, that includes Crohn's disease (CD) and ulcerative colitis (UC), having progressively increasing global incidence. Disturbed intestinal flora has been highlighted as an important feature of IBD and offers promising strategies for IBD remedies. A brief overview of the variations occurring in intestinal flora during IBD is presented, and the role of the gut microbiota in intestinal barrier maintenance, immune and metabolic regulation, and the absorption and supply of nutrients is reviewed. More importantly, we review drug research on gut microbiota in the past ten years, including research on clinical and natural drugs, as well as adjuvant therapies, such as Fecal Microbiota Transplantation and probiotic supplements. We also summarize the interventions and mechanisms of these drugs on gut microbiota.
Collapse
Affiliation(s)
- Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yijie Song
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
26
|
Chen H, Li Y, Wang J, Zheng T, Wu C, Cui M, Feng Y, Ye H, Dong Z, Dang Y. Plant Polyphenols Attenuate DSS-induced Ulcerative Colitis in Mice via Antioxidation, Anti-inflammation and Microbiota Regulation. Int J Mol Sci 2023; 24:10828. [PMID: 37446006 DOI: 10.3390/ijms241310828] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
The pathogenesis of ulcerative colitis (UC) is associated with inflammation, oxidative stress, and gut microbiota imbalance. Although most researchers have demonstrated the antioxidant bioactivity of the phenolic compounds in plants, their UC-curing ability and underlying mechanisms still need to be further and adequately explored. Herein, we studied the antioxidation-structure relationship of several common polyphenols in plants including gallic acid, proanthocyanidin, ellagic acid, and tannic acid. Furthermore, the in vivo effects of the plant polyphenols on C57BL/6 mice with dextran-sulfate-sodium-induced UC were evaluated and the action mechanisms were explored. Moreover, the interplay of several mechanisms was determined. The higher the number of phenolic hydroxyl groups, the stronger the antioxidant activity. All polyphenols markedly ameliorated the symptoms and pathological progression of UC in mice. Furthermore, inflammatory cytokine levels were decreased and the intestinal barrier was repaired. The process was regulated by the antioxidant-signaling pathway of nuclear-erythroid 2-related factor 2. Moreover, the diversity of the intestinal microbiota, Firmicutes-to-Bacteroides ratio, and relative abundance of beneficial bacteria were increased. An interplay was observed between microbiota regulation and oxidative stress, immunity, and inflammatory response. Furthermore, intestinal barrier repair was found to be correlated with inflammatory responses. Our study results can form a basis for comprehensively developing plant-polyphenol-related medicinal products.
Collapse
Affiliation(s)
- Huan Chen
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| | - Ying Li
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Jinrui Wang
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Tingting Zheng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Chenyang Wu
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Mengyao Cui
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yifan Feng
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Hanyi Ye
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Zhengqi Dong
- Drug Delivery Research Center, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100094, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Beijing 100700, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100700, China
| | - Yunjie Dang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
27
|
Sun L, Lin F, Sun B, Qin Z, Chen K, Zhao L, Li J, Zhang Y, Lin L. Scutellaria polysaccharide mediates the immunity and antioxidant capacity of giant freshwater prawn (Macrobrachium rosenbergii). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 143:104678. [PMID: 36907337 DOI: 10.1016/j.dci.2023.104678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
The giant freshwater prawn (Macrobrachium rosenbergii) is a commercially valuable freshwater crustacean species that frequently appears a death affected by various diseases, resulting in substantial economic losses. Improving the survival rate of M. rosenbergii is a hot and essential issue for feeding the prawns. Scutellaria polysaccharide (SPS) extracted from Scutellaria baicalensis (a Chinese medicinal herb) is conducive to the survival rate of organisms by enhancing immunity and antioxidant ability. In this study, M. rosenbergii was fed 50, 100, and 150 mg/kg of SPS. The immunity and antioxidant capacity of M. rosenbergii were tested by mRNA levels and enzyme activities of related genes. The mRNA expressions of NF-κB, Toll-R, and proPO (participating in the immune response) in the heart, muscle, and hepatopancreas were decreased after four weeks of SPS feeding (P < 0.05). This indicated that long-term feeding of SPS could regulate the immune responses of M. rosenbergii tissues. The activity levels of antioxidant biomarkers, alkaline phosphatase (AKP), and acid phosphatase (ACP) had significant increases in hemocytes (P < 0.05). Moreover, catalase (CAT) activities in the muscle and hepatopancreas, as well as superoxide dismutase (SOD) activities in all tissues, significantly decreased after four weeks of culture (P < 0.05). The results demonstrated that long-term feeding of SPS could improve the antioxidant capacity of M. rosenbergii. In summary, SPS was conducive to regulating the immune capacity and enhancing the antioxidant capacity of M. rosenbergii. These results provide a theoretical basis for supporting SPS addition to the feed of M. rosenbergii.
Collapse
Affiliation(s)
- Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Lijuan Zhao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jun Li
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA
| | - Yulei Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA.
| |
Collapse
|
28
|
Liu B, Ye D, Yang H, Song J, Sun X, He Z, Mao Y, Hao G. Assessing the relationship between gut microbiota and irritable bowel syndrome: a two-sample Mendelian randomization analysis. BMC Gastroenterol 2023; 23:150. [PMID: 37173627 PMCID: PMC10182631 DOI: 10.1186/s12876-023-02791-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Growing evidence has suggested that gut microbiota is closely related to the risk of irritable bowel syndrome (IBS), but whether there is a causal effect remains unknown. We adopted a Mendelian randomization (MR) approach to evaluate the potential causal relationships between gut microbiota and the risk of IBS. METHODS Genetic instrumental variables for gut microbiota were identified from a genome-wide association study (GWAS) of 18,340 participants. Summary statistics of IBS were drawn from a GWAS including 53,400 cases and 433,201 controls. We used the inverse-variance weighted (IVW) method as the primary analysis. To test the robustness of our results, we further performed the weighted-median method, MR-Egger regression, and MR pleiotropy residual sum and outlier test. Finally, reverse MR analysis was performed to evaluate the possibility of reverse causation. RESULTS We identified suggestive associations between three bacterial traits and the risk of IBS (odds ratio (OR): 1.08; 95% confidence interval (CI): 1.02, 1.15; p = 0.011 for phylum Actinobacteria; OR: 0.95; 95% CI: 0.91, 1.00; p = 0.030 for genus Eisenbergiella and OR: 1.10; 95% CI: 1.03, 1.18; p = 0.005 for genus Flavonifractor). The results of sensitivity analyses for these bacterial traits were consistent. We did not find statistically significant associations between IBS and these three bacterial traits in the reverse MR analysis. CONCLUSIONS Our systematic analyses provide evidence to support a potential causal relationship between several gut microbiota taxa and the risk of IBS. More studies are required to show how the gut microbiota affects the development of IBS.
Collapse
Affiliation(s)
- Bin Liu
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ding Ye
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hong Yang
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Song
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaohui Sun
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Guifeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China.
| |
Collapse
|
29
|
Chen Z, Nong Y, Wang Q, Feng L, He Y, Guo B, Qin Y, Zhong X, Qin J, Wei J, Dong M, Pan S, Su Z. Preventive effect of tilapia skin collagen hydrolysates on ulcerative colitis mice based on metabonomic and 16 S rRNA gene sequencing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3645-3658. [PMID: 36645331 DOI: 10.1002/jsfa.12457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Tilapia skin collagen hydrolysates (TSCHs) are the product of enzymatic hydrolysis of collagen, which is mainly extracted from tilapia skin. The components of TSCHs have recently been reported to play a preventive role in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC). However, it has not been illustrated whether TSCHs can prevent against DSS-induced UC via the gut microbiota and its derived metabolites. RESULTS TSCHs are mainly composed of amino acids, which have similar characteristics to collagen, with most having a molecular weight below 5 kDa. In a mouse model of UC, TSCHs had no toxic effect at a dose of 60 g kg-1 and could reduce body weight changes, colon length, histopathological changes and score, and the level of the serum inflammatory cytokine interleukin (IL)-6. Concurrently, 16 S rRNA sequencing showed that TSCHs significantly reduced the abundance of Bacteroidetes and Proteobacteria at the phylum level and norank_f__Muribaculaceae and Escherichia-Shigella at the genus level, while they increased the abundance of Firmicutes at the phylum level and Lachnoclostridium, Allobaculum, Enterorhabdus, and unclassified__f__Ruminococcaceae at the genus level. Target metabolomic analysis showed that TSCHs elevated the concentration of total acid, acetic acid, propanoic acid, and butanoic acid, but reduced isovaleric acid concentrations. Moreover, Pearson correlation analysis revealed that Allobaculum, unclassified_Ruminococcaceae, and Enterorhabdus were positively correlated with acetic acid and butyric acid, but not Escherichia-Shigella. CONCLUSION These findings suggest that TSCHs can prevent UC by modulating gut microbial and microbiota-derived metabolites. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhaoni Chen
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yunyuan Nong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Qianyi Wang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Linlin Feng
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Ying He
- First Clinical Medical College, Guangxi Medical University, Nanning, China
| | - Bingjian Guo
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Yuelian Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xinyu Zhong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinghua Qin
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jinbin Wei
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Min Dong
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Shihan Pan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
| | - Zhiheng Su
- Pharmaceutical College, Guangxi Medical University, Nanning, China
- Guangxi Beibu Gulf Marine Biomedicine Precision Development and High-value Utilization Engineering Research Center, Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Guangxi Medical University, Nanning, China
- Guangxi Health Commission Key Laboratory of Basic Research on Antigeriatric Drugs, Guangxi Medical University, Nanning, China
| |
Collapse
|
30
|
Zhao J, He R, Zhong H, Liu S, Liu X, Hussain M, Sun P. A cold-water extracted polysaccharide-protein complex from Grifola frondosa exhibited anti-tumor activity via TLR4-NF-κB signaling activation and gut microbiota modification in H22 tumor-bearing mice. Int J Biol Macromol 2023; 239:124291. [PMID: 37028620 DOI: 10.1016/j.ijbiomac.2023.124291] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/14/2023] [Accepted: 03/29/2023] [Indexed: 04/09/2023]
Abstract
Grifola frondosa polysaccharide-protein complex (G. frondosa PPC) is a polymer which consists of polysaccharides and proteins/peptides linked by covalent bonds. In our previous ex vivo research, it has been demonstrated that a cold-water extracted G. frondosa PPC has stronger antitumor activity than a G. frondosa PPC extracted from boiling water. The main purpose of the current study was to further evaluate the anti-hepatocellular carcinoma and gut microbiota regulation effects of two PPCs isolated from G. frondosa at 4 °C (GFG-4) and 100 °C (GFG-100) in vivo. The results exhibited that GFG-4 remarkably upregulated the expression of related proteins in TLR4-NF-κB and apoptosis pathway, thereby inhibiting the development of H22 tumors. Additionally, GFG-4 increased the abundance of norank_f__Muribaculaceae and Bacillus and reduced the abundance of Lactobacillus. Short chain fatty acids (SCFAs) analysis suggested that GFG-4 promoted SCFAs production, particularly butyric acid. Conclusively, the present experiments revealed GFG-4 has the potential of anti-hepatocellular carcinoma growth via activating TLR4-NF-κB pathway and regulating gut microbiota. Therefore, G. frondosa PPCs could be considered as safe and effective natural ingredient for treatment of hepatocellular carcinoma. The present study also provides a theoretical foundation for the regulation of gut microbiota by G. frondosa PPCs.
Collapse
Affiliation(s)
- Jiahui Zhao
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Rongjun He
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China; Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China.
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
| | - Shizhu Liu
- Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China
| | - Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Bioactives and Functional Foods Research Center, China National Light Industry, Hangzhou 310014, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Hangzhou 310014, China; Zhejiang Fangge Pharmaceutical Co., Ltd., Qingyuan 323800, China.
| |
Collapse
|
31
|
Zhang X, Zhao X, Hua Z, Xing S, Li J, Fei S, Tan M. ROS-triggered self-disintegrating and pH-responsive astaxanthin nanoparticles for regulating the intestinal barrier and colitis. Biomaterials 2023; 292:121937. [PMID: 36495803 DOI: 10.1016/j.biomaterials.2022.121937] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/12/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
Smart delivery systems with stimuli-responsive capability are able to improve the bioaccessibility through increasing the solubility, physicochemical stability and biocompatibility of bioactive compounds. In this study, the astaxanthin nanoparticles with reactive oxygen species (ROS) and pH dual-response function were design and constructed using poly (propylene sulfide) covalently modified sodium alginate as carriers based on ultrasonic assisted self-assembly strategy. Atomic force microscope and scanning electron microscope analysis showed that the nanoparticles were spherical in shape with a size of around 260 nm. Meanwhile, the astaxanthin nanoparticles showed both pH and ROS stimuli-responsive release characteristics. In vitro cell experiments showed that astaxanthin nanoparticles significantly inhibited the production of ROS and mitochondrial depolarization induced by oxidative stress. In vivo colitis experiment of mice revealed that astaxanthin nanoparticles could significantly relieve colitis, protect the integrity of colon tissue and restore the expression of tight junction proteins ZO-1 and occludin. The abundance of Lactobacillus and Lachnospiraceae, and the ratio of Firmicutes/Bacteroidota of gut microbiota were significantly improved after intervention of the stimuli-responsive astaxanthin nanoparticles. This work provided a simple strategy for constructing ROS/pH dual response delivery system, which provided an experimental basis for improving the oral bioavailability of hydrophobic active compounds.
Collapse
Affiliation(s)
- Xuedi Zhang
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Xue Zhao
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Zheng Hua
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Shanghua Xing
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Jiaxuan Li
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Siyuan Fei
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, Food Science and Technology, Dalian Polytechnic University, Qinggongyuan1, Ganjingzi District, Dalian, 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, Liaoning, China.
| |
Collapse
|
32
|
Chen Y, Chen P, Liu H, Zhang Y, Zhang X. Penthorum chinense Pursh polysaccharide induces a mitochondrial-dependent apoptosis of H22 cells and activation of immunoregulation in H22 tumor-bearing mice. Int J Biol Macromol 2022; 224:510-522. [DOI: 10.1016/j.ijbiomac.2022.10.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|
33
|
Ovalbumin and its Maillard reaction products ameliorate dextran sulfate sodium-induced colitis by mitigating the imbalance of gut microbiota and metabolites. Int J Biol Macromol 2022; 222:715-724. [PMID: 36174860 DOI: 10.1016/j.ijbiomac.2022.09.224] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 11/20/2022]
Abstract
The Maillard reaction reduces the gastrointestinal digestibility of ovalbumin (OVA) in vitro. However, the regulatory effects of OVA and its Maillard reaction products (MRPs) on gut microbiota disorders remain unknown. In this study, the influence of OVA and its MRPs on the modulation of gut microbiota in mice with dextran sulfate sodium (DSS)-induced colitis was investigated. The results revealed that OVA and its MRPs intake could alleviate the symptoms of colitis and improve the richness and diversity of the gut microbiota. Moreover, the results revealed that the Maillard reaction would block the release of lysine and essential amino acids in vivo, but they variously regulated the gut microbiota and the levels of short-chain fatty acids (SCFAs) due to their indigestible properties. These findings provide a basic theory for the rational utilization of OVA and its MRPs as nutraceutical food ingredients in regulating the gut microbiota for maintaining intestinal health.
Collapse
|
34
|
Li X, Wu X, Wang Q, Xu W, Zhao Q, Xu N, Hu X, Ye Z, Yu S, Liu J, He X, Shi F, Zhang Q, Li W. Sanguinarine ameliorates DSS induced ulcerative colitis by inhibiting NLRP3 inflammasome activation and modulating intestinal microbiota in C57BL/6 mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154321. [PMID: 35843190 DOI: 10.1016/j.phymed.2022.154321] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/27/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sanguinarine (SAN) is an important natural anti-inflammatory constitutes and dietary supplementation with SAN could improve the relative length of the intestine, alter gut microbiota, and enhance growth performance of pigs, broiler chickens, and cattle. However, it is unclear whether it has the therapeutic effect on ulcerative colitis (UC). PURPOSE This study aimed to investigate the therapeutic effect of SAN on UC and explore its mechanisms of action. STUDY DESIGN AND METHODS Several efficacy indexes of SAN on dextran sulfate sodium (DSS)-induced C57BL/6 mice were evaluated. ELISA kit and western blot analysis were used to evaluate it's anti-inflammatory effect and the mechanism of action. 16S rDNA sequencing detection was used to determine the impact of SAN on gut microbiota. RESULTS SAN and Sulfasalazine could significantly improve the colon length, the weight loss, the symptoms and the pathological injury of colon in DSS-induced mice. Meanwhile, SAN could decrease the levels of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-13 and IL-18) and increase the levels of anti-inflammatory cytokines (IL-4 and IL-10) in colon, and suppress DSS-induced high expressions of NLRP3, caspase-1 and IL-1β. In addition, SAN (0.5, 1 μM) could inhibit the expression level of NLRP3 and the activation of caspase-1 and IL-1β in lipopolysaccharide-stimulated THP-1 cells in non-cytotoxic doses, which was similar to that of MCC950, a specific inhibitor of NLRP3 inflammasome activation. The abundance changes of many genera such as Muribaculaceae_unclassified, Escherichia-Shigella, Lachnospiraceae_NK4A136_group and Helicobacter were also closely related to the improvement of SAN on intestinal inflammatory response. CONCLUSION SAN exhibited therapeutic effect on DSS-induced colitis by blocking NLRP3-(Caspase-1)/IL-1β pathway and improving intestinal microbial dysbiosis. SAN might be developed to treat UC and other disorders associated with microbial dysbiosis.
Collapse
Affiliation(s)
- Xiaodong Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xia Wu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Weilv Xu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Qingwei Zhao
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Nana Xu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xingjiang Hu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Ziqi Ye
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Songxia Yu
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jian Liu
- Department of Intensive Care Unit, the First Affiliated Hospital College of Medicine, Zhejiang University, Hangzhou, 310003, P. R. China
| | - Xuelin He
- Department of Nephrology, Beilun People's Hospital, Ningbo 315826, Zhejiang Province, China
| | - Fushan Shi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| | - Qiao Zhang
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China.
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| |
Collapse
|
35
|
Pan X, Yin M, Guo M, Niu X, Han L. The latest progress of natural food polysaccharides preventing ulcerative colitis by regulating intestinal microbiota. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
36
|
Zhou H, Guo Y, Liu Z, Wu H, Zhao J, Cao Z, Zhang H, Shang H. Comfrey polysaccharides modulate the gut microbiota and its metabolites SCFAs and affect the production performance of laying hens. Int J Biol Macromol 2022; 215:45-56. [PMID: 35718145 DOI: 10.1016/j.ijbiomac.2022.06.075] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/17/2022] [Accepted: 06/11/2022] [Indexed: 12/24/2022]
Abstract
Effects of dietary supplementation of comfrey polysaccharides (CPs) on production performance, egg quality, and microbial composition of cecum in laying hens were evaluated. A total of 240 laying hens were allocated into 4 groups with 6 replicates per group. The laying hens were fed diets containing CPs at levels of 0, 0.5, 1.0, and 1.5 %, respectively. The results showed that the egg production rate increased by 5.97 %, the egg mass improved by 6.71 %, and the feed conversion rate reduced by 5.43 % in the 1.0 % supplementation group of CPs compared with those in the control group. The digestibility of ash, crude fat, and phosphorus was notably improved by the addition of CPs at 1.0 % (P < 0.05). The relative abundances of Bacteroidetes at the phylum level, Bacteroidaceae, Rikenellaceae, and Prevotellaceae at the family level were increased by CPs (P < 0.05). The relative abundances of Bacteroides, Megamonas, Rikenellaceae_RC9_gut_group, [Ruminococcus]_torques_group, Methanobrevibacter, Desulfovibrio, Romboutsia, Alistipes, and Intestinimonas at the genus level were increased by CPs (P < 0.05). Dietary supplementation of CPs could enhance the production performance of laying hens, which might be related to the improvement of nutrient digestibility and microbial community modulations in the cecum. Therefore, CPs have potential application value as prebiotics in laying hens.
Collapse
Affiliation(s)
- Haizhu Zhou
- College of Forestry and Pratacultural Science, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yang Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Zhenhua Liu
- The Third Affiliated Clinical Hospital of Changchun University of Chinese Medicine, Changchun 130000, China
| | - Hongxin Wu
- Institute of Grassland Research, CAAS, Hohhot 010010, China
| | - Jiangchao Zhao
- Department of Animal Science, University of Arkansas, Fayetteville 72701, USA
| | - Zihang Cao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hexiang Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongmei Shang
- College of Forestry and Pratacultural Science, Jilin Agricultural University, Changchun 130118, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|