1
|
Azam T, Dai X, Chen X, Ali I, Chen S, Noor F, Haider SZ. Comparative transcriptomic and physiological analysis of extremophilic and non-extremophilic fungi in bioremediation of cadmium (Cd) and strontium (Sr). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125678. [PMID: 39800155 DOI: 10.1016/j.envpol.2025.125678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/07/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Heavy metal and nuclide contamination pose increasing threats to the environment and public health. In this study, a comparative analysis was conducted on the bioremediation capabilities of the halophilic fungus Engyodontium album (E. album) and the non-halophilic fungus Trichoderma reesei (T. reesei) under cadmium (Cd) and strontium (Sr) stress. Biosorption tests, scanning electron microscopy (SEM), and transcriptomic analyses were performed to assess the fungi's physiological and molecular responses to 100 ppm of Cd and Sr. The results revealed that E. album exhibited superior biosorption capacity for both Cd and Sr, significantly outperforming T. reesei. Transcriptomic analysis identified the upregulation of metal-degrading enzymes and enhanced antioxidant defences in E. album, with increased activity in the MAPK signalling pathway. In contrast, T. reesei demonstrated lower tolerance and remediation efficiency, with significant gene expression changes under stress conditions, particularly in reactive oxygen species detoxification mechanisms. These findings suggest that extremophilic fungi like E. album hold significant promise for eco-friendly bioremediation applications due to their robust metabolic adaptations to heavy metal stress. This study is the first to compare extremophilic and non-extremophilic fungi in response to heavy metal contamination, providing valuable insights for future environmental remediation strategies.
Collapse
Affiliation(s)
- Toquier Azam
- School of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xueqi Dai
- School of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Xiaoming Chen
- School of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China.
| | - Imran Ali
- School of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China; Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan; Institute of Biochemistry, University of Balochistan, Quetta, 87300, Pakistan.
| | - Sen Chen
- School of Life Science, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Fatima Noor
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| | - Syed Zeeshan Haider
- Institute of Molecular Biology and Biotechnology, University of Lahore, Lahore, Pakistan
| |
Collapse
|
2
|
Ma S, Wang WX. Significance of zinc re-absorption in Zn dynamic regulation in marine fish revealed by pharmacokinetic model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125106. [PMID: 39393760 DOI: 10.1016/j.envpol.2024.125106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
Zinc (Zn) is an essential but toxic trace element and is widely available in the natural environment. In the present study, we developed a re-absorption physiologically based pharmacokinetic (PBPK) model based on long-term dietary exposure to gain insights into the physiological mechanisms of uptake, tissue distribution, storage, and excretion of Zn in marine juvenile gilt-head breams Sparus aurata (with stomach). The PBPK model incorporated the kinetic processes of Zn transfer from fish liver to gastrointestinal system and used the Markov Monte Carlo algorithm to estimate the distribution of model parameters. The model fit indicated that the stomach and intestine of fish were key organs in regulating the concentration of Zn entering the internal environment, with excess exogenous Zn (120 mg/kg) being excreted in feces (rate constant of 5.23 d-1). Modeling results also indicated that liver (3.00 d-1), spleen (1.41 d-1) and kidney (0.51 d-1) were the main tissues responding to blood Zn flux by accumulation and detoxification. Fish kidneys exposed to 60 mg/kg and 120 mg/kg Zn had different regenerative capacities, resulting in different detoxification functions. A higher dietary Zn (120 mg/kg) disrupted the intestinal reabsorption process in marine fish. This study showed that exogenous Zn was directly accumulated in organs through the gastrointestinal-hepatic system, which is an important pathways for regulating metal homeostasis in marine fish. The results provided important understanding of the mechanisms of metal regulation and transport in marine fish.
Collapse
Affiliation(s)
- Shuoli Ma
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Song C, You L, Tang J, Wang S, Ji C, Zhan J, Su B, Li F, Wu H. Gene biomarkers in estuarine oysters indicate pollution profiles of metals, brominated flame retardants, and poly- and perfluoroalkyl substances in and near the Laizhou Bay. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136484. [PMID: 39536349 DOI: 10.1016/j.jhazmat.2024.136484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The Laizhou Bay (LZB) is of ecological and fishery importance. The discharge of effluents containing numerous pollutants into the LZB via rivers poses significant risks to ecosystem and human health. Estuarine biomonitoring is therefore crucial for assessing the contribution of rivers to coastal pollution and their impacts on species. Estuarine oyster Crassostrea gigas is a preferable bioindicator to pollution conditions. This study measured accumulation of contaminants and expression levels of gene biomarkers in the LZB and Northern Shandong Peninsula (NSP) oysters. The LZB oysters accumulated higher levels of brominated flame retardants (BFRs) and poly- and perfluoroalkyl substances (PFAS), while NSP oysters exhibited greater accumulation of heavy metals. Decabromodiphenyl ethane was the dominant BFR, while perfluorooctanoic acid and perfluoro-2-methoxyacetic acid were the dominant PFASs in oysters. The expression of gene biomarkers effectively distinguished the LZB and NSP oysters, with CYP2 subfamilies expression correlating with BFRs and PFASs and metallothionein expression indicating heavy metals. The reproductive endocrine and neuroendocrine-immune systems in oysters might be the targets of BFRs and heavy metal pollution, respectively. The negative correlation between contaminant accumulation and gene expression might be explained by adaptive evolution, emphasizing the need to consider genetic diversity in ecological risk assessments.
Collapse
Affiliation(s)
- Changlin Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Liping You
- Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resources and Environment Research Institute, No. 216 Changjiang Road, Yantai 264006, China
| | - Jianhui Tang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Shuang Wang
- School of Ocean, Yantai University, Yantai 264005, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China.
| | - Junfei Zhan
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Bo Su
- Shandong Key Laboratory of Marine Ecological Restoration, Observation and Research Station of Laizhou Bay Marine Ecosystem, MNR, Shandong Marine Resources and Environment Research Institute, No. 216 Changjiang Road, Yantai 264006, China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| |
Collapse
|
4
|
Mbandzi-Phorego N, Puccinelli E, Pieterse PP, Ndaba J, Porri F. Metal bioaccumulation in marine invertebrates and risk assessment in sediments from South African coastal harbours and natural rocky shores. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124230. [PMID: 38810679 DOI: 10.1016/j.envpol.2024.124230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/04/2024] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
Industrial and urban activities are major contributors to metal contamination in coastal systems, often impacting the physiology, distribution and diversity of marine invertebrates. This study assessed metal contaminations in sediments, seawater, algae and invertebrates across four armoured systems (harbours) and two natural sites along the south coast of South Africa. Bioaccumulation factors such as Biosediment (BSAF), Biowater (BWAF), Bioaccumulation (BAF) and bioremediation of metals by invertebrate bioindicators were also determined. Spatial variation in metal concentrations were observed, however, bioaccumulation of metals was site and species-specific. Invertebrates bioaccumulated higher metal concentrations in armoured than natural sites, with filter feeders exhibiting higher concentrations than grazers. Among filter feeders, Octomeris angulosa and Crassostrea gigas bioaccumulated elevated aluminium (Al), arsenic (As), chromium (Cr), zinc (Zn) and copper (Cu), while, Perna perna accumulated elevated nickel (Ni), cadmium (Cd) and lead (Pb). Among grazers, Siphonaria serrata and Scutellastra longicosta bioaccumulated elevated Al, Cr, Cd, cobalt (Co), Cu, Ni and Zn. Bioaccumulation factors indicated that (As, Ni, Zn) were bioaccumulated by algae, and invertebrates from sediment (BSAF>1) and from seawater (BWAF>1). Additionally, invertebrates bioaccumulated metals from their prey item, algae as indicated by (BAF>1). Arsenic Cd and Pb in invertebrates were above the maximum limit set for human consumption by various regulatory bodies. Our findings underscore the significant role of coastal invertebrates in bioaccumulating and bioremediating metals, suggesting a natural mechanism for water quality enhancement, especially in urbanised coastal areas.
Collapse
Affiliation(s)
- Nokubonga Mbandzi-Phorego
- South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6139, South Africa; Department of Ichthyology & Fisheries Science, Rhodes University, Makhanda, South Africa.
| | - Eleonora Puccinelli
- South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6139, South Africa; Department of Coastal Systems, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Netherlands; Department of Oceanography, University of Cape Town, Rondebosch, 7701, Cape Town, South Africa
| | | | - Jabulani Ndaba
- South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6139, South Africa; Department of Ichthyology & Fisheries Science, Rhodes University, Makhanda, South Africa
| | - Francesca Porri
- South African Institute for Aquatic Biodiversity, Somerset Street, Private Bag 1015, Makhanda, 6139, South Africa; Department of Ichthyology & Fisheries Science, Rhodes University, Makhanda, South Africa
| |
Collapse
|
5
|
Luo C, Kong N, Li X, Sun S, Jiang C, Qiao X, Wang L, Song L. The c.503A>G polymorphism in ZIP1-II of Pacific oyster Crassostrea gigas associated with zinc content. Comp Biochem Physiol B Biochem Mol Biol 2024; 273:110988. [PMID: 38768804 DOI: 10.1016/j.cbpb.2024.110988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024]
Abstract
The Pacific oyster Crassostrea gigas is renowned for its high zinc content, but the significant variation among individuals diminishes its value as a reliable source of zinc supplementation. The Zrt/Irt-like protein 1 (ZIP1), a pivotal zinc transporter that facilitates zinc uptake in various organisms, plays crucial roles in regulating zinc content. In the present study, polymorphisms of a ZIP1 gene in C. gigas (CgZIP1-II) were investigated, and their association with zinc content was evaluated through preliminary association analysis in 41 oysters and verification analysis in another 200 oysters. A total of 17 single nucleotide polymorphisms (SNPs) were identified in the exonic region of CgZIP1-II gene, with c.503A>G significantly associated with zinc content. Protein sequence and structure prediction showed that c.503A>G caused a p.Met110Val nonsynonymous mutation located in the metal-binding region of CgZIP1-II, which could influence its affinity for zinc ions, thereby modulating its zinc transport functionality. These results indicate the potential influence of CgZIP1-II polymorphisms on zinc content and provide candidate markers for selecting C. gigas with high zinc content.
Collapse
Affiliation(s)
- Cong Luo
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Ning Kong
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Xiang Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Shiqing Sun
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Chunyu Jiang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Xin Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China; Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
6
|
Zhan J, Song C, Wang Z, Wu H, Ji C. Low salinity influences the dose-dependent transcriptomic responses of oysters to cadmium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172919. [PMID: 38703857 DOI: 10.1016/j.scitotenv.2024.172919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Species in estuaries tend to undergo both cadmium (Cd) and low salinity stress. However, how low salinity affects the Cd toxicity has not been fully understood. Investigating the impacts of low salinity on the dose-response relationships between Cd and biological endpoints has potential to enhance our understanding of the combined effects of low salinity and Cd. In this work, changes in the transcriptomes of Pacific oysters were analyzed following exposure to Cd (5, 20, 80 μg/L Cd2+) under normal (31.4 psu) and low (15.7 psu) salinity conditions, and then the dose-response relationship between Cd and transcriptome was characterized in a high-throughput manner. The benchmark dose (BMD) of gene expression, as a point of departure (POD), was also calculated based on the fitted dose-response model. We found that low salinity treatment significantly influenced the dose-response relationships between Cd and transcripts in oysters indicated by altered dose-response curves. In details, a total of 219 DEGs were commonly fitted to best models under both normal and low salinity conditions. Nearly three quarters of dose-response curves varied with salinity condition. Some monotonic dose-response curves in normal salinity condition even were replaced by nonmonotonic curves in low salinity condition. Low salinity treatment decreased the PODs of differentially expressed genes induced by Cd, suggesting that gene differential expression was more prone to being triggered by Cd in low salinity condition. The changed sensitivity to Cd in low salinity condition should be taken into consideration when using oyster as an indicator to assess the ecological risk of Cd pollution in estuaries.
Collapse
Affiliation(s)
- Junfei Zhan
- Key Laboratory of Ecological Restoration and Conservation of Coastal Wetlands in Universities of Shandong, The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, PR China
| | - Changlin Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhiyu Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; School of Ocean, Yantai University, Yantai 264005, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS); Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China.
| |
Collapse
|
7
|
Ferreira CP, Moreira RS, Bastolla CLV, Saldaña-Serrano M, Lima D, Gomes CHAM, Bainy ACD, Lüchmann KH. Transcriptomic investigation and biomarker discovery for zinc response in oysters Crassostrea gasar. Mar Genomics 2024; 75:101109. [PMID: 38603950 DOI: 10.1016/j.margen.2024.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/03/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
In an era of unprecedented industrial and agricultural growth, metal contamination in marine environments is a pressing concern. Sentinel organisms such as the mangrove oyster Crassostrea gasar provide valuable insights into these environments' health. However, a comprehensive understanding of the molecular mechanisms underlying their response to metal exposure remains elusive. To address this gap, we reanalyzed the 454-sequencing data of C. gasar, utilizing an array of bioinformatics workflow of CDTA (Combined De Novo Transcriptome Assembly) to generate a more representative assembly. In parallel, C. gasar individuals were exposed to two concentrations of zinc (850 and 4500 μg L-1 Zn) for 48 h to understand their molecular responses. We utilized Trinotate workflow for the 11,684-CDTA unigenes annotation, with most transcripts aligning with the genus Crassostrea. Our analysis indicated that 67.3% of transcript sequences showed homology with Pfam, while 51.4% and 54.5%, respectively had GO and KO terms annotated. We identified potential metal pollution biomarkers, focusing on metal-related genes, such as those related to the GSH biosynthesis (CHAC1 and GCLC-like), to zinc transporters (ZNT2-like), and metallothionein (MT-like). The evolutionary conservation of these genes within the Crassostrea genus was assessed through phylogenetic analysis. Further, these genes were evaluated by qPCR in the laboratory exposed oysters. All target genes exhibited significant upregulation upon exposure to Zn at both 850 and 4500 μg L-1, except for GCLC-like, which showed upregulation only at the higher concentration of 4500 μg L-1. This result suggests distinct activation thresholds and complex interactions among these genes in response to varying Zn concentrations. Our study provides insights into the molecular responses of C. gasar to Zn, adding valuable tools for monitoring metal pollution in marine ecosystems using the mangrove oyster as a sentinel organism.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Multicentric PostGraduate Program in Biochemistry and Molecular Biology - PMBqBM, Santa Catarina State University, Lages 88520-000, Brazil
| | - Renato S Moreira
- Federal Institute of Santa Catarina, Gaspar 89111-009, Brazil; Bioinformatic Laboratory, Federal University of Santa Catarina, Florianópolis 88040-970, Brazil
| | - Camila L V Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Carlos H A M Gomes
- Laboratory of Marine Mollusks (LMM), Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, Santa Catarina, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil.
| |
Collapse
|
8
|
Fan YG, Wu TY, Zhao LX, Jia RJ, Ren H, Hou WJ, Wang ZY. From zinc homeostasis to disease progression: Unveiling the neurodegenerative puzzle. Pharmacol Res 2024; 199:107039. [PMID: 38123108 DOI: 10.1016/j.phrs.2023.107039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/16/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
Zinc is a crucial trace element in the human body, playing a role in various physiological processes such as oxidative stress, neurotransmission, protein synthesis, and DNA repair. The zinc transporters (ZnTs) family members are responsible for exporting intracellular zinc, while Zrt- and Irt-like proteins (ZIPs) are involved in importing extracellular zinc. These processes are essential for maintaining cellular zinc homeostasis. Imbalances in zinc metabolism have been linked to the development of neurodegenerative diseases. Disruptions in zinc levels can impact the survival and activity of neurons, thereby contributing to the progression of neurodegenerative diseases through mechanisms like cell apoptosis regulation, protein phase separation, ferroptosis, oxidative stress, and neuroinflammation. Therefore, conducting a systematic review of the regulatory network of zinc and investigating the relationship between zinc dysmetabolism and neurodegenerative diseases can enhance our understanding of the pathogenesis of these diseases. Additionally, it may offer new insights and approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121000, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Rong-Jun Jia
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Wen-Jia Hou
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang 110122, China.
| |
Collapse
|
9
|
Meng J, Wang WX. Differentiation and decreased genetic diversity in field contaminated oysters Crassostrea hongkongensis: Identification of selection signatures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122101. [PMID: 37364753 DOI: 10.1016/j.envpol.2023.122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/04/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
The extent to which chemical contamination affects the population structure and genetic diversity of natural populations remains elusive. Here, we used the whole-genome resequencing and transcriptome to diagnose the effects of long-term exposure to multiple elevated chemical pollutants on the population differentiation and genetic diversity in oysters Crassostrea hongkongensis in a typically polluted Pearl River Estuary (PRE) of Southern China. Population structure revealed an obvious differentiation between the PRE oysters and those collected from a nearby clean Beihai (BH) individuals, while no significant differentiation was observed among individuals collected from the three pollution sites within PRE due to the high gene flow. The decreased genetic diversity in the PRE oysters reflected the long-term effects of chemical pollutants. Selective sweeps between BH and PRE oysters revealed that chemical defensome genes, including glutathione S-transferase, zinc transporter, were responsible for their differentiation, sharing common metabolic process of other pollutants. Combined with the genome-wide association analysis, 25 regions containing 77 genes were identified to be responsible for the direct selection regions of metals. Linkage disequilibrium blocks and haplotypes within these regions provided the biomarkers of permanent effects. Our results provide important insights to the genetic mechanisms underlying the rapid evolution under chemical contamination in marine bivalves.
Collapse
Affiliation(s)
- Jie Meng
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Wuhan, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
10
|
Liu J, Wang E, Cheng Z, Gao Y, Chen C, Jia R, Luo Z, Wang L. Zinc alleviates cadmium-induced reproductive toxicity via regulating ion homeostasis, metallothionein expression, and inhibiting mitochondria-mediated apoptosis in the freshwater crab Sinopotamon henanense. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115188. [PMID: 37418865 DOI: 10.1016/j.ecoenv.2023.115188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/03/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023]
Abstract
Cadmium (Cd) is a carcinogenic environmental pollutant that harms male reproductive systems by lowering sperm quality, impairing spermatogenesis, and causing apoptosis. Although zinc (Zn) has been reported to alleviate Cd toxicity, the underlying mechanisms have not been fully elucidated. The aim of this work was to investigate the mitigating effects of Zn on Cd-induced male reproductive toxicity in the freshwater crab Sinopotamon henanense. Cd exposure not only resulted in its accumulation but also in Zn deficiency, decreased sperm survival rate, poor sperm quality, altered ultrastructure, and increased apoptosis in the testis of the crabs. Morever, Cd exposure increased the expression and distribution of metallothionein (MT) in the testis. However, Zn supplementation effectively mitigated the aforementioned effects of Cd, as demonstrated by preventing Cd accumulation, increasing Zn bioavailability, alleviating apoptosis, increasing mitochondrial membrane potential, decreasing reactive oxygen species (ROS) levels, and restoring MT distribution. Moreover, Zn also significantly reduced the expression of apoptosis-related (p53, Bax, CytC, Apaf-1, Caspase-9, Caspase-3), metal transporter-related ZnT1, metal-responsive transcription factor 1 (MTF1), and the gene and protein expression of MT, while increasing the expression of ZIP1 and Bcl-2 in the testis of Cd-treated crabs. In conclusion, Zn alleviates Cd-induced reproductive toxicity via regulating ion homeostasis, MT expression, and inhibiting mitochondria-mediated apoptosis in the testis of S. henanense. The information obtained in this study may serve as the foundation for further investigation into the development of mitigation strategies for adverse ecological and human health outcomes associated with Cd contamination or poisoning.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Ermeng Wang
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Ziru Cheng
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Yuan Gao
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Chienmin Chen
- Department of Environmental Resource Management, Chia Nan University of Pharmacy and Science, Tainan City 000700, Taiwan
| | - Ru Jia
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Zhi Luo
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan 030006, Shanxi, China.
| |
Collapse
|
11
|
Ferreira CP, Moreira RS, Toledo-Silva G, Schroeder DC, Bainy ACD, Lüchmann KH. Analysis of Crassostrea gasar transcriptome reveals candidate genes involved in metal metabolism. CHEMOSPHERE 2022; 307:136009. [PMID: 35977572 DOI: 10.1016/j.chemosphere.2022.136009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/19/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Oysters have been extensively employed for monitoring of metal pollution in dynamic aquatic ecosystems. Therefore, the use of specific biomarkers can assist in discriminating the ecotoxicological implications of different elements in such complex environments. In this study, we revisited the sequencing data of gills and digestive glands transcripts in the mangrove oyster Crassostrea gasar and generated a reference transcriptome assembly from multiple assemblers, seven in total. Overall, we were able to identify a total of 11,917 transcripts, with 86.6% of them being functionally annotated and 1.4 times more than the first annotation. We screened the annotated transcripts to identify genes potentially involved in metals' transport, storage, and detoxification. Our findings included genes related to Zn distribution in cells (Zn transporters - ZIP, ZnT), metallothionein (MT-I and MT-IV), GSH biosynthesis, Ca+ transporter (NCX and ATP2B), and Cu distribution in cells (ATP7, ATOX1, CCS, and laccase-like). These results provided a reference transcriptome for additional insights into the transcriptional profile of C. gasar and other bivalves to better understand the molecular pathways underpinning metal tolerance and susceptibility. The study also provided an auxiliary tool for biomonitoring metal contamination in dynamic environments as estuaries.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Multicentric Graduate Program in Biochemistry and Molecular Biology - PMBqBM, Santa Catarina State University, Lages, 88520-000, Brazil
| | - Renato S Moreira
- Federal Institute of Santa Catarina - IFSC, Lages, 88506-400, Brazil
| | - Guilherme Toledo-Silva
- Genomics Laboratory, Cell Biology, Embryology and Genetics Department, Federal University of Santa Catarina, Florianópolis, 88040-900, Brazil
| | - Declan C Schroeder
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, 55108, USA; School of Biological Sciences, University of Reading, Reading, UK
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry - LABCAI, Federal University of Santa Catarina, Florianópolis, 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis, 88035-001, Brazil.
| |
Collapse
|
12
|
Liu Y, Bao Z, Lin Z, Xue Q. Genome-wide identification and characterization of superoxide dismutases in four oyster species reveals functional differentiation in response to biotic and abiotic stress. BMC Genomics 2022; 23:378. [PMID: 35585505 PMCID: PMC9118643 DOI: 10.1186/s12864-022-08610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/05/2022] [Indexed: 11/11/2022] Open
Abstract
Background Oysters inhabit in the intertidal zone and may be suffered from environmental stresses, which can increase the production of reactive oxygen species (ROS), resulting in mass mortality. Superoxide dismutases (SODs) protect oysters from ROS damage through different mechanisms compared with vertebrates. However, the molecular and functional differentiation in oyster SODs were rarely analyzed. Result In this study, a total of 13, 13, 10, and 8 candidate SODs were identified in the genome of Crassostrea gigas, Crassostrea virginica, Crassostrea hongkongensis, and Saccostrea glomerata respectively. The domain composition, gene structure, subcellular locations, conserved ligands, and cis-elements elucidated the SODs into five groups (Mn-SODs, Cu-only-SODs, Cu/Zn ion ligand Cu/Zn-SOD with enzyme activity, Zn-only-SODs, and no ligand metal ions Cu/Zn-SODs). For single domain Cu/Zn-SODs, only one cytosolic Cu/Zn-SOD (cg_XM_034479061.1) may conserve enzymatic activity while most extracellular Cu/Zn-SOD proteins appeared to lose SOD enzyme activity according to conserved ligand amino acid analysis and expression pattern under biotic and abiotic stress in C. gigas. Further, multi-domain-SODs were identified and some of them were expressed in response to biotic and abiotic stressors in C. gigas. Moreover, the expression patterns of these genes varied in response to different stressors, which may be due to the cis-elements in the gene promoter. Conclusion These findings revealed the most extracellular Cu/Zn-SOD proteins appeared to lose SOD enzyme activity in oysters. Further, our study revealed that only one cytosolic Cu/Zn-SOD (cg_XM_034479061.1) may conserve enzymatic activity of SOD. Moreover, the expression patterns of these genes varied in response to different stressors, which may be due to the cis-elements in the promoter. This study provides important insights into the mechanisms through which oysters adapt to harsh intertidal conditions, as well as potential biomarkers of stress response in related species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08610-9.
Collapse
Affiliation(s)
- Youli Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China.,Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, 315100, China.,College of Marine life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Zhenmin Bao
- College of Marine life Sciences, Ocean University of China, Qingdao, 266100, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China. .,Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, 315100, China.
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ninghai, 315604, China. .,Zhejiang Key Laboratory of Aquatic Germplasm Resource, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
13
|
Song CC, Chen GH, Zhong CC, Chen F, Chen SW, Luo Z. Transcriptional responses of four slc30a/znt family members and their roles in Zn homeostatic modulation in yellow catfish Pelteobagrus fulvidraco. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2021; 1864:194723. [PMID: 34116248 DOI: 10.1016/j.bbagrm.2021.194723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/09/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Abstract
The study characterized their regulatory functions of four znt members (znt1, znt2, znt6 and znt8) in Zn homeostasis in vertebrates. We found that the -1281/-1296 bp locus on the znt1 promoter, the -1/-16 bp locus on the znt2 promoter, the -825/-839 bp locus on the znt6 promoter, the -165/-180 bp locus and the -274/-292 bp STAT3 locus on the znt8 promoter were functional MTF-1 binding sites and had metal responsive element (MRE). Zn incubation increased activities of four znt promoters, which was mediated by MRE sites on znt1, znt2, znt6 and znt8 promoters and by STAT3 binding site on znt8 promoter. Moreover, Zn activated the transcription of these znts genes through MTF-1-MRE-dependent pathway. Zn incubation up-regulated the mRNA and total protein expression of ZnT1, ZnT2 and ZnT8 at both 24 h and 48 h. Overall, for the first time, this study offered novel insights for regulatory mechanism of Zn homeostasis in vertebrates.
Collapse
Affiliation(s)
- Chang-Chun Song
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Guang-Hui Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Chong-Chao Zhong
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Fang Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu-Wei Chen
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhi Luo
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Fishery College, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|