1
|
Cho H, Lee H, Hwang D. Development of Novel Fluticasone/Salmeterol/Tiotropium-Loaded Dry Powder Inhaler and Bioequivalence Assessment to Commercial Products in Rats. Pharmaceutics 2025; 17:103. [PMID: 39861751 PMCID: PMC11769347 DOI: 10.3390/pharmaceutics17010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/07/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Inhaler devices have been developed for the effective delivery of inhaled medications used in the treatment of pulmonary diseases. However, differing operating procedures across the devices can lead to user errors and reduce treatment efficacy, especially when patients use multiple devices simultaneously. To address this, we developed a novel dry powder inhaler (DPI), combining fluticasone propionate (FP), salmeterol xinafoate (SX), and tiotropium bromide (TB) into a single device designed for bioequivalent delivery compared to existing commercial products in an animal model. Methods: The micronized FP/SX/TB-loaded capsule was prepared by sieving, blending, and filling capsules. Capsule suitability of the drugs was investigated from the comparison of the stability of drugs within various capsule formulations to that of commercial products. The particle size of the drugs was adjusted using spiral air jet milling, and the ratio of lactose hydrate carriers was optimized by comparing the aerodynamic particle size distribution (APSD) with that of commercial products. To investigate the bioequivalence of micronized FP/SX/TB-loaded DPI to commercial products, the dissolution profile of FP/SX/TB particles and pharmacokinetics in rats were evaluated and compared to commercial products. Results: Capsules with hydroxypropyl methylcellulose (HPMC) without a gelling agent showed superior stability of the drugs compared to commercial products. The deposition pattern was influenced by the particle size of the drugs, and fine particle mass exhibited a significant correlation with the amount of fine carrier. Micronized FP/SX/TB-loaded DPI gave a similar APSD and dissolution profile compared to the commercial products and showed dose uniformity by the DPI device. Furthermore, micronized FP/SX/TB-loaded DPI exhibited bioequivalence to commercial products, as evidenced by no significant differences in pharmacokinetic parameters following intratracheal administration in rats. Conclusions: A novel triple-combination DPI containing FP/SX/TB was successfully developed, demonstrating comparable pharmacological performance to commercial products. Optimized FP/SX/TB-loaded DPI with HPMC capsule achieved bioequivalence in rat studies, suggesting its potential for improved patient compliance and therapeutic outcomes. This novel single-device DPI offers a promising alternative for triple therapy in pulmonary diseases.
Collapse
Affiliation(s)
- Hyukjun Cho
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Hyunji Lee
- College of Pharmacy, Kyungsung University, Busan 48434, Republic of Korea;
| | - Duhyeong Hwang
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
2
|
Islam N, Suwandecha T, Srichana T. Dry powder inhaler design and particle technology in enhancing Pulmonary drug deposition: challenges and future strategies. Daru 2024; 32:761-779. [PMID: 38861247 PMCID: PMC11555000 DOI: 10.1007/s40199-024-00520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVES The efficient delivery of drugs from dry powder inhaler (DPI) formulations is associated with the complex interaction between the device design, drug formulations, and patient's inspiratory forces. Several challenges such as limited emitted dose of drugs from the formulation, low and variable deposition of drugs into the deep lungs, are to be resolved for obtaining the efficiency in drug delivery from DPI formulations. The objective of this study is to review the current challenges of inhaled drug delivery technology and find a way to enhance the efficiency of drug delivery from DPIs. METHODS/EVIDENCE ACQUISITION Using appropriate keywords and phrases as search terms, evidence was collected from the published articles following SciFinder, Web of Science, PubMed and Google Scholar databases. RESULTS Successful lung drug delivery from DPIs is very challenging due to the complex anatomy of the lungs and requires an integrated strategy for particle technology, formulation design, device design, and patient inhalation force. New DPIs are still being developed with limited performance and future device design employs computer simulation and engineering technology to overcome the ongoing challenges. Many issues of drug formulation challenges and particle technology are concerning factors associated with drug dispersion from the DPIs into deep lungs. CONCLUSION This review article addressed the appropriate design of DPI devices and drug formulations aligned with the patient's inhalation maneuver for efficient delivery of drugs from DPI formulations.
Collapse
Affiliation(s)
- Nazrul Islam
- Pharmacy Discipline, School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, Australia.
- Centre for Immunology and Infection Control (CIIC), Queensland University of Technology, Brisbane, QLD, Australia.
| | - Tan Suwandecha
- Drug and Cosmetic Excellence Center and School of Pharmacy, Walailak University, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center and Department of Pharmaceutical Technology, Prince of Songkla University, Hat Yai, Songkla, 90110, Thailand.
| |
Collapse
|
3
|
Kämäräinen T, Nakayama Y, Uchiyama H, Tozuka Y, Kadota K. Amyloid Nanofibril-Assisted Spray Drying of Crumpled Supraparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309645. [PMID: 38716922 DOI: 10.1002/smll.202309645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/19/2024] [Indexed: 10/04/2024]
Abstract
Nanofibrils are known to improve the cohesion of supraparticle (SP) assemblies. However, tailoring the morphology of SPs using nanofibrillar additives is not well developed. Herein, β-lactoglobulin amyloid nanofibrils (ANFs) are investigated as means to impart morphological control over the assembly process of spray-dried SPs composed of 10-100 nm silica nanoparticles (SiNPs). Phytoglycogen (PG) and silver nanowires (AgNWs) are used to assess the influence of building block softness and aspect ratio, respectively. The results demonstrate that ANFs promote the onset of structural arrest during the particle consolidation enabling the preparation of corrugated SP morphologies. The critical ANF loading required to induce SP corrugation increases by roughly 1 vol% for every 10-nm increase in SiNP diameter, while the ensuing ANF network density decreases with SiNP volume fraction and increases with SiNP diameter. Results imply that ANF length starts to become influential when it approaches the SiNP diameter. ANFs display a reduced effectiveness in altering soft PG SP morphology compared with hard SiNPs of comparable size. In SiNP-AgNW SPs, ANFs induce a toroid-to-corrugated morphology transformation for sufficiently large SPs and small SiNPs. The results illustrate that ANFs are effective additives for the morphological engineering of spray-dried SPs important for numerous applications.
Collapse
Affiliation(s)
- Tero Kämäräinen
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuzuki Nakayama
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka, 569-1094, Japan
| |
Collapse
|
4
|
Eshaghi S, Khaleghi H, Maddahian R. In silico investigation of inhalation condition impacts on hygroscopic growth and deposition of salbutamol sulphate in human airways. Respir Physiol Neurobiol 2024; 326:104271. [PMID: 38703974 DOI: 10.1016/j.resp.2024.104271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/09/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
The objective of this study is to explore the transport, size growth, and deposition of Salbutamol Sulphate (SS) using Computational Fluid Dynamics (CFD). A CT-based realistic model of human airways from the oral cavity to the 5th generation of the lung was utilized as the computational domain. Four Test Cases (TC) with varying temperature and relative humidity (RH) under two inspiratory waveforms were considered to completely evaluate the impact of inhalation conditions on particle growth. Salbutamol Sulphate (SS) is a β2-adrenergic agonist and has been extensively used for asthma treatment. A monodispersed distribution of SS particles with an initial diameter of 167 nm was considered at the mouth inlet based on pharmaceutical data. Results indicated that inhalation of saturated/supersaturated air (RH>100%) leads to significant hygroscopic growth of SS particles with a factor of 10. In addition, the deposition efficiency of SS particles under the Quick and Deep (QD) inhalation profile was enhanced as the flow temperature and humidity increased. However, the implementation of Slow and Deep (SD) inspiratory waveform revealed that the same particle size growth is achieved in the respiratory system with lower deposition efficiency in the mouth-throat (less than 3%) and tracheobronchial airway (less than 2.18%). For the escaped particles form the right lung, in the SD waveform under TC 3, the maximum particle size distribution was for 600 nm particles with 25% probability. In the left lung, 30% of the particles were increased up to 950 nm in size. For the QD waveform in TC 3 and TC4, the most frequent particles were 800 nm with 36% probability. This holds practical significance in the context of deep lung delivery for asthmatic patients with enhanced deposition efficiency and large particle size. The findings of the present study can contribute to the development of targeted drug delivery strategies for the treatment of pulmonary diseases using hygroscopic dry powder formulations.
Collapse
Affiliation(s)
- Sajad Eshaghi
- Faculty of Mechanical Engineering, Tarbiat Modares University, Jalal-Al-Ahmad, Tehran 14115143, Iran
| | - Hassan Khaleghi
- Faculty of Mechanical Engineering, Tarbiat Modares University, Jalal-Al-Ahmad, Tehran 14115143, Iran
| | - Reza Maddahian
- Faculty of Mechanical Engineering, Tarbiat Modares University, Jalal-Al-Ahmad, Tehran 14115143, Iran.
| |
Collapse
|
5
|
Semba K, Kadota K, Kämäräinen T, Nakayama Y, Hatanaka Y, Uchiyama H, Arima-Osonoi H, Sugiyama K, Tozuka Y. Tailored Sugar-Mediated Porous Particle Structures for Improved Dispersion of Drug Nanoparticles in Spray-Freeze-Drying. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14440-14454. [PMID: 38959493 DOI: 10.1021/acs.langmuir.4c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
We fabricated porous particles incorporating sugars (mannitol, sucrose, or dextran) and fenofibrate nanoparticles (FNPs) by using spray-freeze-drying (SFD). The type of sugar significantly influenced the pore architecture of the resulting SFD particles. Rapid freezing of droplets containing dextran produced ice encapsulation within a dextran matrix, forming porous dextran particles. In the presence of FNPs, the particle size (approximately 4 μm) and pore volume (0.3 cm3/g) of SFD dextran were barely affected. In contrast, SFD particles derived from mannitol and sucrose exhibited denser structures with a lower pore volume than dextran. SFD mannitol incorporating FNPs produced porous structures. FNPs containing surfactant and polymer, which reduced surface tension and increased viscosity, promoted the formation of small droplets with a polymeric structure and porous particles with a relatively sharp size distribution with a median around 5 μm. FNPs were uniformly distributed in SFD dextran, which featured large pore structures, whereas in SFD mannitol, the Raman signal of FNPs was more broadly distributed across the powder samples. Both morphologies contributed to enhancing the FNP dispersibility within a redispersed suspension of SFD particles. FNPs in SFD mannitol and dextran matrices maintained their particle size distribution from before SFD, showing no aggregation upon redispersion. Dextran formed a highly porous network irrespective of the presence of FNPs, whereas mannitol tended to alter the particle attributes upon FNP inclusion. In conclusion, SFD particles derived from dextran and mannitol might help to increase FNP dispersibility by increasing the formation of porous architectures.
Collapse
Affiliation(s)
- Kumi Semba
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Kazunori Kadota
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
- School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichibancho, Wakayama 640-8156, Japan
| | - Tero Kämäräinen
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuzuki Nakayama
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuta Hatanaka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiromasa Uchiyama
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiroshi Arima-Osonoi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki 319-1106, Japan
| | - Kazumasa Sugiyama
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira Aoba, Sendai, Miyagi 980-8577, Japan
| | - Yuichi Tozuka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
6
|
Kadota K, Uchiyama H, Kämäräinen T, Tanaka S, Tozuka Y. Building respirable powder architectures: utilizing polysaccharides for precise control of particle morphology for enhanced pulmonary drug delivery. Expert Opin Drug Deliv 2024; 21:945-963. [PMID: 38961522 DOI: 10.1080/17425247.2024.2376702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/02/2024] [Indexed: 07/05/2024]
Abstract
INTRODUCTION Dry powder inhaler (DPI) formulations are gaining attention as universal formulations with applications in a diverse range of drug formulations. The practical application of DPIs to pulmonary drugs requires enhancing their delivery efficiency to the target sites for various treatment modalities. Previous reviews have not explored the relation between particle morphology and delivery to different pulmonary regions. This review introduces new approaches to improve targeted DPI delivery using novel particle design such as supraparticles and metal-organic frameworks based on cyclodextrin. AREAS COVERED This review focuses on the design of DPI formulations using polysaccharides, promising excipients not yet approved by regulatory agencies. These excipients can be used to design various particle morphologies by controlling their physicochemical properties and manufacturing methods. EXPERT OPINION Challenges associated with DPI formulations include poor access to the lungs and low delivery efficiency to target sites in the lung. The restricted applicability of typical excipients contributes to their limited use. However, new formulations based on polysaccharides are expected to establish a technological foundation for the development of DPIs capable of delivering modalities specific to different lung target sites, thereby enhancing drug delivery.
Collapse
Affiliation(s)
- Kazunori Kadota
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
- School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Hiromasa Uchiyama
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Tero Kämäräinen
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Shunsuke Tanaka
- Faculty of Environmental and Urban Engineering, Kansai University, Suita, Osaka, Japan
| | - Yuichi Tozuka
- Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| |
Collapse
|
7
|
Wang Q, Bu C, Dai Q, Chen J, Zhang R, Zheng X, Ren H, Xin X, Li X. Recent Progress in Nucleic Acid Pulmonary Delivery toward Overcoming Physiological Barriers and Improving Transfection Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309748. [PMID: 38460157 PMCID: PMC11095210 DOI: 10.1002/advs.202309748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary delivery of therapeutic agents has been considered the desirable administration route for local lung disease treatment. As the latest generation of therapeutic agents, nucleic acid has been gradually developed as gene therapy for local diseases such as asthma, chronic obstructive pulmonary diseases, and lung fibrosis. The features of nucleic acid, specific physiological structure, and pathophysiological barriers of the respiratory tract have strongly affected the delivery efficiency and pulmonary bioavailability of nucleic acid, directly related to the treatment outcomes. The development of pharmaceutics and material science provides the potential for highly effective pulmonary medicine delivery. In this review, the key factors and barriers are first introduced that affect the pulmonary delivery and bioavailability of nucleic acids. The advanced inhaled materials for nucleic acid delivery are further summarized. The recent progress of platform designs for improving the pulmonary delivery efficiency of nucleic acids and their therapeutic outcomes have been systematically analyzed, with the application and the perspectives of advanced vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
| | - Chaozhi Bu
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Qihao Dai
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Jinhua Chen
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Ruitao Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xiaomin Zheng
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Hao Ren
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xueming Li
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| |
Collapse
|
8
|
Lechanteur A, Gresse E, Orozco L, Plougonven E, Léonard A, Vandewalle N, Lumay G, Evrard B. Inhalation powder development without carrier: How to engineer ultra-flying microparticles? Eur J Pharm Biopharm 2023; 191:26-35. [PMID: 37595762 DOI: 10.1016/j.ejpb.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Particle engineering technologies have led to the commercialization of new inhaled powders like PulmoSolTM or PulmoSphereTM. Such platforms are produced by spray drying, a well-known process popular for its versatility, thanks to wide-ranging working parameters. Whereas these powders contain a high drug-loading, we have studied a low-dose case, in optimizing the production of powders with two anti-asthmatic drugs, budesonide and formoterol. Using a Design of Experiments approach, 27 powders were produced, with varying excipient mixes (cyclodextrins, raffinose and maltodextrins), solution concentrations, and spray drying parameters in order to maximize deep lung deposition, measured through fine particle fraction (next generation impactor). Based on statistical analysis, two powders made of hydropropyl-β-cyclodextrin alone or mixed with raffinose and L-leucine were selected. Indeed, the two powders demonstrated very high fine particle fraction (>55%), considerably better than commercially available products. Deep lung deposition has been correlated to very fine particle size and lower microparticles interactions shown by laser diffraction assays at different working pressures, and particle morphometry. Moreover, the two drugs would be predicted to deposit homogeneously into the lung according to impaction studies. Uniform delivery is fundamental to control symptoms of asthma. In this study, we develop carrier-free inhalation powders promoting very efficient lung deposition and demonstrate the high impact of inter-particular interactions intensity on their aerosolization behaviour.
Collapse
Affiliation(s)
- Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium.
| | - Eva Gresse
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| | - Luisa Orozco
- Group of Research and Applications in Statistical Physics, CESAM Research Unit Institute of Physics B5a, University of Liège, Liège 4000, Belgium
| | - Erwan Plougonven
- PEPs, Laboratory of Chemical Engineering, Department of Applied Chemistry, University of Liège, Building B6a, Sart-Tilman, Liège 4000, Belgium
| | - Angélique Léonard
- PEPs, Laboratory of Chemical Engineering, Department of Applied Chemistry, University of Liège, Building B6a, Sart-Tilman, Liège 4000, Belgium
| | - Nicolas Vandewalle
- Group of Research and Applications in Statistical Physics, CESAM Research Unit Institute of Physics B5a, University of Liège, Liège 4000, Belgium
| | - Geoffroy Lumay
- Group of Research and Applications in Statistical Physics, CESAM Research Unit Institute of Physics B5a, University of Liège, Liège 4000, Belgium
| | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, CIRM, University of Liège, Liège 4000, Belgium
| |
Collapse
|
9
|
Kadota K, Tse JY, Fujita S, Suzuki N, Uchiyama H, Tozuka Y, Tanaka S. Drug-Facilitated Crystallization of Spray-Dried CD-MOFs with Tunable Morphology, Porosity, And Dissolution Profile. ACS APPLIED BIO MATERIALS 2023; 6:3451-3462. [PMID: 37184656 DOI: 10.1021/acsabm.3c00162] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal-organic frameworks (MOFs) with versatile functionalities have applications in environmental science, sensor separation, catalysis, and drug delivery. In particular, MOFs used in drug delivery should be biodegradable and easy to control. In this study, spray-dried cyclodextrin-based MOFs (CD-MOFs) with tunable crystallinity, porosity, and dissolution properties were fabricated. The spray-drying precursor properties, such as ethanol volume ratio, incubation time, and precursor concentration, were optimized for controlled crystallization. On the basis of the morphology, X-ray diffraction peak intensity, and specific surface areas of the spray-dried CD-MOF products, they were categorized as amorphous, partially crystalline, and highly crystalline. An active pharmaceutical ingredient ketoconazole (KCZ) was introduced into the precursor to prepare KCZ-containing CD-MOFs. The surface areas of these products were greater by 3-fold (292 m2/g) than that of the plain CD-MOF (94.1 m2/g) prepared using the same parameters. The presence of KCZ in the hydrophobic cavity between the two γ-CD molecules was correlated to the CD-MOF crystal growth. Additionally, CD-MOF particles exhibited different dissolution behaviors on the basis of the position of KCZ in the MOF. These spray-dried CD-MOFs with tunable morphology, specific surface area, and dissolution could have potential applications in various fields.
Collapse
Affiliation(s)
- Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shuhei Fujita
- Department of Chemical, Energy, and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Nao Suzuki
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shunsuke Tanaka
- Department of Chemical, Energy, and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
- Collaborate Research Center of Engineering, Medicine and Pharmacology (CEMP), Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| |
Collapse
|
10
|
Ali DA, Domínguez Mercado L, Findlay BL, Badia A, DeWolf C. Opposites Attract: Electrostatically Driven Loading of Antimicrobial Peptides into Phytoglycogen Nanocarriers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:53-63. [PMID: 36525622 DOI: 10.1021/acs.langmuir.2c01794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Antimicrobial peptides, such as GL13K, have a high binding selectivity toward bacterial membranes, while not affecting healthy mammalian cells at therapeutic concentrations. However, delivery of these peptides is challenging since they are susceptible to proteolytic hydrolysis and exhibit poor cellular uptake. A protective nanocarrier is thus proposed to overcome these obstacles. We investigate the potential to employ biodegradable phytoglycogen nanoparticles as carriers for GL13K using a simple loading protocol based on electrostatic association rather than chemical conjugation, eliminating the need for control of chemical cleavage for release of the peptide in situ. Both the native (quasi-neutral) and carboxymethylated (anionic) phytoglycogen were evaluated for their colloidal stability, loading capacity, and release characteristics. We show that the anionic nanophytoglycogen carries a greater cationic GL13K load and exhibits slower release kinetics than native nanophytoglycogen. Isotope exchange measurements demonstrate that the antimicrobial peptide is entrapped in the pores of the dendritic-like macromolecule, which should provide the necessary protection for delivery. Importantly, the nanoformulations are active against a Pseudomonas aeruginosa clinical isolate at concentrations comparable to those of the free peptide and representative, small molecule antibiotics. The colloidal nanocarrier preserves peptide stability and antimicrobial activity, even after long periods of storage (at least 8 months).
Collapse
Affiliation(s)
- Dalia A Ali
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QuebecH4B 1R6, Canada
- Centre for NanoScience Research, Concordia University, Montreal, QuebecH4B 1R6, Canada
- FRQNT Centre Québécois sur les Matériaux Fonctionnels─Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, QuebecH3A 0G4, Canada
- Faculty of Pharmacy, Alexandria University, Alexandria5424041, Egypt
| | - Laura Domínguez Mercado
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QuebecH4B 1R6, Canada
| | - Brandon L Findlay
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QuebecH4B 1R6, Canada
| | - Antonella Badia
- FRQNT Centre Québécois sur les Matériaux Fonctionnels─Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, QuebecH3A 0G4, Canada
- Département de Chimie, Université de Montréal, Complexe des sciences, C.P. 6128, succursale Centre-ville, Montréal, QuebecH3C 3J7, Canada
| | - Christine DeWolf
- Department of Chemistry and Biochemistry, Concordia University, Montreal, QuebecH4B 1R6, Canada
- Centre for NanoScience Research, Concordia University, Montreal, QuebecH4B 1R6, Canada
- FRQNT Centre Québécois sur les Matériaux Fonctionnels─Quebec Centre for Advanced Materials, McGill University, 845 Sherbrooke Street West, Montréal, QuebecH3A 0G4, Canada
| |
Collapse
|
11
|
Kämäräinen T, Kadota K, Tse JY, Uchiyama H, Oguchi T, Arima-Osonoi H, Tozuka Y. Tuning the Phytoglycogen Size and Aggregate Structure with Solvent Quality: Influence of Water-Ethanol Mixtures Revealed by X-ray and Light Scattering Techniques. Biomacromolecules 2023; 24:225-237. [PMID: 36484419 DOI: 10.1021/acs.biomac.2c01093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phytoglycogen (PG) is a hyperbranched polysaccharide with promising properties for biomedical and pharmaceutical applications. Herein, we explore the size and structure of sweet corn PG nanoparticles and their aggregation in water-ethanol mixtures up to the ethanol mole fraction xEtOH = 0.364 in dilute concentrations using small-angle X-ray scattering (SAXS) and dynamic light scattering (DLS) measurements. Between 0 ≤ xEtOH ≤ 0.129, the conformation of PG contracts gradually decreasing up to ca. 80% in hydrodynamic volume, when measured shortly after ethanol addition. For equilibrated PG dispersions, SAXS suggests a lower PG volume decrease between 19 and 67% at the corresponding xEtOH range; however, the inflection point of the DLS volume contraction coincides with the onset of reduced colloidal stability observed with SAXS. Up to xEtOH = 0.201, the water-ethanol mixtures yield labile fractal and globular aggregates, as evidenced by their partial breakup under mild ultrasonic treatment, demonstrated by the decrease in their hydrodynamic size. Between 0.235 ≤ xEtOH ≤ 0.364, PG nanoparticles form larger, more cohesive globular aggregates that are less affected by ultrasonic shear forces.
Collapse
Affiliation(s)
- Tero Kämäräinen
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka569-1094, Japan
| | - Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka569-1094, Japan
| | - Jun Y Tse
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka569-1094, Japan
| | - Toshio Oguchi
- Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi409-3898, Japan
| | - Hiroshi Arima-Osonoi
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai, Ibaraki319-1106, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka569-1094, Japan
| |
Collapse
|
12
|
Knap K, Kwiecień K, Reczyńska-Kolman K, Pamuła E. Inhalable microparticles as drug delivery systems to the lungs in a dry powder formulations. Regen Biomater 2022; 10:rbac099. [PMID: 36683752 PMCID: PMC9845529 DOI: 10.1093/rb/rbac099] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 12/13/2022] Open
Abstract
Inhalation-administrated drugs remain an interesting possibility of addressing pulmonary diseases. Direct drug delivery to the lungs allows one to obtain high concentration in the site of action with limited systemic distribution, leading to a more effective therapy with reduced required doses and side effects. On the other hand, there are several difficulties in obtaining a formulation that would meet all the criteria related to physicochemical, aerodynamic and biological properties, which is the reason why only very few of the investigated systems can reach the clinical trial phase and proceed to everyday use as a result. Therefore, we focused on powders consisting of polysaccharides, lipids, proteins or natural and synthetic polymers in the form of microparticles that are delivered by inhalation to the lungs as drug carriers. We summarized the most common trends in research today to provide the best dry powders in the right fraction for inhalation that would be able to release the drug before being removed by natural mechanisms. This review article addresses the most common manufacturing methods with novel modifications, pros and cons of different materials, drug loading capacities with release profiles, and biological properties such as cytocompatibility, bactericidal or anticancer properties.
Collapse
Affiliation(s)
| | | | - Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Krakow, Poland
| | | |
Collapse
|
13
|
Party P, Kókai D, Burián K, Nagy A, Hopp B, Ambrus R. Development of extra-fine particles containing nanosized meloxicam for deep pulmonary delivery: in vitro aerodynamic and cell line measurements. Eur J Pharm Sci 2022; 176:106247. [PMID: 35760279 DOI: 10.1016/j.ejps.2022.106247] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/03/2022] [Accepted: 06/23/2022] [Indexed: 11/03/2022]
Abstract
Pulmonary drug administration provides a platform for the effective local treatment of various respiratory diseases. Application of nano-sized active ingredients results in higher bioavailability because of their large specific surface area. Extra-fine dry powder inhalers reach the smaller airways, further improving therapeutic efficiency. Poorly water-soluble meloxicam was the selected active ingredient. We aimed to decrease the particle size into the nano range by wet milling and producing extra-fine inhalable particles via nano spray-drying. The diameter of the drug was reduced to 138 nm. The particle size of the dry products was between 1.1-1.5 µm, and the dispersed diameter was between 500-800 nm. Owing to the excipients (poly-vinyl-alcohol, leucine), the spray-dried particles presented nearly spherical morphology. The drug became partially amorphous. Thanks to the improved surface area, the solubility and the released and the diffused amount of the meloxicam increased in artificial lung media. The in vitro aerodynamic measurements showed that the leucine-containing formulations had outstanding fine particle fraction (FPF) deposition with 1.3 µm mass median aerodynamic diameter (MMAD). The aerodynamic particle counter test also proved the extra-fine aerodynamic particle size. The in vitro cell line experiments revealed the non-cytotoxicity of the products and the suppression of the interleukin concentration. Overall, the powders are suitable for deep pulmonary delivery and the local treatment of lung inflammations.
Collapse
Affiliation(s)
- Petra Party
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös street 6., Szeged 6720, Hungary
| | - Dávid Kókai
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm square 10., 6720 Szeged, Hungary
| | - Katalin Burián
- Department of Medical Microbiology, Faculty of Medicine, University of Szeged, Dóm square 10., 6720 Szeged, Hungary
| | - Attila Nagy
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós street 29-33., 1121, Budapest, Hungary
| | - Béla Hopp
- Department of Optics and Quantum Electronics, University of Szeged, Dóm square 9., Szeged 6720 Hungary
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Eötvös street 6., Szeged 6720, Hungary.
| |
Collapse
|
14
|
Kadota K, Matsumoto K, Uchiyama H, Tobita S, Maeda M, Maki D, Kinehara Y, Tachibana I, Sosnowski TR, Tozuka Y. In silico evaluation of particle transport and deposition in the airways of individual patients with chronic obstructive pulmonary disease. Eur J Pharm Biopharm 2022; 174:10-19. [DOI: 10.1016/j.ejpb.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
|
15
|
Karimi M, Kamali H, Mohammadi M, Tafaghodi M. Evaluation of various techniques for production of inhalable dry powders for pulmonary delivery of peptide and protein. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|