1
|
Bontempo A, Heidari A, Pastore MR, Madonia R, Sadik A, Schweizer M, Cayabyab M. Yoda1, a Piezo1 agonist, induced latent HIV reactivation associated with upregulation of CD3/TCR complex and HLA genes. RESEARCH SQUARE 2025:rs.3.rs-6208371. [PMID: 40297703 PMCID: PMC12036472 DOI: 10.21203/rs.3.rs-6208371/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
There is currently no cure for HIV because of the presence of latent viral reservoirs in people with HIV (PWH) on antiretroviral therapy (ART). Latency-reversing agents (LRAs) that can effectively reactivate and destroy latent HIV are being developed as a possible cure for HIV. Here, we identify Yoda1, a Piezo1 agonist, as a novel LRA. Yoda1 reactivated latent HIV in vitro ACH2 cells and ex vivo PBMCs from an HIV patient on ART. Yoda1 induced infectious virus production and HIV gene expression via Piezo1 activation and calcium signaling. Transcriptomic and proteomic analyses revealed a unique latent HIV reactivation pathway involving T cell activation, upregulation of TCR/CD3 and HLA genes, as well as modulation of host and viral transcription and translation that favors viral gene expression. These findings suggest further testing and development of Yoda1 as an effective LRA to reactivate latent HIV and destroy latent reservoirs for the cure of HIV.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mark Cayabyab
- Nova Southeastern University College of Dental Medicine
| |
Collapse
|
2
|
Ashokkumar M, Hafer TL, Felton A, Archin NM, Margolis DM, Emerman M, Browne EP. A targeted CRISPR screen identifies ETS1 as a regulator of HIV-1 latency. PLoS Pathog 2025; 21:e1012467. [PMID: 40198713 PMCID: PMC12005537 DOI: 10.1371/journal.ppat.1012467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/17/2025] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Human Immunodeficiency virus (HIV) infection is regulated by a wide array of host cell factors that combine to influence viral transcription and latency. To understand the complex relationship between the host cell and HIV-1 latency, we performed a lentiviral CRISPR screen that targeted a set of host cell genes whose expression or activity correlates with HIV-1 expression. We further investigated one of the identified factors - the transcription factor ETS1, and found that it is required for maintenance of HIV-1 latency in both latently infected cell lines and in a primary CD4 T cell latency model. Interestingly, ETS1 played divergent roles in actively infected and latently infected CD4 T cells, with knockout of ETS1 leading to reduced HIV-1 expression in actively infected cells, but increased HIV-1 expression in latently infected cells, indicating that ETS1 can play both a positive and negative role in HIV-1 expression. CRISPR/Cas9 knockout of ETS1 in CD4 T cells from ART-suppressed people with HIV-1 (PWH) confirmed that ETS1 maintains transcriptional repression of the clinical HIV-1 reservoir. Transcriptomic profiling of ETS1-depleted cells from PWH identified a set of host cell pathways involved in viral transcription that are controlled by ETS1 in resting CD4 T cells. In particular, we observed that ETS1 knockout increased expression of the long non-coding RNA MALAT1 that has been previously identified as a positive regulator of HIV-1 expression. Furthermore, the impact of ETS1 depletion on HIV-1 expression in latently infected cells was partially dependent on MALAT1. Additionally, we demonstrate that ETS1 knockout resulted in enhanced abundance of activating modifications (H3K9Ac, H3K27Ac, H3K4me3) on histones located at the HIV-1 long terminal repeat (LTR), indicating that ETS1 regulates the activity of chromatin-targeting complexes at the HIV-1 LTR. Overall, these data demonstrate that ETS1 is an important regulator of HIV-1 latency that impacts HIV-1 expression through repressing MALAT1 expression and by regulating modification of proviral histones.
Collapse
Affiliation(s)
- Manickam Ashokkumar
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Terry L. Hafer
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Abby Felton
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Nancie M. Archin
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David M. Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael Emerman
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Edward P. Browne
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
3
|
Chen C, Zhong Z, Zhang W, Xia B, Wu L, Liang L, Zhang Y, Zhang H, Zhang X, Pan T, Li L, Liu B. Tannic acid reactivates HIV-1 latency by mediating CBX4 degradation. J Virol 2025; 99:e0117324. [PMID: 39692477 PMCID: PMC11790007 DOI: 10.1128/jvi.01173-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024] Open
Abstract
HIV-1 can integrate viral DNA into host cell chromosomes and establish a long-term stable latent viral reservoir, a major obstacle in curing HIV-1 infection. The reactivation of latent proviruses with latency-reversing agents (LRAs) is a prerequisite for the eradication of viral reservoirs. Previous reports have shown that tannic acid (TA) exerts several biological functions, including antioxidant and antitumor activities. Here, we identified a novel function of TA as a reactivator of HIV-1 latency. TA showed similar features to the HIV-1 transactivator of transcription (Tat) and was able to reactivate a larger number of proviruses from various integration sites. TA also showed a strong synergistic effect with other LRAs acting on different signaling pathways. Further studies revealed that the polycomb repressive complex 1 component, chromobox protein homolog 4 (CBX4), is specifically degraded by TA through ubiquitination. CBX4 is associated with the tri-methylation at lysine 27 of histone H3 (H3K27me3) which was enriched on HIV-1 long terminal repeat regions. The TA-induced CBX4 degradation decreased the H3K27me3 enrichment and subsequently enhanced the transcriptional activity of the integrated proviruses. These results suggest that TA is an efficient LRA aiming to a new target for HIV-1 latency, which could be developed to eradicate latent proviruses.IMPORTANCEHIV-1 remains a global health challenge, with its ability to integrate into the host genome and evade the effects of drugs. To overcome this obstacle, the "shock and kill" strategy was proposed, targeting the reactivation of latent HIV-1 for subsequent eradication through antiretroviral medication and immune system reinforcement. Here, we found a new reactivator for HIV-1 latency, tannic acid (TA), which can reactivate HIV-1 latency widely and deeply. Moreover, we demonstrated that TA could promote the interaction between the polycomb repressive complex 1 component CBX4 and the E3 ubiquitin ligase cullin 4A (CUL4A), resulting in CBX4 degradation through the ubiquitin-proteasome system. These events reduce H3K27me3 enrichment in the HIV-1 long terminal repeat region, thereby promoting HIV-1 transcription and ultimately reactivating HIV-1 latent infection. Our work may facilitate the identification of new latency-reversing agents and provide more theoretical evidence for the molecular mechanism of HIV-1 latency.
Collapse
Affiliation(s)
- Cancan Chen
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhihan Zhong
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wanying Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
- Infectious Diseases Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Baijin Xia
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liyang Wu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liting Liang
- Qianyang Biomedical Research Institute, Guangzhou, Guangdong, China
| | - Yiwen Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hui Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xu Zhang
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ting Pan
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Linghua Li
- Infectious Diseases Center, Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bingfeng Liu
- Institute of Human Virology, Department of Pathogen Biology and Biosecurity, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
4
|
Ashokkumar M, Hafer TL, Felton A, Archin NM, Margolis DM, Emerman M, Browne EP. A targeted CRISPR screen identifies ETS1 as a regulator of HIV latency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606477. [PMID: 39211204 PMCID: PMC11360895 DOI: 10.1101/2024.08.03.606477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Human Immunodeficiency virus (HIV) infection is regulated by a wide array of host cell factors that combine to influence viral transcription and latency. To understand the complex relationship between the host cell and HIV latency, we performed a lentiviral CRISPR screen that targeted a set of host cell genes whose expression or activity correlates with HIV expression. We further investigated one of the identified factors - the transcription factor ETS1 and found that it is required for maintenance of HIV latency in a primary CD4 T cell model. Interestingly, ETS1 played divergent roles in actively infected and latently infected CD4 T cells, with knockout of ETS1 leading to reduced HIV expression in actively infected cells, but increased HIV expression in latently infected cells, indicating that ETS1 can play both a positive and negative role in HIV expression. CRISPR/Cas9 knockout of ETS1 in CD4 T cells from ART-suppressed people with HIV (PWH) confirmed that ETS1 maintains transcriptional repression of the clinical HIV reservoir. Transcriptomic profiling of ETS1-depleted cells from PWH identified a set of host cell pathways involved in viral transcription that are controlled by ETS1 in resting CD4 T cells. In particular, we observed that ETS1 knockout increased expression of the long non-coding RNA MALAT1 that has been previously identified as a positive regulator of HIV expression. Furthermore, the impact of ETS1 depletion on HIV expression in latently infected cells was partially dependent on MALAT1. Overall, these data demonstrate that ETS1 is an important regulator of HIV latency and influences expression of several cellular genes, including MALAT1, that could have a direct or indirect impact on HIV expression. Author Summary HIV latency is a major obstacle for the eradication of HIV. However, molecular mechanisms that restrict proviral expression during therapy are not well understood. Identification of host cell factors that silence HIV would create opportunities for targeting these factors to reverse latency and eliminate infected cells. Our study aimed to explore mechanisms of latency in infected cells by employing a lentiviral CRISPR screen and CRISPR/Cas9 knockout in primary CD4 T cells. These experiments revealed that ETS1 is essential for maintaining HIV latency in primary CD4 T cells and we further confirmed ETS1's role in maintaining HIV latency through CRISPR/Cas9 knockout in CD4 T cells from antiretroviral therapy (ART)-suppressed individuals with HIV. Transcriptomic profiling of ETS1-depleted cells from these individuals identified several host cell pathways involved in viral transcription regulated by ETS1, including the long non-coding RNA MALAT1. Overall, our study demonstrates that ETS1 is a critical regulator of HIV latency, affecting the expression of several cellular genes that directly or indirectly influence HIV expression.
Collapse
|
5
|
Yuen CA, Bao S, Pekmezci M, Mo F, Kong XT. Pembrolizumab in an HIV-infected patient with glioblastoma. Immunotherapy 2024; 16:803-811. [PMID: 38889068 PMCID: PMC11457652 DOI: 10.1080/1750743x.2024.2362566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/18/2024] [Indexed: 06/20/2024] Open
Abstract
Persons living with human immunodeficiency virus (PLWH) carry increased risk for developing malignancies, including glioblastoma. Despite extensive investigations, both human immunodeficiency virus (HIV) and glioblastoma are incurable. Treatment for a patient with combined glioblastoma and HIV remains an unexplored need. Preliminary evidence suggests that immunotherapy may be effective for the simultaneous treatment of both HIV and cancer by reversing HIV latency and T cell exhaustion. We present a case of glioblastoma in a PLWH who was treated with pembrolizumab. Treatment was well tolerated and safe with a mixed response. Our patient did not develop any opportunistic infections, immune-related adverse events, or worsening of his immunodeficiency. To our knowledge, this is the first reported case of a PLWH and glioblastoma treated with immunotherapy.
Collapse
Affiliation(s)
- Carlen A Yuen
- Department of Neurology, Neuro-Oncology Division, University of California, Irvine, CA 92868, USA
| | - Silin Bao
- Department of Internal Medicine, Neurosciences Division, Community Regional Medical Center, Fresno, CA 93721, USA
| | - Melike Pekmezci
- Department of Pathology, University of California, San Francisco, CA 94143, USA
| | - Fan Mo
- Department of Internal Medicine, Neurosciences Division, Community Regional Medical Center, Fresno, CA 93721, USA
| | - Xiao-Tang Kong
- Department of Neurology, Neuro-Oncology Division, University of California, Irvine, CA 92868, USA
| |
Collapse
|
6
|
Khatun S, Amin SA, Choudhury D, Chowdhury B, Jha T, Gayen S. Advances in structure-activity relationships of HDAC inhibitors as HIV latency-reversing agents. Expert Opin Drug Discov 2024; 19:353-368. [PMID: 38258439 DOI: 10.1080/17460441.2024.2305730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
INTRODUCTION HIV-infected cells may rebound due to the existence of the silent HIV-infected memory CD4+ T cells (HIV latency). This HIV latency makes the disease almost incurable. In latency, the integrated proviral DNA of HIV is transcriptionally silenced partly due to the activity of histone deacetylases (HDACs). Hence, inhibition of HDAC is considered a prime target for HIV latency reversal. AREAS COVERED A brief biology and function of HDACs have been discussed to identify key points to design HDAC inhibitors (HDACis). This article summarizes recent achievements in the development of HDACis to achieve HIV latency reversal. Structure-activity relationships (SARs) of some series of compounds were also explored. EXPERT OPINION Depletion of the HIV reservoir is the only way to end this deadly epidemic. HDACis are latency-reversing agents (LRA) that can be used to 'shock' the latently infected CD4+ T cells to induce them to produce viral proteins. It is interesting to note that HDAC3, which is extensively expressed in resting T cells, is specifically preferred by benzamide-containing HDACis for inhibition. Thus, the benzamide class of compounds should be explored. Nevertheless, more data on selective HDAC inhibition is needed for further development of HDACis in HIV latency reversal.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | | | - Boby Chowdhury
- Department of Pharmaceutical Technology, JIS University, Kolkata, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
7
|
Fernandes LDR, Lopes JR, Bonjorno AF, Prates JLB, Scarim CB, Dos Santos JL. The Application of Prodrugs as a Tool to Enhance the Properties of Nucleoside Reverse Transcriptase Inhibitors. Viruses 2023; 15:2234. [PMID: 38005911 PMCID: PMC10675571 DOI: 10.3390/v15112234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Antiretroviral Therapy (ART) is an effective treatment for human immunodeficiency virus (HIV) which has transformed the highly lethal disease, acquired immunodeficiency syndrome (AIDS), into a chronic and manageable condition. However, better methods need to be developed for enhancing patient access and adherence to therapy and for improving treatment in the long term to reduce adverse effects. From the perspective of drug discovery, one promising strategy is the development of anti-HIV prodrugs. This approach aims to enhance the efficacy and safety of treatment, promoting the development of more appropriate and convenient systems for patients. In this review, we discussed the use of the prodrug approach for HIV antiviral agents and emphasized nucleoside reverse transcriptase inhibitors. We comprehensively described various strategies that are used to enhance factors such as water solubility, bioavailability, pharmacokinetic parameters, permeability across biological membranes, chemical stability, drug delivery to specific sites/organs, and tolerability. These strategies might help researchers conduct better studies in this field. We also reported successful examples from the primary therapeutic classes while discussing the advantages and limitations. In this review, we highlighted the key trends in the application of the prodrug approach for treating HIV/AIDS.
Collapse
Affiliation(s)
| | | | | | | | | | - Jean Leandro Dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, Brazil; (L.d.R.F.); (J.R.L.); (A.F.B.); (J.L.B.P.); (C.B.S.)
| |
Collapse
|
8
|
Khan MA, Singh SK. Atom-based 3D-QSAR and DFT analysis of 5-substituted 2-acylaminothiazole derivatives as HIV-1 latency-reversing agents. J Biomol Struct Dyn 2022:1-16. [PMID: 35971967 DOI: 10.1080/07391102.2022.2112078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
HIV-1 latency consists of viral DNA; integrated inside the host genome; it remains transcriptional silent. Combined Antiretroviral Therapy (cART) and the host immune system fail to recognize the latency cells or reservoirs, representing a major barrier to eradicating the HIV-1 infection. The Shock and Kill emerged as a promising strategy to target these cells using Latency reversal agents (LRAs); partially succeeded in producing viral mRNA but failed to reduce the size of reservoirs. In this Context, 2-acylaminothiazole class derivatives appeared as promising HIV-1 latency-reversing agents. In this study, we have developed an atom-based 3 D-QSAR model by utilizing the 49 active compounds of the 5-substituted 2-acylaminothiazoles derivatives. These compounds are further randomly divided into training (37) and test (12) datasets, yielding statistically significant R2 (0.90) and Q2 (0.85) results, respectively. The internal and external validation of the model shows highly robust and reliable results. Next, the model was visualized to check the favourable and unfavourable groups in terms of hydrogen bond donor, electron-withdrawing and hydrophobic group on the most active compound 96 and least active compound 30. The investigated model reveals the structural insights required for obtaining more leads that are potent. Finally, DFT calculations on the most and least active compounds were performed to support the atom-based 3 D-QSAR model. Overall, this study will aid in understanding the minimum structural requirement and functional group required for screening the novel potent leads as HIV-1 latency reversal agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Aqueel Khan
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modelling Lab, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Department of Bioinformatics, Computer Aided Drug Design and Molecular Modelling Lab, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
9
|
Sawant AA, Jadav SS, Nayani K, Mainkar PS. Development of Synthetic Approaches Towards HIV Integrase Strand Transfer Inhibitors (INSTIs). ChemistrySelect 2022. [DOI: 10.1002/slct.202201915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ashwini Amol Sawant
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Surender Singh Jadav
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Department of Applied Biology CSIR-Indian Institute of Chemical Technology Tarnaka Uppal Road Hyderabad 500037 India
| | - Kiranmai Nayani
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology Tarnaka Uppal Road Hyderabad 500037 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Prathama S. Mainkar
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology Tarnaka Uppal Road Hyderabad 500037 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
10
|
Wen J, Li X, Zhao QX, Yang XF, Wu ML, Yan Q, Chang J, Wang H, Jin X, Su X, Deng K, Chen L, Wang JH. Pharmacological suppression of glycogen synthase kinase-3 reactivates HIV-1 from latency via activating Wnt/β-catenin/TCF1 axis in CD4 + T cells. Emerg Microbes Infect 2022; 11:391-405. [PMID: 34985411 PMCID: PMC8812804 DOI: 10.1080/22221751.2022.2026198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACTHIV-1 latency posts a major obstacle for HIV-1 eradication. Currently, no desirable latency reversing agents (LRAs) have been implicated in the "Shock and Kill" strategy to mobilize the latently infected cells to be susceptible for clearance by immune responses. Identification of key cellular pathways that modulate HIV-1 latency helps to develop efficient LRAs. In this study, we demonstrate that the Wnt downstream β-catenin/TCF1 pathway is a crucial modulator for HIV-1 latency. The pharmacological activation of the β-catenin/TCF1 pathway with glycogen synthase kinase-3 (GSK3) inhibitors promoted transcription of HIV-1 proviral DNA and reactivated latency in CD4+ T cells; the GSK3 kinase inhibitor 6-bromoindirubin-3'-oxime (6-BIO)-induced HIV-1 reactivation was subsequently confirmed in resting CD4+ T cells from cART-suppressed patients and SIV-infected rhesus macaques. These findings advance our understanding of the mechanisms responsible for viral latency, and provide the potent LRA that can be further used in conjunction of immunotherapies to eradicate viral reservoirs.
Collapse
Affiliation(s)
- Jing Wen
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xin Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Qing-Xia Zhao
- Department of Infection, Zhengzhou Sixth People's Hospital, Zhengzhou, People's Republic of China
| | - Xiao-Fan Yang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Meng-Li Wu
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Qihong Yan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Junbiao Chang
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Haikun Wang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Xia Jin
- College of Life Science, Henan Normal University, Xinxiang, People's Republic of China
| | - Xiao Su
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Kai Deng
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Ling Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| | - Jian-Hua Wang
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.,Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
11
|
Lopes JR, Prokopczyk IM, Gerlack M, Man Chin C, Santos JLD. Design and Synthesis of Hybrid Compounds as Epigenetic Modifiers. Pharmaceuticals (Basel) 2021; 14:ph14121308. [PMID: 34959707 PMCID: PMC8709175 DOI: 10.3390/ph14121308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Epigenetic modifiers acting through polypharmacology mechanisms are promising compounds with which to treat several infectious diseases. Histone deacetylase (HDAC) enzymes, mainly class I, and extra-terminal bromodomains (BET) are involved in viral replication and the host response. In the present study, 10 compounds were designed, assisted by molecular docking, to act against HDAC class I and bromodomain-4 (BRD4). All the compounds were synthesized and characterized by analytical methods. Enzymatic assays were performed using HDAC-1, -4, and -11 and BRD4. Compounds (2-10) inhibited both HDAC class I, mainly HDAC-1 and -2, and reduced BRD4 activity. For HDAC-1, the inhibitory effect ranged from 8 to 95%, and for HDAC-2, these values ranged from 10 to 91%. Compounds (2-10) decreased the BRD4 activity by up to 25%. The multi-target effects of these compounds show desirable properties that could help to combat viral infections by acting through epigenetic mechanisms.
Collapse
|