1
|
Zhao Y, Wen Y, Xu X, Fan M, Guo S, Chen Z, Zhao X, Wang B, Huang W. Removal of Cu(II) and Cr(VI) from electroplating wastewater by magnetic Fe 3O 4@SiO 2-UiO-66-EDTA: Adsorption behavior and mechanism. ENVIRONMENTAL RESEARCH 2025; 278:121647. [PMID: 40252797 DOI: 10.1016/j.envres.2025.121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
The heavy metals discharged from electroplating wastewater, represented as copper and chromium ions, is harmful to aquatic lives and human beings, and will break the ecological balance. In this work, magnetic hybrid porous structure adsorbent of Fe3O4@SiO2-UiO-66-EDTA is prepared for recycling copper and chromium ions. The adsorbent exhibits a maximum adsorption capacity of 212.10 mg/g for Cu(II) and 118.10 mg/g for Cr(VI). Notably, it shows excellent regenerability of 80.89% after 10 cycles. The adsorption of Cu(II) and Cr(VI) on Fe3O4@SiO2-UiO-66-EDTA follows the pseudo-second-order model, where chemical adsorption is dominant and it occurs spontaneously and exothermally. Based on XRD, FTIR, XPS, and DFT calculations, the adsorption mechanisms are driven by electrostatic attraction, chelation, and redox reactions. This work provides a novel and promising strategy for designing highly efficient adsorbents, paving the way for more effective treatments of electroplating wastewater contaminated with Cu(II) and Cr(VI).
Collapse
Affiliation(s)
- Yuxuan Zhao
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China
| | - Yueli Wen
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China; College of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA.
| | - Xiaonuo Xu
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China
| | - Maohong Fan
- Shanxi Yunbo Environmental New Technology Co., LTD, Taiyuan, 030024, Shanxi, China
| | - Shiyun Guo
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China
| | - Zhiju Chen
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China
| | - Xiaoxiao Zhao
- Bureau of Industry and Information Technology of Linshu, Linyi, 276700, Shandong, China
| | - Bin Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China; College of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA; Shanxi Yunbo Environmental New Technology Co., LTD, Taiyuan, 030024, Shanxi, China.
| | - Wei Huang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| |
Collapse
|
2
|
Aydın EB, Aydın M, Sezgintürk MK. Early and sensitive diagnosis of celiac autoimmune disease by using carboxylic acid functionalized magnetic nanoparticles-assisted biosensing platform. Mikrochim Acta 2025; 192:284. [PMID: 40198415 PMCID: PMC11978692 DOI: 10.1007/s00604-025-07129-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/21/2025] [Indexed: 04/10/2025]
Abstract
A novel impedimetric magneto-immunosensor based on iron oxide (Fe3O4) nanoparticles coated with 3-phosphonopropionic acid (3-PPA) (functionalized magnetic beads, or FMBs) was created for the highly sensitive and selective detection of anti-tissue transglutaminase antibody (anti-tTG) in human serum. This label-less immunosensor was introduced by magnetically attaching FMBs onto the working electrode surface with a neodium magnet. The FMBs were utilized as a sensing interface and had carboxylic acid groups for tTG molecules, which could selectively link the target anti-tTG antibody. The FMBs modification steps were carried out in microcentrifuge tubes and concentrated with magnetic force before electrochemical analyses. The specific immuno-interactions on the FMBs surface were characterized by using the electrochemical and microscopic techniques, and in the presence of anti-tTG antibodies, they were captured by tTG-immobilized magnetic beads, and significant increases were observed in impedimetric response. The magneto biosensor response was linearly related to the anti-tTG antibody level in a broad linear range of 0.125-15.62 U/mL and a low detection limit (LOD) of 0.04 U/mL. Additionally, this magneto sensor was stable, repeatable, reproducible, selective, and sensitive for determination of the anti-tTG. The commercial enzyme-linked immunosorbent assay (ELISA) method was employed to compare the responses of the suggested immunosensor in actual samples. The magneto biosensor results were in good agreement with the ELISA reference technique results. Consequently, the biosensor performance in the analysis of serum samples was acceptable.
Collapse
Affiliation(s)
- Elif Burcu Aydın
- Scientific and Technological Research Center, Tekirdağ NamıK Kemal University, Tekirdağ, Turkey.
| | - Muhammet Aydın
- Scientific and Technological Research Center, Tekirdağ NamıK Kemal University, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Bioengineering Department, Faculty of Engineering, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
3
|
Olaya CM, Hayazawa N, Balgos MH, Tanaka T. Dynamic measurement of an angular Goos-Hänchen shift at a surface plasmon resonance in liquid. APPLIED OPTICS 2023; 62:8426-8433. [PMID: 38037948 DOI: 10.1364/ao.501856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
We developed a surface plasmon resonance (SPR)-enhanced angular Goos-Hänchen (GH) shift measurement system capable of tracking small refractive index changes with high sensitivity in a liquid environment. Our method can be performed in angular interrogation schemes, where we demonstrate a simple zero-finding algorithm to locate the SPR angle instead of the complicated data processing algorithms used in conventional sensors. We also propose a displacement interrogation scheme for dynamic measurement of small refractive index changes in the sample. The main advantage of our method is the controllability of the measured displacement by standard geometrical optics, allowing measurement sensitivity enhancement without the need to modify the sensor material.
Collapse
|
4
|
Liu Q, Chen Y, Chen Z, Xie Y, Yu H, Yuan S, Guo Y, Cheng Y, Qian H, Yao W. Rapid magnetization and removal of microplastics from environment and food based on magnetic metal-organic framework Fe 3O 4@SiO 2@MIL-53(Al). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:117373-117389. [PMID: 37867171 DOI: 10.1007/s11356-023-30314-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
Microplastics (MPs) are now not only emerging as pollutants in the environment, but their current state of contamination in food is also a cause for concern. It is necessary to focus how to control, reduce, and even remove MPs. In this study, a magnetic metal-organic framework (MOF) material, Fe3O4@SiO2@MIL-53(Al), was synthesized and applied to simulate the magnetization and removal of four types of MPs. Fe3O4@SiO2@MIL-53(Al) was characterized by various means to demonstrate its successful synthesis as a core-shell nanomaterial. The conditions of the method were optimized by examining the effect of time, the mass ratio of material to MPs, temperature, and pH on the removal effect. The removal rates of four MPs were 54.10-94.17%, and the maximum adsorption capacities of Fe3O4@SiO2@MIL-53(Al) that can be adsorbed were 10511.45-44390.24 mg g-1. Notably, the material can effectively magnetize and remove MPs from liquid food containing alcohol with highest efficiency of 97.10 ± 1.21%. Potential adsorption mechanisms were analyzed using kinetic, isothermal, and thermodynamic models, and electrostatic attraction and hydrogen bonding were found to play a dominant role in the adsorption process. In addition, not only can Fe3O4@SiO2@MIL-53(Al) be reused up to five times to maintain high removal rates, but it can also be used in food systems. Therefore, Fe3O4@SiO2@MIL-53(Al) not only has the advantages of ease of use and stability, but also can efficiently and quickly magnetize and remove many common MPs in more complex matrices such as food.
Collapse
Affiliation(s)
- Qingrun Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yulun Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Zhe Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Hang Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Shaofeng Yuan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu Province, China.
| |
Collapse
|
5
|
Song J, Jiang C, Liu Z, Yang Z, Wang Z, Jiang Q, Ruuskanen P. Drastic performance enhancement of photoluminescence and water electrolysis by local-magnetic-field-assisted LSPR of Ag NPs and NCs. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
6
|
Wang T, Hu X, Yang Y, Wu Q, He C, He X, Wang Z, Mao X. New Insight into Assembled Fe3O4@PEI@Ag Structure as Acceptable Agent with Enzymatic and Photothermal Properties. Int J Mol Sci 2022; 23:ijms231810743. [PMID: 36142657 PMCID: PMC9501236 DOI: 10.3390/ijms231810743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022] Open
Abstract
Metal-based enzyme mimics are considered to be acceptable agents in terms of their biomedical and biological properties; among them, iron oxides (Fe3O4) are treated as basement in fabricating heterogeneous composites through variable valency integrations. In this work, we have established a facile approach for constructing Fe3O4@Ag composite through assembling Fe3O4 and Ag together via polyethyleneimine ethylenediamine (PEI) linkages. The obtained Fe3O4@PEI@Ag structure conveys several hundred nanometers (~150 nm). The absorption peak at 652 nm is utilized for confirming the peroxidase-like activity of Fe3O4@PEI@Ag structure by catalyzing 3,3′,5,5′-tetramethylbenzidine (TMB) in the presence of H2O2. The Michaelis–Menten parameters (Km) of 1.192 mM and 0.302 mM show the higher catalytic activity and strong affinity toward H2O2 and TMB, respectively. The maximum velocity (Vmax) value of 1.299 × 10−7 M∙s−1 and 1.163 × 10−7 M∙s−1 confirm the efficiency of Fe3O4@PEI@Ag structure. The biocompatibility illustrates almost 100% cell viability. Being treated as one simple colorimetric sensor, it shows relative selectivity and sensitivity toward the detection of glucose based on glucose oxidase. By using indocyanine green (ICG) molecule as an additional factor, a remarkable temperature elevation is observed in Fe3O4@PEI@Ag@ICG with increments of 21.6 °C, and the absorption peak is nearby 870 nm. This implies that the multifunctional Fe3O4@PEI@Ag structure could be an alternative substrate for formatting acceptable agents in biomedicine and biotechnology with enzymatic and photothermal properties.
Collapse
Affiliation(s)
- Teng Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xi Hu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical Laboratory Microfluidics and SPRi Engineering Research Center, Chongqing Medical University, Chongqing 400016, China
| | - Qing Wu
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Chengdian He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Xiong He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Zhenyu Wang
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (Z.W.); (X.M.)
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
- Correspondence: (Z.W.); (X.M.)
| |
Collapse
|
7
|
Cai H, Wang M, Liu J, Wang X. Theoretical and experimental study of a highly sensitive SPR biosensor based on Au grating and Au film coupling structure. OPTICS EXPRESS 2022; 30:26136-26148. [PMID: 36236810 DOI: 10.1364/oe.461768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/21/2022] [Indexed: 06/16/2023]
Abstract
A high-sensitivity surface plasmon resonance (SPR) sensor based on the coupling of Au grating and Au film is investigated through simulations and experiments. The SPR sensor is designed by using a hybrid method composed of genetic algorithm (GA) and rigorous coupled wave analysis (RCWA). The numerical results indicate the sensor has an angular sensitivity of 397.3°/RIU (refractive index unit), which is approximately 2.81 times higher than the conventional Au-based sensor and it is verified by experiments. Theoretical analysis, by finite-difference time-domain (FDTD) method, demonstrates the co-coupling between surface plasmon polaritons (SPPs) propagating on the surface of Au film and localized surface plasmons (LSPs) in the Au grating nanostructure, improving the sensitivity of the SPR sensor. According to the optimized structural parameters, the proposed sensor is fabricated using e-beam lithography and magnetron sputtering. In addition, the proposed sensor is very sensitive to the detection of small molecules. The limit of detection (LOD) for okadaic acid (OA) is 0.72 ng/mL based on an indirect competitive inhibition method, which is approximately 38 times lower than the conventional Au sensor. Such a high-sensitivity SPR biosensor has potential in the applications of immunoassays and clinical diagnosis.
Collapse
|
8
|
Bisht NS, Tripathi AH, Pant M, Kumar Upadhyay S, Sahoo NG, Mehta SPS, Dandapat A. A facile synthesis of palladium nanoparticles decorated bismuth oxybromide nanostructures with exceptional photo-antimicrobial activities. Colloids Surf B Biointerfaces 2022; 217:112640. [PMID: 35752021 DOI: 10.1016/j.colsurfb.2022.112640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/30/2022] [Accepted: 06/12/2022] [Indexed: 02/06/2023]
Abstract
Assessing the interaction between microbes and nanocatalysts for finding an inclusive, proactive and deep understanding of nanoparticles-based toxicity is vital for discovering their broad range of applications. Palladium based photocatalysts owing to their unique fundamental characteristics and brilliant physicochemical potential have gained immense interest in environment remediation as disinfection system. In the present study, we report synthesis of a novel palladium nanoparticles decorated bismuth oxybromide (Pd/BiOBr) nanostructures using an energy efficient solution-based method, having excellent photocatalytic antibacterial action. The synthesized nanomaterials was thoroughly characterized using various analytical techniques. The photocatalytic antibacterial efficiency of Pd/BiOBr was evaluated against some common pathogenic strains of Gram-positive and Gram-negative bacteria (Pseudomonas fluorescens, Pseudomonas aeruginosa, Escherichia coli, Aeromonas salmonicida, Salmonella typhimurium, Klebsiella pneumoniae, Bacillus subtilis). In our results Pd/BiOBr showed excellent photocatalytic disinfection efficacy with > 99.9% bacterial inactivation. A very low concentration of Pd/BiOBr (0.5 µg/mL) effectively inhibited the bacterial growth in response to just 2 h of visible light irradiation, while 1 µg/mL of Pd/BiOBr completely killed all the tested bacterial strains proving their magnificent bactericidal potential. The developed materials with exceptional antibacterial broad range efficiency can be used in different photocatalytic disinfection systems including water purification systems, biofilm exclusion and combating differential antibiotic resistance.
Collapse
Affiliation(s)
- Narendra Singh Bisht
- Department of Chemistry, D.S.B Campus, Kumaun University, Nainital 260002, Uttarakhand
| | - Ankita H Tripathi
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital 263136, Uttarakhand
| | - Megha Pant
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital 263136, Uttarakhand
| | - Santosh Kumar Upadhyay
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Bhimtal, Kumaun University, Nainital 263136, Uttarakhand
| | - Nanda Gopal Sahoo
- Department of Chemistry, D.S.B Campus, Kumaun University, Nainital 260002, Uttarakhand
| | - S P S Mehta
- Department of Chemistry, D.S.B Campus, Kumaun University, Nainital 260002, Uttarakhand
| | - Anirban Dandapat
- Department of Chemistry, D.S.B Campus, Kumaun University, Nainital 260002, Uttarakhand.
| |
Collapse
|
9
|
Zaki AG, Hasanien YA, El-Sayyad GS. Novel fabrication of SiO 2/Ag nanocomposite by gamma irradiated Fusarium oxysporum to combat Ralstonia solanacearum. AMB Express 2022; 12:25. [PMID: 35229228 PMCID: PMC8885861 DOI: 10.1186/s13568-022-01372-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
The bacterial wilt is a global destructive plant disease that initiated by the phytopathogenic Ralstonia solanacearum. This study display a novel biofabrication of silica/silver nanocomposite using Fusarium oxysporum-fermented rice husk (RH) under solid state fermentation (SSF). The biofabricated nanocomposite was characterized by XRD, UV-Vis. spectroscopy, DLS, SEM, EDX elemental mapping, and TEM analyses as well as investigated for anti-R. solanacearum activity. Response surface methodology was also processed for optimizing the biofabrication process and improving the anti-bacterial activity of the fabricated nanocomposite. Maximum suppression zone of 29.5 mm against R. solanacearum was reached at optimum RH content of 6.0 g, AgNO3 concentration of 2.50 mM, reaction pH of 6.3, and reaction time of 2 days. The anti-R. solanacearum activity of the fabricated nanocomposite was further improved by exposing the F. oxysporum strain to a gamma irradiation dose of 200 Gy. In conclusion, RH recycling under SSF by F. oxysporum could provide an innovative, facile, non-expensive, and green approach for fabricating SiO2/Ag nanocomposite that could be applied efficiently as an eco-friendly antibacterial agent to combat R. solanacearum in agricultural applications. Moreover, the developed method could serve as a significant platform for the designing of new nanostructures for broad applications.
Collapse
Affiliation(s)
- Amira G. Zaki
- Plant Research Department, Nuclear Research Center (NRC), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Yasmeen A. Hasanien
- Plant Research Department, Nuclear Research Center (NRC), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Gharieb S. El-Sayyad
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
10
|
Elmobarak WF, Almomani F. A new insight into the separation of oil from oil/water emulsion by Fe 3O 4-SiO 2 nanoparticles. ENVIRONMENTAL RESEARCH 2021; 202:111645. [PMID: 34252426 DOI: 10.1016/j.envres.2021.111645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/22/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Nanofluids have shown their potential in the oil recovery process through surface modification. Due to their surface characteristics, they can apply to improve the oil production from reservoirs by enabling different enhanced recovery mechanisms. The preparation and development of the Fe3O4@SiO2 nanoparticles for the oil recovery process is an innovative and novel approach that influences the oil generation from reservoirs. The performance of the Fe3O4@SiO2 and the other nanofluids (seawater, Fe3O4, and SiO2) in the enhanced oil recovery process is assessed and compared with other flooding scenarios. The Fe3O4@SiO2 NPs achieved the highest oil production rate of 90.2% while Fe3O4 and SiO2 NPs achieved 70.8% and 55.3%, respectively. In contrast, the value achieved for the seawater injection was 76.5%. For the oil recovery process, the Fe3O4 was applied for the inhibition (i.e., decrease) of oil sedimentation, and the SiO2 NPs were applied for wettability alteration and IFT reduction. The experimental results showed that the produced Fe3O4@SiO2 NPs improved the oil recovery rates (90.2%) as well as the synergetic impact of the developed NPs by initiating several mechanisms corresponding to the use of the separate NPs in the micromodel. Moreover, the results exhibited that the reservoir conditions are a crucial function for increasing the oil recovery rates, improving the emulsion stability, and acts as a substantial step for the oil recovery method that applies this particular technique.
Collapse
Affiliation(s)
| | - Fares Almomani
- Department of Chemical Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| |
Collapse
|
11
|
Cao Y, Zhang B, Zhu Z, Rostami M, Dong G, Ling J, Lee K, Greer CW, Chen B. Access-dispersion-recovery strategy for enhanced mitigation of heavy crude oil pollution using magnetic nanoparticles decorated bacteria. BIORESOURCE TECHNOLOGY 2021; 337:125404. [PMID: 34139564 DOI: 10.1016/j.biortech.2021.125404] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Heavy crude oil (HCO) pollution has gained global attention, but traditional bioremediating practices demonstrate limited effectiveness. This study developed magnetic nanoparticles decorated bacteria (MNPB) using an oil-degrading and biosurfactant-producing Rhodococcus erythropolis species and identified a novel access-dispersion-recovery strategy for enhanced HCO pollution mitigation. The strategy entails (1) magnetic navigation of the MNPB towards HCO layer, (2) enhanced oil dispersion and formation of suspended oil-bacteria aggregates, and (3) magnetic recovery of these aggregates. The UV-spectrophotometer analysis showed that this strategy can enable up to 62% removal of HCO. The GC-MS analysis demonstrated that the MNPB enhanced the degradation of low-molecular-weight aromatics comparing with the pure bacteria, and the recovery process further removed oil-bacteria aggregates and entrained high-molecular-weight aromatics. The feasibility of using MNPB to mitigate HCO pollution could shed light on the emerging bioremediation applications.
Collapse
Affiliation(s)
- Yiqi Cao
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Zhiwen Zhu
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Masoumeh Rostami
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Jingjing Ling
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Bing Chen
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
12
|
Yang X, Qiu P, Yang J, Fan Y, Wang L, Jiang W, Cheng X, Deng Y, Luo W. Mesoporous Materials-Based Electrochemical Biosensors from Enzymatic to Nonenzymatic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1904022. [PMID: 31643131 DOI: 10.1002/smll.201904022] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/07/2019] [Indexed: 05/04/2023]
Abstract
Mesoporous materials have drawn more and more attention in the field of biosensors due to their high surface areas, large pore volumes, tunable pore sizes, as well as abundant frameworks. In this review, the progress on mesoporous materials-based biosensors from enzymatic to nonenzymatic are highlighted. First, recent advances on the application of mesoporous materials as supports to stabilize enzymes in enzymatic biosensing technology are summarized. Special emphasis is placed on the effect of pore size, pore structure, and surface functional groups of the support on the immobilization efficiency of enzymes and the biosensing performance. Then, the development of a nonenzymatic strategy that uses the intrinsic property of mesoporous materials (carbon, silica, metals, and composites) to mimic the behavior of enzymes for electrochemical sensing of some biomolecules is discussed. Finally, the challenges and perspective on the future development of biosensors based on mesoporous materials are proposed.
Collapse
Affiliation(s)
- Xuanyu Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Pengpeng Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Yuchi Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Lianjun Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Wan Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| | - Xiaowei Cheng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Institute of Functional Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
13
|
Pourakbari R, Shadjou N, Yousefi H, Isildak I, Yousefi M, Rashidi MR, Khalilzadeh B. Recent progress in nanomaterial-based electrochemical biosensors for pathogenic bacteria. Mikrochim Acta 2019; 186:820. [PMID: 31748898 DOI: 10.1007/s00604-019-3966-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
This review (with 118 refs.) discusses the progress made in electroanalytical methods based on the use of organic and inorganic nanomaterials for the determination of bacteria, specifically of E. coli, Salmonella, Staphylococcus, Mycobacterium, Listeria and Klebsiella species. We also discuss advantages and limitations of electrochemical methods. Strategies based on the use of aptamers, DNA and antibodies are covered. Following an introduction into electrochemical biosensing, a first large section covers methods for pathogen detection using metal nanoparticles, with subsections on silver nanoparticles, gold nanoparticles, magnetic nanoparticles and carbon-based nanomaterials. A second large section covers methods based on the use of organic nanocomposites, graphene and its derivatives. Other nanoparticles are treated in a final section. Several tables are presented that give an overview on the wealth of methods and materials. A concluding section summarizes the current status, addresses challenges, and gives an outlook on potential future trends. Graphical abstract This review demonstrates the progress made in electroanalytical methods based on the use of organic and inorganic nanomaterials for the detection and determination of pathogenic bacteria. We also discuss advantages and limitations of electrochemical methods. Strategies based on the use of aptamers, DNA and antibodies are covered.
Collapse
Affiliation(s)
- Ramin Pourakbari
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasrin Shadjou
- Department of Nano-chemistry, Nanotechnology Research Center, Urmia University, Urmia, 57154, Iran
| | - Hadi Yousefi
- Department of Basic Medical Sciences, Khoy University of Medical Sciences, Khoy, Iran
| | - Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Mehdi Yousefi
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran
- Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center (SCRC), Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
- Biosensors and Bioelectronics Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
14
|
Enhancement of Cd2+ removal from aqueous solution by multifunctional mesoporous silica: Equilibrium isotherms and kinetics study. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Wang H, Lin Y, Li Y, Dolgormaa A, Fang H, Guo L, Huang J, Yang J. A Novel Magnetic Cd(II) Ion-Imprinted Polymer as a Selective Sorbent for the Removal of Cadmium Ions from Aqueous Solution. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01148-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
High-Gradient Magnetic Separator (HGMS) combined with adsorption for nitrate removal from aqueous solution. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Zhu N, Ji H, Yu P, Niu J, Farooq MU, Akram MW, Udego IO, Li H, Niu X. Surface Modification of Magnetic Iron Oxide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E810. [PMID: 30304823 PMCID: PMC6215286 DOI: 10.3390/nano8100810] [Citation(s) in RCA: 236] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/26/2018] [Accepted: 10/05/2018] [Indexed: 12/11/2022]
Abstract
Functionalized iron oxide nanoparticles (IONPs) are of great interest due to wide range applications, especially in nanomedicine. However, they face challenges preventing their further applications such as rapid agglomeration, oxidation, etc. Appropriate surface modification of IONPs can conquer these barriers with improved physicochemical properties. This review summarizes recent advances in the surface modification of IONPs with small organic molecules, polymers and inorganic materials. The preparation methods, mechanisms and applications of surface-modified IONPs with different materials are discussed. Finally, the technical barriers of IONPs and their limitations in practical applications are pointed out, and the development trends and prospects are discussed.
Collapse
Affiliation(s)
- Nan Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Haining Ji
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Peng Yu
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology, Chengdu 610054, China.
| | - Jiaqi Niu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - M U Farooq
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology, Chengdu 610054, China.
| | - M Waseem Akram
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology, Chengdu 610054, China.
| | - I O Udego
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology, Chengdu 610054, China.
| | - Handong Li
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Xiaobin Niu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
18
|
Dai Q, Zhang Z, Zhan T, Hu ZT, Chen J. Catalytic Ozonation for the Degradation of 5-Sulfosalicylic Acid with Spinel-Type ZnAl 2O 4 Prepared by Hydrothermal, Sol-Gel, and Coprecipitation Methods: A Comparison Study. ACS OMEGA 2018; 3:6506-6512. [PMID: 30023951 PMCID: PMC6044642 DOI: 10.1021/acsomega.8b00263] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/11/2018] [Indexed: 05/13/2023]
Abstract
This study presents a novel spinel-type zinc aluminate nanometer catalyst and is applied in catalytic ozonation for wastewater treatment. The zinc aluminate (ZnAl2O4) catalysts were synthesized by hydrothermal, sol-gel, and coprecipitation methods, and their characteristics were analyzed by X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray spectrum, Fourier transform infrared, and X-ray photoelectron spectroscopy (XPS) techniques. 5-Sulfosalicylic acid (SSal) was selected as the typical pharmaceutical and personal care product and used to evaluate the catalytic activity of ZnAl2O4. Compared to ozonation, an obviously higher removal efficiency for the SSal degradation was achieved with the nanocatalyst addition in catalytic ozonation. The removal of SSal and chemical oxygen demand reached 64.8 and 46.2%, respectively, after 60 min in the presence of ZnAl2O4, whereas it was only 49.4 and 33.2%, respectively, in ozonation. The comparison of catalysts showed that the ZnAl2O4 prepared by the hydrothermal method presented a better catalytic activity in ozonation. The effect of radical scavenger experiment results and the characterization of XPS implied that •OH was the main active oxidative species in catalytic ozonation. The reusability results showed that the ZnAl2O4 catalyst possessed a high stability and could be widely used in catalytic ozonation for wastewater treatment.
Collapse
Affiliation(s)
- Qizhou Dai
- College
of Environment and Key Laboratory of Microbial Technology for Industrial
Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
- E-mail: (Q.D.)
| | - Zhuo Zhang
- College
of Environment and Key Laboratory of Microbial Technology for Industrial
Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Tingting Zhan
- College
of Environment and Key Laboratory of Microbial Technology for Industrial
Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhong-Ting Hu
- College
of Environment and Key Laboratory of Microbial Technology for Industrial
Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jianmeng Chen
- College
of Environment and Key Laboratory of Microbial Technology for Industrial
Pollution Control of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310032, China
- E-mail: (J.C.)
| |
Collapse
|
19
|
Dendrimer-encapsulated Cu(Π) nanoparticles immobilized on superparamagnetic Fe3
O4
@SiO2
nanoparticles as a novel recyclable catalyst for N
-arylation of nitrogen heterocycles and green synthesis of 5-substituted 1H
-tetrazoles. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4300] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Ha Y, Ko S, Kim I, Huang Y, Mohanty K, Huh C, Maynard JA. Recent Advances Incorporating Superparamagnetic Nanoparticles into Immunoassays. ACS APPLIED NANO MATERIALS 2018; 1:512-521. [PMID: 29911680 PMCID: PMC5999228 DOI: 10.1021/acsanm.7b00025] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/31/2018] [Indexed: 05/09/2023]
Abstract
Superparamagnetic nanoparticles (SPMNPs) have attracted interest for various biomedical applications due to their unique magnetic behavior, excellent biocompatibility, easy surface modification, and low cost. Their unique magnetic properties, superparamagnetism, and magnetophoretic mobility have led to their inclusion in immunoassays to enhance biosensor sensitivity and allow for rapid detection of various analytes. In this review, we describe SPMNP characteristics valuable for incorporation into biosensors, including the use of SPMNPs to increase detection capabilities of surface plasmon resonance and giant magneto-resistive biosensors. The current status of SPMNP-based immunoassays to improve the sensitivity of rapid diagnostic tests is reviewed, and suggested strategies for the successful adoption of SPMNPs for immunoassays are presented.
Collapse
Affiliation(s)
- Yeonjeong Ha
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- E-mail: . (J.A.M.)
| | - Saebom Ko
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ijung Kim
- Department
of Civil and Environmental Engineering, Western New England University, Springfield, Massachusetts 01119, United States
| | - Yimin Huang
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kishore Mohanty
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Chun Huh
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jennifer A. Maynard
- Department
of Chemical Engineering and Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- E-mail: . (Y.-J.H.)
| |
Collapse
|
21
|
Wang J, Lin W, Cao E, Xu X, Liang W, Zhang X. Surface Plasmon Resonance Sensors on Raman and Fluorescence Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2017; 17:E2719. [PMID: 29212139 PMCID: PMC5751530 DOI: 10.3390/s17122719] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/08/2017] [Accepted: 11/20/2017] [Indexed: 01/03/2023]
Abstract
The performance of chemical reactions has been enhanced immensely with surface plasmon resonance (SPR)-based sensors. In this review, the principle and application of SPR sensors are introduced and summarized thoroughly. We introduce the mechanism of the SPR sensors and present a thorough summary about the optical design, including the substrate and excitation modes of the surface plasmons. Additionally, the applications based on SPR sensors are described by the Raman and fluorescence spectroscopy in plasmon-driven surface catalytic reactions and the measurement of refractive index sensing, especially.
Collapse
Affiliation(s)
- Jiangcai Wang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.
| | - Weihua Lin
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.
| | - En Cao
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.
| | - Xuefeng Xu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| | - Wenjie Liang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.
| | - Xiaofang Zhang
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
22
|
Novel Multifunctional Mesoporous Microsphere with High Surface Area for Removal of Zinc Ion from Aqueous Solution: Preparation and Characterization. J Inorg Organomet Polym Mater 2017. [DOI: 10.1007/s10904-017-0621-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Xiao A, Xiao Q, Lin Y, Ni H, Zhu Y, Cai H. Efficient immobilization of agarase using carboxyl-functionalized magnetic nanoparticles as support. ELECTRON J BIOTECHN 2017. [DOI: 10.1016/j.ejbt.2016.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
24
|
Xiong H, Diao Q, Jin R, Song D, Wang X, Sun Y. Synthesis and application of thiol-functionalized magnetic nanoparticles for studying interactions of epirubicin hydrochloride with bovine serum albumin by fluorescence spectrometry. LUMINESCENCE 2016; 32:142-148. [DOI: 10.1002/bio.3158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 04/08/2016] [Accepted: 04/16/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Huixia Xiong
- College of Chemistry; Jilin University; Qianjin Street 2699 Changchun 130012 China
| | - Quanping Diao
- School of Chemistry and Life Science; Anshan Normal University; Ping'an Street 43 Anshan 114005 China
| | - Rui Jin
- College of Chemistry; Jilin University; Qianjin Street 2699 Changchun 130012 China
| | - Daqian Song
- College of Chemistry; Jilin University; Qianjin Street 2699 Changchun 130012 China
| | - Xinghua Wang
- College of Chemistry; Jilin University; Qianjin Street 2699 Changchun 130012 China
| | - Ying Sun
- College of Chemistry; Jilin University; Qianjin Street 2699 Changchun 130012 China
| |
Collapse
|
25
|
Li X, Wei J, Aifantis KE, Fan Y, Feng Q, Cui FZ, Watari F. Current investigations into magnetic nanoparticles for biomedical applications. J Biomed Mater Res A 2016; 104:1285-1296. [PMID: 26779606 DOI: 10.1002/jbm.a.35654] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 12/25/2015] [Accepted: 01/13/2016] [Indexed: 12/28/2022]
Abstract
It is generally recognized that nanoparticles possess unique physicochemical properties that are largely different from those of conventional materials, specifically the electromagnetic properties of magnetic nanoparticles (MNPs). These properties have attracted many researchers to launch investigations into their potential biomedical applications, which have been reviewed in this article. First, common types of MNPs were briefly introduced. Then, the biomedical applications of MNPs were reviewed in seven parts: magnetic resonance imaging (MRI), cancer therapy, the delivery of drugs and genes, bone and dental repair, tissue engineering, biosensors, and in other aspects, which indicated that MNPs possess great potentials for many kinds of biomedical applications due to their unique properties. Although lots of achievements have been obtained, there is still a lot of work to do. New synthesis techniques and methods are still needed to develop the MNPs with satisfactory biocompatibility. More effective methods need to be exploited to prepare MNPs-based composites with fine microstructures and high biomedical performances. Other promising research points include the development of more appropriate techniques of experiments both in vitro and in vivo to detect and analyze the biocompatibility and cytotoxicity of MNPs and understand the possible influencing mechanism of the two properties. More comprehensive investigations into the diagnostic and therapeutic applications of composites containing MNPs with "core-shell" structure and deeper understanding and further study into the properties of MNPs to reveal their new biomedical applications, are also described in the conclusion and perspectives part.
Collapse
Affiliation(s)
- Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jianrong Wei
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Katerina E Aifantis
- Department of Civil Engineering-Engineering Mechanics, University of Arizona, Tucson, Arizona, 85721
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Qingling Feng
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, 100084, China
| | - Fu-Zhai Cui
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing, 100084, China
| | - Fumio Watari
- Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan
| |
Collapse
|
26
|
Zhou L, Tang W, Jiang Y, Ma L, He Y, Gao J. Magnetic combined cross-linked enzyme aggregates of horseradish peroxidase and glucose oxidase: an efficient biocatalyst for dye decolourization. RSC Adv 2016. [DOI: 10.1039/c6ra12009a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, the magnetic combined cross-linked enzyme aggregates (combi-CLEAs) of glucose oxidase (GOD) and horseradish peroxidase (HRP) were designed and prepared successfully.
Collapse
Affiliation(s)
- Liya Zhou
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving
| | - Wei Tang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving
| | - Li Ma
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| | - Ying He
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
| | - Jing Gao
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- P. R. China
- Hebei Provincial Key Lab of Green Chemical Technology and High Efficient Energy Saving
| |
Collapse
|
27
|
Diniz KM, Tarley CRT. Speciation analysis of chromium in water samples through sequential combination of dispersive magnetic solid phase extraction using mesoporous amino-functionalized Fe3O4/SiO2 nanoparticles and cloud point extraction. Microchem J 2015. [DOI: 10.1016/j.microc.2015.06.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Yakoh A, Pinyorospathum C, Siangproh W, Chailapakul O. Biomedical Probes Based on Inorganic Nanoparticles for Electrochemical and Optical Spectroscopy Applications. SENSORS 2015; 15:21427-77. [PMID: 26343676 PMCID: PMC4610547 DOI: 10.3390/s150921427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 01/20/2023]
Abstract
Inorganic nanoparticles usually provide novel and unique physical properties as their size approaches nanometer scale dimensions. The unique physical and optical properties of nanoparticles may lead to applications in a variety of areas, including biomedical detection. Therefore, current research is now increasingly focused on the use of the high surface-to-volume ratios of nanoparticles to fabricate superb chemical- or biosensors for various detection applications. This article highlights various kinds of inorganic nanoparticles, including metal nanoparticles, magnetic nanoparticles, nanocomposites, and semiconductor nanoparticles that can be perceived as useful materials for biomedical probes and points to the outstanding results arising from their use in such probes. The progress in the use of inorganic nanoparticle-based electrochemical, colorimetric and spectrophotometric detection in recent applications, especially bioanalysis, and the main functions of inorganic nanoparticles in detection are reviewed. The article begins with a conceptual discussion of nanoparticles according to types, followed by numerous applications to analytes including biomolecules, disease markers, and pharmaceutical substances. Most of the references cited herein, dating from 2010 to 2015, generally mention one or more of the following characteristics: a low detection limit, good signal amplification and simultaneous detection capabilities.
Collapse
Affiliation(s)
- Abdulhadee Yakoh
- Electrochemistry and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Chanika Pinyorospathum
- Electrochemistry and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110, Thailand.
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Research Unit (EOSRU), Department of Chemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Patumwan, Bangkok 10330, Thailand.
| |
Collapse
|
29
|
Thermo-responsive and magnetic molecularly imprinted Fe3O4@carbon nanospheres for selective adsorption and controlled release of 2,4,5-trichlorophenol. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
30
|
Chen J, Zhu X. Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:456-462. [PMID: 25238184 DOI: 10.1016/j.saa.2014.08.113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/19/2014] [Accepted: 08/24/2014] [Indexed: 06/03/2023]
Abstract
Three hydrophobic ionic liquids (ILs) including 1-butyl-3-methylimidazole hexafluorophosphate ([BMIM]PF6), 1-hexyl-3-methyl-imidazole hexafluorophosphate ([HMIM]PF6), and 1-octyl-3-methylimidazole hexafluoro-phosphate ([OMIM]PF6) coated Fe3O4@SiO2 nanoparticles with core-shell structure to prepare magnetic solid phase extraction agent (Fe3O4@SiO2@ILs) and establish a new method of magnetic solid phase extraction (MSPE) coupled with UV spectrometry for separation/analysis of linuron. The results showed that linuron was adsorbed rapidly by Fe3O4@SiO2@[OMIM]PF6 and eluanted by ethanol. Under the optimal conditions, preconcentration factor of the proposed method was 10-fold. The linear range, detection limit, correlation coefficient (R) and relative standard deviation (RSD) were found to be 0.04-20.00 μg mL(-1), 5.0 ng mL(-1), 0.9993 and 2.8% (n=3, c=4.00 μg mL(-1)), respectively. The Fe3O4@SiO2 nanoparticles could be used repeatedly for 10 times. This proposed method has been successfully applied to the determination of linuron in food samples.
Collapse
Affiliation(s)
- Jieping Chen
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Xiashi Zhu
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
31
|
Keypour H, Balali M, Haghdoost MM, Bagherzadeh M. Mo(vi) complex supported on Fe3O4 nanoparticles: magnetically separable nanocatalysts for selective oxidation of sulfides to sulfoxides. RSC Adv 2015. [DOI: 10.1039/c5ra08653a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A molybdenum complex was immobilized on amino propyl and Schiff base modified magnetic nanoparticles by covalent linkage. In catalytic oxidation of sulfides, the catalysts showed similar catalytic activity but different stability and recyclability.
Collapse
Affiliation(s)
- Hasan Keypour
- Chemistry Department
- Hamedan Department of Chemistry
- Bu-Ali Sina University
- Hamadan
- Iran
| | - Masomeh Balali
- Chemistry Department
- Hamedan Department of Chemistry
- Bu-Ali Sina University
- Hamadan
- Iran
| | | | | |
Collapse
|
32
|
Moosavi R, Afkhami A, Madrakian T. A simple cyanide sensing probe based on Ag/Fe3O4nanoparticles. RSC Adv 2015. [DOI: 10.1039/c4ra14806a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The first direct approach in ultra-trace cyanide determination through a simple, selective and rapid reaction by simply-synthesized recyclable Ag/Fe3O4nanostructures.
Collapse
Affiliation(s)
| | - Abbas Afkhami
- Faculty of Chemistry
- Bu-Ali Sina University
- Hamedan
- Iran
| | | |
Collapse
|
33
|
Ma P, Liang F, Diao Q, Wang D, Yang Q, Gao D, Song D, Wang X. Selective and sensitive SERS sensor for detection of Hg2+ in environmental water base on rhodamine-bonded and amino group functionalized SiO2-coated Au–Ag core–shell nanorods. RSC Adv 2015. [DOI: 10.1039/c5ra04423e] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
A novel SERS sensor for trace detection of Hg2+ using R6G-derive Schiff base bonded Au@Ag@SiO2–NH2 NRs was designed. The LOD is 0.33 pmol L−1.
Collapse
Affiliation(s)
- Pinyi Ma
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Fanghui Liang
- Department of Pharmacy
- Changchun Medical College
- Changchun 130031
- China
| | - Quanping Diao
- School of Chemistry and Life Science
- Anshan Normal University
- Anshan 114005
- China
| | - Di Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Qingqing Yang
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Dejiang Gao
- Changchun Jilin University Little Swan Instruments Co., Ltd
- Changchun 130012
- China
| | - Daqian Song
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| | - Xinghua Wang
- College of Chemistry
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
34
|
Xu JK, Zhang FF, Sun JJ, Sheng J, Wang F, Sun M. Bio and nanomaterials based on Fe3O4. Molecules 2014; 19:21506-28. [PMID: 25532846 PMCID: PMC6271433 DOI: 10.3390/molecules191221506] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/27/2022] Open
Abstract
During the past few years, nanoparticles have been used for various applications including, but not limited to, protein immobilization, bioseparation, environmental treatment, biomedical and bioengineering usage, and food analysis. Among all types of nanoparticles, superparamagnetic iron oxide nanoparticles, especially Fe3O4, have attracted a great deal of attention due to their unique magnetic properties and the ability of being easily chemical modified for improved biocompatibility, dispersibility. This review covers recent advances in the fabrication of functional materials based on Fe3O4 nanoparticles together with their possibilities and limitations for application in different fields.
Collapse
Affiliation(s)
- Jia-Kun Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Fang-Fang Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Jing-Jing Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Jun Sheng
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Fang Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Mi Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|
35
|
Uliana CV, Riccardi CS, Yamanaka H. Diagnostic tests for hepatitis C: Recent trends in electrochemical immunosensor and genosensor analysis. World J Gastroenterol 2014; 20:15476-15491. [PMID: 25400433 PMCID: PMC4229514 DOI: 10.3748/wjg.v20.i42.15476] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/19/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C is a liver disease that is transmitted through contact with the blood of an infected person. An estimated 150 million individuals worldwide have been chronically infected with the hepatitis C virus (HCV). Hepatitis C shows significant genetic variation in the global population, due to the high rate of viral RNA mutation. There are six variants of the virus (HCV genotypes 1, 2, 3, 4, 5, and 6), with 15 recorded subtypes that vary in prevalence across different regions of the world. A variety of devices are used to diagnose hepatitis C, including HCV antibody test, HCV viral load test, HCV genotype test and liver biopsy. Rapid, inexpensive, sensitive, and robust analytical devices are therefore essential for effective diagnosis and monitoring of disease treatment. This review provides an overview of current electrochemical immunosensor and genosensor technologies employed in HCV detection. There are a limited number of publications showing electrochemical biosensors being used for the detection of HCV. Due to their simplicity, specificity, and reliability, electrochemical biosensor devices have potential clinical applications in several viral infections.
Collapse
|
36
|
|
37
|
Wu X, Zhong X, Chai Y, Yuan R. Electrochemiluminescence acetylcholine biosensor based on biofunctional AMs-AChE-ChO biocomposite and electrodeposited graphene-Au-chitosan nanocomposite. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
One-pot synthesis of amphiphilic nanogels from vinylated SPIONs/HEMA/PEG via a combination of click chemistry and surfactant-free emulsion photopolymerization: Unveiling of the protein-nanoparticle interactions. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.09.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Kulkarni SA, Sawadh P, Palei PK. Synthesis and Characterization of Superparamagnetic Fe3O4@SiO2Nanoparticles. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2014. [DOI: 10.5012/jkcs.2014.58.1.100] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
40
|
Zeng S, Baillargeat D, Ho HP, Yong KT. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem Soc Rev 2014; 43:3426-52. [PMID: 24549396 DOI: 10.1039/c3cs60479a] [Citation(s) in RCA: 551] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The main challenge for all electrical, mechanical and optical sensors is to detect low molecular weight (less than 400 Da) chemical and biological analytes under extremely dilute conditions. Surface plasmon resonance sensors are the most commonly used optical sensors due to their unique ability for real-time monitoring the molecular binding events. However, their sensitivities are insufficient to detect trace amounts of small molecular weight molecules such as cancer biomarkers, hormones, antibiotics, insecticides, and explosive materials which are respectively important for early-stage disease diagnosis, food quality control, environmental monitoring, and homeland security protection. With the rapid development of nanotechnology in the past few years, nanomaterials-enhanced surface plasmon resonance sensors have been developed and used as effective tools to sense hard-to-detect molecules within the concentration range between pmol and amol. In this review article, we reviewed and discussed the latest trend and challenges in engineering and applications of nanomaterials-enhanced surface plasmon resonance sensors (e.g., metallic nanoparticles, magnetic nanoparticles, carbon-based nanomaterials, latex nanoparticles and liposome nanoparticles) for detecting "hard-to-identify" biological and chemical analytes. Such information will be viable in terms of providing a useful platform for designing future ultrasensitive plasmonic nanosensors.
Collapse
Affiliation(s)
- Shuwen Zeng
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore.
| | | | | | | |
Collapse
|
41
|
Zhang J, Sun Y, Wu Q, Gao Y, Zhang H, Bai Y, Song D. Preparation of graphene oxide-based surface plasmon resonance biosensor with Au bipyramid nanoparticles as sensitivity enhancer. Colloids Surf B Biointerfaces 2014; 116:211-8. [PMID: 24480068 DOI: 10.1016/j.colsurfb.2014.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/12/2013] [Accepted: 01/02/2014] [Indexed: 01/29/2023]
Abstract
A sensitive and selective wavelength-modulation surface plasmon resonance (SPR) biosensor based on graphene oxide (GO) and Au bipyramids (AuBPs) is reported for determination of bovine IgM. GO sheets with lengths of 100-300 nm are synthesized and assembled on amine-modified Au film. The large surface area and abundant functional groups of GO allow the efficient immobilization of antibody. AuBPs are nanoparticles with a penta-twinned crystal structure, which have a sharp localized surface plasmon resonance (LSPR) band because of their high monodispersity. In the optimal conditions, the GO-based biosensor with AuBPs as sensitivity enhancers shows a satisfactory response to bovine IgM in the concentration range of 0.03-32 μg mL(-1). For contrast, traditional biosensor, GO-based biosensor and GO-based biosensor with Au nanorods (AuNRs) as sensitivity enhancers for antigen detection were also investigated. Consequently, the as-prepared GO sheets function as promising support for antibody and GO-based SPR biosensor using AuBPs as enhancers has the highest sensitivity among the four types of biosensors.
Collapse
Affiliation(s)
- Jia Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Ying Sun
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Qiong Wu
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yan Gao
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Hua Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Daqian Song
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China.
| |
Collapse
|
42
|
Lan S, Wu X, Li L, Li M, Guo F, Gan S. Synthesis and characterization of hyaluronic acid-supported magnetic microspheres for copper ions removal. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.02.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Recognition and enrichment specificity of Fe3O4 magnetic nanoparticles surface modified by chitosan and Staphylococcus aureus enterotoxins A antiserum. Colloids Surf B Biointerfaces 2013. [DOI: 10.1016/j.colsurfb.2012.10.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Wang J, Song D, Zhang H, Zhang J, Jin Y, Zhang H, Zhou H, Sun Y. Studies of Fe3O4/Ag/Au composites for immunoassay based on surface plasmon resonance biosensor. Colloids Surf B Biointerfaces 2013; 102:165-70. [DOI: 10.1016/j.colsurfb.2012.08.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/18/2012] [Accepted: 08/27/2012] [Indexed: 11/26/2022]
|
45
|
Design and Development of Miniaturized Wavelength Modulation Surface Plasmon Resonance Analyzer. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2012. [DOI: 10.3724/sp.j.1096.2011.01537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Label-free sandwich type of immunosensor for hepatitis C virus core antigen based on the use of gold nanoparticles on a nanostructured metal oxide surface. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0842-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|