1
|
Hu Y, Li N, Zhang R, Wang J, Fang D, Zhou Q, Zhang H, Cai H, Lu Y. Linghe granules reduces hepatic lipid accumulation in Non-alcoholic fatty liver disease through regulating lipid metabolism and redox balance. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156654. [PMID: 40220422 DOI: 10.1016/j.phymed.2025.156654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/15/2024] [Accepted: 03/15/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a prevalent liver disorder with no approved pharmacological therapies. Linghe granules, a hospital-based formulation derived from a classic prescription, have demonstrated potential in reducing hepatic fat accumulation and improving metabolic health. This study provides a novel, comprehensive assessment of Linghe granules, integrating clinical, preclinical, and molecular analyses for NAFLD management. PURPOSE This study aims to evaluate the therapeutic efficacy of Linghe granules in alleviating NAFLD through an integrated approach. METHODS A clinical trial involving 40 patients with NAFLD was conducted, with participants divided into a control group (lifestyle interventions) and a treatment group (lifestyle interventions plus oral Linghe granules). Various metabolic and liver function indicators were assessed before and after treatment. Additionally, a high-fat diet (HFD) was used to induce a NAFLD model in rat, followed by treatment with different doses of Linghe granules. In vitro studies on HepG2 and L02 cells were performed to the effects of the granules on lipid metabolism. Transcriptomic profiling, Weighted Gene Co-expression Network Analysis (WGCNA), Dynamic Network Biomarkers (DNB) analysis, and molecular docking were employed to explore the underlying mechanisms. RESULTS Linghe granules led to significant reductions in BMI, liver enzymes (AST, ALT), triglycerides, LDL-C, and GGT in patients with NAFLD, accompanied by a notable decrease in hepatic fat accumulation. In the rat model, treatment improved liver weight, liver function, and lipid metabolism. In vitro, Linghe granules decreased lipid accumulation and regulated key lipid metabolism markers, including sterol regulatory element-binding protein 1 (SREBP-1), stearoyl-CoA desaturase 1 (SCD1), and fatty acid-binding protein 5 (FABP5). Mechanistic analyses revealed that Linghe granules modulated oxidative stress-related pathways and genes involved in lipid metabolism. CONCLUSION This study represents the first integrated evaluation of Linghe granules' efficacy and mechanisms in treating NAFLD, demonstrating their potential to improve liver function, reduce lipid accumulation, and modulate key metabolic markers. These results suggest that Linghe granules may serve as an effective adjunctive treatment for NAFLD.
Collapse
Affiliation(s)
- Yuting Hu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ni'ao Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Rumian Zhang
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361015, China
| | - Jia Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Dongdong Fang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qianmei Zhou
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Zhang
- Institute of Liver Diseases, Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hong Cai
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen, 361015, China.
| | - Yiyu Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Jalilvand A, Kennedy PJ, Loftus J, Collins C, Kellett W, Wahl W, Wisler J. PRE-ADMISSION BARIATRIC SURGERY IS ASSOCIATED WITH REDUCED MORTALITY IN SURGICAL PATIENTS WITH SEPSIS. Shock 2025; 63:844-850. [PMID: 40202402 DOI: 10.1097/shk.0000000000002568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
ABSTRACT Background: Obesity is associated with higher 90-day mortality compared to nonobese surgical patients. Bariatric surgery (BS) can reduce obesity-related comorbidities, even in those with persistent obesity. Objective: Evaluate the impact of prior BS on sepsis outcomes in surgical patients with obesity. Setting: University Hospital, United States. Methods: A single-institution retrospective review of all surgical patients with sepsis (SOFA≥2) was conducted. Patients were grouped into people with obesity and prior BS (OB/BS; n = 48), people with obesity without BS (OB; n = 717), nonobese (NOB; n = 574), and nonobese with prior BS (NOB/BS; n = 27). Demographic data, comorbidities, and sepsis presentation were compared. The primary outcome was cumulative 90-day mortality and survival. Results: Most OB/BS patients underwent gastric bypass <5 years from admission (61%). The OB/BS group was younger, more likely to be female, and transferred from an outside hospital. The mean BMI was highest in the OB/BS group (46.3± 14.7 kg/m 2 , P < 0.0005). Charlson Comorbidity Index was lower in the OB/BS and NOB/BS groups (2 (1-4) and 2 (2-4), respectively, P = 0.0033). Cumulative 90-day mortality was significantly lower in the OB/BS cohort (20.8%, P = 0.002). The OB/BS cohort was more likely to die from intra-abdominal sepsis not amenable to source control (60% vs. 22.5% vs. 22.8% vs. 37.5%, P = 0.04). Compared to the other groups, 90-day survival was highest in the OB/BS cohort (log-rank P < 0.009). Conclusions: This study demonstrated improvement in 90-day survival in OB/BS patients despite higher BMIs. However, this group was more likely to die from intra-abdominal sources, likely reflecting surgical complexity in the setting of prior bypasses.
Collapse
Affiliation(s)
- Anahita Jalilvand
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | | | - John Loftus
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | - Courtney Collins
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | - Whitney Kellett
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | - Wendy Wahl
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| | - Jon Wisler
- Department of Surgery, Division of Trauma, Critical Care and Burn, at The Ohio State University Wexner Medical Center
| |
Collapse
|
3
|
Xie H, Wang J, Zhao Q. Identification of potential metabolic biomarkers and immune cell infiltration for metabolic associated steatohepatitis by bioinformatics analysis and machine learning. Sci Rep 2025; 15:16596. [PMID: 40360670 PMCID: PMC12075577 DOI: 10.1038/s41598-025-86397-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/10/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Metabolic associated steatohepatitis (MASH) represents a severe subtype of metabolic associated fatty liver disease (MASLD), with an increased risk of progression to cirrhosis and hepatocellular carcinoma. The nomenclature shift from nonalcoholic steatohepatitis (NASH)/nonalcoholic fatty liver disease (NAFLD) to MASH/MASLD, underscores the pivotal role of metabolic factors in disease progression. Diagnosis of MASH currently hinges on liver biopsy, a procedure whose invasive nature limits its clinical utility. This study aims to identify and validate metabolism-related genes (MRGs) markers for the non-invasive diagnosis of MASH. METHODS This study extracted multiple datasets from the GEO database to identify metabolism-related differentially expressed genes (MRDEGs). Protein-Protein Interaction (PPI) network and machine learning algorithms, including Least Absolute Shrinkage and Selection Operator (LASSO) regression, Support Vector Machine-Recursive Feature Elimination (SVM-RFE), and Random Forest (RF), were applied to screen for signature MRDEGs. The diagnostic performance of these MRDEGs was evaluated using the Receiver Operating Characteristic (ROC) curve and further validated using independent external datasets. Additionally, enrichment analysis was performed to uncover key driver pathways in MASH. The infiltration levels of various immune cell types were assessed using single sample Gene Set Enrichment Analysis (ssGSEA). Finally, Spearman correlation analysis confirmed the association between signature genes and immune cells. RESULTS We successfully identified seven signature MRDEGs, including CYP7A1, GCK, AKR1B10, HPRT1, GPD1, FADS2, and ENO3, through PPI network analysis and machine learning algorithms. The gene model displayed exceptional diagnostic performance in the training and validation cohorts, as evidenced by the area under ROC curve (AUC) exceeding 0.9. Further enrichment analysis revealed that signature MEDEGs were primarily involved in multiple biological pathways related to glucose and lipid metabolism. Immune infiltration analysis indicated a significant increase in the infiltration levels of activated CD8 T cells, gamma-delta T cells, natural killer cells, and CD56bright NK cells in patients with MASH. CONCLUSION This study successfully identified seven signature MRDEGs as significant diagnostic biomarkers for MASH. The findings not only offer novel strategies for non-invasive diagnosis of MASH but also highlight the substantial role of immune cell infiltration in the progression of MASH.
Collapse
Affiliation(s)
- Haoran Xie
- Hepatobiliary Pancreatic Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyan Zhao
- Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
4
|
Jiang J, Gao Y, Wang J, Huang Y, Yang R, Zhang Y, Ma Y, Wen Y, Luo G, Zhang S, Cao Y, Yu M, Wang Q, Hu S, Wang K, Guo X, Gonzalez FJ, Liu Y, Liu H, Xie Q, Xie C. Hepatic sphingomyelin phosphodiesterase 3 promotes steatohepatitis by disrupting membrane sphingolipid metabolism. Cell Metab 2025; 37:1119-1136.e13. [PMID: 40015281 DOI: 10.1016/j.cmet.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 12/16/2024] [Accepted: 01/17/2025] [Indexed: 03/01/2025]
Abstract
Metabolic-dysfunction-associated steatohepatitis (MASH) remains a major health challenge. Herein, we identify sphingomyelin phosphodiesterase 3 (SMPD3) as a key driver of hepatic ceramide accumulation through increasing sphingomyelin hydrolysis at the cell membrane. Hepatocyte-specific Smpd3 gene disruption or pharmacological inhibition of SMPD3 alleviates MASH, whereas reintroducing SMPD3 reverses the resolution of MASH. Although healthy livers express low-level SMPD3, lipotoxicity-induced DNA damage suppresses sirtuin 1 (SIRT1), triggering an upregulation of SMPD3 during MASH. This disrupts membrane sphingomyelin-ceramide balance and promotes disease progression by enhancing caveolae-dependent lipid uptake and extracellular vesicle secretion from steatotic hepatocytes to exacerbate inflammation and fibrosis. Consequently, SMPD3 acts as a central hub integrating key MASH hallmarks. Notably, we discovered a bifunctional agent that simultaneously activates SIRT1 and inhibits SMPD3, which shows significant therapeutic potential in MASH treatment. These findings suggest that inhibition of hepatic SMPD3 restores membrane sphingolipid metabolism and holds great promise for developing novel MASH therapies.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Department of Laboratory Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yuqing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Lingang Laboratory, Shanghai 200444, China
| | - Yan Huang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - Rong Yang
- Center for Fatty Liver, Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yongxin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuandi Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingquan Wen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Gongkai Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shurui Zhang
- Lingang Laboratory, Shanghai 200444, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yutang Cao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Minjun Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinxue Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Shulei Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kanglong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaozhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yameng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China.
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| |
Collapse
|
5
|
Kuchay MS, Choudhary NS, Ramos-Molina B. Pathophysiological underpinnings of metabolic dysfunction-associated steatotic liver disease. Am J Physiol Cell Physiol 2025; 328:C1637-C1666. [PMID: 40244183 DOI: 10.1152/ajpcell.00951.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 01/31/2025] [Accepted: 03/31/2025] [Indexed: 04/18/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is emerging as the leading cause of chronic liver disease worldwide, reflecting the global epidemics of obesity, metabolic syndrome, and type 2 diabetes. Beyond its strong association with excess adiposity, MASLD encompasses a heterogeneous population that includes individuals with normal body weight ("lean MASLD") highlighting the complexity of its pathogenesis. This disease results from a complex interplay between genetic susceptibility, epigenetic modifications, and environmental factors, which converge to disrupt metabolic homeostasis. Adipose tissue dysfunction and insulin resistance trigger an overflow of lipids to the liver, leading to mitochondrial dysfunction, oxidative stress, and hepatocellular injury. These processes promote hepatic inflammation and fibrogenesis, driven by cross talk among hepatocytes, immune cells, and hepatic stellate cells, with key contributions from gut-liver axis perturbations. Recent advances have unraveled pivotal molecular pathways, such as transforming growth factor-β signaling, Notch-induced osteopontin, and sphingosine kinase 1-mediated responses, that orchestrate fibrogenic activation. Understanding these interconnected mechanisms is crucial for developing targeted therapies. This review integrates current knowledge on the pathophysiology of MASLD, emphasizing emerging concepts such as lean metabolic dysfunction-associated steatohepatitis (MASH), epigenetic alterations, hepatic extracellular vesicles, and the relevance of extrahepatic signals. It also discusses novel therapeutic strategies under investigation, aiming to provide a comprehensive and structured overview of the evolving MASLD landscape for both basic scientists and clinicians.
Collapse
Affiliation(s)
| | - Narendra Singh Choudhary
- Institute of Digestive and Hepatobiliary Sciences, Medanta-The Medicity Hospital, Gurugram, India
| | - Bruno Ramos-Molina
- Group of Obesity, Diabetes & Metabolism, Biomedical Research Institute of Murcia (IMIB), Murcia, Spain
| |
Collapse
|
6
|
Liu H, Yin G, Franco Leonardi B, Lan T, Ait Ahmed Y, Berger H, Kohlhepp MS, Amiridze N, Martagón Calderón N, Frau C, Vallier L, Rezvani M, Tacke F, Guillot A. Reactive cholangiocyte-derived ORM2 drives a pathogenic modulation of the injured biliary niche through macrophage reprogramming. Gut 2025:gutjnl-2024-334425. [PMID: 40199572 DOI: 10.1136/gutjnl-2024-334425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/25/2025] [Indexed: 04/10/2025]
Abstract
BACKGROUND Injured or reactive biliary epithelial cells participate in most chronic liver injuries in a process referred to as ductular reaction, which involves multicellular interactions with marked local infiltration of macrophages and fibrogenic cell activation. The direct roles of biliary epithelial cells in shaping their cellular niche remain unknown. OBJECTIVE We aimed at investigating the effects of biliary epithelial cell-derived acute phase response protein orosomucoid 2 (ORM2) in shaping monocyte/macrophage response to liver injury. DESIGN Transcriptome data sets from human and mouse livers were used, results were confirmed with multiplex immunofluorescence. A multicellular biliary-niche-on-a-chip derived from primary liver and blood cells (wild-type, Mdr2 -/- mice) was established to model ductular reaction. Human blood cells collected from healthy donors and intrahepatic cholangiocyte organoids derived from normal and cirrhotic liver patients were used. RESULTS Our transcriptome data set and multiplex immunofluorescence analyses indicated a previously unrecognised involvement of the acute phase response protein ORM2 in ductular reactions in both human and mouse livers. ORM2 gene expression was increased in biliatresone-challenged, bile acid-challenged and acetaminophen-challenged cholangiocytes. Cholangiocyte-derived ORM2 induced unique transcriptome changes and functional adaptation of liver macrophages. ORM2-activated macrophages exacerbated cholangiocyte cell stress and Orm2 expression, but also tended to promote fibrogenic activation of hepatic stellate cells. Mechanistically, ORM2 effects were mediated by an inositol 1,4,5-trisphosphate receptor type 2-dependent calcium pathway. CONCLUSION This study reveals a paracrine communication circuit during ductular reaction, in which reactive cholangiocyte-derived ORM2 reprogrammes liver macrophages, participating in a pathogenic remodelling of the immune biliary niche.
Collapse
Affiliation(s)
- Hanyang Liu
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guo Yin
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Bianca Franco Leonardi
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Tian Lan
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yeni Ait Ahmed
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Hilmar Berger
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Marlene Sophia Kohlhepp
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Natalja Amiridze
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Natalia Martagón Calderón
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Carla Frau
- BIH Center for Regenerative Therapies (BCRT), Berlin, Germany, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ludovic Vallier
- BIH Center for Regenerative Therapies (BCRT), Berlin, Germany, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Max-Planck-Institute for Molecular Genetics, Berlin, Germany
| | - Milad Rezvani
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- BIH Center for Regenerative Therapies (BCRT), Berlin, Germany, Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Charité - Universitätsmedizin Berlin, Berlin, BE, Germany
| |
Collapse
|
7
|
Hua W, Cui R, Yang H, Zhang J, Liu C, Sun J. Uncovering critical transitions and molecule mechanisms in disease progressions using Gaussian graphical optimal transport. Commun Biol 2025; 8:575. [PMID: 40189710 PMCID: PMC11973219 DOI: 10.1038/s42003-025-07995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 03/25/2025] [Indexed: 04/09/2025] Open
Abstract
Understanding disease progression is crucial for detecting critical transitions and finding trigger molecules, facilitating early diagnosis interventions. However, the high dimensionality of data and the lack of aligned samples across disease stages have posed challenges in addressing these tasks. We present a computational framework, Gaussian Graphical Optimal Transport (GGOT), for analyzing disease progressions. The proposed GGOT uses Gaussian graphical models, incorporating protein interaction networks, to characterize the data distributions at different disease stages. Then we use population-level optimal transport to calculate the Wasserstein distances and transport between stages, enabling us to detect critical transitions. By analyzing the per-molecule transport distance, we quantify the importance of each molecule and identify trigger molecules. Moreover, GGOT predicts the occurrence of critical transitions in unseen samples and visualizes the disease progression process. We apply GGOT to the simulation dataset and six disease datasets with varying disease progression rates to substantiate its effectiveness. Compared to existing methods, our proposed GGOT exhibits superior performance in detecting critical transitions.
Collapse
Affiliation(s)
- Wenbo Hua
- School of Mathematics and Statistics, Xi'an Jiaotong University, No.28 Xianning West Rd., Xi'an, 710049, Shaanxi, China
| | - Ruixia Cui
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, No.28 Xianning West Rd., Xi'an, 710049, Shaanxi, China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, No.154 West 5th Rd., Xi'an, 710004, Shaanxi, China
| | - Heran Yang
- School of Mathematics and Statistics, Xi'an Jiaotong University, No.28 Xianning West Rd., Xi'an, 710049, Shaanxi, China
| | - Jingyao Zhang
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, No.28 Xianning West Rd., Xi'an, 710049, Shaanxi, China
- Department of SICU, The First Affiliated Hospital of Xi'an Jiaotong University, No.227 Yanta West Rd., Xi'an, 710061, Shaanxi, China
| | - Chang Liu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, No.28 Xianning West Rd., Xi'an, 710049, Shaanxi, China.
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, No.154 West 5th Rd., Xi'an, 710004, Shaanxi, China.
| | - Jian Sun
- School of Mathematics and Statistics, Xi'an Jiaotong University, No.28 Xianning West Rd., Xi'an, 710049, Shaanxi, China.
| |
Collapse
|
8
|
Jiao X, Lai L, Sun B, Qian Y, Yang W. The transcription factor mesenchyme homeobox 1 exacerbates hepatic fibrosis by transcriptional activation of connective tissue growth factor. Exp Cell Res 2025; 447:114513. [PMID: 40073959 DOI: 10.1016/j.yexcr.2025.114513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/26/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
As a chronic condition, liver fibrosis is characterized by diverse etiological factors, and the pivotal event to its pathogenesis is the activation of quiescent hepatic stellate cells (HSCs) into myofibroblasts. Mesenchyme homeobox 1 (MEOX1) is a transcription factors central to cellular development and differentiation. However, the role of MEOX1 signaling in hepatic fibrosis still remains largely unknown. In this study, we investigated the potential role and mechanism of MEOX1 in liver fibrosis using different models in vivo and in vitro. The hepatic expression of MEOX1 exhibited a positive correlation with the degree of fibrosis in patients diagnosed with non-alcoholic steatohepatitis (NASH), as determined through bioinformatics analysis. Furthermore, MEOX1 demonstrated high expression levels in activated HSCs and fibrotic liver tissues induced by methionine and choline-deficient diet (MCD), thioacetamide (TAA), or carbon tetrachloride (CCl4) treatment in C57/BL6 mice. Mechanistically, MEOX1 facilitated HSC activation, proliferation, and migration. The comprehensive analysis of transcriptome sequencing and chromatin immunoprecipitation sequencing data revealed that connective tissue growth factor (CTGF) served as a target gene for MEOX1 in HSCs. Specifically, MEOX1 bound to the promoter region of CTGF and enhanced its transcriptional activity, thereby mediating the exacerbating effect of MEOX1 on hepatic fibrosis. In conclusion, our current findings elucidate the role of MEOX1 in exacerbating hepatic fibrosis progression through transcriptional activation of CTGF. Our findings provide valuable insights into the therapeutic potential of targeting MEOX1 for the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Xiaoxiao Jiao
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Linying Lai
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Bo Sun
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Yiting Qian
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China
| | - Wenzhuo Yang
- Department of Gastroenterology and Hepatology, Institute of Digestive Disease, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, PR China.
| |
Collapse
|
9
|
Luque-Urbano MR, Fernández-Ramos D, Lopitz-Otsoa F, Gutiérrez de Juan V, Bizkarguenaga M, Castro-Espadas L, Hermoso-Martínez U, Barbier-Torres L, Lu SC, Millet O, Mato JM. S-adenosylmethionine deficit disrupts very low-density lipoprotein metabolism promoting liver lipid accumulation in mice. J Lipid Res 2025; 66:100794. [PMID: 40180215 DOI: 10.1016/j.jlr.2025.100794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 03/20/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025] Open
Abstract
Hepatic deletion of methionine adenosyltransferase-1a (Mat1a) in mice reduces S-adenosylmethionine (SAMe), a key methyl donor essential for many biological processes, which promotes the development and progression of metabolic dysfunction-associated steatotic liver disease (MASLD). Hyperglycemia and reduced MAT1A expression, along with low SAMe levels, are common in MASLD patients. This study explores how Mat1a-knockout (KO) hepatocytes respond to prolonged high glucose conditions, focusing on glucose metabolism and lipid accumulation. Hepatocytes from methionine adenosyltransferase-1a-knockout (Mat1a-KO) mice were incubated in high glucose conditions overnight, allowing for analysis of key metabolic intermediates and gene expression related to glycolysis, gluconeogenesis, glyceroneogenesis, phospholipid synthesis, and very low density lipoprotein (VLDL) secretion. SAMe deficiency in Mat1a-KO hepatocytes led to reduced protein methyltransferase-1 activity, resulting in increased expression of glycolytic enzymes (glucokinase, phosphofructokinase, and pyruvate kinase) and decreased expression of gluconeogenic enzymes (phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase). These alterations led to a reduction in dihydroxyacetone phosphate (DHAP), which subsequently inhibited mammalian target of rapamycin complex 1 (mTORC1) activity. This inhibition resulted in decreased phosphatidylcholine synthesis via the CDP-choline pathway and impaired VLDL secretion, ultimately causing lipid accumulation. Thus, under high glucose conditions, SAMe deficiency in hepatocytes depletes DHAP, inhibits mTORC1 activity, and promotes lipid buildup.
Collapse
Affiliation(s)
- María R Luque-Urbano
- Atlas Molecular Pharma, Derio, Spain; Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - David Fernández-Ramos
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Lopitz-Otsoa
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Virginia Gutiérrez de Juan
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Maider Bizkarguenaga
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Lia Castro-Espadas
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Uxue Hermoso-Martínez
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Lucía Barbier-Torres
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shelly C Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Oscar Millet
- Atlas Molecular Pharma, Derio, Spain; Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - José M Mato
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Derio, Spain; CIBERehd, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
10
|
Wang JJ, Chen XY, Zhang YR, Shen Y, Zhu ML, Zhang J, Zhang JJ. Role of genetic variants and DNA methylation of lipid metabolism-related genes in metabolic dysfunction-associated steatotic liver disease. Front Physiol 2025; 16:1562848. [PMID: 40166716 PMCID: PMC11955510 DOI: 10.3389/fphys.2025.1562848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/25/2025] [Indexed: 04/02/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), is one of the most common chronic liver diseases, which encompasses a spectrum of diseases, from metabolic dysfunction-associated steatotic liver (MASL) to metabolic dysfunction-associated steatohepatitis (MASH), and may ultimately progress to MASH-related cirrhosis and hepatocellular carcinoma (HCC). MASLD is a complex disease that is influenced by genetic and environmental factors. Dysregulation of hepatic lipid metabolism plays a crucial role in the development and progression of MASLD. Therefore, the focus of this review is to discuss the links between the genetic variants and DNA methylation of lipid metabolism-related genes and MASLD pathogenesis. We first summarize the interplay between MASLD and the disturbance of hepatic lipid metabolism. Next, we focus on reviewing the role of hepatic lipid related gene loci in the onset and progression of MASLD. We summarize the existing literature around the single nucleotide polymorphisms (SNPs) associated with MASLD identified by genome-wide association studies (GWAS) and candidate gene analyses. Moreover, based on recent evidence from human and animal studies, we further discussed the regulatory function and associated mechanisms of changes in DNA methylation levels in the occurrence and progression of MASLD, with a particular emphasis on its regulatory role of lipid metabolism-related genes in MASLD and MASH. Furthermore, we review the alterations of hepatic DNA and blood DNA methylation levels associated with lipid metabolism-related genes in MASLD and MASH patients. Finally, we introduce potential value of the genetic variants and DNA methylation profiles of lipid metabolism-related genes in developing novel prognostic biomarkers and therapeutic targets for MASLD, intending to provide references for the future studies of MASLD.
Collapse
Affiliation(s)
- Jun-Jie Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Xiao-Yuan Chen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Rong Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Yan Shen
- Department of Publication Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Meng-Lin Zhu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Jun-Jie Zhang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Department of Basic Medicine, Gannan Medical University, Ganzhou, China
| |
Collapse
|
11
|
Li J, Liu X, Tran TT, Lee M, Tsai RYL. DNA Methylation and Target Gene Expression in Fatty Liver Progression From Simple Steatosis to Advanced Fibrosis. Liver Int 2025; 45:e70040. [PMID: 39982030 DOI: 10.1111/liv.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND AND AIM Metabolic dysfunction-associated steatotic liver diseases (MASLD), also known as non-alcoholic fatty liver diseases (NAFLD), have become a leading risk factor for hepatocellular carcinoma (HCC) in Western countries. NAFLD progresses from simple steatosis to HCC, with advanced liver fibrosis (ALF) and metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) representing the two preceding high-risk stages. METHODS We analysed changes in the DNA methylation landscape from simple steatosis to ALF or NASH and determined their relevance in gene regulation and HCC survival. Methylomic datasets generated from applying the Illumina 450K BeadChip on human MASLD/NAFLD liver samples were analysed using integrative data analyses to identify differentially methylated regions (DMRs) associated with ALF (F3/4 vs. F0/1) or non-fibrotic NASH (NASH-F0/1 vs. NAFLD-F0/1). RESULTS Gene Set Enrichment Analysis (GSEA) of genes associated with fibrosis-DMRs showed enrichment in xenobiotic metabolism, UV response and hypoxia pathways. Expression of 25 DMR-associated genes showed significant associations with HCC survival outcomes, including 16 genes with fibrosis-DMRs and 2 with NASH-DMRs mapped to their promoter regions. Binding motifs of seven transcription factors (TFs) were enriched in fibrosis-DMRs. Four DMR-associated genes (ESR1, TYW3, CLGN and TUBB) displayed an inverse relationship between promoter methylation and gene expression during human MASLD progression, which was further validated in a mouse MASLD model. CONCLUSIONS We propose a model in which changes in promoter DNA methylation during NAFLD progression regulate gene expression, impacting HCC survival outcomes.
Collapse
Affiliation(s)
- Jin Li
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Xiaoqin Liu
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Tran T Tran
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
| | - Miryoung Lee
- Department of Epidemiology, School of Public Health, The University of Texas Health Science Center at Houston, Brownsville, Texas, USA
| | - Robert Y L Tsai
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University Health Science Center, Houston, Texas, USA
| |
Collapse
|
12
|
Romaniuk-Drapała A, Kosicka-Noworzyń K, Sheng YH, Yohn C, Brunetti L, Kagan L. Evaluation of reference genes for qPCR in human liver and kidney tissue from individuals with obesity. Sci Rep 2025; 15:5347. [PMID: 39948154 PMCID: PMC11825690 DOI: 10.1038/s41598-025-87911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Given the obesity epidemic and the prevalence of comorbidities, there is an ongoing need to understand the health consequences of this disease state better. Understanding gene expression signals will facilitate the identification of mechanisms of kidney and liver dysfunction/disease often present in individuals with obesity. qPCR is the standard method for studying changes in relative gene expression. Reference genes (RGs) are obligatory for accurately normalizing mRNA transcript levels across samples. Despite the prevalence of qPCR, the reliability of the data is often compromised because RGs are still used without validation or have proven to be unstable in different tissues and various diseases. In this study, we validated seven reference genes (ACTB, B2M, RPLP0, HPRT1, GAPDH, 18S rRNA, and PPIA) using human liver tissue from 15 lean individuals and 17 individuals with a BMI ≥ 25 and human kidney tissue from 13 lean individuals and 15 individuals with a BMI ≥ 25. Cross-validation of expression stability was performed using the RefFinder platform with four algorithms: NormFinder, BestKeeper, geNorm, and the comparative ΔCt method. In obesity-related studies, the most suitable reference genes in gene expression studies are RPLP0 and HPRT1 in human kidney tissue and RPLP0 and GAPDH in the liver.
Collapse
Affiliation(s)
- Aleksandra Romaniuk-Drapała
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan, 60-806, Poland.
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Katarzyna Kosicka-Noworzyń
- Department of Physical Pharmacy and Pharmacokinetics, Poznan University of Medical Sciences, 3 Rokietnicka Street, Poznan, 60-806, Poland
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Yi-Hua Sheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Christine Yohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Luigi Brunetti
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Center of Excellence for Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
13
|
Li Z, Wang L, Tian C, Wang Z, Zhao H, Qi Y, Chen W, Wuyun Q, Amin B, Lian D, Zhu J, Zhang N, Zheng L, Xu G. Identification of hub biomarkers in liver post-metabolic and bariatric surgery using comprehensive machine learning (experimental studies). Int J Surg 2025; 111:1814-1824. [PMID: 39728595 DOI: 10.1097/js9.0000000000002179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/16/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND The global prevalence of non-alcoholic fatty liver disease (NAFLD) is approximately 30%, and the condition can progress to non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Metabolic and bariatric surgery (MBS) has been shown to be effective in treating obesity and related disorders, including NAFLD. OBJECTIVE In this study, comprehensive machine learning was used to identify biomarkers for precise treatment of NAFLD from the perspective of MBS. METHODS Differential expression and univariate logistic regression analyses were performed on lipid metabolism-related genes in a training dataset (GSE83452) and two validation datasets (GSE106737 and GSE48452) to identify consensus-predicted genes (CPGs). Subsequently, 13 machine learning algorithms were integrated into 99 combinations; among which the optimal combination was selected based on the total score of the area under the curve, accuracy, F-score, and recall in the two validation datasets. Hub genes were selected based on their importance ranking in the algorithms and the frequency of their occurrence. Finally, a mouse model of MBS was established, and the mRNA expression of the hub genes was validated via quantitative PCR. RESULTS A total of 12 CPGs were identified after intersecting the results of differential expression and logistic regression analyses on a Venn diagram. Four machine learning algorithms with the highest total scores were identified as optimal models. Additionally, PPARA, PLIN2, MED13, INSIG1, CPT1A, and ALOX5AP were identified as hub genes. The mRNA expression patterns of these genes in mice subjected to MBS were consistent with those observed in the three datasets. CONCLUSION Altogether, the six hub genes identified in this study are important for the treatment of NAFLD via MBS and hold substantial promise in guiding personalized treatment of NAFLD in clinical settings.
Collapse
Affiliation(s)
- Zhehong Li
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Liang Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Chenxu Tian
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zheng Wang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hao Zhao
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yao Qi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Weijian Chen
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Qiqige Wuyun
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Buhe Amin
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dongbo Lian
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jinxia Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Nengwei Zhang
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Lifei Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Guangzhong Xu
- Surgery Centre of Diabetes Mellitus, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
- Department of General Surgery, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
He X, Hu M, Xu Y, Xia F, Tan Y, Wang Y, Xiang H, Wu H, Ji T, Xu Q, Wang L, Huang Z, Sun M, Wan Y, Cui P, Liang S, Pan Y, Xiao S, He Y, Song R, Yan J, Quan X, Wei Y, Hong C, Liao W, Li F, El-Omar E, Chen J, Qi X, Gao J, Zhou H. The gut-brain axis underlying hepatic encephalopathy in liver cirrhosis. Nat Med 2025; 31:627-638. [PMID: 39779925 DOI: 10.1038/s41591-024-03405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/07/2024] [Indexed: 01/11/2025]
Abstract
Up to 50-70% of patients with liver cirrhosis develop hepatic encephalopathy (HE), which is closely related to gut microbiota dysbiosis, with an unclear mechanism. Here, by constructing gut-brain modules to assess bacterial neurotoxins from metagenomic datasets, we found that phenylalanine decarboxylase (PDC) genes, mainly from Ruminococcus gnavus, increased approximately tenfold in patients with cirrhosis and higher in patients with HE. Cirrhotic, not healthy, mice colonized with R. gnavus showed brain phenylethylamine (PEA) accumulation, along with memory impairment, symmetrical tremors and cortex-specific neuron loss, typically found in patients with HE. This accumulation of PEA was primarily driven by decreased monoamine oxidase-B activity in both the liver and serum due to cirrhosis. Targeting PDC or PEA reversed the neurological symptoms induced by R. gnavus. Furthermore, fecal microbiota transplantation from patients with HE to germ-free cirrhotic mice replicated these symptoms and further corroborated the efficacy of targeting PDC or PEA. Clinically, high baseline PEA levels were linked to a sevenfold increased risk of HE after intrahepatic portosystemic shunt procedures. Our findings expand the understanding of the gut-liver-brain axis and identify a promising therapeutic and predictive target for HE.
Collapse
Affiliation(s)
- Xiaolong He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mengyao Hu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Fangbo Xia
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Tan
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Yuqing Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huiling Xiang
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, China
| | - Hao Wu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Tengfei Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Xu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Wang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenhe Huang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meiling Sun
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Wan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Cui
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shaocong Liang
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Pan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Siyu Xiao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yan He
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, China
| | - Ruixin Song
- The Third Central Clinical College of Tianjin Medical University, Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, China
| | - Junqing Yan
- Department of Gastroenterology and Hepatology, Tianjin Third Central Hospital, Tianjin, China
| | - Xin Quan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yingge Wei
- Department of Hepatology, Third People's Hospital of Linfen City, Linfen, China
| | - Changze Hong
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weizuo Liao
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, the State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Fuli Li
- Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao C1 Refinery Engineering Research Center, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Emad El-Omar
- UNSW Microbiome Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW SYDNEY, Sydney, New South Wales, Australia
| | - Jinjun Chen
- Hepatology Unit, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiaolong Qi
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| | - Jie Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- Department of Gastroenterology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, the State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China.
| | - Hongwei Zhou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Laboratory Medicine, Guangzhou, China.
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, China.
| |
Collapse
|
15
|
Zhang Y, Li J, Zeng H, Liu S, Luo Y, Yu P, Liu J. Identification and Validation of Biomarkers in Metabolic Dysfunction-Associated Steatohepatitis Using Machine Learning and Bioinformatics. Mol Genet Genomic Med 2025; 13:e70063. [PMID: 39995143 PMCID: PMC11850758 DOI: 10.1002/mgg3.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/24/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND The incidence of metabolic dysfunction-associated steatohepatitis (MASH) is increasing annually. MASH can progress to cirrhosis and hepatocellular carcinoma. However, the early diagnosis of MASH is challenging. AIM To screen prospective biomarkers for MASH and verify their effectiveness through in vitro and in vivo experiments. METHODS Microarray datasets (GSE89632, GSE48452, and GSE63067) from the Gene Expression Omnibus database were used to identify differentially expressed genes (DEGs) between patients with MASH and healthy controls. Machine learning methods such as support vector machine recursive feature elimination and least absolute shrinkage and selection operator were utilized to identify optimum feature genes (OFGs). OFGs were validated using the GSE66676 dataset. CIBERSORT was utilized to illustrate the variations in immune cell abundance between patients with MASH and healthy controls. The correlation between OFGs and immune cell populations was evaluated. The OFGs were validated at both transcriptional and protein levels. RESULTS Initially, 37 DEGs were identified in patients with MASH compared with healthy controls. In the enrichment analysis, the DEGs were mainly related to inflammatory responses and immune signal-related pathways. Subsequently, using machine learning algorithms, five genes (FMO1, PEG10, TP53I3, ME1, and TRHDE) were identified as OFGs. The candidate biomarkers were validated in the testing dataset and through experiments with animal and cell models. The malic enzyme (ME1) gene (HGNC:6983) expression was significantly upregulated in MASH samples compared to controls (0.4353 ± 0.2262 vs. -0.06968 ± 0.3222, p = 0.00076). Immune infiltration analysis revealed a negative correlation between ME1 expression and plasma cells (R = -0.77, p = 0.0033). CONCLUSION This study found that ME1 plays a regulatory role in early MASH, which may affect disease progression by mediating plasma cells and T cells gamma delta to regulate immune microenvironment. This finding provides a new idea for the early diagnosis, monitoring and potential therapeutic intervention of MASH.
Collapse
Affiliation(s)
- Yu‐Ying Zhang
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
| | - Jin‐E Li
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
| | - Hai‐Xia Zeng
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
| | - Shuang Liu
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
| | - Yun‐Fei Luo
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
| | - Peng Yu
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
- Institute for the Study of Endocrinology and Metabolism in Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
- Branch of National Clinical Research Center for Metabolic DiseasesNanchang CityJiangxi ProvinceChina
| | - Jian‐Ping Liu
- Department of Endocrinology and Metabolism, The 2nd Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchang CityJiangxi ProvinceChina
- Institute for the Study of Endocrinology and Metabolism in Jiangxi ProvinceNanchang CityJiangxi ProvinceChina
- Branch of National Clinical Research Center for Metabolic DiseasesNanchang CityJiangxi ProvinceChina
| |
Collapse
|
16
|
Matboli M, Hamady S, Saad M, Khaled R, Khaled A, Barakat EMF, Sayed SA, Agwa S, Youssef I. Innovative approaches to metabolic dysfunction-associated steatohepatitis diagnosis and stratification. Noncoding RNA Res 2025; 10:206-222. [PMID: 40248839 PMCID: PMC12004009 DOI: 10.1016/j.ncrna.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 01/03/2025] Open
Abstract
The global rise in Metabolic dysfunction-associated steatotic liver disease (MASLD)/Metabolic dysfunction-associated steatohepatitis (MASH) highlights the urgent necessity for noninvasive biomarkers to detect these conditions early. To address this, we endeavored to construct a diagnostic model for MASLD/MASH using a combination of bioinformatics, molecular/biochemical data, and machine learning techniques. Initially, bioinformatics analysis was employed to identify RNA molecules associated with MASLD/MASH pathogenesis and enriched in ferroptosis and exophagy. This analysis unveiled specific networks related to ferroptosis (GPX4, LPCAT3, ACSL4, miR-4266, and LINC00442) and exophagy (TSG101, HGS, SNF8, miR-4498, miR-5189-5p, and CTBP1-AS2). Subsequently, serum samples from 400 participants (151 healthy, 150 MASH, and 99 MASLD) underwent biochemical and molecular analysis, revealing significant dyslipidemia, impaired liver function, and disrupted glycemic indicators in MASLD/MASH patients compared to healthy controls. Molecular analysis indicated increased expression of LPCAT3, ACSL4, TSG101, HGS, and SNF8, alongside decreased GPX4 levels in MASH and MASLD patients compared to controls. The expression of epigenetic regulators from both networks (miR-4498, miR-5189-5p, miR-4266, LINC00442, and CTBP1-AS2) significantly differed among the studied groups. Finally, supervised machine learning models, including Neural Networks and Random Forest, were applied to molecular signatures and clinical/biochemical data. The Random Forest model exhibited superior performance, and molecular features effectively distinguished between the three studied groups. Clinical features, particularly BMI, consistently served as discriminatory factors, while biochemical features exhibited varying discriminant behavior across MASH, MASLD, and control groups. Our study underscores the significant potential of integrating diverse data types to enable early detection of MASLD/MASH, offering a promising approach for non-invasive diagnostic strategies.
Collapse
Affiliation(s)
- Marwa Matboli
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, 11566, Egypt
- Faculty of Oral & Dental Medicine, Misr International University, Qalyubiyya Governorate, Egypt
| | - Shaimaa Hamady
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Maha Saad
- Basic Sciences Department, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Radwa Khaled
- Basic Sciences Department, Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
- Biotechnology/Biomolecular Chemistry Program, Faculty of Science, Cairo University & Faculty of Medicine, Modern University for Technology and Information, Cairo, Egypt
| | - Abdelrahman Khaled
- Bioinformatics Group, Center of Informatics Sciences (CIS), School of Information Technology and Computer Sciences, Nile University, Giza, Egypt
| | - Eman MF. Barakat
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sayed Ahmed Sayed
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - SaraH.A. Agwa
- Clinical Pathology and Molecular Genomics Unit, Medical Ain Shams Research Institute (MASRI), Faculty of Medicine, Ain Shams University, Cairo, 11382, Egypt
| | - Ibrahim Youssef
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Egypt
| |
Collapse
|
17
|
Ammar S, Abdelbaki T, Elsabaa B, El Assi H, Kassem H. Changes in Circulating Levels of Long Non-Coding RNA p5549 and p19461 Following Metabolic Bariatric Surgery (MBS): A Prospective Study. Obes Surg 2025; 35:131-140. [PMID: 39652216 PMCID: PMC11717812 DOI: 10.1007/s11695-024-07596-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025]
Abstract
BACKGROUND Obesity is attributed to a combination of factors such as lifestyle, environmental influences, and genetic background. Nowadays, the issue of obesity has grown to an epidemic scale. Environmental changes, having contributed to the sharp rise in obesity prevalence, are not the only contributing etiologic factors. Inherent biological variables interact with environmental factors resulting in obesity. Epigenetic mechanisms may explain part of obesity heritability. One of the recently discovered epigenetic mechanisms for controlling gene expression is long non-coding RNAs (lncRNAs). Circulating lncRNA p5549 and p19461 levels were reported to be significantly lower in individuals with obesity. This study aimed to evaluate whether weight loss following metabolic/bariatric surgery (MBS) can be related to altered expression levels of those lncRNAs, which have been reported to be reduced in individuals with obesity. METHODS Comparison of circulating levels of lncRNA p5549 and p19461 before and 12 weeks after MBS in thirty-four patients was conducted to evaluate whether MBS can revert the altered levels of these lncRNAs. None of the participating patients were lost to follow-up, and all underwent re-evaluation of post-surgical expression levels. RESULTS lncRNA p5549 expression levels in serum were found to increase significantly in the postoperative samples compared to preoperative samples (fold increase: 4.63 ± 7.68, p = 0.014). CONCLUSION Epigenetic changes in patients with obesity, specifically lncRNA-p5549 expression levels, are reversed after MBS. The postoperative increase in the expression levels of lncRNA- p19461 was not statistically significant.
Collapse
|
18
|
Tong H, Guo X, Jacques M, Luo Q, Eynon N, Teschendorff AE. Cell-type specific epigenetic clocks to quantify biological age at cell-type resolution. Aging (Albany NY) 2024; 16:13452-13504. [PMID: 39760516 PMCID: PMC11723652 DOI: 10.18632/aging.206184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/12/2024] [Indexed: 01/07/2025]
Abstract
The ability to accurately quantify biological age could help monitor and control healthy aging. Epigenetic clocks have emerged as promising tools for estimating biological age, yet they have been developed from heterogeneous bulk tissues, and are thus composites of two aging processes, one reflecting the change of cell-type composition with age and another reflecting the aging of individual cell-types. There is thus a need to dissect and quantify these two components of epigenetic clocks, and to develop epigenetic clocks that can yield biological age estimates at cell-type resolution. Here we demonstrate that in blood and brain, approximately 39% and 12% of an epigenetic clock's accuracy is driven by underlying shifts in lymphocyte and neuronal subsets, respectively. Using brain and liver tissue as prototypes, we build and validate neuron and hepatocyte specific DNA methylation clocks, and demonstrate that these cell-type specific clocks yield improved estimates of chronological age in the corresponding cell and tissue-types. We find that neuron and glia specific clocks display biological age acceleration in Alzheimer's Disease with the effect being strongest for glia in the temporal lobe. Moreover, CpGs from these clocks display a small but significant overlap with the causal DamAge-clock, mapping to key genes implicated in neurodegeneration. The hepatocyte clock is found accelerated in liver under various pathological conditions. In contrast, non-cell-type specific clocks do not display biological age-acceleration, or only do so marginally. In summary, this work highlights the importance of dissecting epigenetic clocks and quantifying biological age at cell-type resolution.
Collapse
Affiliation(s)
- Huige Tong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolong Guo
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Macsue Jacques
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Qi Luo
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nir Eynon
- Australian Regenerative Medicine Institute (ARMI), Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Andrew E. Teschendorff
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institute for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
19
|
Zhu N, Wang X, Zhu H, Zheng Y. Exploring the role of alternative lengthening of telomere-related genes in diagnostic modeling for non-alcoholic fatty liver disease. Sci Rep 2024; 14:30309. [PMID: 39638831 PMCID: PMC11621558 DOI: 10.1038/s41598-024-81129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
Previous studies have reported an association between telomere length and non-alcoholic fatty liver disease (NAFLD). This study aimed to explore the involvement of alternative lengthening of telomere-related genes (ALTRGs) in the pathology of NAFLD, construct a risk signature, and evaluate both treatment and prognosis. Three NAFLD datasets (GSE48452, GSE89632, and GSE63067) were collected from the GEO database and merged into combined GEO datasets. ALTRGs were collected from GeneCards and PubMed databases. Differentially expressed genes (DEGs) were identified, and functional enrichment analysis was performed. This study employed a support vector machine algorithm and least absolute shrinkage and selection operator regression analysis to identify key genes for constructing a diagnostic model. High- and low-risk groups were identified from the combined GEO datasets using the diagnostic model. Gene set enrichment analysis, regulatory network analysis, and intergroup immune infiltration analysis were performed. This study identified the key genes using receiver operating characteristic and Friends analysis. Expression of these genes was validated in a mouse model of NAFLD. Twenty-five genes were differentially expressed, with a positive correlation between FOS and EGR1 and a negative correlation between MYC and CEBPA. A diagnostic model was constructed using 12 genes, and high- and low-risk groups were identified. CAMK2G, ERBB2, FOSB, WT1, and CEBPA showed certain accuracy, and their expression levels were significantly different in the model. Immune infiltration analysis between the risk groups revealed that six immune cells were statistically significant. This includes a strong negative interaction between type 2 T helper cells and SPHK2 in the high-risk group. These findings suggest that ALTRDEGs are potential therapeutic targets and prognostic indicators for NAFLD. However, further investigations are required to elucidate the specific underlying mechanisms.
Collapse
Affiliation(s)
- Nan Zhu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China
- Department of Internal Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Xiaoliang Wang
- Department of Cardiology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Huiting Zhu
- Department of Internal Medicine, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Yue Zheng
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, 050017, Hebei Province, China.
- Department of Gastroenterology, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China.
| |
Collapse
|
20
|
Pang J, Yin L, Jiang W, Wang H, Cheng Q, Jiang Z, Cao Y, Zhu X, Li B, Qian S, Yin X, Wang T, Lu Q, Yang T. Sirt1-mediated deacetylation of PGC-1α alleviated hepatic steatosis in type 2 diabetes mellitus via improving mitochondrial fatty acid oxidation. Cell Signal 2024; 124:111478. [PMID: 39428026 DOI: 10.1016/j.cellsig.2024.111478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Being activated by deacetylation, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) has become an important regulator of metabolic-related diseases. The activation of Sirtuin 1 (Sirt1) by resveratrol was likely to deacetylate PGC-1α. However, the role of deacetylated PGC-1α in the alleviation of activated Sirt1 on type 2 diabetes mellitus (T2DM)-related fatty liver disease (FLD) remained unexplored. The aim of this study was to investigate the potential impact of Sirt1-mediated deacetylation of PGC-1α on T2DM-associated FLD and its underlying mechanisms. Our findings revealed that, along with the decreased Sirt1, the levels of acetylated PGC-1α were up-regulated in hepatocytes co-stimulated with high glucose (HG) and free fatty acids (FFA). Down-regulated Sirt1 inactivated PGC-1α by inhibiting its deacetylation, while activating Sirt1 improved hepatic injury by reducing lipid droplet accumulation through the deacetylation of PGC-1α. However, the beneficial effects of Sirt1 activation on hepatic steatosis were inhibited by PGC-1α antagonist in vitro. Mechanistically, activating Sirt1 enhanced mitochondrial function by promoting PGC-1α activity, thereby facilitating hepatic fatty acid oxidation (FAO). In conclusion, Sirt1-mediated deacetylation of PGC-1α mitigated hepatic lipotoxicity by enhancing mitochondrial FAO, which contributed to the restoration of mitochondrial function in T2DM. The activation of Sirt1-mediated PGC-1α deacetylation might represent a promising therapeutic approach for T2DM-associated FLD.
Collapse
Affiliation(s)
- Jiale Pang
- Department of Pharmacy, Jintan Affiliated Hospital of Jiangsu University, Changzhou 213200, China
| | - Longxiang Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Wenjie Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Haiyan Wang
- Department of Biochemistry, Graduate School of Inovative Life Science, University of Toyama, Toyama 930-0194, Japan
| | - Qian Cheng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China, Pharmaceutical University, Nanjing 210009, China
| | - Yanjuan Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Baojing Li
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Tao Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; Department of Pharmacy, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
21
|
Feng G, He N, Gao J, Li XC, Zhang FN, Liu CC, Targher G, Byrne CD, Mi M, Zheng MH, Ye F. Causal relationship between key genes and metabolic dysfunction-associated fatty liver disease risk mediated by immune cells: A Mendelian randomization and mediation analysis. Diabetes Obes Metab 2024; 26:5590-5599. [PMID: 39228284 DOI: 10.1111/dom.15925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 09/05/2024]
Abstract
AIM Non-invasive diagnostics for metabolic dysfunction-associated fatty liver disease (MAFLD) remain challenging. We aimed to identify novel key genes as non-invasive biomarkers for MAFLD, elucidate causal relationships between biomarkers and MAFLD and determine the role of immune cells as potential mediators. MATERIALS AND METHODS Utilizing published transcriptome data of patients with biopsy-proven MAFLD, we applied linear models for microarray data, least absolute shrinkage and selector operation (LASSO) regressions and receiver operating characteristic (ROC) curve analyses to identify and validate biomarkers for MAFLD. Using the expression quantitative trait loci database and a cohort of 778 614 Europeans, we used Mendelian randomization to analyse the causal relationships between key biomarkers and MAFLD. Additionally, mediation analysis was performed to examine the involvement of 731 immunophenotypes in these relationships. RESULTS We identified 31 differentially expressed genes, and LASSO regression showed three hub genes, IGFBP2, PEG10, and P4HA1, with area under the receiver operating characteristic (AUROC) curve of 0.807, 0.772 and 0.791, respectively, for identifying MAFLD. The model of these three genes had an AUROC of 0.959 and 0.800 in the development and validation data sets, respectively. This model was also validated using serum-based enzyme-linked immunosorbent assay data from MAFLD patients and control subjects (AUROC: 0.819, 95% confidence interval: 0.736-0.902). PEG10 was associated with an increased MAFLD risk (odds ratio = 1.106, p = 0.032) via inverse variance-weighted analysis, and about 30% of this risk was mediated by the percentage of CD11c + CD62L- monocytes. CONCLUSIONS The MAFLD panels have good diagnostic accuracy, and the causal link between PEG10 and MAFLD was mediated by the percentage of CD11c + CD62L- monocytes.
Collapse
Affiliation(s)
- Gong Feng
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Institute of General Practice, Xi'an Medical University, Xi'an, China
| | - Na He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Jing Gao
- School of Medicine, Xiamen University, Xiamen, China
- Department of Emergency Medicine, Affiliated Hospital of Xizang Minzu University, Xianyang, China
| | - Xiao-Cheng Li
- Institute of General Practice, Xi'an Medical University, Xi'an, China
| | - Fen-Na Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Medical University, Xi'an, China
| | - Cheng-Cheng Liu
- Institute of General Practice, Xi'an Medical University, Xi'an, China
| | - Giovanni Targher
- Department of Medicine, University of Verona, Verona, Italy
- Metabolic Diseases Research Unit, IRCCS Sacro Cuore-Don Calabria Hospital, Negrar di Valpolicella, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Man Mi
- Institute of General Practice, Xi'an Medical University, Xi'an, China
| | - Ming-Hua Zheng
- Department of Hepatology, MAFLD Research Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Feng Ye
- Department of Infectious Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
22
|
Zeng M, Chen L, Wang Y. Nuclear membrane: A key potential therapeutic target for lipid metabolism. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 194:10-15. [PMID: 39433092 DOI: 10.1016/j.pbiomolbio.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
Lipid homeostasis plays a pivotal role in cellular growth, necessitating the engagement of numerous lipid metabolism genes and the cohesive functioning of organelles. While the nucleus is traditionally recognized for its genetic roles, emerging evidence highlights its significant contribution to lipid homeostasis maintenance. Certain nuclear membrane proteins or associated proteins have the capacity to directly catalyze lipid synthesis or modification processes. Mutations in the genes encoding these proteins can lead to disrupted lipid metabolism, contributing to a spectrum of metabolic disorders. This article provides a comprehensive reviews of the investigations exploring the interplay between nuclear membrane proteins and lipid metabolism. Additionally, it delves into the heterogeneity of the nuclear membrane, positioning it as a novel therapeutic target for managing metabolic disorders and mitigating adverse drug reactions.
Collapse
Affiliation(s)
- Min Zeng
- Department of Gastroenterology, Liuyang Hospital of Chinese Medicine, Liuyang, Hunan, China
| | - Longgui Chen
- Department of Gastroenterology, Liuyang Hospital of Chinese Medicine, Liuyang, Hunan, China.
| | - YaZhu Wang
- Department of Cardiovascular Medicine, Liuyang Hospital of Chinese Medicine, Liuyang, Hunan, China.
| |
Collapse
|
23
|
Stols-Gonçalves D, Meijnikman AS, Tristão LS, dos Santos CL, Denswil NP, Verheij J, Bernardo WM, Nieuwdorp M. Metabolic Dysfunction-Associated Steatotic Liver Disease and Alcohol-Associated Liver Disease: Liver DNA Methylation Analysis-A Systematic Review. Cells 2024; 13:1893. [PMID: 39594641 PMCID: PMC11592595 DOI: 10.3390/cells13221893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated liver disease (MASLD) and alcohol-associated liver disease (ALD) are among the leading causes of liver disease worldwide. The exact roles of epigenetic factors in both diseases remains largely unknown. In this context, liver DNA methylation remains a field that requires further exploration and understanding. METHODS We performed a systematic review of liver DNA methylation in humans with MASLD or ALD using Ovid MEDLINE, Ovid Embase, and Cochrane Library. We included human studies where liver DNA methylation was assessed in patients with MASLD and/or ALD. The Rayyan platform was used to select studies. Risk of bias was assessed with the "risk of bias in non-randomized studies of interventions" tool, ROBINS-I. We performed pathway analysis using the most important differentially methylated genes selected in each article. RESULTS Fifteen articles were included in this systematic review. The risk of bias was moderate to serious in all articles and bias due to confounding and patient selection was high. Sixteen common pathways, containing differentially methylated genes, including cancer pathways, were identified in both diseases. CONCLUSIONS There are common pathways, containing differentially methylated genes, in ALD and MASLD, such as pathways in cancer and peroxisome proliferator-activated receptor (PPAR) signaling pathways. In MASLD, the insulin signaling pathway is one of the most important, and in ALD, the MAPK signaling pathway is the most important. Our study adds one more piece to the puzzle of the mechanisms involved in steatotic liver disease.
Collapse
Affiliation(s)
- Daniela Stols-Gonçalves
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Meibergdreef 9 (Room A01-112), 1105 AZ Amsterdam, The Netherlands; (A.S.M.); (M.N.)
| | - Abraham S. Meijnikman
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Meibergdreef 9 (Room A01-112), 1105 AZ Amsterdam, The Netherlands; (A.S.M.); (M.N.)
| | - Luca Schiliró Tristão
- Department of Evidence-Based Medicine, Faculdade de Ciências Médicas de Santos—Lusiada University Center, Santos 11050-071, SP, Brazil; (L.S.T.); (C.L.d.S.); (W.M.B.)
| | - Clara Lucato dos Santos
- Department of Evidence-Based Medicine, Faculdade de Ciências Médicas de Santos—Lusiada University Center, Santos 11050-071, SP, Brazil; (L.S.T.); (C.L.d.S.); (W.M.B.)
| | - Nerissa P. Denswil
- Medical Library, Amsterdam University Medical Centre, University of Amsterdam, 1012 WP Amsterdam, The Netherlands;
| | - Joanne Verheij
- Department of Pathology, Amsterdam University Medical Centre, 1105 AZ Amsterdam, The Netherlands;
| | - Wanderley M. Bernardo
- Department of Evidence-Based Medicine, Faculdade de Ciências Médicas de Santos—Lusiada University Center, Santos 11050-071, SP, Brazil; (L.S.T.); (C.L.d.S.); (W.M.B.)
- Faculdade de Medicina d Universidade de São Paulo, São Paulo 05508-220, SP, Brazil
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centre, Meibergdreef 9 (Room A01-112), 1105 AZ Amsterdam, The Netherlands; (A.S.M.); (M.N.)
| |
Collapse
|
24
|
Lee J, An H, Kim CS, Lee S. The methyltransferase MLL4 promotes nonalcoholic steatohepatitis by enhancing NF-κB signaling. J Biol Chem 2024; 300:107984. [PMID: 39542242 DOI: 10.1016/j.jbc.2024.107984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing health problem worldwide, ranging from non-alcoholic fatty liver (NAFL) to the more severe metabolic non-alcoholic steatohepatitis (NASH). Although many studies have elucidated the pathogenesis of NAFLD, the epigenetic regulatory mechanism from NAFL to NASH remains incompletely understood. The histone H3 lysine 4 methyltransferase, MLL4 (also called KMT2D), is a critical epigenetic transcriptional coactivator that mediates overnutrition-induced steatosis in mice, but its potential role in the progression of NASH remains largely unknown. Here, we show that mice lacking the one allele of the Mll4 gene are resistant to hepatic steatosis, inflammation, and fibrosis in NASH conditions compared to wild-type controls. Transcriptome analysis of the livers of control and Mll4+/- mice identified pro-inflammatory genes regulated by the nuclear factor kappa B (NF-κB) signaling pathway as major target genes of MLL4. We show that MLL4 binds to p65 and that MLL4 is required for NF-κB transactivation. Myeloid-specific Mll4 knockout mice showed an almost complete block of NASH, while hepatocyte-specific Mll4 knockout mice showed mild inhibition of steatosis. Pro-inflammatory M1 polarization is decreased and anti-inflammatory M2 polarization is increased in liver macrophages from myeloid-specific Mll4 knockout mice. Importantly, we show that histone H3-lysine 4 methylation mediated by the MLL4-complex plays a critical role in promoting the expression of Ccl2 in hepatocytes and M1 marker genes in macrophages. Our results demonstrate that MLL4, through the NF-κB-MLL4 regulatory axis, exacerbates steatohepatitis in the context of an inflammatory response and represents a potential therapeutic target for NASH.
Collapse
Affiliation(s)
- Junekyoung Lee
- Research Institute of Pharmaceutical Sciences, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyejin An
- Research Institute of Pharmaceutical Sciences, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Chong-Su Kim
- Department of Food and Nutrition, College of Natural Information Sciences, Dongduk Women's University, Seoul, South Korea
| | - Seunghee Lee
- Research Institute of Pharmaceutical Sciences, Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, South Korea.
| |
Collapse
|
25
|
Luo Z, Huang C, Chen J, Chen Y, Yang H, Wu Q, Lu F, Zhang TE. Potential diagnostic markers and therapeutic targets for non-alcoholic fatty liver disease and ulcerative colitis based on bioinformatics analysis and machine learning. Front Med (Lausanne) 2024; 11:1323859. [PMID: 39568749 PMCID: PMC11576177 DOI: 10.3389/fmed.2024.1323859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) and ulcerative colitis (UC) are two common health issues that have gained significant global attention. Previous studies have suggested a possible connection between NAFLD and UC, but the underlying pathophysiology remains unclear. This study investigates common genes, underlying pathogenesis mechanisms, identification of diagnostic markers applicable to both conditions, and exploration of potential therapeutic targets shared by NAFLD and UC. Methods We obtained datasets for NAFLD and UC from the GEO database. The DEGs in the GSE89632 dataset of the NAFLD and GSE87466 of the UC dataset were analyzed. WGCNA, a powerful tool for identifying modules of highly correlated genes, was employed for both datasets. The DEGs of NAFLD and UC and the modular genes were then intersected to obtain shared genes. Functional enrichment analysis was conducted on these shared genes. Next, we utilize the STRING database to establish a PPI network. To enhance visualization, we employ Cytoscape software. Subsequently, the Cytohubba algorithm within Cytoscape was used to identify central genes. Diagnostic biomarkers were initially screened using LASSO regression and SVM methods. The diagnostic value of ROC curve analysis was assessed to detect diagnostic genes in both training and validation sets for NAFLD and UC. A nomogram was also developed to evaluate diagnostic efficacy. Additionally, we used the CIBERSORT algorithm to explore immune infiltration patterns in both NAFLD and UC samples. Finally, we investigated the correlation between hub gene expression, diagnostic gene expression, and immune infiltration levels. Results We identified 34 shared genes that were found to be associated with both NAFLD and UC. These genes were subjected to enrichment analysis, which revealed significant enrichment in several pathways, including the IL-17 signaling pathway, Rheumatoid arthritis, and Chagas disease. One optimal candidate gene was selected through LASSO regression and SVM: CCL2. The ROC curve confirmed the presence of CCL2 in both the NAFLD and UC training sets and other validation sets. This finding was further validated using a nomogram in the validation set. Additionally, the expression levels of CCL2 for NAFLD and UC showed a significant correlation with immune cell infiltration. Conclusion This study identified a gene (CCL2) as a biomarker for NAFLD and UC, which may actively participate in the progression of NAFLD and UC. This discovery holds significant implications for understanding the progression of these diseases and potentially developing more effective diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Zheng Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cong Huang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Biology Laboratory for TCM Viscera-Manifestation Research of Sichuan University, Chinese Medical Center of Chengdu University of TCM, Chengdu, China
| | - Jilan Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Biology Laboratory for TCM Viscera-Manifestation Research of Sichuan University, Chinese Medical Center of Chengdu University of TCM, Chengdu, China
| | - Yunhui Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongya Yang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaofeng Wu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fating Lu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian E Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Biology Laboratory for TCM Viscera-Manifestation Research of Sichuan University, Chinese Medical Center of Chengdu University of TCM, Chengdu, China
| |
Collapse
|
26
|
Bilbao I, Recalde M, Daian F, Herranz JM, Elizalde M, Iñarrairaegui M, Canale M, Fernández-Barrena MG, Casadei-Gardini A, Sangro B, Ávila MA, Landecho Acha MF, Berasain C, Arechederra M. Comprehensive in silico CpG methylation analysis in hepatocellular carcinoma identifies tissue- and tumor-type specific marks disconnected from gene expression. J Physiol Biochem 2024; 80:865-879. [PMID: 39305372 PMCID: PMC11682006 DOI: 10.1007/s13105-024-01045-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/27/2024] [Indexed: 12/29/2024]
Abstract
DNA methylation is crucial for chromatin structure, transcription regulation and genome stability, defining cellular identity. Aberrant hypermethylation of CpG-rich regions is common in cancer, influencing gene expression. However, the specific contributions of individual epigenetic modifications to tumorigenesis remain under investigation. In hepatocellular carcinoma (HCC), DNA methylation alterations are documented as in other tumor types. We aimed to identify hypermethylated CpGs in HCC, assess their specificity across other tumor types, and investigate their impact on gene expression. To this end, public methylomes from HCC, other liver diseases, and 27 tumor types as well as expression data from TCGA-LIHC and GTEx were analyzed. This study identified 39 CpG sites that were hypermethylated in HCC compared to control liver tissue, and were located within promoter, gene bodies, and intergenic CpG islands. Notably, these CpGs were predominantly unmethylated in healthy liver tissue and other normal tissues. Comparative analysis with 27 other tumors revealed both common and HCC-specific hypermethylated CpGs. Interestingly, the HCC-hypermethylated genes showed minimal expression in the different healthy tissues, with marginal changes in the level of expression in the corresponding tumors. These findings confirm previous evidence on the limited influence of DNA hypermethylation on gene expression regulation in cancer. It also highlights the existence of mechanisms that allow the selection of tissue-specific methylation marks in normally unexpressed genes during carcinogenesis. Overall, our study contributes to demonstrate the complexity of cancer epigenetics, emphasizing the need of better understanding the interplay between DNA methylation, gene expression dynamics, and tumorigenesis.
Collapse
Affiliation(s)
- Idoia Bilbao
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
| | - Miriam Recalde
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
| | - Fabrice Daian
- Laboratoire d'Informatique Et Système (LIS), Aix Marseille Univ, Aix Marseille Univ, CNRS, 13009, Marseille, France
| | - José Maria Herranz
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
| | - María Elizalde
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
| | - Mercedes Iñarrairaegui
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Matteo Canale
- Biosciences Laboratory-IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", 47014, Meldola, Italy
| | - Maite G Fernández-Barrena
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Andrea Casadei-Gardini
- Medical Oncology Department, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Department of Oncology, Vita-Salute San Raffaele University, Milan, Italy
| | - Bruno Sangro
- Liver Unit and HPB Oncology Area, Clínica Universidad de Navarra, Avda. Pio XII, n55, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | - Matías A Ávila
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain
| | | | - Carmen Berasain
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain.
| | - María Arechederra
- Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, 3008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029, Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, 31008, Pamplona, Spain.
| |
Collapse
|
27
|
Wen YQ, Zou ZY, Zhao GG, Zhang MJ, Zhang YX, Wang GH, Shi JJ, Wang YY, Song YY, Wang HX, Chen RY, Zheng DX, Duan XQ, Liu YM, Gonzalez FJ, Fan JG, Xie C. FXR activation remodels hepatic and intestinal transcriptional landscapes in metabolic dysfunction-associated steatohepatitis. Acta Pharmacol Sin 2024; 45:2313-2327. [PMID: 38992119 PMCID: PMC11489735 DOI: 10.1038/s41401-024-01329-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/28/2024] [Indexed: 07/13/2024]
Abstract
The escalating obesity epidemic and aging population have propelled metabolic dysfunction-associated steatohepatitis (MASH) to the forefront of public health concerns. The activation of FXR shows promise to combat MASH and its detrimental consequences. However, the specific alterations within the MASH-related transcriptional network remain elusive, hindering the development of more precise and effective therapeutic strategies. Through a comprehensive analysis of liver RNA-seq data from human and mouse MASH samples, we identified central perturbations within the MASH-associated transcriptional network, including disrupted cellular metabolism and mitochondrial function, decreased tissue repair capability, and increased inflammation and fibrosis. By employing integrated transcriptome profiling of diverse FXR agonists-treated mice, FXR liver-specific knockout mice, and open-source human datasets, we determined that hepatic FXR activation effectively ameliorated MASH by reversing the dysregulated metabolic and inflammatory networks implicated in MASH pathogenesis. This mitigation encompassed resolving fibrosis and reducing immune infiltration. By understanding the core regulatory network of FXR, which is directly correlated with disease severity and treatment response, we identified approximately one-third of the patients who could potentially benefit from FXR agonist therapy. A similar analysis involving intestinal RNA-seq data from FXR agonists-treated mice and FXR intestine-specific knockout mice revealed that intestinal FXR activation attenuates intestinal inflammation, and has promise in attenuating hepatic inflammation and fibrosis. Collectively, our study uncovers the intricate pathophysiological features of MASH at a transcriptional level and highlights the complex interplay between FXR activation and both MASH progression and regression. These findings contribute to precise drug development, utilization, and efficacy evaluation, ultimately aiming to improve patient outcomes.
Collapse
Affiliation(s)
- Ying-Quan Wen
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zi-Yuan Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Guan-Guan Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Meng-Jiao Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yong-Xin Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Gai-Hong Wang
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Jing-Jing Shi
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Yuan-Yang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Laboratory Medicine and Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Ye-Yu Song
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China
| | - Hui-Xia Wang
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | - Ru-Ye Chen
- Cascade Pharmaceuticals, Inc, Shanghai, 201321, China
| | | | - Xiao-Qun Duan
- Industrial Technology Research Institute of Pharmacy, Guilin Medical University, Guilin, 541199, China
| | - Ya-Meng Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jian-Gao Fan
- Department of Gastroenterology, Center for Fatty Liver, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, 200092, China.
| | - Cen Xie
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
28
|
Agodi A, Ojeda-Granados C, Maugeri A, Barchitta M, Coco O, Pezzino S, Magro G, Greca GL, Latteri FS, Castorina S, Puleo S. Changes in Gut Microbial Composition and DNA Methylation in Obese Patients with NAFLD After Bariatric Surgery. Int J Mol Sci 2024; 25:11510. [PMID: 39519065 PMCID: PMC11547129 DOI: 10.3390/ijms252111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigates the effects of bariatric surgery on non-alcoholic fatty liver disease (NAFLD) by examining the interplay between gut microbiota, epigenetics, and metabolic health. A cohort of 22 patients undergoing sleeve gastrectomy (SG) was analyzed for changes in gut microbial composition and DNA methylation profiles before and six months after surgery. Correlations between gut microbial abundance and clinical markers at baseline revealed that certain genera were associated with worse metabolic health and liver markers. Following SG, significant improvements were observed in the clinical, anthropometric, and biochemical parameters of the NAFLD patients. Although alpha-diversity indices (i.e., Chao1, Simpson, Shannon) did not show significant changes, beta-diversity analysis revealed a slight shift in microbial composition (PERMANOVA, p = 0.036). Differential abundance analysis identified significant changes in specific bacterial taxa, including an increase in beneficial Lactobacillus species such as Lactobacillus crispatus and Lactobacillus iners and a decrease in harmful taxa like Erysipelotrichia. Additionally, DNA methylation analysis revealed 609 significant differentially methylated CpG sites between the baseline values and six months post-surgery, with notable enrichment in genes related to the autophagy pathway, such as IRS4 and ATG4B. The results highlight the individualized responses to bariatric surgery and underscore the potential for personalized treatment strategies. In conclusion, integrating gut microbiota and epigenetic factors into NAFLD management could enhance treatment outcomes, suggesting that future research should explore microbiome-targeted therapies and long-term follow-ups on liver health post-surgery.
Collapse
Affiliation(s)
- Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.O.-G.); (A.M.); (M.B.); (O.C.); (S.P.); (G.M.); (G.L.G.); (F.S.L.); (S.C.); (S.P.)
| | - Claudia Ojeda-Granados
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.O.-G.); (A.M.); (M.B.); (O.C.); (S.P.); (G.M.); (G.L.G.); (F.S.L.); (S.C.); (S.P.)
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.O.-G.); (A.M.); (M.B.); (O.C.); (S.P.); (G.M.); (G.L.G.); (F.S.L.); (S.C.); (S.P.)
| | - Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.O.-G.); (A.M.); (M.B.); (O.C.); (S.P.); (G.M.); (G.L.G.); (F.S.L.); (S.C.); (S.P.)
| | - Ornella Coco
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.O.-G.); (A.M.); (M.B.); (O.C.); (S.P.); (G.M.); (G.L.G.); (F.S.L.); (S.C.); (S.P.)
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy
| | - Salvatore Pezzino
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.O.-G.); (A.M.); (M.B.); (O.C.); (S.P.); (G.M.); (G.L.G.); (F.S.L.); (S.C.); (S.P.)
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.O.-G.); (A.M.); (M.B.); (O.C.); (S.P.); (G.M.); (G.L.G.); (F.S.L.); (S.C.); (S.P.)
| | - Gaetano La Greca
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.O.-G.); (A.M.); (M.B.); (O.C.); (S.P.); (G.M.); (G.L.G.); (F.S.L.); (S.C.); (S.P.)
| | - Francesco Saverio Latteri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.O.-G.); (A.M.); (M.B.); (O.C.); (S.P.); (G.M.); (G.L.G.); (F.S.L.); (S.C.); (S.P.)
| | - Sergio Castorina
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.O.-G.); (A.M.); (M.B.); (O.C.); (S.P.); (G.M.); (G.L.G.); (F.S.L.); (S.C.); (S.P.)
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy
| | - Stefano Puleo
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, 95123 Catania, Italy; (C.O.-G.); (A.M.); (M.B.); (O.C.); (S.P.); (G.M.); (G.L.G.); (F.S.L.); (S.C.); (S.P.)
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy
| |
Collapse
|
29
|
Deng D, Yang S, Yu X, Zhou R, Liu Y, Zhang H, Cui D, Feng X, Wu Y, Qi X, Su Z. Aging-induced short-chain acyl-CoA dehydrogenase promotes age-related hepatic steatosis by suppressing lipophagy. Aging Cell 2024; 23:e14256. [PMID: 38898632 PMCID: PMC11464120 DOI: 10.1111/acel.14256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/06/2024] [Accepted: 06/09/2024] [Indexed: 06/21/2024] Open
Abstract
Hepatic steatosis, the first step in the development of nonalcoholic fatty liver disease (NAFLD), is frequently observed in the aging population. However, the underlying molecular mechanism remains largely unknown. In this study, we first employed GSEA enrichment analysis to identify short-chain acyl-CoA dehydrogenase (SCAD), which participates in the mitochondrial β-oxidation of fatty acids and may be associated with hepatic steatosis in elderly individuals. Subsequently, we examined SCAD expression and hepatic triglyceride content in various aged humans and mice and found that triglycerides were markedly increased and that SCAD was upregulated in aged livers. Our further evidence in SCAD-ablated mice suggested that SCAD deletion was able to slow liver aging and ameliorate aging-associated fatty liver. Examination of the molecular pathways by which the deletion of SCAD attenuates steatosis revealed that the autophagic degradation of lipid droplets, which was not detected in elderly wild-type mice, was maintained in SCAD-deficient old mice. This was due to the decrease in the production of acetyl-coenzyme A (acetyl-CoA), which is abundant in the livers of old wild-type mice. In conclusion, our findings demonstrate that the suppression of SCAD may prevent age-associated hepatic steatosis by promoting lipophagy and that SCAD could be a promising therapeutic target for liver aging and associated steatosis.
Collapse
Affiliation(s)
- Dan Deng
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| | - Shanshan Yang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| | - Xiaoqian Yu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| | - Ruixue Zhou
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| | - Yin Liu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| | - Hongmei Zhang
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| | - Daxin Cui
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| | - Xingrong Feng
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| | - Yanting Wu
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| | - Xiaocun Qi
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| | - Zhiguang Su
- Molecular Medicine Research Center and National Clinical Research Center for Geriatrics, West China Hospital, and State Key Laboratory of BiotherapySichuan UniversityChengduChina
| |
Collapse
|
30
|
Yu Q, Zhang Y, Ni J, Shen Y, Hu W. Identification and analysis of significant genes in nonalcoholic steatohepatitis-hepatocellular carcinoma transformation: Bioinformatics analysis and machine learning approach. Mol Immunol 2024; 174:18-31. [PMID: 39142007 DOI: 10.1016/j.molimm.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE Nonalcoholic steatohepatitis (NASH) has been an increasingly significant contributor to hepatocellular carcinoma (HCC). Understanding the progression from NASH to HCC is critical to early diagnosis and elucidating the underlying mechanisms. RESULTS 5 significant prognostic genes related to NASH-HCC transformation were identified through algorithm selection, which were ME1, TP53I3, SOCS2, GADD45G and CYP7A1. A diagnostic model for NASH prediction was established (AUC=0.988). TP53I3 and SOCS2 were selected as potential critical genes in the progression of NASH-HCC by external dataset validation and in vitro experiments on NASH and HCC cell lines. Immune infiltration analysis illustrated the correlation between 5 significant prognostic genes and immune cells. Single-cell analysis identified hepatocytes related to NASH-HCC transformation markers, revealing their promoting role in the transformation from NASH to HCC. CONCLUSION With bulk-seq analysis and single-cell analysis, 5 significant prognostic genes related to NASH-HCC transformation were identified and validated at both dataset and in vitro experiment level. Among them, TP53I3 and SOCS2 might be potential critical genes in NASH-HCC progression. Single-cell analysis identified and revealed the critical role that NASH-HCC related hepatocytes play in NASH-HCC tansformation. Our research may introduce a new perspective to the diagnosis, treatment of NASH-related HCC.
Collapse
Affiliation(s)
- Qiyi Yu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yidong Zhang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaping Ni
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yumeng Shen
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Weiwei Hu
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Lingang Laboratory, Shanghai 200032, China.
| |
Collapse
|
31
|
Zeng H, Li W, Xia M, Ge J, Ma H, Chen L, Pan B, Lin H, Wang S, Gao X. Longitudinal association of peripheral blood DNA methylation with liver fat content: distinguishing between predictors and biomarkers. Lipids Health Dis 2024; 23:309. [PMID: 39334355 PMCID: PMC11429307 DOI: 10.1186/s12944-024-02304-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Alterations in DNA methylation (DNAm) have been observed in patients with fatty liver, but whether they are cause or consequence remains unknown. The study aimed to investigate longitudinal association of epigenome-wide DNAm with liver fat content (LFC) in Chinese participants, and explore their temporal relationships. METHODS Data were obtained from 2 waves over a four-year time period of the Shanghai Changfeng Study (discovery, n = 407 and replication, n = 126). LFC and peripheral blood DNAm were repeatedly measured using quantitative hepatic ultrasonography and the 850 K Illumina EPIC BeadChip, respectively. Longitudinal and cross-sectional epigenome-wide association studies (EWASs) were conducted with linear mixed model and linear regression model, respectively. Meta-analysis was performed using METAL. Cross-lagged panel analysis (CLPA) was carried out to infer temporal relationships between the significant CpGs and LFC. RESULTS Longitudinal EWAS identified cg11024682 (SREBF1), cg06500161 (ABCG1), cg16740586 (ABCG1), cg15659943 (ABCA1) and cg00163198 (SNX19) significantly associated with LFC with P < 1e-7. Another 6 of the 22 previously reported CpGs were replicated in the present longitudinal EWAS. CLPA showed longitudinal effects of cg11024682 (SREBF1) (β = 0.14 [0.06, 0.23]), cg16740586 (ABCG1) (β = 0.17 [0.08, 0.25]), cg06500161 (ABCG1) (β = 0.12 [0.03, 0.20]), cg17901584 (DHCR24) (β = -0.10 [-0.18, -0.02]), cg00574958 (CPT1A) (β = -0.09 [-0.17, -0.01]), cg08309687 (LINC00649) (β = -0.11 [-0.19, -0.03]), and cg27243685 (ABCG1) (β = 0.09 [0.01, 0.18]) on subsequent LFC. The effects were attenuated when further adjusting for body mass index. High levels of LFC led to alterations in DNAm of cg15659943 (ABCA1) (β = 0.13 [0.04, 0.21]), cg07162647 (β = -0.11 [-0.19, -0.03]), cg06500161 (ABCG1) (β = 0.10 [0.02, 0.18]), and cg27243685 (ABCG1) (β = 0.10 [0.02, 0.18]). CONCLUSIONS Blood DNAm at SREBF1, ABCG1, DHCR24, CPT1A, and LINC00649 may be predictors of subsequent LFC change. The effects of DNAm at SREBF1 and ABCG1 on LFC were partially influenced by obesity. The findings have potential implications in understanding disease pathogenesis and highlight the potential of DNAm for early detection or intervention of fatty liver.
Collapse
Affiliation(s)
- Hailuan Zeng
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, NO. 180 Fenglin Road, Shanghai, 200032, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Wenran Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, NO. 180 Fenglin Road, Shanghai, 200032, China
- Fudan Institute for Metabolic Diseases, Shanghai, China
| | - Jieyu Ge
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hui Ma
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingyan Chen
- Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, NO. 180 Fenglin Road, Shanghai, 200032, China.
- Fudan Institute for Metabolic Diseases, Shanghai, China.
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Taizhou Institute of Health Sciences, Fudan University, Taizhou, Jiangsu, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, NO. 180 Fenglin Road, Shanghai, 200032, China.
- Fudan Institute for Metabolic Diseases, Shanghai, China.
- Human Phenome Institute, Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Kim HG, Park JH, Shin HH, Kim SH, Jeon HE, Shin JH, Won YS, Kwon HJ, Jeon ES, Lim BK. Liver-specific Coxsackievirus and adenovirus receptor deletion develop metabolic dysfunction-associated fatty liver disease. Sci Rep 2024; 14:21642. [PMID: 39285218 PMCID: PMC11405401 DOI: 10.1038/s41598-024-72561-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) is a common liver disease associated with obesity and is caused by the accumulation of ectopic fat without alcohol consumption. Coxsackievirus and adenovirus receptor (CAR) are vital for cardiac myocyte-intercalated discs and endothelial cell-to-cell tight junctions. CAR has also been reported to be associated with obesity and high blood pressure. However, its function in the liver is still not well understood. The liver of obese mice exhibit elevated CAR mRNA and protein levels. Furthermore, in the liver of patients with non-alcoholic steatohepatitis, CAR is reduced in hepatocyte cell-cell junctions compared to normal levels. We generated liver-specific CAR knockout (KO) mice to investigate the role of CAR in the liver. Body and liver weights were not different between wild-type (WT) and KO mice fed a paired or high-fat diet (HFD). However, HFD induced significant liver damage and lipid accumulation in CAR KO mice compared with WT mice. Additionally, inflammatory cytokines transcription, hepatic permeability, and macrophage recruitment considerably increased in CAR KO mice. We identified a new interaction partner of CAR using a protein pull-down assay and mass spectrometry. Apolipoprotein B mRNA editing enzyme catalytic polypeptide-like 3C (APOBEC3C) demonstrated a complex relationship with CAR, and hepatic CAR expression tightly regulated its level. Moreover, Apolipoprotein B (ApoB) and Low-density lipoprotein receptor (LDLR) levels correlated with APOBEC3C expression in the liver of CAR KO mice, suggesting that CAR may regulate lipid accumulation by controlling APOBEC3C activity. In this study, we showed that hepatic CAR deficiency increased cell-to-cell permeability. In addition, CAR deletion significantly increased hepatic lipid accumulation by inducing ApoB and LDLR expression. Although the underlying mechanism is unclear, CARs may be a target for the development of novel therapies for MAFLD.
Collapse
Affiliation(s)
- Hong-Gi Kim
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea
| | - Jin-Ho Park
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea
| | - Ha-Hyun Shin
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea
| | - So-Hee Kim
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea
| | - Ha-Eun Jeon
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea
| | - Ji-Hwa Shin
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea
| | - Young-Suk Won
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Chungbuk, Korea
| | - Hyo-Jung Kwon
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - Eun-Seok Jeon
- Division of Cardiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon Dong, Gangnam-Gu, Seoul, 06351, Korea
| | - Byung-Kwan Lim
- Department of Biomedical Science, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungbuk, 367-700, Korea.
| |
Collapse
|
33
|
Kubra S, Sun M, Dion W, Catak A, Luong H, Wang H, Pan Y, Liu JJ, Ponna A, Sipula I, Jurczak MJ, Liu S, Zhu B. Epigenetic regulation of global proteostasis dynamics by RBBP5 ensures mammalian organismal health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612812. [PMID: 39314427 PMCID: PMC11419162 DOI: 10.1101/2024.09.13.612812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Proteostasis is vital for cellular health, with disruptions leading to pathologies including aging, neurodegeneration and metabolic disorders. Traditionally, proteotoxic stress responses were studied as acute reactions to various noxious factors; however, recent evidence reveals that many proteostasis stress-response genes exhibit ~12-hour ultradian rhythms under physiological conditions in mammals. These rhythms, driven by an XBP1s-dependent 12h oscillator, are crucial for managing proteostasis. By exploring the chromatin landscape of the murine 12h hepatic oscillator, we identified RBBP5, a key subunit of the COMPASS complex writing H3K4me3, as an essential epigenetic regulator of proteostasis. RBBP5 is indispensable for regulating both the hepatic 12h oscillator and transcriptional response to acute proteotoxic stress, acting as a co-activator for proteostasis transcription factor XBP1s. RBBP5 ablation leads to increased sensitivity to proteotoxic stress, chronic inflammation, and hepatic steatosis in mice, along with impaired autophagy and reduced cell survival in vitro. In humans, lower RBBP5 expression is associated with reduced adaptive stress-response gene expression and hepatic steatosis. Our findings establish RBBP5 as a central regulator of proteostasis, essential for maintaining mammalian organismal health.
Collapse
Affiliation(s)
- Syeda Kubra
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Michelle Sun
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - William Dion
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Ahmet Catak
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Hannah Luong
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Haokun Wang
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | | | - Jia-Jun Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Aishwarya Ponna
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Ian Sipula
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Michael J. Jurczak
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
34
|
Powell H, Coarfa C, Ruiz-Echartea E, Grimm SL, Najjar O, Yu B, Olivares L, Scheurer ME, Ballantyne C, Alsarraj A, Salem EM, Thrift AP, El Serag HB, Kaochar S. Differences in Prediagnostic Serum Metabolomic and Lipidomic Profiles Between Cirrhosis Patients with and without Incident Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1699-1712. [PMID: 39263690 PMCID: PMC11389719 DOI: 10.2147/jhc.s474010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/06/2024] [Indexed: 09/13/2024] Open
Abstract
Background Early detection of hepatocellular carcinoma (HCC) is crucial for improving patient outcomes, but we lack robust clinical biomarkers. This study aimed to identify a metabolite and/or lipid panel for early HCC detection. Methods We developed a high-resolution liquid chromatography mass spectrometry (LC-MS)-based profiling platform and evaluated differences in the global metabolome and lipidome between 28 pre-diagnostic serum samples from patients with cirrhosis who subsequently developed HCC (cases) and 30 samples from patients with cirrhosis and no HCC (controls). We linked differentially expressed metabolites and lipids to their associated genes, proteins, and transcriptomic signatures in publicly available datasets. We used machine learning models to identify a minimal panel to distinguish between cases and controls. Results Among cases compared with controls, 124 metabolites and 246 lipids were upregulated, while 208 metabolites and 73 lipids were downregulated. The top upregulated metabolites were glycoursodeoxycholic acid, 5-methyltetrahydrofolic acid, octanoyl-coenzyme A, and glycocholic acid. Elevated lipids comprised glycerol lipids, cardiolipin, and phosphatidylethanolamine, whereas suppressed lipids included oxidized phosphatidylcholine and lysophospholipids. There was an overlap between differentially expressed metabolites and lipids and previously published transcriptomic signatures, illustrating an association with liver disease severity. A panel of 12 metabolites that distinguished between cases and controls with an area under the receiver operating curve of 0.98 for the support vector machine (interquartile range, 0.9-1). Conclusion Using prediagnostic serum samples, we identified a promising metabolites panel that accurately identifies patients with cirrhosis who progressed to HCC. Further validation of this panel is required.
Collapse
Affiliation(s)
- Hannah Powell
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Elisa Ruiz-Echartea
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sandra L Grimm
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Omar Najjar
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Bing Yu
- Department of Epidemiology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Luis Olivares
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | | | - Abeer Alsarraj
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | | | - Aaron P Thrift
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Section of Epidemiology and Population Sciences, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Hashem B El Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
35
|
Martín Barraza JI, Bars-Cortina D. Dietary Pattern's Role in Hepatic Epigenetic and Dietary Recommendations for the Prevention of NAFLD. Nutrients 2024; 16:2956. [PMID: 39275272 PMCID: PMC11396970 DOI: 10.3390/nu16172956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
NAFLD has emerged as a significant public health concern, with its prevalence increasing globally. Emphasizing the complex relationship between dietary patterns and epigenetic modifications such as DNA methylation or miRNA expression can exert a positive impact on preventing and managing metabolic disorders, including NAFLD, within the 2030 Sustainable Development Goals. This review aims to evaluate the influence of dietary patterns on hepatic epigenetic gene modulation and provide dietary recommendations for the prevention and management of NAFLD in the general population. METHODS Comprehensive screening and eligibility criteria identified eleven articles focusing on epigenetic changes in NAFLD patients through dietary modifications or nutrient supplementation. RESULTS AND DISCUSSION Data were organized based on study types, categorizing them into evaluations of epigenetic changes in NAFLD patients through dietary pattern modifications or specific nutrient intake. CONCLUSIONS The study highlights the importance of dietary interventions in managing and preventing NAFLD, emphasizing the potential of dietary patterns to influence hepatic epigenetic gene modulation. This study provides valuable insights and recommendations to mitigate the risk of developing NAFLD: (i) eat a primarily plant-based diet; (ii) increase consumption of high-fiber foods; (iii) consume more polyunsaturated and monounsaturated fatty acids; (iv) limit processed foods, soft drinks, added sugars, and salt; and (v) avoid alcohol.
Collapse
Affiliation(s)
| | - David Bars-Cortina
- Oncology Data Analytics Program (ODAP), Unit of Biomarkers and Susceptibility (UBS), Catalan Institute of Oncology (ICO), L’Hospitalet del Llobregat, 08908 Barcelona, Spain
- ONCOBELL Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain
- Department of Health Sciences, Universitat Oberta de Catalunya, 08018 Barcelona, Spain
| |
Collapse
|
36
|
Lahnsteiner A, Ellmer V, Oberlercher A, Liutkeviciute Z, Schönauer E, Paulweber B, Aigner E, Risch A. G-quadruplex forming regions in GCK and TM6SF2 are targets for differential DNA methylation in metabolic disease and hepatocellular carcinoma patients. Sci Rep 2024; 14:20215. [PMID: 39215018 PMCID: PMC11364803 DOI: 10.1038/s41598-024-70749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming increase in global rates of metabolic diseases (MetDs) and their association with cancer risk renders them a considerable burden on our society. The interplay of environmental and genetic factors in causing MetDs may be reflected in DNA methylation patterns, particularly at non-canonical (non-B) DNA structures, such as G-quadruplexes (G4s) or R-loops. To gain insight into the mechanisms of MetD progression, we focused on DNA methylation and functional analyses on intragenic regions of two MetD risk genes, the glucokinase (GCK) exon 7 and the transmembrane 6 superfamily 2 (TM6SF2) intron 2-exon 3 boundary, which harbor non-B DNA motifs for G4s and R-loops.Pyrosequencing of 148 blood samples from a nested cohort study revealed significant differential methylation in GCK and TM6SF2 in MetD patients versus healthy controls. Furthermore, these regions harbor hypervariable and differentially methylated CpGs also in hepatocellular carcinoma versus normal tissue samples from The Cancer Genome Atlas (TCGA). Permanganate/S1 nuclease footprinting with direct adapter ligation (PDAL-Seq), native polyacrylamide DNA gel electrophoresis and circular dichroism (CD) spectroscopy revealed the formation of G4 structures in these regions and demonstrated that their topology and stability is affected by DNA methylation. Detailed analyses including histone marks, chromatin conformation capture data, and luciferase reporter assays, highlighted the cell-type specific regulatory function of the target regions. Based on our analyses, we hypothesize that changes in DNA methylation lead to topological changes, especially in GCK exon 7, and cause the activation of alternative regulatory elements or potentially play a role in alternative splicing.Our analyses provide a new view on the mechanisms underlying the progression of MetDs and their link to hepatocellular carcinomas, unveiling non-B DNA structures as important key players already in early disease stages.
Collapse
Affiliation(s)
- Angelika Lahnsteiner
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.
- Cancer Cluster Salzburg, Salzburg, Austria.
| | - Victoria Ellmer
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Anna Oberlercher
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Zita Liutkeviciute
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Esther Schönauer
- Division of Structural Biology, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angela Risch
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
37
|
Lian X, Tang X. Immune infiltration analysis based on pyroptosis-related gene in metabolic dysfunction-associated fatty liver disease. Heliyon 2024; 10:e34348. [PMID: 39145004 PMCID: PMC11320144 DOI: 10.1016/j.heliyon.2024.e34348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Metabolic dysfunction-associated fatty liver disease (MAFLD) is a prevalent chronic disease that can involve pyroptosis. The primary objective of this study was to conduct a thorough and comprehensive analysis the pyroptosis-related genes in MAFLD. Methods We identified pyroptosis-related differentially expressed genes (PRDEGs) in both healthy individuals and MAFLD patients. Using various bioinformatic approaches, we conducted an immune infiltration analysis from multiple perspectives. Results A total of 20 pyroptosis-related LASSO genes were obtained, and 10 hub genes were used to do immune infiltration analysis. The hub genes were utilized in the construction of interaction networks between mRNA-miRNA and mRNA-TF. Immune characteristics analysis revealed multiple immune cell types significantly related to PRDEG expression, particularly genes HSP90AA1, TSLP, CDK9, and BRD4. Conclusion Pyroptosis-related immune infiltration might be a mechanism of MAFLD progression and offers a research direction for potential treatment techniques.
Collapse
Affiliation(s)
- Xin Lian
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xulei Tang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu, 730000, China
| |
Collapse
|
38
|
Chen K, Wei L, Yu S, He N, Zhang F. Identification of autophagy-related signatures in nonalcoholic fatty liver disease and correlation with non-parenchymal cells of the liver. Mol Omics 2024; 20:469-482. [PMID: 38982979 DOI: 10.1039/d4mo00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic hepatic disease. The incidence and prevalence of NAFLD have increased greatly in recent years, and there is still a lack of effective drugs. Autophagy plays an important role in promoting liver metabolism and maintaining liver homeostasis, and defects in autophagy levels are considered to be related to the development of NAFLD. However, the molecular mechanisms of autophagy in NAFLD still remain unknown. In this study, we identified 6 autophagy-associated hub genes using gene expression profiles obtained from the GSE48452 and GSE89632 datasets. Biomarkers were screened according to gene significance (GS) and module membership (MM) using weighted gene co-expression network analysis (WGCNA), and the immune infiltration landscape of the liver in NAFLD patients was explored using the CIBERSORT algorithm. Subsequently, we analyzed the relationship between liver non-parenchymal cells and autophagy-related hub genes using scRNA-seq data (GSE129516). Finally, we separated the NAFLD patients into two groups based on 6 hub genes by consensus clustering and screened 10 potential autophagy-related small molecules based on the cMAP database.
Collapse
Affiliation(s)
- Kaiwei Chen
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266003, China.
| | - Ling Wei
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| | - Shengnan Yu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266003, China.
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, 266003, China.
| | - Fengjuan Zhang
- Department of Infectious Diseases, Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
- Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
39
|
Zhu M, Wang Y, Lu T, Guo J, Li L, Hsieh MH, Gopal P, Han Y, Fujiwara N, Wallace DP, Yu ASL, Fang X, Ransom C, Verschleisser S, Hsiehchen D, Hoshida Y, Singal AG, Yopp A, Wang T, Zhu H. PKD1 mutant clones within cirrhotic livers inhibit steatohepatitis without promoting cancer. Cell Metab 2024; 36:1711-1725.e8. [PMID: 38901424 DOI: 10.1016/j.cmet.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Somatic mutations in non-malignant tissues are selected for because they confer increased clonal fitness. However, it is uncertain whether these clones can benefit organ health. Here, ultra-deep targeted sequencing of 150 liver samples from 30 chronic liver disease patients revealed recurrent somatic mutations. PKD1 mutations were observed in 30% of patients, whereas they were only detected in 1.3% of hepatocellular carcinomas (HCCs). To interrogate tumor suppressor functionality, we perturbed PKD1 in two HCC cell lines and six in vivo models, in some cases showing that PKD1 loss protected against HCC, but in most cases showing no impact. However, Pkd1 haploinsufficiency accelerated regeneration after partial hepatectomy. We tested Pkd1 in fatty liver disease, showing that Pkd1 loss was protective against steatosis and glucose intolerance. Mechanistically, Pkd1 loss selectively increased mTOR signaling without SREBP-1c activation. In summary, PKD1 mutations exert adaptive functionality on the organ level without increasing transformation risk.
Collapse
Affiliation(s)
- Min Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Tianshi Lu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason Guo
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Hsiung Hsieh
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Han
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Fujiwara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darren P Wallace
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alan S L Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiangyi Fang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Crystal Ransom
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Verschleisser
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Hsiehchen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yujin Hoshida
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Yopp
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
40
|
Marigorta UM, Millet O, Lu SC, Mato JM. Dysfunctional VLDL metabolism in MASLD. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:16. [PMID: 39049993 PMCID: PMC11263124 DOI: 10.1038/s44324-024-00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/22/2024] [Indexed: 07/27/2024]
Abstract
Lipidomics has unveiled the intricate human lipidome, emphasizing the extensive diversity within lipid classes in mammalian tissues critical for cellular functions. This diversity poses a challenge in maintaining a delicate balance between adaptability to recurring physiological changes and overall stability. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD), linked to factors such as obesity and diabetes, stems from a compromise in the structural and functional stability of the liver within the complexities of lipid metabolism. This compromise inaccurately senses an increase in energy status, such as during fasting-feeding cycles or an upsurge in lipogenesis. Serum lipidomic studies have delineated three distinct metabolic phenotypes, or "metabotypes" in MASLD. MASLD-A is characterized by lower very low-density lipoprotein (VLDL) secretion and triglyceride (TG) levels, associated with a reduced risk of cardiovascular disease (CVD). In contrast, MASLD-C exhibits increased VLDL secretion and TG levels, correlating with elevated CVD risk. An intermediate subtype, with a blend of features, is designated as the MASLD-B metabotype. In this perspective, we examine into recent findings that show the multifaceted regulation of VLDL secretion by S-adenosylmethionine, the primary cellular methyl donor. Furthermore, we explore the differential CVD and hepatic cancer risk across MASLD metabotypes and discuss the context and potential paths forward to gear the findings from genetic studies towards a better understanding of the observed heterogeneity in MASLD.
Collapse
Affiliation(s)
- Urko M. Marigorta
- Integrative Genomics Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, 48160 Derio, Spain
| | - Shelly C. Lu
- Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - José M. Mato
- Precision Medicine and Metabolism Lab, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, 48160 Derio, Spain
| |
Collapse
|
41
|
Wu X, Yuan C, Pan J, Zhou Y, Pan X, Kang J, Ren L, Gong L, Li Y. CXCL9, IL2RB, and SPP1, potential diagnostic biomarkers in the co-morbidity pattern of atherosclerosis and non-alcoholic steatohepatitis. Sci Rep 2024; 14:16364. [PMID: 39013959 PMCID: PMC11252365 DOI: 10.1038/s41598-024-66287-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/01/2024] [Indexed: 07/18/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a hepatocyte inflammation based on hepatocellular steatosis, yet there is no effective drug treatment. Atherosclerosis (AS) is caused by lipid deposition in the endothelium, which can lead to various cardiovascular diseases. NASH and AS share common risk factors, and NASH can also elevate the risk of AS, causing a higher morbidity and mortality rate for atherosclerotic heart disease. Therefore, timely detection and diagnosis of NASH and AS are particularly important. In this study, differential gene expression analysis and weighted gene co-expression network analysis were performed on the AS (GSE100927) and NASH (GSE89632) datasets to obtain common crosstalk genes, respectively. Then, candidate Hub genes were screened using four topological algorithms and externally validated in the GSE43292 and GSE63067 datasets to obtain Hub genes. Furthermore, immune infiltration analysis and gene set variation analysis were performed on the Hub genes to explore the underlying mechanisms. The DGIbd database was used to screen candidate drugs for AS and NASH. Finally, a NASH model was constructed using free fatty acid-induced human L02 cells, an AS model was constructed using lipopolysaccharide-induced HUVECs, and a co-morbidity model was constructed using L02 cells and HUVECs to verify Hub gene expression. The result showed that a total of 113 genes common to both AS and NASH were identified as crosstalk genes, and enrichment analysis indicated that these genes were mainly involved in the regulation of immune and metabolism-related pathways. 28 candidate Hub genes were screened according to four topological algorithms, and CXCL9, IL2RB, and SPP1 were identified as Hub genes after in vitro experiments and external dataset validation. The ROC curves and SVM modeling demonstrated the good diagnostic efficacy of these three Hub genes. In addition, the Hub genes are strongly associated with immune cell infiltration, especially macrophages and γ-δ T cell infiltration. Finally, five potential therapeutic drugs were identified. has-miR-185 and hsa-miR-335 were closely related to AS and NASH. This study demonstrates that CXCL9, IL2RB, and SPP1 may serve as potential biomarkers for the diagnosis of the co-morbidity patterns of AS and NASH and as potential targets for drug therapy.
Collapse
Affiliation(s)
- Xize Wu
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China
| | - Changbin Yuan
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Jiaxiang Pan
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China
| | - Yi Zhou
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Xue Pan
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
- Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, Sichuan, China
| | - Jian Kang
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China
| | - Lihong Ren
- Nantong Hospital of Traditional Chinese Medicine, Nantong Hospital Affiliated to Nanjing University of Chinese Medicine, Nantong, 226000, Jiangsu, China.
| | - Lihong Gong
- Liaoning University of Traditional Chinese Medicine, No. 79 Chongshan East Road, Huanggu District, Shenyang, 110847, Liaoning, China.
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| | - Yue Li
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, 110032, Liaoning, China.
- Liaoning Provincial Key Laboratory of TCM Geriatric Cardio-Cerebrovascular Diseases, Shenyang, 110847, Liaoning, China.
| |
Collapse
|
42
|
Yang M, Wang D, Wang X, Mei J, Gong Q. Role of Folate in Liver Diseases. Nutrients 2024; 16:1872. [PMID: 38931227 PMCID: PMC11206401 DOI: 10.3390/nu16121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Folate is a water-soluble B vitamin involved in the synthesis of purines and pyrimidines and is one of the essential vitamins for human growth and reproduction. Folate deficiency due to low dietary intake, poor absorption of folate, and alterations in folate metabolism due to genetic defects or drug interactions significantly increases the risk of diseases such as neural tube defects, cardiovascular disease, cancer, and cognitive dysfunction. Recent studies have shown that folate deficiency can cause hyperhomocysteinemia, which increases the risk of hypertension and cardiovascular disease, and that high homocysteine levels are an independent risk factor for liver fibrosis and cirrhosis. In addition, folate deficiency results in increased secretion of pro-inflammatory factors and impaired lipid metabolism in the liver, leading to lipid accumulation in hepatocytes and fibrosis. There is substantial evidence that folate deficiency contributes to the development and progression of a variety of liver diseases, including non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), alcoholic liver disease (ALD), viral hepatitis, hepatic fibrosis, and liver cancer. Here we review key studies on the role of folate in the pathophysiology of liver diseases, summarize the current status of studies on folate in the treatment of liver diseases, and speculate that folate may be a potential therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Minlan Yang
- School of Medicine, Yangtze University, Jingzhou 434020, China
| | | | | | | | - Quan Gong
- School of Medicine, Yangtze University, Jingzhou 434020, China
| |
Collapse
|
43
|
Piras IS, DiStefano JK. Comprehensive meta-analysis reveals distinct gene expression signatures of MASLD progression. Life Sci Alliance 2024; 7:e202302517. [PMID: 38565287 PMCID: PMC10987979 DOI: 10.26508/lsa.202302517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) and its progressive form, metabolic dysfunction-associated steatohepatitis (MASH), pose significant risks of severe fibrosis, cirrhosis, and hepatocellular carcinoma. Despite their widespread prevalence, the molecular mechanisms underlying the development and progression of these common chronic hepatic conditions are not fully understood. Here, we conducted the most extensive meta-analysis of hepatic gene expression datasets from liver biopsy samples to date, integrating 10 RNA-sequencing and microarray datasets (1,058 samples). Using a random-effects meta-analysis model, we compared over 12,000 shared genes across datasets. We identified 685 genes differentially expressed in MASLD versus normal liver, 1,870 in MASH versus normal liver, and 3,284 in MASLD versus MASH. Integrating these results with genome-wide association studies and coexpression networks, we identified two functionally relevant, validated coexpression modules mainly driven by SMOC2, ITGBL1, LOXL1, MGP, SOD3, and TAT, HGD, SLC25A15, respectively, the latter not previously associated with MASLD and MASH. Our findings provide a comprehensive and robust analysis of hepatic gene expression alterations associated with MASLD and MASH and identify novel key drivers of MASLD progression.
Collapse
Affiliation(s)
- Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Johanna K DiStefano
- Diabetes and Metabolic Disease Research Unit, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
44
|
Wang CJ, Hu YX, Bai TY, Li J, Wang H, Lv XL, Zhang MD, Chang FH. Identification of disease-specific genes related to immune infiltration in nonalcoholic steatohepatitis using machine learning algorithms. Medicine (Baltimore) 2024; 103:e38001. [PMID: 38758850 PMCID: PMC11098182 DOI: 10.1097/md.0000000000038001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/03/2024] [Indexed: 05/19/2024] Open
Abstract
To identify disease signature genes associated with immune infiltration in nonalcoholic steatohepatitis (NASH), we downloaded 2 publicly available gene expression profiles, GSE164760 and GSE37031, from the gene expression omnibus database. These profiles represent human NASH and control samples and were used for differential genes (DEGs) expression screening. Two machine learning methods, the Least Absolute Shrinkage and Selection Operator regression model and Support Vector Machine Recursive Feature Elimination, were used to identify candidate disease signature genes. The CIBERSORT deconvolution algorithm was employed to analyze the infiltration of 22 immune cell types in NASH. Additionally, we constructed a NASH cell model using HepG2 cells treated with oleic acid and free fatty acids. The construction of the cell model was verified using oil red O staining, and Western blotting was used to detect the protein expression of the disease signature genes in both control and model groups. As a result, a total of 262 DEGs were identified. These DEGs were primarily associated with metal ion transmembrane transporter activity, sodium ion transmembrane transporter protein activity, calcium ion, and neuroactive ligand-receptor interactions. FOS, IGFBP2, dual-specificity phosphatase 1 (DUSP1), and IKZF3 were identified as disease signature genes of NASH by the least absolute shrinkage and selection operator and Support Vector Machine Recursive Feature Elimination algorithms for DEGs analysis. The receiver operating characteristic curves showed that FOS, IGFBP2, DUSP1, and IKZF3 had good diagnostic value (area under receiver operating characteristic curve > 0.8). These findings were validated in the GSE89632 dataset and through cellular assays. Immunocyte infiltration analysis revealed that NASH was associated with CD8 T cells, CD4 T cells, follicular helper T cells, resting NK cells, eosinophils, regulatory T cells, and γδ T cells. The FOS, IGFBP2, DUSP1, and IKZF3 genes were specifically associated with follicular helper T cells. Lipid droplet aggregation significantly increased in HepG2 cells treated with oleic acid and free fatty acids, indicating successful construction of the cell model. In this model, the expression of FOS, IGFBP2, and DUSP1 was significantly decreased, while that of IKZF3 was significantly elevated (P < .01, P < .001) compared with the control group. Therefore, FOS, IGFBP2, DUSP1, and IKZF3 can be considered as disease signature genes associated with immune infiltration in NASH.
Collapse
Affiliation(s)
- Chao-Jie Wang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Yu-Xia Hu
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Tu-Ya Bai
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Jun Li
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Han Wang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Xiao-Li Lv
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Meng-Di Zhang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| | - Fu-Hou Chang
- School of Pharmacy, Inner Mongolia Medical University, Huhhot, China
| |
Collapse
|
45
|
Zhang X, Zhou C, Hu J, Hu J, Ding Y, Chen S, Wang X, Xu L, Gou Z, Zhang S, Shi W. Six-gene prognostic signature for non-alcoholic fatty liver disease susceptibility using machine learning. Medicine (Baltimore) 2024; 103:e38076. [PMID: 38728481 PMCID: PMC11081587 DOI: 10.1097/md.0000000000038076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND nonalcoholic fatty liver disease (NAFLD) is a common liver disease affecting the global population and its impact on human health will continue to increase. Genetic susceptibility is an important factor influencing its onset and progression, and there is a lack of reliable methods to predict the susceptibility of normal populations to NAFLD using appropriate genes. METHODS RNA sequencing data relating to nonalcoholic fatty liver disease was analyzed using the "limma" package within the R software. Differentially expressed genes were obtained through preliminary intersection screening. Core genes were analyzed and obtained by establishing and comparing 4 machine learning models, then a prediction model for NAFLD was constructed. The effectiveness of the model was then evaluated, and its applicability and reliability verified. Finally, we conducted further gene correlation analysis, analysis of biological function and analysis of immune infiltration. RESULTS By comparing 4 machine learning algorithms, we identified SVM as the optimal model, with the first 6 genes (CD247, S100A9, CSF3R, DIP2C, OXCT 2 and PRAMEF16) as predictive genes. The nomogram was found to have good reliability and effectiveness. Six genes' receiver operating characteristic curves (ROC) suggest an essential role in NAFLD pathogenesis, and they exhibit a high predictive value. Further analysis of immunology demonstrated that these 6 genes were closely connected to various immune cells and pathways. CONCLUSION This study has successfully constructed an advanced and reliable prediction model based on 6 diagnostic gene markers to predict the susceptibility of normal populations to NAFLD, while also providing insights for potential targeted therapies.
Collapse
Affiliation(s)
- Xiang Zhang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Chunzi Zhou
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingwen Hu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jingwen Hu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueping Ding
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shiqi Chen
- Lishui Hospital of Traditional Chinese Medicine, Lishui, China
| | - Xu Wang
- Shanghai Jinshan TCM-Integrated Hospital, Shanghai, China
| | - Lei Xu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhijun Gou
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuqiao Zhang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weiqun Shi
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
46
|
Lu H. Inflammatory liver diseases and susceptibility to sepsis. Clin Sci (Lond) 2024; 138:435-487. [PMID: 38571396 DOI: 10.1042/cs20230522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/09/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Patients with inflammatory liver diseases, particularly alcohol-associated liver disease and metabolic dysfunction-associated fatty liver disease (MAFLD), have higher incidence of infections and mortality rate due to sepsis. The current focus in the development of drugs for MAFLD is the resolution of non-alcoholic steatohepatitis and prevention of progression to cirrhosis. In patients with cirrhosis or alcoholic hepatitis, sepsis is a major cause of death. As the metabolic center and a key immune tissue, liver is the guardian, modifier, and target of sepsis. Septic patients with liver dysfunction have the highest mortality rate compared with other organ dysfunctions. In addition to maintaining metabolic homeostasis, the liver produces and secretes hepatokines and acute phase proteins (APPs) essential in tissue protection, immunomodulation, and coagulation. Inflammatory liver diseases cause profound metabolic disorder and impairment of energy metabolism, liver regeneration, and production/secretion of APPs and hepatokines. Herein, the author reviews the roles of (1) disorders in the metabolism of glucose, fatty acids, ketone bodies, and amino acids as well as the clearance of ammonia and lactate in the pathogenesis of inflammatory liver diseases and sepsis; (2) cytokines/chemokines in inflammatory liver diseases and sepsis; (3) APPs and hepatokines in the protection against tissue injury and infections; and (4) major nuclear receptors/signaling pathways underlying the metabolic disorders and tissue injuries as well as the major drug targets for inflammatory liver diseases and sepsis. Approaches that focus on the liver dysfunction and regeneration will not only treat inflammatory liver diseases but also prevent the development of severe infections and sepsis.
Collapse
Affiliation(s)
- Hong Lu
- Department of Pharmacology, SUNY Upstate Medical University, Syracuse, NY 13210, U.S.A
| |
Collapse
|
47
|
Liang Y, Zhang R, Biswas S, Bu Q, Xu Z, Qiao L, Zhou Y, Tang J, Zhou J, Zhou H, Lu L. Integrated single-cell transcriptomics reveals the hypoxia-induced inflammation-cancer transformation in NASH-derived hepatocellular carcinoma. Cell Prolif 2024; 57:e13576. [PMID: 37994257 PMCID: PMC10984103 DOI: 10.1111/cpr.13576] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as the primary risk factor for hepatocellular carcinoma (HCC), owing to improved vaccination rates of Hepatitis B and the increasing prevalence of metabolic syndrome related to obesity. Although the importance of innate and adaptive immune cells has been emphasized, the malignant transformation of hepatocytes and their intricate cellular network with the immune system remain unclear. The study incorporated four single-cell transcriptomic datasets of liver tissues covering healthy and NAFLD-related disease status. To identify the subsets and functions of hepatocytes and macrophages, we employed differential composition analysis, functional enrichment analysis, pseudotime analysis, and scenic analysis. Furthermore, an experimental mouse model for the transformation of nonalcoholic steatohepatitis into hepatocellular carcinoma was established for validation purposes. We defined CYP7A1+ hepatocytes enriched in precancerous lesions as 'Transitional Cells' in the progression from NAFLD to HCC. CYP7A1+ hepatocytes upregulated genes associated with stress response, inflammation and cancer-associated pathways and downregulated the normal hepatocyte signature. We observed that hypoxia activation accompanied the entire process of inflammation-cancer transformation. Hepatocyte-derived HIF1A was gradually activated during the progression of NAFLD disease to adapt to the hypoxic microenvironment and hepatocytes under hypoxic environment led to changes in the metabolism, proliferation and angiogenesis, promoting the occurrence of tumours. Meanwhile, hypoxia induced the polarization of RACK1+ macrophages that enriched in the liver tissues of NASH towards immunosuppressed TREM2+ macrophages. Moreover, immunosuppressive TREM2+ macrophages were recruited by tumour cells through the CCL15-CCR1 axis to enhance immunosuppressive microenvironment and promote NAFLD-related HCC progression. The study provides a deep understanding of the development mechanism of NAFLD-related HCC and offers theoretical support and experimental basis for biological targets, drug research, and clinical application.
Collapse
Affiliation(s)
- Yuan Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
- School of Biological Science & Medical EngineeringSoutheast UniversityNanjingChina
| | - Rui Zhang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Siddhartha Biswas
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Qingfa Bu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Zibo Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Lei Qiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
- Department of BioinformaticsNanjing Medical UniversityNanjingChina
| | - Yan Zhou
- Department of Pancreatic Surgery, Nanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingChina
| | - Jiaqi Tang
- Department of BioinformaticsNanjing Medical UniversityNanjingChina
| | - Jinren Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Haoming Zhou
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
| | - Ling Lu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical SciencesNanjing Medical UniversityNanjingChina
- Affiliated Hospital of Xuzhou Medical UniversityXuzhouChina
| |
Collapse
|
48
|
Zhou Z, Gao Y, Deng L, Lu X, Lai Y, Wu J, Chen S, Li C, Liang H. Integrating single-cell and bulk sequencing data to identify glycosylation-based genes in non-alcoholic fatty liver disease-associated hepatocellular carcinoma. PeerJ 2024; 12:e17002. [PMID: 38515461 PMCID: PMC10956522 DOI: 10.7717/peerj.17002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/05/2024] [Indexed: 03/23/2024] Open
Abstract
Background The incidence of non-alcoholic fatty liver disease (NAFLD) associated hepatocellular carcinoma (HCC) has been increasing. However, the role of glycosylation, an important modification that alters cellular differentiation and immune regulation, in the progression of NAFLD to HCC is rare. Methods We used the NAFLD-HCC single-cell dataset to identify variation in the expression of glycosylation patterns between different cells and used the HCC bulk dataset to establish a link between these variations and the prognosis of HCC patients. Then, machine learning algorithms were used to identify those glycosylation-related signatures with prognostic significance and to construct a model for predicting the prognosis of HCC patients. Moreover, it was validated in high-fat diet-induced mice and clinical cohorts. Results The NAFLD-HCC Glycogene Risk Model (NHGRM) signature included the following genes: SPP1, SOCS2, SAPCD2, S100A9, RAMP3, and CSAD. The higher NHGRM scores were associated with a poorer prognosis, stronger immune-related features, immune cell infiltration and immunity scores. Animal experiments, external and clinical cohorts confirmed the expression of these genes. Conclusion The genetic signature we identified may serve as a potential indicator of survival in patients with NAFLD-HCC and provide new perspectives for elucidating the role of glycosylation-related signatures in this pathologic process.
Collapse
Affiliation(s)
- Zhijia Zhou
- Department of Hepatology, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Gao
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Longxin Deng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaole Lu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yancheng Lai
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jieke Wu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | | | - Chengzhong Li
- Changhai Hospital, The Second Military Medical University, Shanghai, China
| | - Huiqing Liang
- Hepatology Unit, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
49
|
Wang C, Ju H, Zhou L, Zhu Y, Wu L, Deng X, Jiang L, Sun L, Xu Y. TET3-mediated novel regulatory mechanism affecting trophoblast invasion and migration: Implications for preeclampsia development. Placenta 2024; 147:31-41. [PMID: 38295560 DOI: 10.1016/j.placenta.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/28/2023] [Accepted: 01/21/2024] [Indexed: 02/02/2024]
Abstract
INTRODUCTION Aberrant expression of genes has been demonstrated to be related to the abnormal function of trophoblasts and lead to the occurrence and progression of Preeclampsia (PE). However, the underlying mechanism of PE has not been elucidated. METHODS We performed PCR analysis to investigate TET3 expression in PE placental tissues. Cell assays were performed in HTR-8/SVneo and JAR. Cell invasion and migration events were investigated by transwell assays in vitro. ChIP-PCR and Targeted bisulfite sequencing were conducted to detect the demethylation of related CpG sites in the KLF13 promoter after inhibition of TET3. In conjunction with bioinformatics analysis, luciferase reporter assays were performed to elucidate the mechanism by which miR-544 binds to TET3/KLF13 mRNA. RESULTS In this study, we identified genes associated with human extravillous trophoblasts by conducting sc-seq analysis from the GEO. Then, we measured the expression of TET3 in a larger clinical sample. The results showed that TET3, a DNA demethylase, was found to be expressed at much higher levels in the preeclamptic placenta compared to the control. Then, the inhibition of TET3 significantly promoted trophoblast cell migration and invasion. Conversely, TET3 overexpression suppressed cell migration and invasion in vitro. Further RNA sequencing and mechanism analysis indicated that the inhibition of TET3 suppressed the activation of KLF13 by reducing the demethylation of related CpG sites in the KLF13 promoter, thereby transcriptionally inactivating KLF13 expression. Moreover, luciferase reporter assay indicate that TET3 and KLF13 were direct targets of miR-544. DISCUSSION This study uncovers a TET3-mediated regulatory mechanism in PE progression and suggests that targeting the placental miR-544-TET3-KLF13-axis might provide new diagnostic and therapeutic strategies for PE.
Collapse
Affiliation(s)
- Cong Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Huihui Ju
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China; Department of Obstetrics and Gynecology, Changzhou Maternal and Child Health Care Hospital Changzhou Medical Center of Nanjing Medical University, Changzhou, 213000, Jiangsu Province, China
| | - Lihong Zhou
- Department of Cardiovascular Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuanyuan Zhu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Liuxin Wu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Xiaokang Deng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Lingling Jiang
- Department of Obstetrics and Gynecology, Affiliated Hospital 2 of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Lizhou Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| | - Yetao Xu
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
50
|
Larion S, Padgett CA, Mintz JD, Thompson JA, Butcher JT, Belin de Chantemèle EJ, Haigh S, Khurana S, Fulton DJ, Stepp DW. NADPH oxidase 1 promotes hepatic steatosis in obese mice and is abrogated by augmented skeletal muscle mass. Am J Physiol Gastrointest Liver Physiol 2024; 326:G264-G273. [PMID: 38258487 PMCID: PMC11211036 DOI: 10.1152/ajpgi.00153.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/28/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Exercise as a lifestyle modification is a frontline therapy for nonalcoholic fatty liver disease (NAFLD), but how components of exercise attenuate steatosis is unclear. To uncouple the effect of increased muscle mass from weight loss in obesity, myostatin knockout mice were bred on a lean and obese db/db background. Myostatin deletion increases gastrocnemius (Gastrocn.) mass and reduces hepatic steatosis and hepatic sterol regulatory element binding protein 1 (Srebp1) expression in obese mice, with no impact on adiposity or body weight. Interestingly, hypermuscularity reduces hepatic NADPH oxidase 1 (Nox1) expression but not NADPH oxidase 4 (Nox4) in db/db mice. To evaluate a deterministic function of Nox1 on steatosis, Nox1 knockout mice were bred on a lean and db/db background. NOX1 deletion significantly attenuates hepatic oxidant stress, steatosis, and Srebp1 programming in obese mice to parallel hypermuscularity, with no improvement in adiposity, glucose control, or hypertriglyceridemia to suggest off-target effects. Directly assessing the role of NOX1 on SREBP1, insulin (Ins)-mediated SREBP1 expression was significantly increased in either NOX1, NADPH oxidase organizer 1 (NOXO1), and NADPH oxidase activator 1 (NOXA1) or NOX5-transfected HepG2 cells versus ?-galactosidase control virus, indicating superoxide is the key mechanistic agent for the actions of NOX1 on SREBP1. Metabolic Nox1 regulators were evaluated using physiological, genetic, and diet-induced animal models that modulated upstream glucose and insulin signaling, identifying hyperinsulinemia as the key metabolic derangement explaining Nox1-induced steatosis in obesity. GEO data revealed that hepatic NOX1 predicts steatosis in obese humans with biopsy-proven NAFLD. Taken together, these data suggest that hypermuscularity attenuates Srebp1 expression in db/db mice through a NOX1-dependent mechanism.NEW & NOTEWORTHY This study documents a novel mechanism by which changes in body composition, notably increased muscle mass, protect against fatty liver disease. This mechanism involves NADPH oxidase 1 (NOX1), an enzyme that increases superoxide and increases insulin signaling, leading to increased fat accumulation in the liver. NOX1 may represent a new early target for preventing fatty liver to stave off later liver diseases such as cirrhosis or liver cancer.
Collapse
Affiliation(s)
- Sebastian Larion
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Caleb A Padgett
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - James D Mintz
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Jennifer A Thompson
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| | - Joshua T Butcher
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Eric J Belin de Chantemèle
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Stephen Haigh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Sandeep Khurana
- Division of Gastroenterology, Geisinger Health System, Danville, Pennsylvania, United States
| | - David J Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - David W Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|