1
|
Citarella A, Besharat ZM, Coppola L, Sabato C, Autilio TM, Vicentini E, Bimonte VM, Catanzaro G, Pediconi N, Fabi A, Migliaccio S, Milella M, Bei R, Ferretti E, Po A. Bisphenol A drives nuclear factor-kappa B signaling activation and enhanced motility in non-transformed breast cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126422. [PMID: 40360080 DOI: 10.1016/j.envpol.2025.126422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 05/06/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
Bisphenol A (BPA) is a chemical compound found in a wide range of everyday consumer products, resulting in human exposure. BPA has been described as an endocrine disruptor, affecting different systems of the human body. Notably, nanomolar levels of BPA have been detected in human matrices, including plasma and milk. BPA exposure has been associated with the development of breast cancer, and the increase in breast cancer incidence prompted us to investigate the effects of BPA in MCF10A, a model of non-transformed mammary epithelium. Cells were treated with 10 nM BPA for 24 h to capture early molecular alterations preceding phenotypic transitions. Comprehensive transcriptomic analyses were conducted to identify differentially expressed genes and enriched signaling pathways. Subsequent validations included assessment of cytokine release, protein expression, immunofluorescence for subcellular localization of Nuclear Factor-Kappa B (NF-κB), and evaluation of actin cytoskeletal organization. Transcriptome analysis revealed enrichment in interleukin signaling and activation of the NF-κB pathway following BPA exposure. Functional assays demonstrated that BPA treatment enhanced cell motility, accompanied by increased phosphorylation of NF-κB. Inhibition of NF-κB effectively mitigated BPA-induced effects, including augmented cell motility, nuclear translocation of NF-κB, and cytoskeletal rearrangements. Notably, inhibition of the Mitogen-Activated Protein Kinase (MAPK) pathway, and to a lesser extent of the AKT pathway, counteracted BPA-induced NF-κB activation and the associated increase in cell motility. In conclusion, we show that nanomolar concentration of BPA induces significant changes in the molecular setting and behaviour of non-tranformed breast cells, activating NF-κB signalling that in turn controls inflammation, cell cycle, proliferation and cell motility. Our findings indicate that nanomolar concentrations of BPA can induce significant molecular and behavioral changes in non-transformed breast epithelial cells. These results contribute to a deeper understanding of how environmental pollutants like BPA may perturb breast epithelial cell function and potentially contribute to carcinogenesis.
Collapse
Affiliation(s)
- Anna Citarella
- Department of Experimental Medicine, Sapienza University, Rome, Italy; Department of Life, Health and Health Professions Sciences, Link Campus University, Rome, Italy
| | | | - Lucia Coppola
- Department of Experimental Medicine, Sapienza University, Rome, Italy; Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Claudia Sabato
- Department of Experimental Medicine, Sapienza University, Rome, Italy; IRCCS CROB Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture (PZ), Basilicata, Italy
| | | | - Elena Vicentini
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Viviana Maria Bimonte
- Department of Movement, Human and Health Sciences, University of Foro Italico, Rome, Italy
| | - Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University, Rome, Italy; Department of Life, Health and Health Professions Sciences, Link Campus University, Rome, Italy
| | - Natalia Pediconi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Alessandra Fabi
- Precision Medicine Unit in Senology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Migliaccio
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Michele Milella
- Department of Engineering for Innovative Medicine, Hospital of Trust of Verona, Oncology Section, Verona, Italy
| | - Roberto Bei
- Department of Clinical Sciences and Translational Medicine, University of Tor Vergata, Rome, Italy
| | | | - Agnese Po
- Department of Molecular Medicine, Sapienza University, Rome, Italy; Department of Radiological Sciences, Oncology and Pathology, Sapienza University, Rome, Italy.
| |
Collapse
|
2
|
Jaruan O, Promsan S, Thongnak L, Pengrattanachot N, Phengpol N, Sutthasupha P, Lungkaphin A. Pyridoxine exerts antioxidant effects on kidney injury manifestations in high-fat diet-induced obese rats. Chem Biol Interact 2025; 415:111513. [PMID: 40239886 DOI: 10.1016/j.cbi.2025.111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/21/2025] [Accepted: 04/14/2025] [Indexed: 04/18/2025]
Abstract
The modern diet contains a substantial level of fat which is believed to be one of the leading causes of the progression of kidney disease. Several studies have already demonstrated that consumption of a high-fat diet (HFD) induces inflammation and oxidative stress, causing activation of upstream mechanisms associated with kidney injury. For the prevention of such pathological events, a change in diet or the taking of nutritional supplements are recommended as alternative treatments. One of the forms of vitamin B6, pyridoxine (PN), has been shown to be an effective antioxidant and can also inhibit the formation of advanced-glycation end products (AGEs). In this study, the protective effects of PN (100 mg/kg/day for a period of eight weeks) against HFD-induced complications in obese rats were investigated. Rats fed on a HFD developed obesity which promoted inflammation, glucose intolerance, AGE receptor upregulation, oxidative stress, and kidney dysfunction. Intervention using PN mitigated obesity-related events and the impairment of kidney function by markedly reducing oxidative stress and also restoring the activity of antioxidant enzymes. Other studies have shown that some vitamin B6 derivatives inhibit the formation of AGEs but our study shows for the first time that PN exerted an antiglycative effect in this HFD-induced obesity model. Consequently, PN could potentially be a novel supplement for obese individuals to avoid kidney injury.
Collapse
Affiliation(s)
- Onanong Jaruan
- Department of Physiology, Faculty of Medicine Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine Chiang Mai University, Chiang Mai, Thailand; Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | | | - Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine Chiang Mai University, Chiang Mai, Thailand; Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
3
|
Kumar D, Ahmed M, Andrabi NI, Singh CP, Saroch D, Bharitkar YP, Kour G, Madishetti S, Bhagat A, Shukla SK, Ahmed Z. Anti-inflammatory and anti-oxidant potential of dispiro-indanedione hybrid of parthenin via regulating Nrf2 and NF-κB/MAPK pathways. Eur J Pharmacol 2025; 996:177547. [PMID: 40154568 DOI: 10.1016/j.ejphar.2025.177547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/17/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Steroidal and non-steroidal anti-inflammatory drugs are widely used for treating a spectrum of inflammatory conditions; however, their systemic adverse effects hinder their usage. Therefore, alternate therapeutic strategies are required to treat inflammatory disorders. Parthenin, a lactone derived from Parthenium hysterophorus, has demonstrated anti-inflammatory activity; however, its toxic nature limits its application. We proposed modifications of parthenin to enhance its efficacy while reducing toxicity. In this context, we screened parthenin derivatives for anti-inflammatory efficacy and identified dispiro-indanedione hybrid of parthenin (DIHP) as a potent anti-inflammatory agent. Macrophages were pre-treated with DIHP followed by LPS stimulation to evaluate the in-vitro anti-inflammatory and anti-oxidant activity. We assessed in-vivo anti-inflammatory effect of DIHP in carrageenan-induced paw edema and LPS-induced sepsis model. Our findings showed that DIHP exerts negligible effect on cell viability, effectively attenuates the production of inflammatory markers (NO, TNF-α, IL-6 &IL-1β) and down-regulates NF-κB, MAPK pathways in in-vitro and in-vivo system. Additionally, DIHP inhibited LPS-induced generation of prostaglandin E2, leukotriene B4, ROS and upregulated the expression of superoxide dismutase, catalase, nuclear factor-E2-related factor 2 and peroxisome proliferator-activated receptor gamma. Furthermore, DIHP effectively reduced carrageenan-induced paw edema and curtailed the levels of liver, and kidney damage markers (AST, ALT, CRE, and BUN), protected the lung, liver and kidney against pathological damage and enhanced the survival rate in LPS-challenged mice. DIHP demonstrated comparable efficacy to dexamethasone in reducing inflammatory markers. In conclusion, our study strongly suggests that DIHP curtailed inflammation and oxidative stress by down regulating NF-κB and MAPK pathways and enhanced anti-oxidant response.
Collapse
Affiliation(s)
- Diljeet Kumar
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manzoor Ahmed
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nusrit Iqbal Andrabi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chetan Paul Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Natural Products & Medicinal Chemistry Division, CSIR-Indian Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Diksha Saroch
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yogesh P Bharitkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Natural Products & Medicinal Chemistry Division, CSIR-Indian Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Gurleen Kour
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sreedhar Madishetti
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asha Bhagat
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanket K Shukla
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Zabeer Ahmed
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Sharmine S, Ghila L. Targeting Inflammation in Type 2 Diabetes: The Emerging Role of Decorin. Acta Physiol (Oxf) 2025; 241:e70049. [PMID: 40285388 DOI: 10.1111/apha.70049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/01/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Affiliation(s)
- Shayla Sharmine
- Mohn Research Center for Diabetes Precision Medicine, Faculty of Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Luiza Ghila
- Mohn Research Center for Diabetes Precision Medicine, Faculty of Medicine, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
5
|
Feng G, Zhou X, Fang X, He Y, Lin T, Mu L, Yang H, Wu J. A non-bactericidal glycine-rich peptide enhances cutaneous wound healing in mice via the activation of the TLR4/MAPK/NF-κB pathway. Biochem Pharmacol 2025; 236:116912. [PMID: 40164342 DOI: 10.1016/j.bcp.2025.116912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/11/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Although the antibacterial properties of glycine-rich peptides from prokaryotes to eukaryotes have been well characterized, their role in skin wound healing remains poorly understood, especially non-bactericidal glycine-rich peptides. Herein, a novel glycine-rich (46.5%) peptide (Smaragin, SRGSRGGRGGRGGGGRGGRGRSGSGSSIAGGGSRGSRGGSQYA) was identified from the skin of the tree frog Zhangixalus smaragdinus. Unlike other glycine-rich peptides, Smaragin showed no antimicrobial activity in vitro but significantly enhance wound healing in full-thickness dermal wounds in mice. In comparison with other wound healing-promoting peptides, Smaragin did not directly affect the proliferation and migration of keratinocytes, vascular endothelial cells, and fibroblasts. However, it notably increased phagocytes infiltration at the wound site by 0.5-day post-injury. Smaragin was not a direct chemoattractant for phagocytes, but it stimulated macrophages to secrete chemokines CXCL1 and CXCL2, which indirectly enhanced the migration of phagocytes, keratinocytes and vascular endothelial cells. Moreover, Smaragin promoted the polarization of macrophages from a pro-inflammatory M1-type to an anti-inflammatory M2 phenotype at the wound, which is associated with angiogenic activity. As expected, CD31, the most common analyzed marker of angiogenesis, showed a significant increase in vascular network area. Subsequent studies revealed that Smaragin promoted the chemokine level and polarization of macrophages via the TLR4/MAPK/NF-κB pathway, which enhanced the number of phagocytes and the regeneration of the epidermis and blood vessels at the wound, thereby accelerating skin wound healing in mice. These findings highlight the skin healing properties of non-bactericidal glycine-rich peptides and display the potential of Smaragin as a promising candidate for developing effective wound healing therapies.
Collapse
Affiliation(s)
- Guizhu Feng
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaoyan Zhou
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Xiaojie Fang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Yanmei He
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Ting Lin
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China
| | - Lixian Mu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Hailong Yang
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
6
|
Manocchio F, Morales D, Navarro-Masip È, Aragones G, Torres-Fuentes C, Bravo FI, Muguerza B. Photoperiod-Dependent Effects of Phenolic-Enriched Fruit Extracts on Postprandial Triacylglyceride Levels and Acute Inflammatory Responses in F344 Rats. Mol Nutr Food Res 2025:e70126. [PMID: 40411868 DOI: 10.1002/mnfr.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/10/2025] [Accepted: 05/08/2025] [Indexed: 05/26/2025]
Abstract
This study investigated the photoperiod-dependent effects of eight phenolic-enriched fruit extracts on postprandial blood triacylglyceride (TAG) levels and serum cytokine and CRP levels in F344 rats after an oral lipid tolerance test (OLTT) and lipopolysaccharide (LPS)-induced inflammatory challenge, respectively. Animals were exposed to short (6-h light, L6) or long (18-h light, L18) photoperiods and orally supplemented with fruit extracts (100 mg/kg) for 2 weeks. Extracts were obtained from seasonal fruits (cherries, plums, apricots, strawberries, persimmon kakis, grapes, oranges, and pomegranates). Temporal homeostasis disruption was induced by an OLTT and LPS challenge. No differences in blood postprandial TAG levels were observed in the L6- and L12-control groups. However, in the experimental groups, the postprandial TAG response depended on the photoperiod and fruit extract consumption, mainly cherry and plum extracts in L6 (p < 0.05). In addition, control rats exposed to L6 exhibited higher blood IL-6 and TNF-α levels after inducing LPS-inflammatory response. Notably, winter-fruit and strawberry extracts were the most efficient at lowering proinflammatory cytokines. These findings show the effectiveness of specific fruit extracts in modulating postprandial TAG levels and acute inflammatory responses, being their effects photoperiod-dependent, opening the door to the design of functional ingredients specific for each season.
Collapse
Affiliation(s)
- Francesca Manocchio
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
- Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
| | - Diego Morales
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
- Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
| | - Èlia Navarro-Masip
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
- Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
| | - Gerard Aragones
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
- Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, Tarragona, Spain
| | - Cristina Torres-Fuentes
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
- Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, Tarragona, Spain
| | - Francisca Isabel Bravo
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
- Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, Tarragona, Spain
| | - Begoña Muguerza
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
- Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Nutrigenomics Research Group, C/ Marcel.li Domingo 1, Tarragona, 43007, Spain
- Center of Environmental, Food and Toxicological Technology (TecnATox), University Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
7
|
Awate SA, Kaur G. Exploring therapeutic targets in Toll-like receptor pathways: Implications for cardiovascular management in polycystic ovary syndrome. Eur J Pharmacol 2025; 1001:177749. [PMID: 40403827 DOI: 10.1016/j.ejphar.2025.177749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/14/2025] [Accepted: 05/20/2025] [Indexed: 05/24/2025]
Abstract
Inflammation plays a crucial role in the development of Polycystic Ovary Syndrome (PCOS) via modulation in Toll-like receptor (TLR) signaling pathways and over the recent couple of years, there has been an increase in the cardiovascular events associated with PCOS. To overcome this condition, the development of targeted drugs to modulate the TLR signaling pathway, a major trigger in the development of cardiovascular complications with PCOS patients is required. This review aims to explore the therapeutic targets with TLR pathways and their implications for cardiovascular management in PCOS. The chronic activation of TLRs contributes significantly to inflammation and endothelial dysfunction, which are critical factors in the development of cardiovascular diseases in patients with PCOS. Various novel therapeutic approaches are taken into consideration, such as TLR antagonists, naturally occurring TLR inhibitors like curcumin, Cryptotanshinone (CRY), quercetin, berberine, omega-3 fatty acids, and some novel targeted therapies like exosome and gene therapy. The literature findings indicated that targeting specific TLR pathways, TLR2 and TLR4 presents a promising avenue for mitigating cardiovascular complications associated with PCOS which play a major role in disease pathogenesis. The findings underscore the importance of understanding TLR-mediated mechanisms to develop effective interventions tailored to this population. This exploration not only enhances our understanding of immune responses, specific TLRs such as TLR2 and TLR4 in relation to cardiovascular health but also lays the groundwork for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Siddhi A Awate
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, V.L. Mehta Road, Vile Parle (West) Mumbai, 400056, Maharashtra, India.
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM'S Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, V.L. Mehta Road, Vile Parle (West) Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
8
|
Zeng X, Yuan Y, Li Y, Hu Z, Hu S. Deciphering the NLRP3 inflammasome in diabetic encephalopathy: Molecular insights and emerging therapeutic targets. Exp Neurol 2025; 391:115304. [PMID: 40383363 DOI: 10.1016/j.expneurol.2025.115304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 05/01/2025] [Accepted: 05/11/2025] [Indexed: 05/20/2025]
Abstract
Diabetic encephalopathy (DE) is a neurological complication characterized by neuroinflammation, cognitive impairment, and memory decline, with its pathogenesis closely linked to the activation of the NLRP3 inflammasome. As a central regulator of the innate immune system, the NLRP3 inflammasome plays a pivotal role in DE progression by mediating neuroinflammation, pyroptosis, mitochondrial dysfunction, oxidative stress, endoplasmic reticulum (ER) stress, and microglial polarization. This review systematically explores the molecular mechanisms by which the NLRP3 inflammasome contributes to DE, focusing on its role in neuroinflammatory cascades and neuronal damage, as well as the diabetes-associated physiological changes that exacerbate DE pathogenesis. Furthermore, we summarize emerging therapeutic strategies targeting the NLRP3 inflammasome, including small-molecule inhibitors and bioactive compounds derived from traditional herbal medicine, highlighting their potential for DE treatment. These findings not only advance our understanding of DE but also provide a foundation for developing NLRP3-targeted pharmacological interventions.
Collapse
Affiliation(s)
- Xinyi Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; The First Clinical Medical College of Nanchang University, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yi Yuan
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; School of Huankui Academy, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yujia Li
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China; The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Shan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
9
|
Singh A, Chaudhary R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int Immunopharmacol 2025; 155:114616. [PMID: 40222274 DOI: 10.1016/j.intimp.2025.114616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/15/2025]
Abstract
Peroxisome proliferator-activated receptors (PPARs), ligand-activated transcription factors, have emerged as a key regulator of various biological processes, underscoring their relevance in the pathophysiology and treatment of numerous diseases. PPARs are primarily recognized for their critical role in lipid and glucose metabolism, which underpins their therapeutic applications in managing type 2 diabetes mellitus. Beyond metabolic disorders, they have gained attention for their involvement in immune modulation, making them potential targets for autoimmune-related inflammatory diseases. Furthermore, PPAR's ability to regulate proliferation, differentiation, and apoptosis has positioned them as promising candidates in oncology. Their anti-inflammatory and anti-fibrotic properties further highlight their potential in dermatological and cardiovascular conditions, where dysregulated inflammatory responses contribute to disease progression. Recent advancements have elucidated the molecular mechanisms of different PPAR isoforms, including their regulation of key signalling pathways such as NF-κB and MAPK, which are crucial in inflammation and cellular stress responses. Additionally, their interactions with co-factors and post-translational modifications further diversify their functional roles. The therapeutic potential of various PPAR agonists has been extensively explored, although challenges related to side effects and target specificity remain. This growing body of evidence underscores the significance of PPARs in understanding the molecular basis of diseases and advancing therapeutic interventions, paving way for targeted treatment approach across a wide spectrum of medical conditions. Here, we provide a comprehensive and detailed perspective of PPARs and their potential across different health conditions to advance our understanding, elucidate underlying mechanisms, and facilitate the development of potential treatment strategies.
Collapse
Affiliation(s)
- Alpana Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India
| | - Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow 226025, U.P., India.
| |
Collapse
|
10
|
Chen J, Fei S, Chan LWC, Gan X, Shao B, Jiang H, Li S, Kuang P, Liu X, Yang S. Inflammatory signaling pathways in pancreatic β-cell: New insights into type 2 diabetes pathogenesis. Pharmacol Res 2025; 216:107776. [PMID: 40378943 DOI: 10.1016/j.phrs.2025.107776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/27/2025] [Accepted: 05/10/2025] [Indexed: 05/19/2025]
Abstract
Type 2 diabetes (T2D) is a complex metabolic disorder with a growing global prevalence, and there is a linking between inflammation in pancreatic β-cell and impaired glucose homeostasis which has emerged as a key player in the pathogenesis of T2D. Recent advances in research have provided new insights into various inflammatory signaling cascades in β-cell among which we focus on Toll-like Receptor 4 (TLR4), Nuclear Factor kappa B (NF-κB), Janus Kinase-Signal Transducer and Activator of Transcription (JAK/STAT), Platelet-Derived Growth Factor Receptor α (PDGFR-α), Stimulator of Interferon Genes (STING), and the death receptor TMEM219. TLR4 activation by pathogen- or damage-associated molecular patterns initiates NF-κB and mitogen-activated protein kinase (MAPK) cascades, promoting pro-inflammatory cytokine release and β-cell apoptosis. NF-κB acts as a central hub, integrating metabolic stress signals (e.g., glucolipotoxicity, ER stress) and amplifying inflammatory responses through crosstalk with JAK/STAT and STING pathways. Meanwhile, JAK/STAT signaling exhibits dual roles in β-cell survival and inflammation, influenced by cytokine milieu and feedback regulation. PDGFR-α, traditionally linked to β-cell proliferation, paradoxically contributes to pathological hyperplasia in obesity, while STING activation by cytosolic DNA triggers β-cell senescence and ferroptosis via IRF3/NF-κB. In this review, we synthesize recent advancements of these inflammatory signaling pathways in β-cells, and current therapeutic strategies targeting TLR4/NF-κB inhibitors, JAK/STAT modulators, STING antagonists, and the death receptor TMEM219 are discussed, alongside challenges in pathway specificity and clinical translation. Understanding these inflammatory signaling pathways and their interactions in pancreatic β-cell is essential for the development of novel therapeutic strategies to prevent or treat T2D.
Collapse
Affiliation(s)
- Jie Chen
- Department of Respiratory Medicine, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, Hubei 435000, PR China
| | - Shinuan Fei
- Pediatrics Department, Huangshi Maternal and Child Health Care Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, Hubei 435003, PR China
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, 99077, Hong Kong
| | - Xueting Gan
- Department of Pathology, Huangshi maternal and Child Health Care Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, Hubei 435003, PR China
| | - Bibo Shao
- Department of Intensive Care Unit, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, Hubei 435000, PR China
| | - Hong Jiang
- Department of Laboratory Medicine, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, Hubei 435000, PR China
| | - Sheng Li
- Department of Laboratory Medicine, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, Hubei 435000, PR China
| | - Peng Kuang
- Huangshi Maternal and Child Health Hospital Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, Hubei 435000, PR China
| | - Xin Liu
- Department of Ultrasound Medicine Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, Hubei 435000, PR China
| | - Sijun Yang
- Department of Laboratory Medicine, Huangshi Maternity and Children's Health Hospital, Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University, Huangshi Key Laboratory of Birth Defects Prevention, Huangshi, Hubei 435000, PR China.
| |
Collapse
|
11
|
Ma M, Chu Z, Quan H, Li H, Zhou Y, Han Y, Li K, Pan W, Wang DY, Yan Y, Shu Z, Qiao Y. Natural products for anti-fibrotic therapy in idiopathic pulmonary fibrosis: marine and terrestrial insights. Front Pharmacol 2025; 16:1524654. [PMID: 40438605 PMCID: PMC12116445 DOI: 10.3389/fphar.2025.1524654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 04/29/2025] [Indexed: 06/01/2025] Open
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a chronic fibrotic interstitial lung disease (ILD) of unknown etiology, characterized by increasing incidence and intricate pathogenesis. Current FDA-approved drugs suffer from significant side effects and limited efficacy, highlighting the urgent need for innovative therapeutic agents for IPF. Natural products (NPs), with their multi-target and multifaceted properties, present promising candidates for new drug development. This review delineates the anti-fibrotic pathways and targets of various natural products based on the established pathological mechanisms of IPF. It encompasses over 20 compounds, including flavonoids, saponins, polyphenols, terpenoids, natural polysaccharides, cyclic peptides, deep-sea fungal alkaloids, and algal proteins, sourced from both terrestrial and marine environments. The review explores their potential roles in mitigating pulmonary fibrosis, such as inhibiting inflammatory responses, protecting against lipid peroxidation damage, suppressing mesenchymal cell activation and proliferation, inhibiting fibroblast migration, influencing the synthesis and secretion of pro-fibrotic factors, and regulating extracellular matrix (ECM) synthesis and degradation. Additionally, it covers various in vivo and in vitro disease models, methodologies for analyzing marker expression and signaling pathways, and identifies potential new therapeutic targets informed by the latest research on IPF pathogenesis, as well as challenges in bioavailability and clinical translation. This review aims to provide essential theoretical and technical insights for the advancement of novel anti-pulmonary fibrosis drugs.
Collapse
Affiliation(s)
- Meiting Ma
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Zhengqi Chu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Hongyu Quan
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Hanxu Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Yuran Zhou
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Yanhong Han
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Kefeng Li
- Faculty of Applied Sciences, Macao Polytechnic University, Macau, Macao SAR, China
| | - Wenjun Pan
- Department of Oncology, The Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - De-Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, Singapore
| | - Yan Yan
- Guangdong-Hong Kong-Macao University Joint Laboratory of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, China
| | - Zunpeng Shu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| | - Yongkang Qiao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
| |
Collapse
|
12
|
Liao Y, Wang M, Qin F, Liu T, Chen J. Integrating network pharmacology, quantitative transcriptomic analysis, and experimental validation revealed the mechanism of cordycepin in the treatment of obesity. Front Pharmacol 2025; 16:1571480. [PMID: 40438591 PMCID: PMC12116500 DOI: 10.3389/fphar.2025.1571480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/24/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction Evidence of the benefits of cordycepin (Cpn) for treating obesity is accumulating, but detailed knowledge of its therapeutic targets and mechanisms remains limited. This study aimed to systematically identify Cpn's therapeutic targets and pathways in Western diet (WD)-induced obesity using integrated network pharmacology, transcriptomics, and experimental validation. Methods A Western diet (WD)-induced mice model was used to evaluate the effectiveness of Cpn in ameliorating obesity. A network pharmacology analysis was then employed to identify the potential anti-obesity targets of Cpn. GO functional enrichment and KEGG pathway analysis were performed to elucidate the potential functions of the identified targets, followed by constructing a protein-protein interaction network to screen the core targets. Meanwhile, quantitative transcriptomics was conducted to validate and broaden the network pharmacology findings. Finally, molecular docking and quantitative real-time PCR assay were used for the core target validation. Results Cpn treatment effectively alleviated obesity-related symptoms in WD-induced mice. The metabolic pathway, insulin signaling pathway, HIF-1 signaling pathway, FoxO signaling pathway, lipid and atherosclerosis pathway, and core targets including CPS1, HRAS, MAPK14, PAH, ALDOB, AKT1, GSK3B, HSP90AA1, BHMT2, EGFR, CASP3, MAT1A, APOM, APOA2, APOC3, and APOA1 are involved in regulating the therapeutic effect of Cpn. Conclusion This study comprehensively uncovers the potential mechanism of Cpn against obesity based on network pharmacology and quantitative transcriptomics, which provides evidence for revealing the pathogenesis of obesity, suggesting that Cpn is a possible lead compound for anti-obesity treatment.
Collapse
Affiliation(s)
- Yu Liao
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mingchao Wang
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fuli Qin
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Taotao Liu
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiemei Chen
- Department of Pharmacy, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
13
|
Usatiuc LO, Pârvu M, Pop RM, Uifălean A, Vălean D, Surd A, Țicolea M, Hîruța A, Ranga F, Cătoi FA, Cătană C, Pârvu AE. Therapeutic Potential of Lythrum salicaria L. Ethanol Extract in Experimental Rat Models of Streptozotocin-Induced Diabetes Mellitus and Letrozole-Induced Polycystic Ovary Syndrome. Antioxidants (Basel) 2025; 14:573. [PMID: 40427455 PMCID: PMC12108253 DOI: 10.3390/antiox14050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Polycystic ovary syndrome (PCOS) and diabetes mellitus (DM) are prevalent endocrine disorders with overlapping pathophysiological mechanisms. Type 2 diabetes mellitus (T2DM) is commonly associated with PCOS, with both conditions strongly linked to insulin resistance (IR), while recent studies have also reported an increased prevalence of PCOS among women with type 1 diabetes mellitus (T1DM). This study evaluated the potential of Lythrum salicaria L. ethanol extract (LSEE) to mitigate oxidative stress (OS), inflammation, and metabolic and hormonal imbalances in separate experimental models of Streptozotocin (STZ)-induced DM and Letrozole (LET)-induced PCOS. LSEE underwent phytochemical analysis to quantify total phenolic and flavonoid content and HPLC-MS for polyphenols identification. In vitro, antioxidant capacity was investigated through FRAP, DPPH, NO, and H2O2 scavenging assays. Subsequently, in vivo, studies utilized STZ-induced DM and LET-induced PCOS rat models, with 10-day treatments of LSEE, metformin, or trolox (TX) administered by gavage. Dysregulation of hormonal profiles, ultrasound, and histological examinations confirmed PCOS development. At the end of the treatment period, serum samples were collected to assess OS markers (TOS, OSI, MDA, AOPP, 8-OHdG, NO, 3-NT, AGEs, TAR, SH) in both models. Inflammatory markers were also measured (IL-1β, NF-κB, IL-18, and Gasdermin D in DM and IL-1β, NF-κB, IL-18, and IL-10 in PCOS). Additionally, metabolic markers (glucose, lipids, TG-glucose index, liver enzymes) were assessed in DM rats, and hormones (LH, FSH, estrogen, testosterone, insulin, HOMA-IR) were determined in PCOS rats. LSEE demonstrated a high polyphenolic content and notable in vitro antioxidant activity. In vivo, it effectively reduced OS by lowering oxidant levels and enhancing antioxidant defenses, reduced inflammatory markers and blood glucose levels, and improved lipid profiles along with the TyG index and liver injury markers in diabetic rats. In PCOS rats, LSEE lowered the total oxidants, increased antioxidants, reduced LH, FSH, testosterone, and insulin, and increased estrogen levels. The effects exhibited a dose-dependent pattern, with higher doses producing more pronounced benefits comparable to those observed with metformin and TX. In conclusion, LSEE may be a promising complementary treatment for DM and PCOS.
Collapse
Affiliation(s)
- Lia Oxana Usatiuc
- Pathophysiology, Department 2—Functional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (L.O.U.); (A.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Marcel Pârvu
- Department of Taxonomy, Faculty of Biology and Geology, “Babes-Bolyai” University, 400012 Cluj-Napoca, Romania;
| | - Raluca Maria Pop
- Pharmacology, Toxicology and Clinical Pharmacology, Department 2—Functional Sciences, Faculty of Medicine, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ana Uifălean
- Pathophysiology, Department 2—Functional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (L.O.U.); (A.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Dan Vălean
- Surgery Department, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Adrian Surd
- Pediatric Surgery and Orthopedics, Department of Mother and Child, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Mădălina Țicolea
- Pathophysiology, Department 2—Functional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (L.O.U.); (A.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Ana Hîruța
- Pathology Department, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Floricuța Ranga
- Food Science and Technology, Department of Food Science, University of Agricultural Science and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Florinela Adriana Cătoi
- Pathophysiology, Department 2—Functional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (L.O.U.); (A.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| | - Corina Cătană
- Center for Biodiversity and Conservation, Faculty of Horticulture and Business in Rural Development, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Alina Elena Pârvu
- Pathophysiology, Department 2—Functional Sciences, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania; (L.O.U.); (A.U.); (M.Ț.); (F.A.C.); (A.E.P.)
| |
Collapse
|
14
|
Shao LJ, Elizondo F, Gao F, Habib R, Li X, Pham K, Ysaguirre J, Elizondo M, Shirazi S, Eckel-Mahan KL, Hartig S, Wu H, Sun K. Functional regulation of macrophages by Ces1d-mediated lipid signaling in immunometabolism. Mol Metab 2025; 97:102166. [PMID: 40349771 DOI: 10.1016/j.molmet.2025.102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/05/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025] Open
Abstract
OBJECTIVE Macrophage accumulation in metabolically active tissues during obesity is common in both animals and humans, but the lipid signaling mechanisms that trigger macrophage inflammation remain unclear. This study investigates the role of Ces1d, an unconventional lipase, in regulating macrophage inflammation under nutritional stress. METHODS A myeloid-specific Ces1d knockout (LysM-Cre-Ces1d floxed/floxed, KO) mouse model was used for the studies. For in vitro tests, bone marrow-derived macrophages (BMDMs) from control (Ces1d floxed/floxed, WT) and KO mice were assessed for migration, polarization, and activation. For in vivo experiments, WT and KO mice were induced to obesity via a high-fat diet (HFD) and subjected to metabolic characterization. Adipose tissue, liver, and serum samples were analyzed histologically and biochemically. Endogenous macrophages and T cells from adipose tissue were isolated and analyzed for functional interactions by flow cytometry. RESULTS Ces1d expression changes during the differentiation of monocytes into macrophages in both mice and humans. Loss of Ces1d causes larger lipid droplets, with increased accumulation of triacylglycerol (TAG) and diacylglycerol (DAG), and impaired lipid signaling in KO macrophages. Lipid dysregulation in macrophages triggers pro-inflammatory activation, enhancing migration, activation, and polarization toward an M1-like phenotype. The pro-inflammatory macrophages further promote CD3+CD8+ T cell accumulation in obese adipose tissue, which contributes to worsened metabolic disorders, including more severe fatty liver, increased local inflammation in adipose tissue, and impaired systemic glucose tolerance in KO mice on a high-fat diet. CONCLUSIONS This study demonstrates Ces1d is a crucial factor in maintaining lipid homeostasis in macrophages. Loss of Ces1d leads to metabolic dysregulation in macrophages and other immune cells during obesity.
Collapse
Affiliation(s)
- Long J Shao
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Fathima Elizondo
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Feng Gao
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Rabie Habib
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Katherine Pham
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jazmin Ysaguirre
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Maryam Elizondo
- Graduate School of Biomedical Sciences (GSBS), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shirindokht Shirazi
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences (GSBS), University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L Eckel-Mahan
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences (GSBS), University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sean Hartig
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX, USA; Graduate School of Biomedical Sciences (GSBS), University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
15
|
Deng W, Wang X, Niu X, Zhang X, Hou Y, Qin M. Inverse Agonists of Peroxisome Proliferator-Activated Receptor Gamma: Advances and Prospects in Cancer Treatment. J Med Chem 2025; 68:9084-9100. [PMID: 40300091 DOI: 10.1021/acs.jmedchem.5c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-dependent nuclear transcription factor that modulates metabolic homeostasis and cell proliferation. Inverse agonism of PPARγ is an emerging anticancer strategy, particularly for the treatment of bladder cancer. The first-in-class PPARγ inverse agonist, FX-909, is currently being studied in clinical trials for cancer treatment. However, PPARγ inverse agonists are still in the early stages of development. The discovery of compounds with novel chemical structures, potent efficacy, and favorable pharmacokinetic properties is urgently needed. In this perspective, the biological functions of PPARγ and its role in cancer pathology are introduced, and currently available PPARγ inverse agonists and their preliminary structure-activity relationships (SARs) are discussed from a medicinal chemistry viewpoint. These findings inform the development of anticancer agents that act as PPARγ inverse agonists. Furthermore, our discussion of the complex biological functions of PPARγ provides insights into the exploration of its role in various diseases.
Collapse
Affiliation(s)
- Wensong Deng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xuejian Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xinyu Niu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiangjie Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yunlei Hou
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Mingze Qin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| |
Collapse
|
16
|
Abianeh HS, Kesharwani P, Sahebkar A. The use of aptamers as therapeutic inhibitors and biosensors of TNF-alpha. Int J Biol Macromol 2025; 306:141202. [PMID: 39971069 DOI: 10.1016/j.ijbiomac.2025.141202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/13/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Tumor necrosis factor-alpha (TNF-α) is a pivotal cytokine in the pathogenesis of numerous inflammatory and autoimmune diseases. Precise and sensitive detection of TNF-α is essential for both clinical applications and research endeavors. In the realm of cytokine detection, particularly TNF-α, the development of highly sensitive and specific biosensors has become a focal point. The biosensing landscape encompasses a variety of biorecognition elements, each with its unique set of characteristics. TNF inhibitors come with a significant price tag and, notably, do not yield positive responses in all patients. Despite the availability of numerous FDA-approved biologic agents (e.g., infliximab, adalimumab, certolizumab pegol, etc.) and monoclonal antibodies (e.g., adalimumab) targeting TNF-α, aptamers tailored for blocking TNF-α activities have yet to receive approval. Aptamers have rapidly gained recognition as readily available, versatile, and highly effective molecular tools for both therapeutic and diagnostic purposes in the context of TNF-alpha. In this manuscript, we explore the potential of short single-stranded DNA or RNA sequences known as aptamers as biorecognition elements in biosensors designed for the detection of TNF-α. We delve into the progress made in the development of aptamer-based TNF-α inhibitors and shed light on successful studies in this burgeoning field.
Collapse
Affiliation(s)
- Hossein Samiei Abianeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Amine I, Guillien A, Bayat S, Lyon-Caen S, Ouidir M, Sabaredzovic A, Sakhi AK, Thomsen C, Valmary-Degano S, Philippat C, Siroux V. Early-life exposure to mixtures of endocrine-disrupting chemicals and a multi-domain health score in preschool children. ENVIRONMENTAL RESEARCH 2025; 272:121173. [PMID: 39988041 DOI: 10.1016/j.envres.2025.121173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/30/2025] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
BACKGROUND Early-life exposure to endocrine-disrupting chemicals, such as phenols and phthalates, is suspected to impact various dimensions of child health. Using a multi-outcome approach, this study aimed to estimate their cumulative effect on the child cardiometabolic, respiratory and neurodevelopmental health. METHODS In 373 children of 3 years old from the SEPAGES cohort, a multi-domain health score was built from twenty-three health parameters. Fourteen metabolites of parabens, phenols, and phthalate/DINCH were measured several times during pregnancy (trimester 2 and 3) and infancy (2 and 12 months of age). Two mixture models, quantile g computation (q-gcomp) and Bayesian Kernel Machine Regression (BKMR), estimated associations between increased concentration of parabens, phenols, and phthalates/DINCH and the child health score. RESULTS Q-gcomp showed that the paraben mixture and the phthalate mixture were associated with a poorer health score (β = -0.11, 95% Confidence Interval (CI): -0.22, 0.00; β = -0.14, 95% CI: -0.27, -0.01, respectively), while no significant association was found for the mixture of phenols (β = -0.06, 95% CI: -0.18, 0.06). A trend for an association was observed between the whole mixture (parabens, phenols and phthalates combined) with a poorer health score (β = -0.14, 95% CI: -0.32, 0.04). Similar patterns of association, while subject to large uncertainty, have been observed with BKMR. DISCUSSION This study provides further evidence for the adverse health effects of early-life exposure to parabens and phthalates. Based on their potential impact on multiple areas of child health, public health policies targeting these chemical compounds are recommended.
Collapse
Affiliation(s)
- Ines Amine
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38700, La Tronche, France
| | - Alicia Guillien
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38700, La Tronche, France
| | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Sarah Lyon-Caen
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38700, La Tronche, France
| | - Marion Ouidir
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38700, La Tronche, France
| | - Azemira Sabaredzovic
- Department of Food Safety, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Amrit K Sakhi
- Department of Food Safety, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Cathrine Thomsen
- Department of Food Safety, Norwegian Institute of Public Health, 0213, Oslo, Norway
| | - Séverine Valmary-Degano
- BB-0033-00069 Biobank, Univ. Grenoble Alpes, Inserm U1209, CNRS UMR5309, Institute for Advanced Biosciences, CHU Grenoble-Alpes, F-38000, Grenoble, France
| | - Claire Philippat
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38700, La Tronche, France
| | - Valérie Siroux
- Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to the Development and Respiratory Health, Institute for Advanced Biosciences, 38700, La Tronche, France
| |
Collapse
|
18
|
Yang X, Wu W, Huang W, Fang J, Chen Y, Chen X, Lin X, He Y. Exosomes derived from baicalin‑pretreated mesenchymal stem cells mitigate atherosclerosis by regulating the SIRT1/NF‑κB signaling pathway. Mol Med Rep 2025; 31:126. [PMID: 40084693 PMCID: PMC11924171 DOI: 10.3892/mmr.2025.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/13/2025] [Indexed: 03/16/2025] Open
Abstract
Atherosclerosis (AS) is a disease with high global incidence and mortality rates. Currently, the treatment of AS in clinical practice carries a high risk of adverse effects and toxic side effects. The pretreatment of mesenchymal stem cells (MSCs) with drugs may enhance the bioactivity of MSC‑derived exosomes (MSC‑exos), which could be a promising candidate for inhibiting the progression of AS. The aim of the present study was to investigate the ability of exos derived from baicalin‑preconditioned MSCs (Ba‑exos) to exhibit an inhibitory effect on AS progression and to explore the potential molecular mechanisms. Exos were isolated from untreated MSCs and MSCs pretreated with Ba, and were characterized using transmission electron microscopy, nanoparticle tracking analysis and western blotting. Subsequently, Cell Counting Kit‑8 and Transwell assays, reverse transcription‑quantitative PCR, immunofluorescence, western blotting and ELISA were used to evaluate the effects of Ba‑exos on AS, and the possible molecular mechanisms. Oil Red O and Masson staining were used to assess AS pathological tissue in a high‑fat diet‑induced mouse model of AS. Notably, MSC‑exos and Ba‑exos were successfully isolated. Compared with MSC‑exos, Ba‑exos demonstrated superior inhibitory effects on the viability and migration, and the levels of inflammatory factors in oxidized low‑density lipoprotein (ox‑LDL)‑induced vascular smooth muscle cells (VSMCs). Additionally, compared with MSC‑exos, Ba‑exos significantly inhibited NF‑κB activation by upregulating sirtuin 1 (SIRT1), thereby suppressing inflammation in ox‑LDL‑induced VSMCs to a greater extent. In mice with high‑fat diet‑induced AS, Ba‑exos exhibited the ability to inhibit AS plaque formation and to alleviate AS progression by reducing the levels of inflammatory factors compared with MSC‑exos; however, the difference was not significant. In conclusion, Ba‑exos may serve as a potential strategy for treating AS by regulating the SIRT1/NF‑κB signaling pathway to suppress inflammation.
Collapse
Affiliation(s)
- Xiaochun Yang
- The First Clinical College of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Wei Wu
- The First Clinical College of Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China
| | - Weitian Huang
- Department of Rehabilitation, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Junfeng Fang
- Department of Emergency, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510000, P.R. China
| | - Yunli Chen
- Department of Rehabilitation, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Xiaoyan Chen
- Department of Rehabilitation, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Xiaolan Lin
- Department of Rehabilitation, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, Guangdong 510000, P.R. China
| | - Yanbin He
- Department of Rehabilitation, Guangdong Work Injury Rehabilitation Hospital, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
19
|
Makassy D, Williams K, Karwi QG. The Evolving Role of Macrophage Metabolic Reprogramming in Obesity. Can J Cardiol 2025:S0828-282X(25)00320-4. [PMID: 40311669 DOI: 10.1016/j.cjca.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/03/2025] Open
Abstract
Recent research has extensively explored the critical role of energy metabolism in shaping the inflammatory response and polarization of macrophages in obesity. This rapidly growing field emphasizes the need to understand the connection between metabolic processes that support macrophage polarization in obesity. Although most published research in this area has focused on glucose and fatty acids, how the flux through other metabolic pathways (such as ketone and amino acid oxidation) in macrophages is altered in obesity is not well defined. This review summarizes the main alterations in uptake, storage, and oxidation of oxidative substrates (glucose, fatty acids, ketone bodies, and amino acids) in macrophages and how these alterations are linked to macrophage polarization and contribution to augmented inflammatory markers in obesity. The review also discusses how oxidative substrates could modulate macrophage energy metabolism and inflammatory responses via feeding into other nonoxidative pathways (such as the pentose phosphate pathway, triacylglycerol synthesis/accumulation), via acting as signalling molecules, or via mediating post-translational modifications (such as O-GlcNAcylation or β-hydroxybutyrylation). The review also identifies several critical unanswered questions regarding the characteristics (functional and metabolic) of macrophages from different origins (adipose tissue, skeletal muscle, bone marrow) in obesity and how these characteristics contribute to early vs late phases of obesity. We also identified a number of new therapeutic targets that could be evaluated in future investigations. Targeting macrophage metabolism in obesity is an exciting and active area of research with significant potential to help identify new treatments to limit the detrimental effects of inflammation in obesity.
Collapse
Affiliation(s)
- Dorcus Makassy
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada
| | - Kyra Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John's, Newfoundland and Labrador, Canada.
| |
Collapse
|
20
|
Sharata EE, Attya ME, Khalaf MM, Rofaeil RR, Abo-Youssef AM, Hemeida RAM. Levomilnacipran alleviates cyclophosphamide-induced hepatic dysfunction in male Wistar albino rats; emerging role of α-Klotho/TLR4/p38-MAPK/NF-κB p65 and caspase-3-driven apoptosis trajectories. Int Immunopharmacol 2025; 152:114384. [PMID: 40056515 DOI: 10.1016/j.intimp.2025.114384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/10/2025]
Abstract
AIM This study aims to investigate the potential protective effect of levomilnacipran (LVM) against cyclophosphamide (CPA)-induced hepatotoxicity by targeting α-Klotho/TLR4/p38-MAPK/NF-κB p65 and Caspase-3-dependent apoptosis signaling pathways. MAIN METHODS The toxicity of CPA was assessed using biochemical analysis of the serum hepatotoxicity parameters (AST, ALT, and direct bilirubin) and histopathological examination. Hepatic MDA and SOD were evaluated. The ELISA procedure was employed to evaluate the levels of hepatic TNF-α, IL-1β, and IL-18, hepatic caspase-3, and serum α-Klotho. The expression of hepatic TLR4 and NF-κB p65 was examined using an immunohistochemical technique. A western blot assay was used to determine the expression of MYD88, and p38-MAPK. KEY FINDINGS LVM abrogated CPA-induced hepatotoxicity by reducing the elevated hepatoxicity markers and mitigating the histopathological aberrations. It also lowered MDA content and increased SOD activity. Furthermore, it reduced TNF-α, IL-1β, and IL-18 contents, as well as caspase-3 activity. Additionally, LVM diminished TLR4, MYD88, NF-κB p65, and p38 MAPK expression and boosted the levels of α-Klotho. SIGNIFICANCE LVM alleviated hepatic injury generated by CPA via downregulating TLR4/p38 MAPK/NF-κB p65 signaling cascade through the participation of α-Klotho, as well as inhibiting caspase-3-driven apoptosis.
Collapse
Affiliation(s)
- Ehab E Sharata
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| | - Mina Ezzat Attya
- Department of Pathology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Marwa M Khalaf
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Remon Roshdy Rofaeil
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt; Department of Medical Pharmacology, Faculty of Medicine, Minia University, Minia 61519, Egypt.
| | - Amira M Abo-Youssef
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Deraya University, Minia 61111, Egypt.
| |
Collapse
|
21
|
Ding Z, Wang L, Sun J, Zheng L, Tang Y, Tang H. Hepatocellular carcinoma: pathogenesis, molecular mechanisms, and treatment advances. Front Oncol 2025; 15:1526206. [PMID: 40265012 PMCID: PMC12011620 DOI: 10.3389/fonc.2025.1526206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 03/21/2025] [Indexed: 04/24/2025] Open
Abstract
Hepatocellular Carcinoma (HCC), a highly prevalent malignancy, poses a significant global health challenge. Its pathogenesis is intricate and multifactorial, involving a complex interplay of environmental and genetic factors. Viral hepatitis, excessive alcohol consumption, and cirrhosis are known to significantly elevate the risk of developing HCC. The underlying biological processes driving HCC are equally complex, encompassing aberrant activation of molecular signaling pathways, dysregulation of hepatocellular differentiation and angiogenesis, and immune dysfunction. This review delves into the multifaceted nature of HCC, exploring its etiology and the intricate molecular signaling pathways involved in its development. We examine the role of immune dysregulation in HCC progression and discuss the potential of emerging therapeutic strategies, including immune-targeted therapy and tumor-associated macrophage interventions. Additionally, we explore the potential of traditional Chinese medicine (TCM) monomers in inhibiting tumor growth. By elucidating the complex interplay of factors contributing to HCC, this review aims to provide a comprehensive understanding of the disease and highlight promising avenues for future research and therapeutic development.
Collapse
Affiliation(s)
- Zhixian Ding
- General Clinical Research Center, Wanbei Coal-Electricity Group General Hospital, Suzhou, China
- Laboratory of Inflammation and Repair of Liver Injury and Tumor Immunity, Wanbei Coal-Electricity Group General Hospital, Hefei, China
| | - Lusheng Wang
- General Clinical Research Center, Wanbei Coal-Electricity Group General Hospital, Suzhou, China
- Laboratory of Inflammation and Repair of Liver Injury and Tumor Immunity, Wanbei Coal-Electricity Group General Hospital, Hefei, China
| | - Jiting Sun
- General Clinical Research Center, Wanbei Coal-Electricity Group General Hospital, Suzhou, China
- Laboratory of Inflammation and Repair of Liver Injury and Tumor Immunity, Wanbei Coal-Electricity Group General Hospital, Hefei, China
| | - Lijie Zheng
- General Clinical Research Center, Wanbei Coal-Electricity Group General Hospital, Suzhou, China
- Laboratory of Inflammation and Repair of Liver Injury and Tumor Immunity, Wanbei Coal-Electricity Group General Hospital, Hefei, China
| | - Yu Tang
- General Clinical Research Center, Wanbei Coal-Electricity Group General Hospital, Suzhou, China
- Laboratory of Inflammation and Repair of Liver Injury and Tumor Immunity, Wanbei Coal-Electricity Group General Hospital, Hefei, China
| | - Heng Tang
- General Clinical Research Center, Wanbei Coal-Electricity Group General Hospital, Suzhou, China
- Laboratory of Inflammation and Repair of Liver Injury and Tumor Immunity, Wanbei Coal-Electricity Group General Hospital, Hefei, China
| |
Collapse
|
22
|
Singh A, Khushboo, Pandey M, Mattoo S, Pore SK, Bhattacharyya J. A glucose-responsive alginate-based hydrogel laden with modified GLP-1 and telmisartan ameliorates type 2 diabetes and reduces liver and kidney toxicities. J Mater Chem B 2025; 13:4419-4432. [PMID: 40095672 DOI: 10.1039/d4tb02261k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The pathophysiology associated with type 2 diabetes mellitus (T2DM) includes insulin resistance, increased oxidative stress, a pro-inflammatory macrophage population, and dysfunction of pancreatic β cells in the islets of Langerhans, along with hepato- and nephro-toxicity. In this study, an injectable glucose-responsive hydrogel (Diabogel) was developed using alginate and 3-aminophenyl boronic acid to deliver modified glucagon-like peptide-1, insulinoma cell-derived extracellular vesicles, and telmisartan. Diabogel demonstrated cytocompatibility, decreased reactive oxygen species, enhanced insulin synthesis, and improved glucose uptake in vitro. In a high-fat diet/streptozotocin-induced murine model of T2DM, Diabogel lowered blood glucose levels, maintained body weight, and increased insulin expression. Furthermore, it promoted an anti-inflammatory microenvironment in the pancreas by regulating macrophage phenotype and the expression of NF-κB, supported cellular proliferation, and restored the pancreatic islets. In addition, Diabogel treatment significantly lowered the serum levels of pro-inflammatory cytokines and enhanced anti-inflammatory cytokines. Interestingly, Diabogel treatment also lowered diabetes-associated hepato- and nephro-toxicity. Taken together, Diabogel may serve as a potential approach for the treatment of T2DM, regulating blood glucose levels, restoring pancreatic β cell function, and reducing hepatic and renal toxicities.
Collapse
Affiliation(s)
- Anjali Singh
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi 110016, India
| | - Khushboo
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi 110016, India
| | - Monu Pandey
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi 110016, India
| | - Shria Mattoo
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Subrata Kumar Pore
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India
| | - Jayanta Bhattacharyya
- Centre for Biomedical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
- Department of Biomedical Engineering, All India Institute of Medical Science, Delhi, New Delhi 110016, India
| |
Collapse
|
23
|
Chen Y, Xu N, Zhang W, Wang Y, Su T, Zhou Y, Xu J. FSH enhances the inflammatory response of macrophages in the knee joint possibly through the NFκB pathway. FEBS Open Bio 2025; 15:622-633. [PMID: 39801258 PMCID: PMC11961395 DOI: 10.1002/2211-5463.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 10/22/2024] [Accepted: 12/13/2024] [Indexed: 04/03/2025] Open
Abstract
Previous studies have suggested that women with higher follicle-stimulating hormone (FSH) levels have a greater incidence of osteoarthritis (OA) compared to women with lower FSH despite normal estrogen levels. Our previous studies also showed that FSH has a negative effect on cartilage in postmenopausal OA. However, no studies have investigated the effect of FSH on the synovium. Here, we showed that the FSH receptor (FSHR) is expressed on RAW264.7 cells and BMDM (Bone Marrow-Derived Macrophages), and found that FSH stimulation promotes the production and secretion of inflammatory cytokines in synovial macrophages. In RAW264.7 cells, FSH stimulation enhances phosphorylation and nuclear translocation of P65, suggesting the activation of NFκB signaling, while the knockdown of FSHR eliminates the proinflammatory effect of FSH. To further validate these results, we used an ovariectomy mouse model supplemented with FSH and estrogen, and a mouse model with FSH neutralization. We noted that FSHR was expressed on mouse synovial joint membranes. Furthermore, in ovariectomy mice supplemented with estrogen and treated with FSH, synovial macrophages were significantly increased, while the opposite was the case in the FSH neutralizing group, which suggest that FSH triggers an inflammatory response in the synovial tissue in mice. Taken together, our results indicate that FSH is an important regulator in synovial inflammation via NFκB signaling activation and, to some extent, appears to accelerate the development of osteoarthritis.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationJinanChina
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanChina
- “Chuangxin China” Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic DiseasesJinanChina
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic DiseasesJinanChina
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic DiseasesJinanChina
| | - Na Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationJinanChina
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanChina
- “Chuangxin China” Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic DiseasesJinanChina
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic DiseasesJinanChina
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic DiseasesJinanChina
| | - Wen‐wen Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationJinanChina
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanChina
- “Chuangxin China” Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic DiseasesJinanChina
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic DiseasesJinanChina
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic DiseasesJinanChina
| | - Yan Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationJinanChina
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanChina
- “Chuangxin China” Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic DiseasesJinanChina
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic DiseasesJinanChina
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic DiseasesJinanChina
| | - Tong Su
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationJinanChina
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanChina
- “Chuangxin China” Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic DiseasesJinanChina
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic DiseasesJinanChina
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic DiseasesJinanChina
| | - Yan‐man Zhou
- Department of NephrologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Jin Xu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain AgingMinistry of EducationJinanChina
- Department of EndocrinologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
- Shandong Key Laboratory of Endocrinology and Lipid MetabolismJinanChina
- Shandong Institute of Endocrine and Metabolic DiseasesJinanChina
- “Chuangxin China” Innovation Base of Stem Cell and Gene Therapy for Endocrine Metabolic DiseasesJinanChina
- Shandong Engineering Laboratory of Prevention and Control for Endocrine and Metabolic DiseasesJinanChina
- Shandong Engineering Research Center of Stem Cell and Gene Therapy for Endocrine and Metabolic DiseasesJinanChina
| |
Collapse
|
24
|
Shahbaz SK, Mokhlesi A, Sadegh RK, Rahimi K, Jamialahmadi T, Butler AE, Kesharwani P, Sahebkar A. TLR/NLRP3 inflammasome signaling pathways as a main target in frailty, cachexia and sarcopenia. Tissue Cell 2025; 93:102723. [PMID: 39823704 DOI: 10.1016/j.tice.2025.102723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/28/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025]
Abstract
Mobility disability is a common condition affecting older adults, making walking and the performance of activities of daily living difficult. Frailty, cachexia and sarcopenia are related conditions that occur with advancing age and are characterized by a decline in muscle mass, strength, and functionality that negatively impacts health. Chronic low-grade inflammation is a significant factor in the onset and progression of these conditions. The toll-like receptors (TLRs) and the NLRP3 inflammasome are the pathways of signaling that regulate inflammation. These pathways can potentially be targeted therapeutically for frailty, cachexia and sarcopenia as research has shown that dysregulation of the TLR/NLRP3 inflammasome signaling pathways is linked to these conditions. Activation of TLRs with pathogen-associated molecular patterns (PAMPs or DAMPs) results in chronic inflammation and tissue damage by releasing pro-inflammatory cytokines. Additionally, NLRP3 inflammasome activation enhances the inflammatory response by promoting the production and release of interleukins (ILs), thus exacerbating the underlying inflammatory mechanisms. These pathways are activated in the advancement of disease in frail and sarcopenic individuals. Targeting these pathways may offer therapeutic options to reduce frailty, improve musculoskeletal resilience and prevent or reverse cachexia-associated muscle wasting. Modulating TLR/NLRP3 inflammasome pathways may also hold promise in slowing down the progression of sarcopenia, preserving muscle mass and enhancing overall functional ability in elderly people. The aim of this review is to investigate the signaling pathways of the TLR/NLRP3 inflammasome as a main target in frailty, cachexia and sarcopenia.
Collapse
Affiliation(s)
- Sanaz Keshavarz Shahbaz
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Aida Mokhlesi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; Social Determinants of Health Research Center, Research Institute for Prevention of Non-communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roghaye Keshavarz Sadegh
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Kimia Rahimi
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran; USERN Office, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
25
|
Liang M, Yang J, Zhang A, Zhong N, Quan B, Wang Z, Zhao W, Geng B, Gao Y. RNF2 induces myeloid-derived suppressor cells chemotaxis and promotes hepatocellular carcinoma progression through the TRAF2-NF-κB signaling axis. Cancer Immunol Immunother 2025; 74:162. [PMID: 40146286 PMCID: PMC11950572 DOI: 10.1007/s00262-025-04002-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
RING finger protein 2 (RNF2) has been shown to promote tumor growth in various cancer types. However, the immune regulatory function of RNF2 in the tumor microenvironment is unclear. Here, we report that upregulation of RNF2 is positively correlated with the tumor burden and poor prognosis in hepatocellular carcinoma patients and fosters an immunosuppressive microenvironment with increased MDSCs recruitment, and reduced T cell activation. Mechanistically, RNF2 binds with TRAF2 and directly mediates K63-linked TRAF2 ubiquitination. This modification of TRAF2 enables NF-κB hyperactivation in tumor cells, which subsequently induces CXCL1 transcription to enhance MDSCs migration. Furthermore, RNF2 knockout improves responsiveness to anti-PD-1 therapy in immunocompetent mice, as evidenced by enhancing infiltration of CD8+T cells into the tumor and a reduction in MDSC levels. Collectively, our experiments support that perturbing RNF2 and targeting MDSCs may afford therapeutic opportunities for hepatocellular carcinoma interception and prevention.
Collapse
Affiliation(s)
- Manman Liang
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Infectious Diseases, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jianghua Yang
- Department of Infectious Diseases, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Aiping Zhang
- Department of Infectious Diseases, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Na Zhong
- Department of Medical Oncology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Bin Quan
- Department of Infectious Diseases, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Zijian Wang
- Department of Infectious Diseases, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Wenying Zhao
- Department of Medical Oncology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, 2 Zheshan West Road, Wuhu, 241000, Anhui, China
| | - Biao Geng
- Department of Respiratory Medicine, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China.
| | - Yufeng Gao
- Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
26
|
Park G, Johnson K, Miller K, Kadyan S, Singar S, Patoine C, Hao F, Lee Y, Patterson AD, Arjmandi B, Kris-Etherton PM, Berryman CE, Nagpal R. Almond snacking modulates gut microbiome and metabolome in association with improved cardiometabolic and inflammatory markers. NPJ Sci Food 2025; 9:35. [PMID: 40113782 PMCID: PMC11926229 DOI: 10.1038/s41538-025-00403-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/01/2025] [Indexed: 03/22/2025] Open
Abstract
Western-style dietary patterns have been linked with obesity and associated metabolic disorders and gut dysbiosis, whereas prudent dietary and snacking choices mitigate these predispositions. Using a multi-omics approach, we investigated how almond snacking counters gut imbalances linked to adiposity and an average American Diet (AAD). Fifteen adults with overweight or obesity underwent a randomized, crossover-controlled feeding trial comparing a 4-week AAD with a similar isocaloric diet supplemented with 42.5 g/day of almonds (ALD). Almond snacking increases functional gut microbes, including Faecalibacterium prausnitzii, while suppressing opportunistic pathogens, thereby favorably modulating gut microecological niches through symbiotic and microbe-metabolite interactions. Moreover, ALD elevates health-beneficial monosaccharides and fosters bacterial consumption of amino acids, owing to enhanced microbial homeostasis. Additionally, ALD enhances metabolic homeostasis through a ketosis-like effect, reduces inflammation, and improves satiety-regulating hormones. The findings suggest that prudent dietary choices, such as almond snacking, promote gut microbial homeostasis while modulating immune metabolic state.
Collapse
Affiliation(s)
- Gwoncheol Park
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Katelyn Johnson
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Katelyn Miller
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Saurabh Kadyan
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Saiful Singar
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
- Center for Advancing Exercise and Nutrition Research on Aging, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Cole Patoine
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Fuhua Hao
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Yujin Lee
- Department of Food and Nutrition, Myongji University, Yongin, South Korea
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA, USA
| | - Bahram Arjmandi
- Center for Advancing Exercise and Nutrition Research on Aging, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA, USA
| | - Claire E Berryman
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Ravinder Nagpal
- The Gut Biome Lab, Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
27
|
Wang Y, Wang Q, Ji Q, An P, Wang X, Ju Y, Li R, Ruan Y, Zhao J, Cao M, Chen X. Supplementation with N-Acetyl-L-cysteine during in vitro maturation improves goat oocyte developmental competence by regulating oxidative stress. Theriogenology 2025; 235:221-230. [PMID: 39855039 DOI: 10.1016/j.theriogenology.2025.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Oocyte quality can affect mammal fertilization rate, early embryonic development, pregnancy maintenance, and fetal development. Oxidative stress induced by reactive oxygen species (ROS) is one of the most important causes of poor oocyte maturation in vitro. To reduce the degree of cellular damage caused by ROS, supplementation with the antioxidant N-Acetyl-L-cysteine (NAC) serves as an effective pathway to alleviate glutathione (GSH) depletion during oxidative stress. This study investigated the effects of NAC supplementation during in vitro maturation of goat oocytes and explored the molecular mechanisms of maturation by transcriptome sequencing of MⅡ oocytes. The results showed that 1.5 mM NAC significantly increased the rates of oocyte maturation and cumulus cell expansion and improved the subsequent development of embryos. During the subsequent culture of parthenogenetically activated embryos, 1.5 mM NAC significantly increased the division rate of oocytes and blastocyst rate. It also reduced the accumulation of ROS, increased the level of GSH, alleviated oxidative stress, and enhanced the antioxidant capacity and cell metabolic activity. Transcriptome sequencing results revealed that NAC treatment significantly increased the expression of SIRT1, GGCT, and MITF genes related to the cellular antioxidant system, as well as the IDH3G gene related to energy metabolism, and decreased the expression of CASP8, FOS, and MMP1 genes related to apoptosis and cell invasion, as well as the CCL2. and CXCL8 genes related to the inflammatory response. In conclusion, the findings suggest that NAC supplementation significantly reduces oxidative stress, improves antioxidant capacity and metabolic activity, promotes oocyte maturation, and improves oocyte quality.
Collapse
Affiliation(s)
- Yanfei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Qingwei Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Quan Ji
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Pengcheng An
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Xiaodong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yonghong Ju
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Ruiyang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Yong Ruan
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Jiafu Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Maosheng Cao
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China.
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, 550025, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Guizhou Province, Guiyang, 550025, China; College of Animal Science, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
28
|
Gutierrez DA, Llano M. NF-κB-Driven HIV-1 Gene Expression in Human Cells Is Independent of Poly(ADP-ribose) polymerase-1 Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642491. [PMID: 40161754 PMCID: PMC11952441 DOI: 10.1101/2025.03.10.642491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The cellular enzyme poly (ADP-ribose) polymerase-1 (PARP-1) is required for NF-κB to activate inflammatory and immune response gene expression. NF-κB is also an important transcription factor in HIV-1 gene expression during active replication and latency reactivation. Therefore, enhancing NF-κB signaling is an alternative for HIV-1 latency reactivation, but significant systemic side effects related to the NF-κB role in inflammatory and immune responses are predictable. To verify this prediction, we determined whether PARP-1 is required in NF-κB-dependent HIV-1 gene expression in a human CD4+ T lymphoblastoid cell line (SUP-T1) and HEK 293T cells. Our findings indicated that PARP-1 knockout does not impair HIV-1 infection or gene expression. Specifically, NF-κB-dependent HIV-1 gene expression was not impaired by PARP-1 deficiency, highlighting an important transcriptional regulatory difference between HIV-1 and inflammatory and immune activation genes. Our findings define a negligible role of PARP-1 in HIV-1 gene expression, suggesting that PARP-1 antagonism could ameliorate the expected inflammatory response with latency-reactivating agents that act through the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Denisse A. Gutierrez
- Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 W. University Ave. El Paso, TX 79968, USA
| | - Manuel Llano
- Border Biomedical Research Center, Department of Biological Sciences, College of Science, The University of Texas at El Paso, 500 W. University Ave. El Paso, TX 79968, USA
| |
Collapse
|
29
|
Chen Q, Chen W, Zhang B, Xue L, Li F, Zhang L, Tong H, Zhu Q. Hesperetin mitigates adipose tissue inflammation to improve obesity-associated metabolic health. Int Immunopharmacol 2025; 149:114211. [PMID: 39929097 DOI: 10.1016/j.intimp.2025.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/22/2025]
Abstract
Metabolically unhealthy obesity (MUO) poses significant health risks, including increased susceptibility to type 2 diabetes and cardiovascular diseases. Hesperetin is a key bioactive compound found in citrus fruits. Previous studies have shown that hesperetin can correct metabolic abnormalities and mitigate the progression of various metabolic disorders, but the underlying mechanisms remain unclear. Here, we explored the impact of hesperetin on MUO using ob/ob mice and investigated its potential pharmacological mechanisms. The present data indicated that administration of hesperetin for 12 weeks led to notable improvements in metabolic parameters, including reduced fasting blood glucose, fasting insulin levels, and the HOMA-IR index in ob/ob mice. Glucose and insulin tolerance tests demonstrated that hesperetin effectively enhanced insulin sensitivity, with high-dose effects comparable to metformin. Hesperetin treatment decreased inguinal white adipose tissue (iWAT) weight and improved insulin signaling by increasing AKT phosphorylation. Additionally, it reduced the expression of pro-inflammatory cytokines (Il-6 and Il-1β), chemokine Ccl2 and its receptor Ccr2, and macrophage activation markers Nos2 and Ptgs2 within iWAT of ob/ob mice, likely by inhibiting NF-κB activation and macrophage-mediated inflammation. In vitro studies further confirmed hesperetin's anti-inflammatory effects in LPS-stimulated macrophages, where it suppressed cytokine production and NF-κB signaling. Hesperetin also impaired CCL2-induced macrophage chemotaxis, reducing migration velocity and distance. Mechanistically, hesperetin directly interacts with and inhibits IKKβ kinase activity by binding to key residues (LEU21, VAL465, CYS99, and GLU97) and stabilizing the complex, as demonstrated by molecular docking and molecular dynamics simulations. These findings underscore hesperetin's therapeutic potential in mitigating metabolically unhealthy obesity, obesity-induced insulin resistance, and inflammation through direct modulation of the IKKβ and NF-κB pathways.
Collapse
Affiliation(s)
- Qiu Chen
- Department of Endocrinology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wenjun Chen
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Beining Zhang
- First College of Clinical Medicine, Wenzhou Medical University, Wenzhou 325000, China
| | - Liwei Xue
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Fang Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Lin Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| | - Qihan Zhu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Diabetes Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
30
|
Tao G, Wang X, Wang J, Ye Y, Zhang M, Lang Y, Ding S. Identifying Specificity Protein 2 as a key marker for diabetic encephalopathy in the context of predictive, preventive, and personalized medicine. EPMA J 2025; 16:67-93. [PMID: 39991102 PMCID: PMC11842694 DOI: 10.1007/s13167-024-00394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/18/2024] [Indexed: 02/25/2025]
Abstract
Background Transcription factor specificity protein (SP2) regulates various cellular functions, including cell division, proliferation, invasion, metastasis, differentiation, and death; however, its role has not been studied in prominent medical conditions including diabetic encephalopathy (DE). Therefore, this study addressed its physiological function in the context of DE to also better characterize its possible use in the context of predictive, preventive, and personalized medicine (PPPM). Methods The anti-inflammatory and anti-DE actions of SP2 were investigated using three animal models (SP2-/- mice, streptozocin-treated mice, and db/db mice) and two cell lines (primary cultured hippocampal neurons and N2A cells). The db/db mice were a leptin deficiency model often used to study type 2 diabetes. An equal number of males and females (8-12 weeks of age) was selected. Behavioral changes in mice were determined using both morris water maze (MWM) test and Y-maze (YM) test. The alterations in oxidative stress and inflammation were examined via immunofluorescence assay, flow cytometry, co-immunoprecipitation, and immunoblotting. Results Mechanistically, SP2-knockout (SP2-/-) mice showed dysregulation of insulin/glucose homeostasis, neuroinflammation, and cognitive loss. Otherwise, in db/db DE mice and STZ-induced DE mice, neuroinflammation, neuroapoptosis, and cognitive decline were significantly attenuated when SP2 was overexpressed in the brain. On the other hand, SP2 overexpression activates the insulin signaling pathway and improves insulin resistance via targeting X-box binding protein 1 (XBP1) in neurons. Moreover, SP2 overexpression significantly reduces oxidative stress by interacting with XBP1 and nuclear factor erythroid 2-related factor 2 (NRF2) in neurons. Furthermore, SP2 enhances the suppression of inflammatory response triggered by nuclear factor kappa B (NFκB) through the recruitment of XBP1 and NRF2 and by the in vitro inactivation of IκB kinase (IKK) complex. Conclusions These findings highlight SP2 as key biological targets for DE and reveal the infammation-related potential molecular mechanism of DE, which is helpful for early risk prediction and targeted prevention of DE. In conclusion, our study provides a new perspective for developing a PPPM method for managing DE patients. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00394-0.
Collapse
Affiliation(s)
- Guorong Tao
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Xuebao Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Jian Wang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- Huangshi Love & Health Hospital, Hubei Polytechnic University, Huangshi, 435000 China
| | - Yiru Ye
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
- School of Information and Engineering, Wenzhou Medical University, Wenzhou, 325035 Zhejiang China
| | - Minxue Zhang
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Yan Lang
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| | - Saidan Ding
- Laboratory Animal Center, Fudan University, Shanghai, 200032 China
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 China
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang China
| |
Collapse
|
31
|
Yoo HS, Yoon YS, Shin JW, Choi SI, Son SH, Jang YH, Yang YS, Kim SY, Kim YR, Chung KS, Lee KT, Kim NJ. In vitro and in vivo anti-inflammatory and antinociceptive activities of a synthetic hydrangenol derivative: 5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one. Int Immunopharmacol 2025; 148:114175. [PMID: 39889413 DOI: 10.1016/j.intimp.2025.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
In the present study, we developed and synthesized novel hydrangenol derivatives and featured their anti-inflammatory activities. Especially, a synthetic derivative 11 (compound 11), which possesses the 4H-1-benzopyran-4-one moiety, 5-hydroxyl group in A-ring, and 4'-hydroxyl group in B-ring, most dominantly downregulated nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. In addition, compound 11 suppressed the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) expression by inhibiting nuclear factor kappa-B (NF-κB), activator protein 1 (AP-1), and signal transducer and activator of transcription protein (STAT) pathways in LPS-provoked RAW264.7 macrophages. Additionally, we confirmed that compound 11 had better plasma stability than hydrangenol with a plasma-labile δ-valerolactone moiety. In carrageenan-induced rats, compound 11 potently reduced paw inflammation (as measured by paw volume, width, and thickness) by inhibiting the iNOS and COX-2 expression in paw tissue, thereby reducing inflammatory pain. All things considered, as compound 11 shows anti-inflammatory and antinociceptive properties, converting metabolically unstable hydrangenol into a stable compound 11 could be a promising strategy for developing new drugs.
Collapse
Affiliation(s)
- Hyung-Seok Yoo
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Young-Seo Yoon
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Jeong-Won Shin
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Se-In Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Seung Hwan Son
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341 Kangwon-do, Republic of Korea
| | - Yoon Hu Jang
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Yo-Sep Yang
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Soo-Yeon Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Ye-Rin Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Kyung-Tae Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447 Republic of Korea.
| | - Nam-Jung Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447 Republic of Korea.
| |
Collapse
|
32
|
Jin Y, Sun G, Chen B, Feng S, Tang M, Wang H, Zhang Y, Wang Y, An Y, Xiao Y, Liu Z, Liu P, Tian Z, Yin H, Zhang S, Luan X. Delivering miR-23b-3p by small extracellular vesicles to promote cell senescence and aberrant lipid metabolism. BMC Biol 2025; 23:41. [PMID: 39934790 PMCID: PMC11817603 DOI: 10.1186/s12915-025-02143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Aging is a natural process that affects the majority of organs within the organism. The liver, however, plays a pivotal role in maintaining the organism's homeostasis due to its robust regenerative and metabolic capabilities. Nevertheless, the liver also undergoes the effects of aging, which can result in a range of metabolic disorders. The function of extracellular vesicles and the signals they convey represent a significant area of interest within the field of ageing research. However, research on liver ageing from the perspective of EVs remains relatively limited. RESULTS In the present study, we extracted liver tissue small extracellular vesicles (sEVs) of mice at different ages and performed transcriptome and proteome analyses to investigate the senescence-associated secretory phenotype (SASP) and mechanisms. sEVs in the older group were rich in miR-23b-3p, which was abundant in the sEVs of induced aging cells and promoted cell senescence by targeting TNF alpha induced protein 3 (Tnfaip3). After injecting adeno-associated virus (AAV) expressing miR-23b-3p into mice, the liver of mice in the experimental group displayed a more evident inflammatory response than that in the control group. Additionally, we found elevated miR-23b-3p in blood-derived-sEVs from patients with familial hypercholesterolemia. CONCLUSIONS Our findings suggest that miR-23b-3p plays a pivotal role in liver aging and is associated with abnormal lipid metabolism. The upregulation of miR-23b-3p in liver EVs may serve as a potential biomarker for aging and metabolic disorders. Targeting miR-23b-3p could provide new therapeutic strategies for ameliorating age-related liver dysfunction and associated metabolic abnormalities.
Collapse
Affiliation(s)
- Ye Jin
- Rare Disease Medical Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
- Center for Digital Medicine and Artificial Intelligence, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Gaoge Sun
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Binxian Chen
- Rare Disease Medical Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Siqin Feng
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Muyun Tang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Hui Wang
- Department of Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Ying Zhang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuan Wang
- Echo Biotech Co., Ltd, Beijing, 102627, China
| | - Yang An
- GemPharmatech Co., Ltd, Nanjing, 210000, China
| | - Yu Xiao
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510260, China
| | - Zihan Liu
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Peng Liu
- Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Hang Yin
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Shuyang Zhang
- Rare Disease Medical Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| | - Xiaodong Luan
- Rare Disease Medical Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
- Center for Drug Research and Evaluation, National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
33
|
Zhang X, Liu S, Kong F, Shu L, Li Y, Wang D, Li L. Acidic polysaccharide from Ganoderma tsugae: Structural characterization and antiatherosclerotic related to macrophage polarization. Food Res Int 2025; 203:115913. [PMID: 40022418 DOI: 10.1016/j.foodres.2025.115913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 03/03/2025]
Abstract
Herein, a water-soluble Ganoderma tsugae acidic polysaccharide (GTP-2) was isolated and purified from the fruiting bodies of G. tsugae. GTP-2 has a molecular weight of 13.059 kDa, composed of →3)-β-d-Glcp-(1 → 3)-β-d-Glcp-(1 → 4)-GlcpUA-(1 → 4)-β-d-Glcp-1→ glucan backbone and branches ending with β-d-Glcp-(1 → 6)-β-d-Glcp-(1→, which is attached at C6 of →3,6)-β-d-Glcp-(1→. Subsequently, the antiatherosclerotic activity of GTP-2 was examined in apolipoprotein E deficient (ApoE-/-) mice fed with high-fat diet, and its potential mechanism of action was investigated. GTP-2 ameliorated blood lipid levels (total cholesterol, triglycerides, and low-density lipoprotein), while improving the serum levels of high-density lipoprotein. Furthermore, GTP-2 alleviated the atherosclerotic lesions and reduced levels of inflammatory cytokines. Analysis of the gut microbiota revealed that GTP-2 enhanced the abundance of beneficial bacteria (Lactobacillu and Akkermansia). The serum metabolite composition was further altered, with a significant reduction in octadecanoic acid level. GTP-2 regulated the nuclear factor kappa-B signaling pathway by inhibiting macrophage polarization to M1 phenotype. Collectively, these findings support the potential use of GTP-2 as an antiatherosclerotic therapy.
Collapse
Affiliation(s)
- Xin Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866 China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118 China.
| | - Shuai Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118 China; College of Plant Protection, Jilin Agricultural University, Changchun 130118 China.
| | - Fange Kong
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118 China; College of Plant Protection, Jilin Agricultural University, Changchun 130118 China.
| | - Lili Shu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866 China.
| | - Yu Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866 China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118 China.
| | - Di Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118 China; College of Plant Protection, Jilin Agricultural University, Changchun 130118 China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118 China; College of Plant Protection, Jilin Agricultural University, Changchun 130118 China.
| |
Collapse
|
34
|
Langlois A, Cherfan J, Meugnier E, Rida A, Arous C, Peronet C, Hamdard H, Zarrouki B, Wehrle‐Haller B, Pinget M, Craige SM, Bouzakri K. DECORIN, a triceps-derived myokine, protects sorted β-cells and human islets against chronic inflammation associated with type 2 diabetes. Acta Physiol (Oxf) 2025; 241:e14267. [PMID: 39844653 PMCID: PMC11754997 DOI: 10.1111/apha.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/28/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025]
Abstract
AIM Pancreatic β-cells are susceptible to inflammation, leading to decreased insulin production/secretion and cell death. Previously, we have identified a novel triceps-derived myokine, DECORIN, which plays a pivotal role in skeletal muscle-to-pancreas interorgan communication. However, whether DECORIN can directly impact β-cell function and susceptibility to inflammation remains unexplored. METHODS The effect of DECORIN was assessed in sorted human and rat β-cell and human islets from healthy and type 2 diabetes (T2D) donors. We assessed glucose-stimulated insulin secretion (GSIS) and cytokine-mediated cell death. We then challenged sorted β-cells and human islets with inflammatory cytokines commonly associated with diabetes, such as tumor necrosis factor-α (TNF-α) alone or in combination with interleukin1-β (IL1-β) and interferon-γ (cytomix). RESULTS DECORIN enhanced cell spreading and the localization of phosphorylated FAK at adhesions, promoting GSIS under basal conditions. It also increased insulin granule docking adhesion length and countered the inhibitory effects of TNF-α on adhesion and actin remodeling at the β-cell surface, resulting in preserved GSIS. DECORIN protected from cell death in sorted β-cells and islets challenged with TNF-α alone or TNF-α + cytomix. Interestingly, DECORIN increased both insulin content and secretion in human islets from T2D individuals. Additionally, DECORIN treatment reversed the impaired gene expression caused by T2D and enhanced the expression of genes essential for islet function and metabolism. CONCLUSION Collectively, we have shown that DECORIN had a beneficial effect on human islets, protecting them from inflammation-induced cell death. In T2D islets, DECORIN restores islet function and reverses the expression of T2D-associated genes. Based on our data, we propose that DECORIN is a promising therapeutic target for diabetes-associated inflammation and diabetes itself.
Collapse
Affiliation(s)
- Allan Langlois
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
| | - Julien Cherfan
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
| | - Emmanuelle Meugnier
- CarMeN Laboratory, Inserm U1060, INRAE UMR1397, Univ‐LyonUniversité Claude Bernard Lyon‐1LyonFrance
| | - Ahmad Rida
- ILONOV, Boulevard René LericheStrasbourgFrance
| | - Caroline Arous
- Department of Cell Physiology and Metabolism, Centre Médical UniversitaireUniversity of GenevaGenevaSwitzerland
| | - Claude Peronet
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
| | - Harzo Hamdard
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
| | - Bader Zarrouki
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolic (CVRM), BioPharmaceuticals R&DGothenburgSweden
| | - Bernhard Wehrle‐Haller
- Department of Cell Physiology and Metabolism, Centre Médical UniversitaireUniversity of GenevaGenevaSwitzerland
| | - Michel Pinget
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
- ILONOV, Boulevard René LericheStrasbourgFrance
| | - Siobhan M. Craige
- Department of Human Nutrition, Foods, and ExerciseVirginia TechBlacksburgVirginiaUSA
| | - Karim Bouzakri
- UR Diabète et Thérapeutiques, Centre européen d'étude du DiabèteUniversité de StrasbourgStrasbourgFrance
- ILONOV, Boulevard René LericheStrasbourgFrance
| |
Collapse
|
35
|
Musso G, Pinach S, Mariano F, Saba F, De Michieli F, Framarin L, Berrutti M, Paschetta E, Parente R, Lizet Castillo Y, Leone N, Castellino F, Cassader M, Gambino R. Effect of phospholipid curcumin Meriva on liver histology and kidney disease in nonalcoholic steatohepatitis: A randomized, double-blind, placebo-controlled trial. Hepatology 2025; 81:560-575. [PMID: 38809154 DOI: 10.1097/hep.0000000000000937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/14/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND AND AIMS NASH confers an increased liver-related and kidney morbidity. Phospholipid curcumin (Meriva) is a phospholipid formulation with ameliorated systemic curcumin absorption and delivery. We assessed the safety and efficacy of Meriva in NASH. APPROACH AND RESULTS In this double-blind trial, 52 patients with biopsy-proven NASH (71% with stage ≥F2 fibrosis, 58% with stage A2-G2/A2-G3a chronic kidney disease) were randomized 1:1 to receive Meriva 2 g/d or placebo for 72 weeks. The primary endpoint was NASH resolution with no worsening of fibrosis. The secondary endpoints included a ≥1 stage liver fibrosis improvement with no NASH worsening; regression of significant (ie, stage ≥F2) fibrosis and CKD; and improvement in renal, glucose, lipid, and inflammatory parameters. We also explored the treatment effect on hepatic activation of NF-kB, a key proinflammatory transcription factor and a major target of curcumin. Fifty-one patients (26 on Meriva and 25 on placebo) completed the trial. Sixteen (62%) patients on Meriva versus 3 (12%) patients on placebo had NASH resolution (RR = 5.33 [95% CI = 1.76-12.13]; p = 0.003). Thirteen (50%) patients on Meriva versus 2 (8%) patients on placebo had ≥1 stage fibrosis improvement (RR = 6.50 [1.63-21.20]; p = 0.008). Eleven (42%) patients on Meriva versus 0 (0%) on placebo had regression of significant liver fibrosis (RR = 18.01 [1.43-36.07]; p = 0.02). Hepatic NF-kB inhibition predicted NASH resolution (AUC = 0.90, 95% CI = 0.84-0.95) and fibrosis improvement (AUC = 0.89, 95% CI = 0.82-0.96). Thirteen (50%) patients on Meriva versus 0 (0%) on placebo had chronic kidney disease regression (RR = 10.71 [1.94-17.99)]; p = 0.004). Compared with placebo, Meriva improved eGFR (difference in adjusted eGFR change: +3.59 [2.96-4.11] mL/min/1.73 m 2 /y, p = 0.009), fasting glucose(-17 mg/dL; 95% CI = -22, -12), HbA1c (-0.62%; 95% CI = -0.87%, -0.37%), LDL-C (-39 mg/dL; 95% CI = -45, -33), triglycerides (-36 mg/dL, 95% CI = -46, -26), HDL-C (+10 mg/dL; 95% CI = +8, +11), and inflammatory markers. Adverse events were rare, mild, and evenly distributed. CONCLUSIONS In patients with NASH, Meriva administration for 72 weeks was safe, well-tolerated, and improved liver histology, possibly through NF-kB inhibition, kidney disease, and metabolic profile.
Collapse
Affiliation(s)
- Giovanni Musso
- MECAU Department, San Luigi Gonzaga Hospital, Orbassano, Turin, Italy
| | - Silvia Pinach
- Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Filippo Mariano
- Department of Nephrology, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Francesca Saba
- Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Franco De Michieli
- Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Luciana Framarin
- Gastroenterology Unit, HUMANITAS Gradenigo Hospital, Turin, Italy
| | - Mara Berrutti
- Gastroenterology Unit, HUMANITAS Gradenigo Hospital, Turin, Italy
| | - Elena Paschetta
- MECAU Department, HUMANITAS Gradenigo Hospital, Turin, Italy
| | - Renato Parente
- Pathology Unit, HUMANITAS Gradenigo Hospital, Turin, Italy
| | | | - Nicola Leone
- Gastroenterology Unit, HUMANITAS Gradenigo Hospital, Turin, Italy
| | | | - Maurizio Cassader
- Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| | - Roberto Gambino
- Department of Medical Sciences, Città della Salute e della Scienza Hospital, University of Turin, Turin, Italy
| |
Collapse
|
36
|
Mobeen A, Joshi S, Fatima F, Bhargav A, Arif Y, Faruq M, Ramachandran S. NF-κB signaling is the major inflammatory pathway for inducing insulin resistance. 3 Biotech 2025; 15:47. [PMID: 39845928 PMCID: PMC11747027 DOI: 10.1007/s13205-024-04202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Insulin resistance is major factor in the development of metabolic syndrome and type 2 diabetes (T2D). We extracted 430 genes from literature associated with both insulin resistance and inflammation. The highly significant pathways were Toll-like receptor signaling, PI3K-Akt signaling, cytokine-cytokine receptor interaction, pathways in cancer, TNF signaling, and NF-kappa B signaling. Among the 297 common genes in all datasets of various T2D patients' tissues including blood, muscle, liver, pancreas, and adipose tissues, 71% and 60% of these genes were differentially expressed in pancreas (GSE25724) and liver (GSE15653), respectively. A total of 169 genes contain highly conserved motifs for various transcription factors involved in immune response, thereby suggesting coordinated expression. Through co-expression analysis, we obtained three modules. The respective modules had 78, 158, and 55 genes, and TRAF2, HMGA1, and RGS5 as hub genes. Further, we used the BioNSi pathways simulation tool and identified the following five KEGG pathways perturbed in four or more tissues, namely Toll-like receptor signaling pathway, RIG-1-like receptor signaling pathway, pathways in cancer, NF-kappa B signaling pathway, and insulin resistance pathway. The genes NFKBIA and IKBKB are common to all these five pathways. In addition, using the NF-κB computational activation model, we identified that the reversal of NF-κB constitutive activation through overexpression of NFKB1 (P50 homodimer), PPARG, PIAS3 could reduce insulin resistance by almost half of its original value. To conclude, co-expression studies, gene expression network simulation, and NF-κB computational modeling substantiate the causal role of NF-κB pathway in insulin resistance. These results taken together with other published evidence suggests that the TNF-TRAF2-IKBKB-NF-κB axis could be explored as a potential target in combination with available metabolic targets in the management of insulin resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04202-4.
Collapse
Affiliation(s)
- Ahmed Mobeen
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
| | - Sweta Joshi
- Department of Food Technology, SIST, Jamia Hamdard, New Delhi, 110062 India
| | - Firdaus Fatima
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Anasuya Bhargav
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
| | - Yusra Arif
- Centre of Bioinformatics, Institute of Inter Disciplinary Studies, Allahabad University, Allahabad, Uttar Pradesh 211002 India
| | - Mohammed Faruq
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Srinivasan Ramachandran
- CSIR Institute of Genomics & Integrative Biology, Sukhdev Vihar, New Delhi, 110025 India
- Manav Rachna International Institute of Research and Studies, Sector 43, Delhi–Surajkund Road, Faridabad, Haryana 121004 India
| |
Collapse
|
37
|
Choudhary R, Kumar P, Shukla SK, Bhagat A, Anal JMH, Kour G, Ahmed Z. Synthesis and potential anti-inflammatory response of indole and amide derivatives of ursolic acid in LPS-induced RAW 264.7 cells and systemic inflammation mice model: Insights into iNOS, COX2 and NF-κB. Bioorg Chem 2025; 155:108091. [PMID: 39755101 DOI: 10.1016/j.bioorg.2024.108091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
Ursolic acid (3-hydroxy-urs-12-ene-28-oic acid, UA) is a pentacyclic triterpene present in numerous plants, fruits and herbs and exhibits various pharmacological effects. However, UA has limited clinical applicability since it is classified as BCS class IV molecule, characterized by low solubility, low oral bioavailability and low permeability. In the present study, UA was isolated from the biomass marc of Lavandula angustifolia and was structurally modified by an induction of indole ring at the C-3 position and amide group at the C-17 position with the aim to enhance its pharmacological potential. This modification resulted in the synthesis of a series of compounds which were investigated for their anti-inflammatory potential both in-vitro and in animal models in comparison to UA. In RAW 264.7 cells, UA and its derivatives were non-cytotoxic up to 10 µM. The derivative UA-1 exhibited a significantly lower IC50 (2.2 ± 0.4 µM) for NO inhibition compared to UA (17.5 ± 2.0 µM). Molecular docking showed strong interactions of UA-1 with TNF-α and NF-κB. UA-1 significantly reduced LPS-induced pro-inflammatory cytokines (TNF-α, IL-6, IL-1β) in RAW 264.7 macrophages with the inhibition levels of 74.2 ± 2.1 % for TNF-α, 55.9 ± 3.7 % for IL-6 and 59.7 ± 4.2 % for IL-1β at 5.0 µM, respectively and reactive oxygen species while upregulating anti-inflammatory cytokine, IL-10. It also downregulated iNOS, COX-2, p-NF-κB p65, and p-IκBα at both mRNA and protein levels. In LPS-induced systemic inflammation mice model, UA-1 significantly lowered NO, TNF-α, IL-6, IL-1β and serum biochemical parameters, reduced tissue damage, and exhibited improved aqueous solubility and moderate lipophilicity. Overall, UA-1 demonstrated superior anti-inflammatory potential, improved solubility, and better therapeutic potential compared to UA.
Collapse
Affiliation(s)
- Rupali Choudhary
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puneet Kumar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sanket K Shukla
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Asha Bhagat
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Jasha Momo H Anal
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Gurleen Kour
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - Zabeer Ahmed
- Pharmacology Division, CSIR- Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
38
|
Chen X, Wang W, Zhang H, Liang N, Chen D, Li J, Ding W, He Z, Yuan Y, Chu C, Yang Z, Zhao H, Liu Z. Plant-derived natural compounds for the treatment of acute lung injury: A systematic review of their anti-inflammatory effects in animal models. Int Immunopharmacol 2025; 146:113807. [PMID: 39681064 DOI: 10.1016/j.intimp.2024.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
BACKGROUNDS AND AIMS Acute lung injury (ALI) is a complex pulmonary disease characterized by a severe inflammatory response. The management of ALI presents a formidable challenge due to the intricate nature of its inflammatory cascade. Numerous studies have highlighted the potential therapeutic benefits of plant-derived natural compounds (PNCs) in treating inflammatory diseases. Our study aims to provide robust current evidence regarding the anti-inflammatory effects and underlying molecular mechanisms of PNCs for ALI treatment. MATERIALS AND METHODS The systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the protocol was registered in PROSPERO (CRD42024468401). A comprehensive search was conducted in electronic databases including PubMed, Scopus, Web of Science, Embase, China National Knowledge Infrastructure (CNKI), Chinese Scientific Journal database (VIP), Wanfang database, and China biomedical literature service system (SinoMed) up until November 2023. Preclinical studies published in both English and Chinese were included. RESULTS Our research encompassed 81 studies, comprising a total of 71 PNCs, including flavonoids, phenylpropanoids, terpenoids, polyphenols, alkaloids, saponins, glycosides, and miscellaneous compounds. This systematic review demonstrated that PNCs played a beneficial role on ALI by regulating the immune response and reducing the release of inflammatory mediators and cytokines. The molecular mechanisms were partially associated with the regulation of Th17/Treg responses, promotion of the polarization of M1-type macrophages to M2-type macrophages, induction of immune cell apoptosis, reversal of microbial dysbiosis in the lungs and the gut, epigenetic modification, and the modulation of inflammatory pathways, including NF-κB, MAPK, TLR4/MyD88, NLRP3/Caspase-1, TGF-β/Smad, Nrf2/HO-1, Rho/ROCK, TLR7/MyD88, and PI3K/AKT, thereby alleviating inflammatory responses and lung damage. CONCLUSION The therapeutic effects of PNCs on ALI are mediated through the modulation of immunity and inflammatory pathways. In light of their potential, PNCs represent a promising pharmacological intervention for the treatment of ALI.
Collapse
Affiliation(s)
- Xiangyun Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenlai Wang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongrui Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Ning Liang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Danni Chen
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiawang Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Ding
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhanzhan He
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yulu Yuan
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ce Chu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhen Yang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Hongxia Zhao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Zhenhong Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
39
|
Li YZ, Wang C, Peng X, Wang B, Wang JS, Xie HT, Zhang MC. Caffeine's protective role in dry eye disease and meibomian gland dysfunction: insights from clinical and experimental models. Int Immunopharmacol 2025; 146:113863. [PMID: 39709912 DOI: 10.1016/j.intimp.2024.113863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/30/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
PURPOSE Inflammation and apoptosis contribute to the development of dry eye disease (DED) and meibomian gland dysfunction (MGD). This study aimed to investigate the effect of caffeine on the ocular surface and tear inflammatory cytokines through clinical, in vivo, and in vitro experiments. METHODS In the clinical study, comprehensive ophthalmic examinations of participants in the control and the caffeine groups were compared, including ocular surface and tears inflammatory cytokines. For in vitro study, rat meibomian gland epithelial cells (RMGECs) and human corneal epithelial cells (HCECs) were pretreated with or without caffeine and then stimulated with lipopolysaccharide (LPS). Inflammatory responses, apoptosis, and differentiation in cells were analyzed. In vivo study, apolipoprotein E knockout (ApoE-/-) mice were given caffeine-diet or no caffeine-diet, and their meibomian glands (MGs) and corneal tissue were compared. RESULTS Participants in the caffeine group exhibited significantly healthier ocular surface, lower tears inflammatory cytokines and a reduced prevalence of DED compared to the control group. In vitro study, caffeine pretreatment attenuated inflammatory responses, apoptosis and differentiation in LPS-induced RMGECs. Meanwhile, caffeine also markedly suppressed inflammatory responses and apoptosis in LPS-induced HCECs. In vivo study showed that ApoE-/- mice with caffeine-diet had more normal morphology of MGs and corneas compared to those without caffeine-diet, along with reduced inflammatory responses, cells apoptosis and ductal keratinization. Both in vitro and in vivo studies indicated that caffeine treatment was observed to inactivate of nuclear factor kappa B (NF-κB) phosphorylation. CONCLUSIONS Our study indicated that caffeine may be a protective potential of ocular surface, providing a new perspective on clinical treatment for DED and MGD.
Collapse
Affiliation(s)
- Yu-Zhi Li
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Peng
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bei Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Song Wang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Tao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming-Chang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
40
|
Durmus S, Sahin S, Adrovic A, Barut K, Gelisgen R, Uzun H, Kasapcopur O. Interplay of NF-κB and PPAR-γ transcription factors in patients with juvenile systemic lupus erythematosus. Lupus Sci Med 2025; 12:e001263. [PMID: 39779243 PMCID: PMC11751921 DOI: 10.1136/lupus-2024-001263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE Juvenile SLE (jSLE) is an autoimmune disease characterised by the presence of high levels of autoantibodies, predominantly targeting nuclear antigens, resulting in a breakdown of self-tolerance. However, its pathogenesis is multifactorial and poorly understood. The aim of this study was to evaluate the potential of nuclear factor-kappa B (NF-κB) and peroxisome proliferator-activated receptor-gamma (PPAR-γ) as biomarkers for jSLE. METHODS In this study, serum NF-κB and PPAR-γ levels were determined by immunoassay in 42 patients with jSLE. In addition, 19 juvenile systemic sclerosis (jSSc) and 25 age-matched healthy children were selected as patient control and healthy control, respectively. RESULTS Serum NF-κB levels in patients with jSLE demonstrated a positive trend towards elevation compared with the controls with no significant difference (p=0.030). In addition, serum NF-κB levels in patients with jSSc were significantly higher than that of the healthy controls (p=0.005). Serum PPAR-γ levels were tend to be lower in both patients with jSLE and jSSc compared with the controls, with no significant difference. Specifically, NF-κB levels were significantly higher in patients with jSLE with cumulative damage (PedSDI≥1) compared with those without, at p=0.044. Logistic regression showed that PPAR-γ levels lower than 2.42 ng/mL were associated with the development of jSLE (OR 7.59) and lower than 2.16 ng/mL for jSSc (OR 10.90). The combined high levels of NF-κB with low PPAR-γ increased the risk of developing jSSc by 21.33-fold. CONCLUSIONS The observed trend of elevated NF-κB levels and decreased PPAR-γ levels in our study suggests their potential as biomarkers associated with increased proinflammatory signalling in jSLE and jSSc. However, our findings must be regarded as hypothesis-generating and confirmed in larger datasets. Moreover, their roles in monitoring the course of a disease and guiding therapeutic strategies in juvenile systemic autoimmune diseases need to be clearly investigated. Further extension of these findings may lead to better management and improvement in the outcomes of such patients.
Collapse
Affiliation(s)
- Sinem Durmus
- Department of Medical Biochemistry, İzmir Katip Çelebi University Faculty of Medicine, Izmir, Türkiye
| | - Sezgin Sahin
- Department of Child Health and Diseases, Istanbul University-Cerrahpasa Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Amra Adrovic
- Department of Child Health and Diseases, Istanbul University-Cerrahpasa Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Kenan Barut
- Department of Child Health and Diseases, Istanbul University-Cerrahpasa Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Remise Gelisgen
- Department of Medical Biochemistry, Istanbul University-Cerrahpasa Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| | - Hafize Uzun
- Department of Medical Biochemistry, Istanbul Atlas University Faculty of Medicine, Istanbul, Türkiye
| | - Ozgur Kasapcopur
- Department of Child Health and Diseases, Istanbul University-Cerrahpasa Cerrahpasa Faculty of Medicine, Istanbul, Türkiye
| |
Collapse
|
41
|
Mahankali VB, Velraja S, Parvathi VD, Ramasamy S. Key Players in the Complex Pathophysiology of Obesity: A Cross-Talk Between the Obesogenic Genes and Unraveling the Metabolic Pathway of Action of Capsaicin and Orange Peel. Appl Biochem Biotechnol 2025; 197:649-666. [PMID: 39102081 DOI: 10.1007/s12010-024-04999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Obesity is a widespread prevailing health concern with multifactorial causes. Among the various defined molecular targets associated with obesity, peroxisome proliferator activated receptor gamma, leptin, ghrelin, and adiponectin play crucial roles in fundamental processes including energy balance, adipose tissue biology, and metabolic health, making them particularly significant in the study of obesity.Capsaicin and orange peel exhibit promising anti-obesity properties through their thermogenic, metabolic, and anti-inflammatory effects. Potential pathways for therapeutic approaches in the management of obesity are provided by these targets. The lipid-lowering and anti-obesity benefits of specific plant species have been highlighted in Asian medicine. Due to the potential anti-obesity qualities, capsaicin, which is derived from chilli peppers, and orange peel extract has been focused in this review. Capsaicin causes apoptosis in preadipocytes and adipocytes and suppresses adipogenesis. Citrus fruits are a significant source of bioactive substances, primarily flavonoids. Due to their ability to reduce adipocyte development and cellular lipid content, citrus polyphenols are helpful in the control of obesity. This extensive analysis offers insights into new treatment approaches for the prevention and management of obesity and metabolic syndrome by examining the interactions of molecular variables in obesity as well as the possible anti-obesity advantages of capsaicin and orange peel extract.
Collapse
Affiliation(s)
- Varshini Bhavanandam Mahankali
- Department of Clinical Nutrition, Sri Ramachandra Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, India
| | - Supriya Velraja
- Department of Clinical Nutrition, Sri Ramachandra Faculty of Allied Health Sciences, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, India.
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, India.
| | | |
Collapse
|
42
|
Wang PH, Wang Y, Guo YY, Ma ZH, Wu C, Xing L. Ibuprofen modulates macrophage polarization by downregulating poly (ADP-ribose) polymerase 1. Int Immunopharmacol 2024; 143:113502. [PMID: 39488918 DOI: 10.1016/j.intimp.2024.113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Ibuprofen, a non-steroidal drug, is well known for its anti-inflammatory activity. The effects of ibuprofen on the polarization of macrophages are still not clear. Herein, we used THP-1 monocyte-derived macrophages to find that ibuprofen has inhibitory effects on the polarization of both classically activated M1 macrophages and alternatively activated M2 macrophages by downregulating NF-κB and JAK/STAT signaling pathways. During M1 or M2 polarization, ibuprofen also downregulated the expression of poly (ADP-ribose) polymerase 1 (PARP1). Furthermore, knockdown of PARP1 by either small interfering RNA or PARP1 inhibitor PJ34 can exert inhibitory effects on the polarization of M1 and M2, and alter the immune response of macrophages to the infection of Mycobacterium tuberculosis H37Ra. The results demonstrate that PARP1 plays a regulatory role in the ibuprofen-modulated polarization of macrophage, revealing the interplay between the DNA repair response process and macrophage polarization.
Collapse
Affiliation(s)
- Pei-Hua Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China
| | - Yan Wang
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China
| | - Yan-Yan Guo
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China
| | - Zi-Hui Ma
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China; Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi Province, China; Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, 92 Wucheng Road, Taiyuan 030006, China.
| |
Collapse
|
43
|
Salami AT, Orji JC, Akpamu U, Iyiola TO, Olaleye SB. Attenuation of Experimental Cholesterol Gallstone Formation by Manganese Chloride in Mice: Role of NF-κβ Pathways. Biol Trace Elem Res 2024:10.1007/s12011-024-04467-z. [PMID: 39715976 DOI: 10.1007/s12011-024-04467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/24/2024] [Indexed: 12/25/2024]
Abstract
Manganese (Mn), a trace element, has been documented to exert an important role in the metabolism of cholesterol. Cholesterol gallstone (CG) pathogenesis is directly linked to biliary cholesterol imbalance which could be due to diabetes complications or mismanagement. NF-κβ pathway, an inflammatory regulator, has been implicated in metabolic disease especially in the context of diabetes and gallstone formation. However, the management of cholesterol gallstones due to diabetes with trace elements is vague. This study investigates the probable role of manganese during CG formation due to diabetes complications. Eighty female Swiss mice were grouped: I (control), II (untreated CG), III and IV (normal mice treated 0.37 mg/kg and 0.74 mg/kg Mn, respectively), V and VI (CG treated 0.37 mg/kg and 0.74 mg/kg Mn, respectively), and VII and VIII (CG treated 75 mg/7 kg and 350 mg/kg aspirin, respectively). Experimental CG was induced with cholesterol-rich diets after alloxan-induced diabetes. On sacrifice, blood collected was evaluated for complete hematological analysis and biochemistry while the excised liver was assayed for biochemical variables. Results were subjected to one-way ANOVA values were expressed as Mean ± SEM and significant at p ≤ 0.05. Manganese treatment significantly increased packed cell volume, RBC count, and hemoglobin with decreased platelet and leukocyte counts, liver enzymes (AST, ALT, and ALP), BUN, and creatinine levels in CG groups compared with untreated CG. Blood glucose, plasma low-density lipoproteins, and liver malodialdehyde levels were significantly reduced while liver nitric-oxide, sulfhydryl, and glutathione levels increased significantly in manganese-treated groups compared with untreated CG. Manganese significantly increased fecal iron contents in normal mice by the 2nd week. Hepatocytes and gallbladder histology appear normal in manganese-treated groups. Liver NF-Kβ immunoreactivity was downregulated in manganese-treated CG groups. Manganese attenuated experimental hyperglycemia-induced cholesterol gallstone by ameliorating liver oxidative stress and NF-Kβ inflammatory pathway.
Collapse
Affiliation(s)
| | - J C Orji
- University of Ibadan, Ibadan, Nigeria
| | - U Akpamu
- Federal University Oye-Ekiti, Oye, Nigeria
| | | | | |
Collapse
|
44
|
Anand S, Patel TN. Integrating the metabolic and molecular circuits in diabetes, obesity and cancer: a comprehensive review. Discov Oncol 2024; 15:779. [PMID: 39692821 DOI: 10.1007/s12672-024-01662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
The progressive globalization of sedentary lifestyles and diets rich in lipids and processed foods has caused two major public health hazards-diabetes and obesity. The strong interlink between obesity and type 2 diabetes mellitus and their combined burden encompass them into a single term 'Diabesity'. They have also been tagged as the drivers for the onset of cancer. The clinical association between diabetes, obesity, and several types of human cancer demands an assessment of vital junctions correlating the three. This review focuses on revisiting the molecular axis linking diabetes and obesity to cancer through pathways that get imbalanced owing to metabolic upheaval. We also attempt to describe the functional disruptions of DNA repair mechanisms due to overwhelming oxidative DNA damage caused by diabesity. Genomic instability, a known cancer hallmark results when DNA repair does not work optimally, and as will be inferred from this review the obtruded metabolic homeostasis in diabetes and obesity creates a favorable microenvironment supporting metabolic reprogramming and enabling malignancies. Altered molecular and hormonal landscapes in these two morbidities provide a novel connection between metabolomics and oncogenesis. Understanding various aspects of the tumorigenic process in diabesity-induced cancers might help in the discovery of new biomarkers and prompt targeted therapeutic interventions.
Collapse
Affiliation(s)
- Shrikirti Anand
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Trupti N Patel
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
45
|
Barak TH, Kurt-Celep İ, Celep E. Bioaccessibility and Functional Food Potential of Equisetum telmateia Ehrh. Against Diabetes-Induced Kidney Disorders. Foods 2024; 13:4092. [PMID: 39767034 PMCID: PMC11675131 DOI: 10.3390/foods13244092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/16/2024] [Accepted: 11/19/2024] [Indexed: 01/11/2025] Open
Abstract
Various species from the genus Equisetum are recorded as food and folk medicine against both kidney complications and diabetes. Equisetum telmateia Ehrh. is documented as a folk remedy in Türkiye against several kidney disorders. This study was designed to evaluate the possible protective mechanisms of E. telmateia EtOH extract (ETE) against kidney disorders and diabetes through different routes, such as the prevention of ROS formation, inhibitory potential against various DM-related enzymes, and a reduction in the amount of the mediators leading to disorders in both systems at the cellular level. The objective was to achieve advanced precision for in vitro results while considering the effect of GIS on oral consumption. Both phytochemical and bioactivity studies were conducted before and after simulated digestion. The results showed that ETE is a rich source of flavonoids and phenolic acids. In addition, it has significant antioxidant and enzyme inhibitory potential. Treatment also yielded promising results at the cellular level for both antioxidative and inhibitor proteins, which may play a role in the pathogenesis of kidney disorders and diabetes. Following the in vitro digestion procedure, both the number of phytochemical ingredients and bioactivity parameters showed a considerable decreasing trend; however, the results are still significant enough to justify the traditional utilization of the genus Equisetum. This investigation demonstrated that ETE has noteworthy potential as a functional food for protection against diabetic kidney disease.
Collapse
Affiliation(s)
- Timur Hakan Barak
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, Ataşehir, İstanbul 34752, Türkiye;
| | - İnci Kurt-Celep
- Department of Biotechnology, Faculty of Pharmacy, İstanbul Okan University, Tuzla, İstanbul 34940, Türkiye;
| | - Engin Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Acibadem Mehmet Ali Aydınlar University, Ataşehir, İstanbul 34752, Türkiye;
| |
Collapse
|
46
|
Palma-Jacinto JA, López-López E, Medina-Franco JL, Montero-Ruíz O, Santiago-Roque I. Putative mechanism of a multivitamin treatment against insulin resistance. Adipocyte 2024; 13:2369777. [PMID: 38937879 PMCID: PMC11216102 DOI: 10.1080/21623945.2024.2369777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/12/2024] [Indexed: 06/29/2024] Open
Abstract
Insulin resistance is caused by the abnormal secretion of proinflammatory cytokines in adipose tissue, which is induced by an increase in lipid accumulation in adipocytes, hepatocytes, and myocytes. The inflammatory pathway involves multiple targets such as nuclear factor kappa B, inhibitor of nuclear factor κ-B kinase, and mitogen-activated protein kinase. Vitamins are micronutrients with anti-inflammatory activities that have unclear mechanisms. The present study aimed to describe the putative mechanisms of vitamins involved in the inflammatory pathway of insulin resistance. The strategy to achieve this goal was to integrate data mining and analysis, target prediction, and molecular docking simulation calculations to support our hypotheses. Our results suggest that the multitarget activity of vitamins A, B1, B2, B3, B5, B6, B7, B12, C, D3, and E inhibits nuclear factor kappa B and mitogen-activated protein kinase, in addition to vitamins A and B12 against inhibitor of nuclear factor κ-B kinase. The findings of this study highlight the pharmacological potential of using an anti-inflammatory and multitarget treatment based on vitamins and open new perspectives to evaluate the inhibitory activity of vitamins against nuclear factor kappa B, mitogen-activated protein kinase, and inhibitor of nuclear factor κ-B kinase in an insulin-resistant context.
Collapse
Affiliation(s)
- José Antonio Palma-Jacinto
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Department of Chemistry and Graduate Program in Pharmacology, Center for Research, Advanced Studies of the National Polytechnic Institute, Mexico City, Mexico
| | - José Luis Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Oreth Montero-Ruíz
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| | - Isela Santiago-Roque
- Laboratory of Biochemistry and Neurotoxicology, Faculty of Bioanalysis-Xalapa, Universidad Veracruzana, Médicos y Odontólogos S/N Unidad del Bosque, Xalapa, Mexico
| |
Collapse
|
47
|
Steffen TL, Stafford JD, Samson WK, Yosten GLC. Nesfatin-1 is a regulator of inflammation with implications during obesity and metabolic syndrome. Appetite 2024; 203:107669. [PMID: 39251090 DOI: 10.1016/j.appet.2024.107669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/19/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Nesfatin-1, derived from the nucleobindin 2 (NUCB2) precursor, is a potent anorexigenic peptide that was discovered in 2006. Since its identification in the hypothalamus, it has been shown to have wide ranging actions within and outside of the central nervous system. One of these actions is the regulation of inflammation, which could potentially be exploited therapeutically in the context of obesity-associated inflammation in adipose tissue. Here, we review recent advances in our knowledge about the ability of nesfatin-1 to control inflammation by regulating NFκB signaling, which likely attenuates pro-inflammatory cytokine production and inhibits apoptosis.
Collapse
Affiliation(s)
- Tara L Steffen
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA.
| | - Joshua D Stafford
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| | - Willis K Samson
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| | - Gina L C Yosten
- Saint Louis University School of Medicine, Department of Pharmacology and Physiology, St. Louis, MO, USA
| |
Collapse
|
48
|
Li C, Xu W, Li L, Zhou Y, Yao G, Chen G, Xu L, Yang N, Yan Z, Zhu C, Fang S, Qiao Y, Bai J, Li M. Concrete-Inspired Bionic Bone Glue Repairs Osteoporotic Bone Defects by Gluing and Remodeling Aging Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408044. [PMID: 39455287 PMCID: PMC11672322 DOI: 10.1002/advs.202408044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/15/2024] [Indexed: 10/28/2024]
Abstract
Osteoporotic fractures are characterized by abnormal inflammation, deterioration of the bone microenvironment, weakened mechanical properties, and difficulties in osteogenic differentiation. The chronic inflammatory state characterized by aging macrophages leads to delayed or non-healing of the fracture or even the formation of bone defects. The current bottleneck in clinical treatment is to achieve strong fixation of the comminuted bone fragments and effective regulation of the complex microenvironment of aging macrophages. Inspired by cement and gravel in concrete infrastructure, a biomimetic bone glue with poly(lactic-co-glycolic acid) microspheres is developed and levodopa/oxidized chitosan hydrogel stabilized on an organic-inorganic framework of nanohydroxyapatite, named DOPM. DOPM is characterized via morphological and mechanical characterization techniques, in vitro experiments with bone marrow mesenchymal stromal cells, and in vivo experiments with an aged SD rat model exhibiting osteoporotic bone defects. DOPM exhibited excellent adhesion properties, good biocompatibility, and significant osteogenic differentiation. Transcriptomic analysis revealed that DOPM improved the inflammatory microenvironment by inhibiting the NF-κB signaling pathway and promoting aging macrophage polarization toward M2 macrophages, thus significantly accelerating bone defect repair and regeneration. This biomimetic bone glue, which enhances osteointegration and reestablishes the homeostasis of aging macrophages, has potential applications in the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Chong Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
- Department of OrthopedicsAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiAnhui230022China
| | - Wei Xu
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Lei Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Yonghui Zhou
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Gang Yao
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Guang Chen
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Lei Xu
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Ning Yang
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Zhanjun Yan
- Department of OrthopedicsThe Ninth People's Hospital of SuzhouSuzhouJiangsu215006China
| | - Chen Zhu
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Shiyuan Fang
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
- Department of OrthopedicsAnhui Provincial Hospital Affiliated to Anhui Medical UniversityHefeiAnhui230022China
| | - Yusen Qiao
- Department of OrthopedicsThe First Affiliated Hospital of Soochow University188 Shizi RoadSuzhouJiangsu215006China
| | - Jiaxiang Bai
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| | - Meng Li
- Department of OrthopedicsCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230022China
| |
Collapse
|
49
|
Mzimela NC, Sosibo AM, Ngubane PS, Khathi A. Investigation into changes in inflammatory and immune cell markers in pre-diabetic patients from Durban, South Africa. J Immunotoxicol 2024; 21:2290282. [PMID: 38099331 DOI: 10.1080/1547691x.2023.2290282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
The prevalence of pre-diabetes is increasing in rapidly urbanizing cities, especially in individuals aged 25 - 45 years old. Studies also indicate that this condition is associated with aberrant immune responses that are also influenced by environmental factors. This study sought to investigate changes in the concentration of immune cells and select inflammatory markers in patients with pre-diabetes in Durban, South Africa. Blood samples collected from King Edward Hospital, after obtaining ethics approval, were divided into non-diabetic (ND), pre-diabetic (PD) and type 2 diabetic (T2D) using ADA criteria. In each sample, the concentration of immune cells and select inflammatory markers were determined. The results showed a significant increase in eosinophil and basophil levels in the PD group as compared to the ND group. Compared to ND, the PD and T2D groups had significant increases in serum TNFα, CD40L and fibrinogen concentrations. Additionally, there were decreases in serum CRP, IL-6, and P-selectin in the PD group while these markers increased in the T2D group. These findings were indicative of immune activation and highlight the impact of pre-diabetes in this population. More studies are recommended with a higher number of samples that are stratified by gender and represent the gender ratio in the city.
Collapse
Affiliation(s)
- Nomusa Christina Mzimela
- School of Laboratory Medicine and Medical Science, College of Health Sciences
- Department of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Andile Khathi
- School of Laboratory Medicine and Medical Science, College of Health Sciences
| |
Collapse
|
50
|
Nguyen PA, Won JS, Cho MK. Acer tegmentosum Maxim and Bacillus subtilis-fermented products inhibit TNF-α-induced endothelial inflammation and vascular dysfunction of the retina: the role of tyrosol moiety in active compounds targeting Glu 230 in SIRT1. Front Pharmacol 2024; 15:1392179. [PMID: 39635433 PMCID: PMC11614635 DOI: 10.3389/fphar.2024.1392179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Acer tegmentosum Maxim (AT) is a medicinal plant used to treat hepatic, neurological diseases, and cancer. However, the beneficial effects of AT on endothelial dysfunction have not been reported yet. In this study, we evaluated the effects of AT and the main compounds against TNF-α-mediated inflammatory responses and their possible mechanism of action. The anti-inflammatory effect and its molecular mechanism were analyzed by adhesion assay, immunoblotting, promoter-luciferase assay, ELISA, RT-PCR, immunocytochemistry, immunoprecipitation, siRNA gene knockdown, docking, and molecular dynamics simulation. AT and its compounds salidroside and tyrosol reduced TNF-α-induced adhesion between monocytes and endothelial cells. Fermentation of AT with Bacillus subtilis converted salidroside to tyrosol, which is salidroside's aglycone. The fermented AT product (ATF) potently inhibited TNF-α-mediated monocyte adhesion with higher potency than AT. AT or ATF abrogated TNF-α-induced expression of adhesion molecules (VCAM-1 and ICAM-1) and production of MCP-1 with the inhibition of phosphorylated MAP kinases. TNF-α-mediated NF-κB transactivation and RelA/p65 acetylation were suppressed by AT and ATF through the interaction of NF-κB with sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase. Sirt1 gene knockdown diminished the protective effects of AT and ATF against TNF-α-mediated signaling and inflammatory response. Interestingly, SIRT1 protein expression was significantly increased by ATF and tyrosol rather than by AT and salidroside, respectively. Molecular docking showed that the tyrosol moiety is critical for the interaction with Glu230 of SIRT1 (PDB ID: 4ZZH and 4ZZJ) for the deacetylase activity. Molecular dynamics revealed that tyrosol can induce the movement of the N-terminal domain toward the catalytic domain of SIRT1. This study demonstrates the potential of AT and ATF to prevent endothelial inflammation and vascular dysfunction of the retina by the MAPK/NF-κB/SIRT1 signaling pathways and targeting of the tyrosol moiety to Glu230 in SIRT1.
Collapse
Affiliation(s)
| | | | - Min Kyung Cho
- Department of Pharmacology, College of Oriental Medicine, Dongguk University, Gyeongju, Republic of Korea
| |
Collapse
|