1
|
Rizo-Roca D, Henderson JD, Zierath JR. Metabolomics in cardiometabolic diseases: Key biomarkers and therapeutic implications for insulin resistance and diabetes. J Intern Med 2025; 297:584-607. [PMID: 40289598 DOI: 10.1111/joim.20090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Cardiometabolic diseases-including Type 2 diabetes and obesity-remain leading causes of global mortality. Recent advancements in metabolomics have facilitated the identification of metabolites that are integral to the development of insulin resistance, a characteristic feature of cardiometabolic disease. Key metabolites, such as branched-chain amino acids (BCAAs), ceramides, glycine, and glutamine, have emerged as valuable biomarkers for early diagnosis, risk stratification, and potential therapeutic targets. Elevated BCAAs and ceramides are strongly associated with insulin resistance and Type 2 diabetes, whereas glycine exhibits an inverse relationship with insulin resistance, making it a promising therapeutic target. Metabolites involved in energy stress, including ketone bodies, lactate, and nicotinamide adenine dinucleotide (NAD⁺), regulate insulin sensitivity and metabolic health, with ketogenic diets and NAD⁺ precursor supplementation showing potential benefits. Additionally, the novel biomarker N-lactoyl-phenylalanine further underscores the complexity of metabolic regulation and its therapeutic potential. This review underscores the potential of metabolite-based diagnostics and precision medicine, which could enhance efforts in the prevention, diagnosis, and treatment of cardiometabolic diseases, ultimately improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- David Rizo-Roca
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| | - John D Henderson
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Molecular Medicine and Surgery, Integrative Physiology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Homilius C, Seefeldt JM, Hansen J, Nielsen R, de Paoli FV, Boedtkjer E. Lactate orchestrates metabolic hemodynamic adaptations through a unique combination of venocontraction, artery relaxation, and positive inotropy. Acta Physiol (Oxf) 2025; 241:e70037. [PMID: 40167405 PMCID: PMC11960580 DOI: 10.1111/apha.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025]
Abstract
AIM H+ facilitates metabolic blood flow regulation while negatively impacting cardiac contractility. Cardiovascular consequences of conjugate bases accumulating alongside H+ remain unclear. Here, we evaluate the cardiovascular effects of nine prominent carboxylates-particularly lactate, 3-hydroxybutyrate, and butyrate-linked to metabolic and microbial activity. METHODS Comparing the actions of pH-adjusted Na-carboxylates to equiosmolar NaCl, we study arteries and veins isolated from healthy rats and humans with ischaemic heart disease, isolated perfused rat hearts, and rat cardiovascular function in vivo. RESULTS The tested carboxylates generally relax arteries and veins. L-lactate relaxes human and rat arteries up to 70% (EC50 = 10.1 mM) and rat brachial and mesenteric veins up to 30% of pre-contractions, yet stands out by augmenting contractions of rat femoral, saphenous, and lateral marginal veins and human internal thoracic and great saphenous veins up to 50%. D-lactate shows only minor actions. In isolated perfused hearts, 10 mM L-lactate increases coronary flow (17.1 ± 7.7%) and left ventricular developed pressure (10.1 ± 3.0%) without affecting heart rate. L-lactate infusion in rats-reaching 3.7 ± 0.3 mM in the circulation-increases left ventricular end-diastolic volume (11.3 ± 2.8%), stroke volume (22.6 ± 3.0%), cardiac output (23.4 ± 3.5%), and ejection fraction (10.6 ± 2.0%), and lowers systemic vascular resistance (34.1 ± 3.7%) without influencing blood pressure or heart rate. The ketone body 3-hydroxybutyrate causes lactate accumulation and elevates left ventricular end-diastolic volume in vivo. CONCLUSION Carboxylate metabolites generally relax arteries and veins. L-lactate relaxes arteries, lowering systemic vascular resistance, causes preferential venocontraction with increased ventricular diastolic filling, and elevates cardiac contractility and cardiac output. We propose that L-lactate optimizes cardiovascular function during metabolic disturbances.
Collapse
Affiliation(s)
| | - Jacob M. Seefeldt
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | - Jakob Hansen
- Department of Forensic MedicineAarhus UniversityAarhusDenmark
| | - Roni Nielsen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | - Frank V. de Paoli
- Department of BiomedicineAarhus UniversityAarhusDenmark
- Department of Cardiothoracic and Vascular SurgeryAarhus University HospitalAarhusDenmark
| | | |
Collapse
|
3
|
Miyazaki I, Tsao KK, Kamijo Y, Nasu Y, Terai T, Campbell RE. Synthesis and application of a photocaged-L-lactate for studying the biological roles of L-lactate. Commun Chem 2025; 8:104. [PMID: 40188278 PMCID: PMC11972357 DOI: 10.1038/s42004-025-01495-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
L-Lactate, once considered a metabolic waste product of glycolysis, is now recognized as a vitally important metabolite and signaling molecule in multiple biological pathways. However, exploring L-lactate's emerging intra- and extra-cellular roles is hindered by a lack of tools to perturb L-lactate concentration intracellularly and extracellularly. Photocaged compounds are a powerful way to introduce bioactive molecules with spatiotemporal precision using illumination. Here, we report the development of a photocaged derivative of L-lactate, 4-methoxy-7-nitroindolinyl-L-lactate (MNI-L-lac), that releases L-lactate upon illumination. We validated MNI-L-lac in cell culture by demonstrating that the photorelease of L-lactate elicits a response from genetically encoded extra- and intracellular L-lactate biosensors (eLACCO1, eLACCO2.1, R-iLACCO1.2). To demonstrate the utility of MNI-L-lac, we employed the photorelease of L-lactate to activate G protein-coupled receptor 81 (GPR81), as revealed by the inhibition of adenylyl cyclase activity and concomitant decrease of cAMP. These results indicate that MNI-L-lac may be useful for perturbing the concentration of endogenous L-lactate in order to investigate L-lactate's roles in metabolic and signaling pathways.
Collapse
Affiliation(s)
- Ikumi Miyazaki
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kelvin K Tsao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- Global Standard Science Education Division, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Yuki Kamijo
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yusuke Nasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
| | - Takuya Terai
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Robert E Campbell
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
- CERVO, Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec, Québec, Canada.
| |
Collapse
|
4
|
Chavez-Guevara IA, Fernández-Escabias M, Hernández-Lepe MA, Amaro-Gahete FJ. Modulation of fatty acid metabolism via lactate-HCA1 signaling: potential therapeutic implications. Am J Physiol Cell Physiol 2025; 328:C1333-C1337. [PMID: 40094283 DOI: 10.1152/ajpcell.00969.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/14/2025] [Accepted: 03/10/2025] [Indexed: 03/19/2025]
Affiliation(s)
- Isaac A Chavez-Guevara
- Conahcyt National Laboratory of Body Composition and Energetic Metabolism, Tijuana, Mexico
- Faculty of Sports Ensenada, Autonomous University of Baja California, Ensenada, Mexico
| | | | - Marco A Hernández-Lepe
- Conahcyt National Laboratory of Body Composition and Energetic Metabolism, Tijuana, Mexico
- Medical and Psychology School, Autonomous University of Baja California, Tijuana, Mexico
| | - Francisco J Amaro-Gahete
- Department of Physiology, Faculty of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
5
|
Ren H, Tang Y, Zhang D. The emerging role of protein L-lactylation in metabolic regulation and cell signalling. Nat Metab 2025; 7:647-664. [PMID: 40175761 DOI: 10.1038/s42255-025-01259-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
L-Lactate has emerged as a crucial metabolic intermediate, moving beyond its traditional view as a mere waste product. The recent discovery of L-lactate-driven protein lactylation as a post-translational modification has unveiled a pathway that highlights the role of lactate in cellular signalling. In this Perspective, we explore the enzymatic and metabolic mechanisms underlying protein lactylation and its impacts on both histone and non-histone proteins in the contexts of physiology and diseases. We discuss growing evidence suggesting that this modification regulates a wide range of cellular functions and is involved in various physiological and pathological processes, such as cell-fate determination, development, cardiovascular diseases, cancer and autoimmune disorders. We propose that protein lactylation acts as a pivotal mechanism, integrating metabolic and signalling pathways to enable cellular adaptation, and highlight its potential as a therapeutic target in various diseases.
Collapse
Affiliation(s)
- Haowen Ren
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
| | - Yuwei Tang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China
- Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Di Zhang
- State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
6
|
Pan X, Ye F, Ning P, Yu Y, Zhang Z, Wang J, Chen G, Wu Z, Qiu C, Li J, Chen B, Zhu L, Qian C, Gong K, Du Y. Structures of G-protein coupled receptor HCAR1 in complex with Gi1 protein reveal the mechanistic basis for ligand recognition and agonist selectivity. PLoS Biol 2025; 23:e3003126. [PMID: 40233099 PMCID: PMC12040280 DOI: 10.1371/journal.pbio.3003126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/29/2025] [Accepted: 03/23/2025] [Indexed: 04/17/2025] Open
Abstract
Hydroxycarboxylic acid receptor 1 (HCAR1), also known as lactate receptor or GPR81, is a class A G-protein-coupled receptor with key roles in regulating lipid metabolism, neuroprotection, angiogenesis, cardiovascular function, and inflammatory response in humans. HCAR1 is highly expressed in numerous types of cancer cells, where it participates in controlling cancer cell metabolism and defense mechanisms, rendering it an appealing target for cancer therapy. However, the molecular basis of HCAR1-mediated signaling remains poorly understood. Here, we report four cryo-EM structures of human HCAR1 and HCAR2 in complex with the Gi1 protein, in which HCAR1 binds to the subtype-specific agonist CHBA (3.16 Å) and apo form (3.36 Å), and HCAR2 binds to the subtype-specific agonists MK-1903 (2.68 Å) and SCH900271 (3.06 Å). Combined with mutagenesis and cellular functional assays, we elucidate the mechanisms underlying ligand recognition, receptor activation, and G protein coupling of HCAR1. More importantly, the key residues that determine ligand selectivity between HCAR1 and HCAR2 are clarified. On this basis, we further summarize the structural features of agonists that match the orthosteric pockets of HCAR1 and HCAR2. These structural insights are anticipated to greatly accelerate the development of novel HCAR1-targeted drugs, offering a promising avenue for the treatment of various diseases.
Collapse
Affiliation(s)
- Xin Pan
- Department of Cardiology, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Fang Ye
- Kobilka Institute of Innovative Drug Discovery, The Second Affiliated Hospital, Shenzhen Futian Biomedical Innovation R&D Center, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Peiruo Ning
- Kobilka Institute of Innovative Drug Discovery, The Second Affiliated Hospital, Shenzhen Futian Biomedical Innovation R&D Center, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Yiping Yu
- Warshel Institute for Computational Biology, School of Medicine, the Chinese University of Hong Kong, Shenzhen, China
| | - Zhiyi Zhang
- Kobilka Institute of Innovative Drug Discovery, The Second Affiliated Hospital, Shenzhen Futian Biomedical Innovation R&D Center, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Jingxuan Wang
- Kobilka Institute of Innovative Drug Discovery, The Second Affiliated Hospital, Shenzhen Futian Biomedical Innovation R&D Center, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, The Second Affiliated Hospital, Shenzhen Futian Biomedical Innovation R&D Center, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Zhangsong Wu
- Kobilka Institute of Innovative Drug Discovery, The Second Affiliated Hospital, Shenzhen Futian Biomedical Innovation R&D Center, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Chen Qiu
- Kobilka Institute of Innovative Drug Discovery, The Second Affiliated Hospital, Shenzhen Futian Biomedical Innovation R&D Center, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
| | - Jiancheng Li
- Instrumental Analysis Center, Shenzhen University, Shenzhen, China
| | - Bangning Chen
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co.,Ltd., Shenzhen, China
| | - Lizhe Zhu
- Warshel Institute for Computational Biology, School of Medicine, the Chinese University of Hong Kong, Shenzhen, China
| | - Chungen Qian
- Department of Reagent Research and Development, Shenzhen YHLO Biotech Co.,Ltd., Shenzhen, China
| | - Kaizheng Gong
- Department of Cardiology, Institute of Cardiovascular Disease, Yangzhou Key Lab of Innovation Frontiers in Cardiovascular Disease, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, The Second Affiliated Hospital, Shenzhen Futian Biomedical Innovation R&D Center, School of Medicine, Chinese University of Hong Kong, Shenzhen, China
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
7
|
Zong Z, Ren J, Yang B, Zhang L, Zhou F. Emerging roles of lysine lactyltransferases and lactylation. Nat Cell Biol 2025; 27:563-574. [PMID: 40185947 DOI: 10.1038/s41556-025-01635-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 02/13/2025] [Indexed: 04/07/2025]
Abstract
Given its various roles in cellular functions, lactate is no longer considered a waste product of metabolism and lactate sensing is a pivotal step in the transduction of lactate signals. Lysine lactylation is a recently identified post-translational modification that serves as an intracellular mechanism of lactate sensing and transfer. Although acetyltransferases such as p300 exhibit general acyl transfer activity, no bona fide lactyltransferases have been identified. Recently, the protein synthesis machinery, alanyl-tRNA synthetase 1 (AARS1), AARS2 and their Escherichia coli orthologue AlaRS, have been shown to be able to sense lactate and mediate lactyl transfer and are thus considered pan-lactyltransferases. Here we highlight the mechanisms and functions of these lactyltransferases and discuss potential strategies that could be exploited for the treatment of human diseases.
Collapse
Affiliation(s)
- Zhi Zong
- The First Affiliated Hospital of Soochow University, Suzhou, China
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Jiang Ren
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bing Yang
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Long Zhang
- MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Institute of Biomedical Innovation, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China.
- State Key Laboratory of Transvascular Implantation Devices of the Second Affiliated Hospital of the Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, China.
| | - Fangfang Zhou
- The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Li J, Ma P, Liu Z, Xie J. L- and D-Lactate: unveiling their hidden functions in disease and health. Cell Commun Signal 2025; 23:134. [PMID: 40075490 PMCID: PMC11905701 DOI: 10.1186/s12964-025-02132-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Lactate, once considered a mere byproduct of anaerobic metabolism, is now recognized as a critical signaling molecule with diverse roles in physiology and pathology. There are two stereoisomers of lactate: L- and D-lactate. Recent studies have shown that disruptions in these two lactate stereoisomers have distinct effects on health and disease. L-lactate is central to glycolysis and energy transfer through the Cori cycle but also acts as the dominant lactylation isomer induced by glycolysis, influencing metabolism and cell survival. Although less studied, D-lactate is linked to metabolic disorders and plays a role in mitochondrial dysfunction and oxidative stress. This review focuses on both L- and D-lactate and examines their biosynthesis, transport, and expanding roles in physiological and pathological processes, particularly their functions in cancer, immune regulation, inflammation, neurodegeneration and other diseases. Finally, we assess the therapeutic prospects of targeting lactate metabolism, highlighting emerging strategies for intervention in clinical settings. Our review synthesizes the current understanding of L- and D-lactate, offering insights into their potential as targets for therapeutic innovation.
Collapse
Affiliation(s)
- Jianting Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, No. 56, Xinjiannan Road, Ying Ze District, Taiyuan, 030001, China
| | - Peng Ma
- Department of Anatomy, School of Basic Medical, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, No. 56, Xinjiannan Road, Ying Ze District, Taiyuan, 030001, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, No. 56, Xinjiannan Road, Ying Ze District, Taiyuan, 030001, China.
| |
Collapse
|
9
|
Zhou R, Liu T, Qin Y, Xie J, Zhang S, Xie Y, Lao J, He W, Zeng H, Tang X, Tian X, Qin Y. Polygonatum cyrtonema Hua polysaccharides alleviate muscle atrophy and fat lipolysis by regulating the gut microenvironment in chemotherapy-induced cachexia. Front Pharmacol 2025; 16:1503785. [PMID: 40129936 PMCID: PMC11931129 DOI: 10.3389/fphar.2025.1503785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Introduction: Polygonatum cyrtonema Hua (PC) is an essential herbal medicine in China, known for improving muscle quality and enhancing physical function; its active ingredients are polysaccharides (PCPs). A previous study revealed the anti-atrophy effects of PCPs in cachectic mice. However, whether the effects of PCPs on anti-atrophy are associated with gut microenvironment remain elusive. This research endeavored to assess the medicinal efficacy of PCPs in alleviating muscle atrophy and fat lipolysis and explore the potential mechanisms. Methods: A cancer cachexia model was induced by male C57BL/6 mice bearing Lewis lung tumor cells and chemotherapy. The pharmacodynamics of PCPs (32 and 64 mg/kg/day) was investigated through measurements of tumor-free body weight, gastrocnemius muscle weight, soleus muscle weight, epididymal fat weight, tissue histology analysis, and pro-inflammatory cytokines. Immunohistochemistry and Western blotting assays were further used to confirm the effects of PCPs. 16S rRNA sequencing, LC-MS and GC-MS-based metabolomics were used to analyze the gut microbiota composition and metabolite alterations. Additionally, the agonist of free fatty acid receptor 2 (FFAR2)-a crucial short-chain fatty acid (SCFA) signaling molecule-was used to investigate the role of gut microbiota metabolites, specifically SCFAs, in the treatment of cancer cachexia, with comparisons to PCPs. Results: This study demonstrated that PCPs significantly mitigated body weight loss, restored muscle fiber atrophy and mitochondrial disorder, alleviated adipose tissue wasting, strengthened the intestinal barrier integrity, and decreased the intestinal inflammation in chemotherapy-induced cachexia. Furthermore, the reversal of specific bacterial taxa including Klebsiella, Akkermansia, norank_f__Desulfovibrionaceae, Enterococcus, NK4A214_group, Eubacterium_fissicatena_group, Eubacterium_nodatum_group, Erysipelatoclostridium, Lactobacillus, Monoglobus, Ruminococcus, Odoribacter, and Enterorhabdus, along with alterations in metabolites such as amino acids (AAs), eicosanoids, lactic acid and (SCFAs), contributed to the therapeutic effects of PCPs. Conclusion: Our findings suggest that PCPs can be used as prebiotic drugs targeting the microbiome-metabolomics axis in cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Rongrong Zhou
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijng, China
| | - Tingting Liu
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - You Qin
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jing Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Shuihan Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Yi Xie
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Jia Lao
- The ResGreen Group, Changsha, China
| | - Wei He
- The ResGreen Group, Changsha, China
| | - Hongliang Zeng
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xueyang Tang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
| | - Yuhui Qin
- The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
10
|
Lee WD, Weilandt DR, Liang L, MacArthur MR, Jaiswal N, Ong O, Mann CG, Chu Q, Hunter CJ, Ryseck RP, Lu W, Oschmann AM, Cowan AJ, TeSlaa TA, Bartman CR, Jang C, Baur JA, Titchenell PM, Rabinowitz JD. Lactate homeostasis is maintained through regulation of glycolysis and lipolysis. Cell Metab 2025; 37:758-771.e8. [PMID: 39889702 PMCID: PMC11926601 DOI: 10.1016/j.cmet.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/19/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025]
Abstract
Lactate is among the highest flux circulating metabolites. It is made by glycolysis and cleared by both tricarboxylic acid (TCA) cycle oxidation and gluconeogenesis. Severe lactate elevations are life-threatening, and modest elevations predict future diabetes. How lactate homeostasis is maintained, however, remains poorly understood. Here, we identify, in mice, homeostatic circuits regulating lactate production and consumption. Insulin induces lactate production by upregulating glycolysis. We find that hyperlactatemia inhibits insulin-induced glycolysis, thereby suppressing excess lactate production. Unexpectedly, insulin also promotes lactate TCA cycle oxidation. The mechanism involves lowering circulating fatty acids, which compete with lactate for mitochondrial oxidation. Similarly, lactate can promote its own consumption by lowering circulating fatty acids via the adipocyte-expressed G-protein-coupled receptor hydroxycarboxylic acid receptor 1 (HCAR1). Quantitative modeling suggests that these mechanisms suffice to produce lactate homeostasis, with robustness to noise and perturbation of individual regulatory mechanisms. Thus, through regulation of glycolysis and lipolysis, lactate homeostasis is maintained.
Collapse
Affiliation(s)
- Won Dong Lee
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Daniel R Weilandt
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Lingfan Liang
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Michael R MacArthur
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Natasha Jaiswal
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Olivia Ong
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Charlotte G Mann
- Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Qingwei Chu
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Craig J Hunter
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Rolf-Peter Ryseck
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Wenyun Lu
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Anna M Oschmann
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Alexis J Cowan
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Tara A TeSlaa
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caroline R Bartman
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Joseph A Baur
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Paul M Titchenell
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua D Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, USA; Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA; Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
11
|
Yang S, Shen Y. The polarization of macrophages participates in the repair after folic acid-induced acute kidney injury. Cell Immunol 2025; 409-410:104929. [PMID: 39933418 DOI: 10.1016/j.cellimm.2025.104929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/10/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Acute kidney injury (AKI) remains a major public health challenge, posing serious threats to human health. Increasing evidence indicates that renal cells undergo significant metabolic alterations following AKI, with inflammatory responses persisting throughout both injury and repair phases. Our previous research has demonstrated that heightened aerobic glycolysis after AKI leads to increased secretion of metabolic byproducts such as lactate, which plays a critical role in tissue repair. However, the relationship between metabolic reprogramming and inflammatory responses, as well as the underlying mechanisms, remain poorly understood. This study aims to clarify the regulatory effects of the glycolytic byproduct lactate on macrophage activation and phenotypic differentiation following AKI. We observed increased expression of M1/M2 macrophages and elevated secretion of inflammatory cytokines after folic acid-induced AKI. Immunofluorescence staining showed co-localization of macrophages with α-SMA. Manipulating lactate levels post-injury led to a decrease in macrophage expression and a reduction in fibroblast activation and proliferation, ultimately impairing renal tissue repair. These findings suggest that targeting lactate as a key regulator of macrophage phenotype differentiation may provide a theoretical and clinical foundation for therapeutic strategies in AKI repair.
Collapse
Affiliation(s)
- Shujie Yang
- Medical School of Nantong University, Nantong City, Jiangsu Province, China; Intensive Care Unit, The People's Hospital of Rugao, Rugao 226500, Jiangsu Province, China
| | - Yan Shen
- Medical School of Nantong University, Nantong City, Jiangsu Province, China; Department of Emergency Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|
12
|
Huang S, Shi J, Shen J, Fan X. Metabolic reprogramming of neutrophils in the tumor microenvironment: Emerging therapeutic targets. Cancer Lett 2025; 612:217466. [PMID: 39862916 DOI: 10.1016/j.canlet.2025.217466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Neutrophils are pivotal in the immune system and have been recognized as significant contributors to cancer development and progression. These cells undergo metabolic reprogramming in response to various stimulus, including infections, diseases, and the tumor microenvironment (TME). Under normal conditions, neutrophils primarily rely on aerobic glucose metabolism for energy production. However, within the TME featured by hypoxic and nutrient-deprived conditions, they shift to altered anaerobic glycolysis, lipid metabolism, mitochondrial metabolism and amino acid metabolism to perform their immunosuppressive functions and facilitate tumor progression. Targeting neutrophils within the TME is a promising therapeutic approach. Yet, focusing on their metabolic pathways presents a novel strategy to enhance cancer immunotherapy. This review synthesizes the current understanding of neutrophil metabolic reprogramming in the TME, with an emphasis on the underlying molecular mechanisms and signaling pathways. Studying neutrophil metabolism in the TME poses challenges, such as their short lifespan and the metabolic complexity of the environment, necessitating the development of advanced research methodologies. This review also discusses emerging solutions to these challenges. In conclusion, given their integral role in the TME, targeting the metabolic pathways of neutrophils could offer a promising avenue for cancer therapy.
Collapse
Affiliation(s)
- Shiyun Huang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| | - Xianqun Fan
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200025, China.
| |
Collapse
|
13
|
Wang J, Qian Y, Han Z, Wang Y, Liu Y, Li J, Duanmu Q, Ye S, Qiao A, Wu S. Insights into the Activation Mechanism of HCA1, HCA2, and HCA3. J Med Chem 2025; 68:4527-4539. [PMID: 39936872 PMCID: PMC11873900 DOI: 10.1021/acs.jmedchem.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/13/2025]
Abstract
Hydroxy-carboxylic acid receptors HCA1, HCA2, and HCA3 can be activated by important intermediates of energy metabolism. Despite the research focusing on HCA2, its clinical application has been limited by adverse effects. Therefore, the role of HCA1 as a promising target for the treatment of lipolysis warrants further exploration. As HCAs exhibit high similarity when activated with diverse selective agonists, a conserved yet unique activation mechanism for HCAs remains undisclosed. Herein, we unveil the cryo-electron microscopy structures of the 3,5-DHBA-HCA1-Gi signaling complex, the acifran- and MK6892-bound HCA2-Gi signaling complexes, and the acifran-HCA3-Gi signaling complex. Comparative analysis across HCAs reveals key residues in HCA1 contributing to the stabilization of the ligand-binding pocket. Furthermore, chimeric complexes and mutational analyses identify residues that are pivotal for HCA2 and HCA3 selectivity. Our findings elucidate critical structural insights into the mechanisms of ligand recognition and activation within HCA1 and broaden our comprehension of ligand specificity binding across the HCA family.
Collapse
Affiliation(s)
- Jiening Wang
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative
Innovation Center for Green Transformation of Bio-Resources, Hubei
Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Yuxia Qian
- Tianjin
Key Laboratory of Function and Application of Biological Macromolecular
Structures, School of Life Sciences, Tianjin
University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Zhen Han
- Tianjin
Key Laboratory of Function and Application of Biological Macromolecular
Structures, School of Life Sciences, Tianjin
University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yize Wang
- Tianjin
Key Laboratory of Function and Application of Biological Macromolecular
Structures, School of Life Sciences, Tianjin
University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Yanru Liu
- Tianjin
Key Laboratory of Function and Application of Biological Macromolecular
Structures, School of Life Sciences, Tianjin
University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jie Li
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative
Innovation Center for Green Transformation of Bio-Resources, Hubei
Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Qingmiao Duanmu
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative
Innovation Center for Green Transformation of Bio-Resources, Hubei
Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| | - Sheng Ye
- Tianjin
Key Laboratory of Function and Application of Biological Macromolecular
Structures, School of Life Sciences, Tianjin
University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Anna Qiao
- Tianjin
Key Laboratory of Function and Application of Biological Macromolecular
Structures, School of Life Sciences, Tianjin
University, 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Shan Wu
- State
Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative
Innovation Center for Green Transformation of Bio-Resources, Hubei
Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei 430062, China
| |
Collapse
|
14
|
Grochowalska K, Szrejder M, Rachubik P, Audzeyenka I, Rogacka D, Narajczyk M, Piwkowska A. Role of Metabolic Sensor GPR81/HCAR1 in Diabetic Podocytes: Downregulated Lipolysis Results in the Deterioration of Glomerular Filtration Barrier. J Cell Physiol 2025; 240:e70014. [PMID: 39962919 DOI: 10.1002/jcp.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/28/2025] [Accepted: 02/07/2025] [Indexed: 05/10/2025]
Abstract
The effacement of podocyte foot processes, which form slit diaphragms, are common features of proteinuria. Exploring podocyte energy metabolism, especially under diabetic conditions, may offer insights into the pathogenesis of diabetic kidney disease. Lipid accumulation is recognized as a cause of podocyte cytoskeleton remodeling and insulin resistance. Thus, the role of the metabolic sensor G-protein-coupled receptor 81 (GPR81) was examined in the molecular pathway of lipid accumulation in podocytes under hyperglycemic conditions. It was discovered that hyperglycemia downregulated the cyclic adenosine monophosphate/protein kinase A signaling pathway, which downregulated the expression of adipose triglyceride lipase (ATGL). Perilipin 1 was also downregulated; simultaneously, lipid droplet accumulation was enhanced. Glycerol and free fatty acid concentrations were also reduced, providing evidence of lipolysis inhibition. Interestingly, the expression of GPR81 decreased under hyperglycemia conditions despite the evidence of its activation, indicating strict lipolysis regulation. More importantly, cell functions were altered, reflected by an increase in albumin permeability and rearrangement of the actin cytoskeleton. The effect of ATGL activity inhibition on lipolysis, actin cytoskeleton arrangement, and permeability of the podocyte monolayer was investigated. The results were similar to GPR81 downregulation. Altogether, the present data indicate that GPR81 is likely a crucial part of the lipid sensing system, and its alterations during hyperglycemia might contribute to glomerular filtration barrier deterioration in diabetic kidney disease.
Collapse
Affiliation(s)
- Klaudia Grochowalska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | | | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
15
|
Shewale B, Ebrahim T, Samal A, Dubois N. Molecular Regulation of Cardiomyocyte Maturation. Curr Cardiol Rep 2025; 27:32. [PMID: 39836238 DOI: 10.1007/s11886-024-02189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE OF THE REVIEW This review aims to discuss the process of cardiomyocyte maturation, with a focus on the underlying molecular mechanisms required to form a fully functional heart. We examine both long-standing concepts associated with cardiac maturation and recent developments, and the overall complexity of molecularly integrating all the processes that lead to a mature heart. RECENT FINDINGS Cardiac maturation, defined here as the sequential changes that occurring before the heart reaches full maturity, has been a subject of investigation for decades. Recently, there has been a renewed, highly focused interest in this process, driven by clinically motivated research areas where enhancing maturation may lead to improved therapeutic opportunities. These include using pluripotent stem cell models for cell therapy and disease modeling, as well as recent advancements in adult cardiac regeneration approaches. We highlight key processes underlying maturation of the heart, including cellular and organ growth, and electrophysiological, metabolic, and contractile maturation. We further discuss how these processes integrate and interact to contribute to the overall complexity of the developing heart. Finally, we emphasize the transformative potential for translating relevant maturation concepts to emerging models of heart disease and regeneration.
Collapse
Affiliation(s)
- Bhavana Shewale
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tasneem Ebrahim
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arushi Samal
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA
- Graduate School at the Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nicole Dubois
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
16
|
Yu L, Dong X, Li H, Mi L. The value of blood lactate and lactate clearance rate in evaluating the prognosis of athletes with heat illness of varying degrees after high-intensity exercise. BMC Sports Sci Med Rehabil 2025; 17:7. [PMID: 39819603 PMCID: PMC11737233 DOI: 10.1186/s13102-024-01042-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
BACKGROUND Heat stroke, a severe heat illness with organ damage, is a major cause of cause irreparable organ damage and higher death rates among military persons and athletes. OBJECTIVES To study the changes in blood lactate (Lac) levels and lactate clearance rate (LCR) in athletes with heat illness of varying degrees after high-intensity exercise and to evaluate their prognostic value. MATERIAL AND METHODS In present study, acute care unit admitted 36 heat sickness patients following high-intensity exercise from December 2019 to July 2024, with comprehensive medical records, for retrospective study. The study population consisted of two groups of high level athletes: the favourable Prognosis Group (< 7 days, 22 cases), comprising 21 males and 1 female with a mean age of 21.8 ± 2.7 years, and the bad Prognosis Group (≥ 7 days, 14cases), consisting of 14 males with a mean age of 22.6 ± 3.2 years. Lac levels were assessed at admission (0 h) and early in therapy (2 h, 6 h), and the LCR was computed. Lac and LCR values at each time point were compared between the two groups to see how they affected patient prognosis. RESULTS After 2 and 6 h of therapy, lactate levels decreased significantly in the good prognosis group (1.2 ± 0.5 mmol/L at 2 h and 0.8 ± 0.3 mmol/L at 6 h), but remained elevated in the poor prognosis group (4.2 ± 1.2 mmol/L at 2 h and 3.5 ± 1.5 mmol/L at 6 h). Core body temperature normalized in both groups, but the good prognosis group showed a more rapid decline, with temperatures of 37.4 ± 0.6 °C at 2 h and 36.8 ± 0.4 °C at 6 h in the good prognosis group, and 38.8 ± 0.8 °C at 2 h and 38.2 ± 0.9 °C at 6 h in the poor prognosis group. Notably, a significant positive correlation existed between lactate levels and APACHE II scores at admission (P < 0.01). Furthermore, logistic regression analysis revealed that the 2-hour lactate clearance rate (LCR) (R2 = 0.83) was an independent predictor of outcomes. CONCLUSIONS The study suggests that athletes with elevated lactate levels after heat illness may be at higher risk of adverse outcomes. The 2-hour lactate clearance rate (LCR) appears to be a valuable prognostic indicator, with potential applications in evaluating the severity of heat illness and guiding treatment decisions. Furthermore, dynamic monitoring of lactate levels in conjunction with LCR may provide valuable insights into the clinical management and prognosis of athletes with heat-related illnesses.
Collapse
Affiliation(s)
- Li Yu
- Intensive Care Unit, The 969th Hospital of P.L.A, Hohhot, 010051, China.
| | - Xuehui Dong
- Intensive Care Unit, The 969th Hospital of P.L.A, Hohhot, 010051, China
| | - Huanhuan Li
- Intensive Care Unit, The 969th Hospital of P.L.A, Hohhot, 010051, China
| | - Lili Mi
- Department of Pharmacy, The 969 th Hospital of P.L.A, Hohhot, 010051, China
| |
Collapse
|
17
|
Gurner KH, Gardner DK. Blastocyst-Derived Lactate as a Key Facilitator of Implantation. Biomolecules 2025; 15:100. [PMID: 39858494 PMCID: PMC11764449 DOI: 10.3390/biom15010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
The blastocyst develops a unique metabolism that facilitates the creation of a specialized microenvironment at the site of implantation characterized by high levels of lactate and reduced pH. While historically perceived as a metabolic waste product, lactate serves as a signaling molecule which facilitates the invasion of surrounding tissues by cancers and promotes blood vessel formation during wound healing. However, the role of lactate in reproduction, particularly at the implantation site, is still being considered. Here, we detail the biological significance of the microenvironment created by the blastocyst at implantation, exploring the origin and significance of blastocyst-derived lactate, its functional role at the implantation site and how understanding this mediator of the maternal-fetal dialogue may help to improve implantation in assisted reproduction.
Collapse
Affiliation(s)
| | - David K. Gardner
- Melbourne IVF, East Melbourne, VIC 3002, Australia;
- School of Biosciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
18
|
Spagnolo P, Cela E, Patel MA, Tweddell D, Daley M, Clarson C, Stranges S, Cepinskas G, Fraser DD. Differential expression of plasma proteins and pathway enrichments in pediatric diabetic ketoacidosis. Mol Med 2025; 31:4. [PMID: 39773407 PMCID: PMC11707870 DOI: 10.1186/s10020-024-01056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND In children with type 1 diabetes (T1D), diabetic ketoacidosis (DKA) triggers a significant inflammatory response; however, the specific effector proteins and signaling pathways involved remain largely unexplored. This pediatric case-control study utilized plasma proteomics to explore protein alterations associated with severe DKA and to identify signaling pathways that associate with clinical variables. METHODS We conducted a proteome analysis of plasma samples from 17 matched pairs of pediatric patients with T1D; one cohort with severe DKA and another with insulin-controlled diabetes. Proximity extension assays were used to quantify 3072 plasma proteins. Data analysis was performed using multivariate statistics, machine learning, and bioinformatics. RESULTS This study identified 214 differentially expressed proteins (162 upregulated, 52 downregulated; adj P < 0.05 and a fold change > 2), reflecting cellular dysfunction and metabolic stress in severe DKA. We characterized protein expression across various organ systems and cell types, with notable alterations observed in white blood cells. Elevated inflammatory pathways suggest an enhanced inflammatory response, which may contribute to the complications of severe DKA. Additionally, upregulated pathways related to hormone signaling and nitrogen metabolism were identified, consistent with increased hormone release and associated metabolic processes, such as glycogenolysis and lipolysis. Changes in lipid and fatty acid metabolism were also observed, aligning with the lipolysis and ketosis characteristic of severe DKA. Finally, several signaling pathways were associated with clinical biochemical variables. CONCLUSIONS Our findings highlight differentially expressed plasma proteins and enriched signaling pathways that were associated with clinical features, offering insights into the pathophysiology of severe DKA.
Collapse
Affiliation(s)
- Paolo Spagnolo
- Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, Rome, Italy, 00128
| | - Enis Cela
- Physiology and Pharmacology, Western University, London, ON, Canada, N6A 3K7
| | - Maitray A Patel
- Epidemiology and Biostatistics, Western University, London, ON, Canada, N6A 3K7
| | - David Tweddell
- Computer Science, Western University, London, ON, Canada, N6A 3K7
| | - Mark Daley
- Epidemiology and Biostatistics, Western University, London, ON, Canada, N6A 3K7
- Computer Science, Western University, London, ON, Canada, N6A 3K7
- Vector Institute for Artificial Intelligence, Toronto, ON, Canada, M5G 0C6
| | - Cheril Clarson
- Pediatrics, Western University, London, ON, Canada, N6A 3K7
- Children's Health Research Institute, London, ON, Canada, N6C 4V3
| | - Saverio Stranges
- Epidemiology and Biostatistics, Western University, London, ON, Canada, N6A 3K7
- Medicine, Western University, London, ON, Canada, N6A 3K7
- Family Medicine, Western University, London, ON, Canada, N6A 3K7
- Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy, 80131
| | - Gediminas Cepinskas
- Medical Biophysics, Western University, London, ON, Canada, N6A 3K7
- London Health Sciences Centre Research Institute (LHSC-RI), London, ON, Canada, N6A 5W9
- Anatomy and Cell Biology, Western University, London, ON, Canada, N6A 3K7
| | - Douglas D Fraser
- Physiology and Pharmacology, Western University, London, ON, Canada, N6A 3K7.
- Pediatrics, Western University, London, ON, Canada, N6A 3K7.
- Children's Health Research Institute, London, ON, Canada, N6C 4V3.
- London Health Sciences Centre Research Institute (LHSC-RI), London, ON, Canada, N6A 5W9.
- Clinical Neurological Sciences, Western University, London, ON, Canada, N6A 3K7.
- Room A5-132, Victoria Research Laboratories, LHSC-VC, 800 Commissioners Road E., London, ON, Canada, N6A 5W9.
| |
Collapse
|
19
|
Leija RG, Arevalo JA, Xing D, Vázquez-Medina JP, Brooks GA. The mitochondrial lactate oxidation complex: endpoint for carbohydrate carbon disposal. Am J Physiol Endocrinol Metab 2025; 328:E126-E136. [PMID: 39714986 DOI: 10.1152/ajpendo.00306.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/15/2024] [Accepted: 11/24/2024] [Indexed: 12/25/2024]
Abstract
The lactate shuttle concept has revolutionized our understanding and study of metabolism in physiology, biochemistry, intermediary metabolism, nutrition, and medicine. Seminal findings of the mitochondrial lactate oxidation complex (mLOC) elucidated the architectural structure of its components. Here, we report that the mitochondrial pyruvate carrier (mPC) is an additional member of the mLOC in mouse muscle and C2C12 myoblasts and myotubes. Immunoblots, mass spectrometry, and co-immunoprecipitation experiments of mitochondrial preparations revealed abundant amounts of mitochondrial lactate dehydrogenase (mLDH), monocarboxylate transporter (mMCT), basigin (CD147), cytochrome oxidase (COx), and pyruvate carriers 1 and 2 (mPC1 and 2). In addition, using confocal laser scanning microscopy (CLSM) and in situ proximity ligation, we also demonstrated planar and three-dimensional (3-D) colocalization of pyruvate and lactate transporters with COx in fixed mouse skeletal muscle sections and C2C12 myoblasts and myotubes skeletal muscle sections, mouse muscle and C2C12 myoblasts and myotubes myotubes, and C2C12 myoblasts. This work serves as a landmark for configuring the final pathway of carbohydrate oxidation.NEW & NOTEWORTHY We expand on knowledge of the architectural design of the mitochondrial lactate oxidation complex (mLOC); key members are: mitochondrial lactate dehydrogenase (mLDH), monocarboxylate transporter 1 (mMCT1), cytochrome oxidase (COx), basigin scaffolding protein (CD147), and the mitochondrial pyruvate carrier (mPC). The mLOC is key in creating the lower end of the concentration gradient for disposal of lactate and pyruvate.
Collapse
Affiliation(s)
- Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Dianna Xing
- Vazquez-Medina Lab, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - José Pablo Vázquez-Medina
- Vazquez-Medina Lab, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| |
Collapse
|
20
|
Griesel BA, Olson AL. PFKFB3 protein in adipose tissue contributes to whole body glucose homeostasis. FASEB J 2024; 38:e70254. [PMID: 39659238 DOI: 10.1096/fj.202402070r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/19/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Age-dependent changes in adipose tissue are thought to play a role in development of insulin resistance. A major age-dependent change in adipose tissue is the downregulation of key proteins involved in carbohydrate metabolism. In the current study, we investigate the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) a key governor of the rate of glycolysis in adipocytes via the synthesis of fructose-2,6-bisphosphate that was significantly downregulated in aged mice. We employed an adipocyte-specific PFKFB3 mouse line to investigate the role of PFKFB3 on adipocyte function. In both aged mice and PFKFB3-knockout mice, we observed an increase in O-glcNAcylated proteins consistent with a shift in glucose metabolism toward the hexosamine biosynthetic pathway. Under chow-fed conditions, PFKFB3 knockout resulted in significantly smaller adipocyte area, but no difference in total fat mass. While glucose tolerance was unchanged under chow conditions, when mice were challenged with a 4 weeks high-fat feeding, PFKFB3 deletion led to a greater decrease in glucose tolerance as well as a significant increase in macrophage infiltration. These results indicate that perturbation of the glycolytic pathway in adipose tissue has multiple effects of adipocyte biology and may play a significant role in metabolic changes associated with aging. Results of this student support the notion that changes in glucose metabolism in adipose tissue impact whole-body metabolism.
Collapse
Affiliation(s)
- Beth A Griesel
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences, Oklahoma City, Oklahoma, USA
| | - Ann Louise Olson
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences, Oklahoma City, Oklahoma, USA
| |
Collapse
|
21
|
Jin W, Chen G, Chen W, Qiao G, Deng Y, Li K, Cai W. Poly-L-Lactic Acid Reduces the Volume of Dermal Adipose Tissue Through its Metabolite Lactate. Aesthetic Plast Surg 2024; 48:5136-5146. [PMID: 39060798 DOI: 10.1007/s00266-024-04265-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Poly-L-lactic acid (PLLA), a well-established biostimulator that induces collagenases, is widely used among clinical practice to treat skin aging. However, the precise regulatory effect of PLLA on different dermal cell subsets beyond fibroblast has not been fully elucidated. In this study, we constructed in vivo PLLA injection and in vitro PLLA-adipocyte co-culture models to analyze the regulatory effects of PLLA on the volume, differentiation, lipolysis, and thermogenic capacity of dermal adipocyte. We found that PLLA injection significantly reduced the thickness of dermal fat in mice. In co-culture assay, PLLA showed no effect on adipogenesis, but stimulated the lipolysis activity. Interestingly, PLLA also enhanced the differentiation of fat cells into beige fat cells, which possess higher thermogenic capacity. In mechanical study, we blocked adipocyte lactate uptake with a monocarboxylate transporter (MCT1/4) inhibitor and found that the regulatory effect of PLLA on dermal adipocyte relies on its metabolite lactate. In summary, our results suggest that PLLA has complex regulatory effects on the dermal cells, and its ability to improve skin aging is not fully attributed to stimulating collagen synthesis, but also partially involves adipocytes.No Level Assigned This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Wen Jin
- Department of Pathology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211100, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Chen
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Guanqun Qiao
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Yuequ Deng
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China
| | - Kai Li
- Department of Endocrinology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, 225300, China.
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Wei Cai
- Department of Plastic Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, China.
| |
Collapse
|
22
|
Lanzetti L. Oncometabolites at the crossroads of genetic, epigenetic and ecological alterations in cancer. Cell Death Differ 2024; 31:1582-1594. [PMID: 39438765 PMCID: PMC11618380 DOI: 10.1038/s41418-024-01402-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
By the time a tumor reaches clinical detectability, it contains around 108-109 cells. However, during tumor formation, significant cell loss occurs due to cell death. In some estimates, it could take up to a thousand cell generations, over a ~ 20-year life-span of a tumor, to reach clinical detectability, which would correspond to a "theoretical" generation of ~1030 cells. These rough calculations indicate that cancers are under negative selection. The fact that they thrive implies that they "evolve", and that their evolutionary trajectories are shaped by the pressure of the environment. Evolvability of a cancer is a function of its heterogeneity, which could be at the genetic, epigenetic, and ecological/microenvironmental levels [1]. These principles were summarized in a proposed classification in which Evo (evolutionary) and Eco (ecological) indexes are used to label cancers [1]. The Evo index addresses cancer cell-autonomous heterogeneity (genetic/epigenetic). The Eco index describes the ecological landscape (non-cell-autonomous) in terms of hazards to cancer survival and resources available. The reciprocal influence of Evo and Eco components is critical, as it can trigger self-sustaining loops that shape cancer evolvability [2]. Among the various hallmarks of cancer [3], metabolic alterations appear unique in that they intersect with both Evo and Eco components. This is partly because altered metabolism leads to the accumulation of oncometabolites. These oncometabolites have traditionally been viewed as mediators of non-cell-autonomous alterations in the cancer microenvironment. However, they are now increasingly recognized as inducers of genetic and epigenetic modifications. Thus, oncometabolites are uniquely positioned at the crossroads of genetic, epigenetic and ecological alterations in cancer. In this review, the mechanisms of action of oncometabolites will be summarized, together with their roles in the Evo and Eco phenotypic components of cancer evolvability. An evolutionary perspective of the impact of oncometabolites on the natural history of cancer will be presented.
Collapse
Affiliation(s)
- Letizia Lanzetti
- Department of Oncology, University of Turin Medical School, Turin, Italy.
- Candiolo Cancer Institute, FPO-IRCCS, Str. Provinciale 142 km 3.95, 10060, Candiolo, Turin, Italy.
| |
Collapse
|
23
|
Modaresinejad M, Yang X, Mohammad Nezhady MA, Zhu T, Bajon E, Hou X, Tahiri H, Hardy P, Rivera JC, Lachapelle P, Chemtob S. Endoplasmic Reticulum Stress Delays Choroid Development in the HCAR1 Knockout Mouse. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2382-2397. [PMID: 39332673 DOI: 10.1016/j.ajpath.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
The subretina, composed of the choroid and the retinal pigment epithelium (RPE), plays a critical role in proper vision. In addition to phagocytosis of photoreceptor debris, the RPE shuttles oxygen and nutrients to the neuroretina. For their own energy production, RPE cells mainly rely on lactate, a major by-product of glycolysis. Lactate, in turn, conveys most of its biological effects via the hydroxycarboxylic acid receptor 1 (HCAR1). Herein, the lactate-specific receptor, HCAR1, was found to be exclusively expressed in the RPE cells within the subretina, and Hcar1-/- mice exhibited a substantially thinner choroidal vasculature during development. Notably, the angiogenic properties of lactate on the choroid were impacted by the absence of Hcar1. HCAR1-deficient mice exhibited elevated endoplasmic reticulum stress along with eukaryotic translation initiation factor 2α phosphorylation, a significant decrease in the global protein translation rate, and a lower proliferation rate of choroidal vasculature. Strikingly, inhibition of the integrated stress response using an inhibitor that reverses the effect of eukaryotic translation initiation factor 2α phosphorylation restored protein translation and rescued choroidal thinning. These results provide evidence that lactate signalling via HCAR1 is important for choroidal development/angiogenesis and highlight the importance of this receptor in establishing mature vision.
Collapse
Affiliation(s)
- Monir Modaresinejad
- Program in Biomedical Science, Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada; Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Xiaojuan Yang
- School of Optometry, Université de Montréal, Montreal, Quebec, Canada; Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada; Departments of Ophthalmology and Neurology-Neurosurgery, Research Institute of the McGill University Health Centre-Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Mohammad A Mohammad Nezhady
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada; Program in Molecular Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Tang Zhu
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Emmanuel Bajon
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Xin Hou
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Houda Tahiri
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Pierre Hardy
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - José C Rivera
- Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Pierre Lachapelle
- Departments of Ophthalmology and Neurology-Neurosurgery, Research Institute of the McGill University Health Centre-Montreal Children's Hospital, Montreal, Quebec, Canada
| | - Sylvain Chemtob
- Program in Biomedical Science, Faculty of Medicine, Université de Montreal, Montreal, Quebec, Canada; Department of Pediatrics, Ophthalmology and Pharmacology, Centre de Recherche du CHU Sainte-Justine, Montréal, Quebec, Canada; School of Optometry, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
24
|
Lambertus M, Geiseler S, Morland C. High-intensity interval exercise is more efficient than medium intensity exercise at inducing neurogenesis. J Physiol 2024; 602:7027-7042. [PMID: 39580614 DOI: 10.1113/jp287328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024] Open
Abstract
The neurogenic potential of the brain decreases during ageing, whereas the risk of neurodegenerative diseases and stroke rises. This creates a mismatch between the rate of neuron loss and the brain's capacity for replacement. Adult neurogenesis primarily occurs in the subgranular zone (SGZ) and the ventricular-subventricular zone (V-SVZ). Exercise enhances SGZ neurogenesis, and we previously showed that V-SVZ neurogenesis is induced by exercise via activation of the lactate receptor HCA1. Here, we investigated how high-intensity interval training (HIIT) and medium-intensity interval training (MIIT) affect neurogenesis in these niches. Wild-type (WT) and HCA1 knockout (KO) mice were randomized to sedentary, HIIT or MIIT (n = 5-8 per group) for 3 weeks. In the SGZ, HIIT increased the density of doublecortin (DCX)-positive cells in WT mice by 85% (5.77±1.76 vs. 3.12±1.54 cells/100 µm, P = 0.013) and KO mice (67% increase; 7.91±2.92 vs. 4.73±1.63 cells/100 µm, P = 0.004). MIIT did not alter the density of DCX-positive cells in either genotype. HIIT increased the density of Ki-67-positive cells only in KO mice (P = 0.038), whereas no differences in nestin-positive cells were observed. In the V-SVZ, HIIT increased the density of DCX-positive cells in WT mice by 155% (117.79±39.72 vs. 46.25±19.96 cells/100 µm, P < 0.001) and MIIT increased the density of DCX-positive cells by 80% (83.26±39.48 vs. 46.25±19.96 cells/100µm, P = 0.027). No exercise-induced changes were observed in KO mice. Similar patterns were noted for Ki-67 positive and DCX/Ki-67 double-positive cells in the V-SVZ. These findings suggest that HIIT enhances neurogenesis more robustly than MIIT in both niches, with HCA1 playing a crucial role in V-SVZ neurogenesis. KEY POINTS: The neurogenic potential of the brain decreases with age, whereas the risk of neurodegenerative diseases and stroke increases, highlighting a mismatch between neuronal loss and replacement capacity. Exercise enhances neurogenesis in both the subgranular zone and the ventricular-subventricular zone. High-intensity interval exercise is more effective than medium-intensity interval exercise at promoting neurogenesis in both the subgranular zone and the ventricular-subventricular zone of wild-type mice. The enhancement of neurogenesis in the ventricular-subventricular zone is dependent on the activation of the HCA1 receptor, as evidenced by the ability of medium- and high-intensity interval exercise to induce neurogenesis in wild-type mice and the lack of this effect in HCA1 knockout mice. By contrast, neurogenesis in the subgranular zone is independent on the activation of the HCA1 receptor, highlighting that neurogenesis in the two major neurogenic niches are regulated differently.
Collapse
Affiliation(s)
- Marvin Lambertus
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Samuel Geiseler
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Cecilie Morland
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Frasca D, Romero M, Blomberg BB. Similarities in B Cell Defects between Aging and Obesity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1407-1413. [PMID: 39495900 DOI: 10.4049/jimmunol.2300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 09/16/2024] [Indexed: 11/06/2024]
Abstract
The aging population is increasing worldwide, and there is also an increase in the aging population living with overweight and obesity, due to changes in lifestyle and in dietary patterns that elderly individuals experience later in life. Both aging and obesity are conditions of accelerated metabolic dysfunction and dysregulated immune responses. In this review, we summarize published findings showing that obesity induces changes in humoral immunity similar to those induced by aging and that the age-associated B cell defects are mainly due to metabolic changes. We discuss the role of the obese adipose tissue in inducing dysfunctional humoral responses and autoimmune Ab secretion.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| | - Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
| | - Bonnie B Blomberg
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
26
|
Benítez‐Muñoz JA, Guisado‐Cuadrado I, Rojo‐Tirado MÁ, Alcocer‐Ayuga M, Romero‐Parra N, Peinado AB, Cupeiro R. Changes in lactate concentration are accompanied by opposite changes in the pattern of fat oxidation: Dose-response relationship. Eur J Sport Sci 2024; 24:1653-1663. [PMID: 39477549 PMCID: PMC11534652 DOI: 10.1002/ejsc.12211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/05/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024]
Abstract
It is unknown whether changes in lactate concentration produced by different situations (e.g., glycogen depletion or heat) modify fat oxidation. If confirmed, we could determine a dose-response relationship between lactate and fat. The aim of this study was to determine whether changes in lactate concentration (due to glycogen depletion or heat) alter fat oxidation during exercise. 11 males and eight females performed an incremental exercise test under three situations: control, glycogen depletion, and heat. At rest, in the last minute of each step and immediately post-exhaustion, lactate was analyzed and fat oxidation was estimated by indirect calorimetry. Lactate concentration was inversely associated with fat oxidation in the three aforementioned situations (r > 0.88 and p < 0.05). The highest lactate concentration was found in the heat situation, followed by the control situation, and finally the glycogen depletion situation (all p < 0.05). The opposite was found for fat oxidation, with the highest fat oxidation found in the glycogen depletion situation, followed by the control situation, and finally the heat situation (all p < 0.05). There is no association between the changes in lactate concentration between situations at each intensity and the changes in fat oxidation between situations at each intensity in males or females (p > 0.05). In conclusion, lactatemia is strongly and inversely associated with fat oxidation under the three different situations. Furthermore, the lowest lactate concentrations were accompanied by the highest fat oxidations in the glycogen depletion situation, whereas the highest lactate concentrations were accompanied by the lowest fat oxidations in the heat situation.
Collapse
Affiliation(s)
- José Antonio Benítez‐Muñoz
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport Science (INEF)Universidad Politécnica de MadridMadridSpain
| | - Isabel Guisado‐Cuadrado
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport Science (INEF)Universidad Politécnica de MadridMadridSpain
| | - Miguel Ángel Rojo‐Tirado
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport Science (INEF)Universidad Politécnica de MadridMadridSpain
| | - María Alcocer‐Ayuga
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport Science (INEF)Universidad Politécnica de MadridMadridSpain
- Olympia Sport & Lifestyle CenterGrupo QuironsaludMadridSpain
| | - Nuria Romero‐Parra
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport Science (INEF)Universidad Politécnica de MadridMadridSpain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical MedicineFaculty of Health SciencesUniversidad Rey Juan CarlosMadridSpain
| | - Ana Belén Peinado
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport Science (INEF)Universidad Politécnica de MadridMadridSpain
| | - Rocío Cupeiro
- LFE Research GroupDepartment of Health and Human PerformanceFaculty of Physical Activity and Sport Science (INEF)Universidad Politécnica de MadridMadridSpain
| |
Collapse
|
27
|
Osmond AD, Leija RG, Arevalo JA, Curl CC, Duong JJ, Huie MJ, Masharani U, Brooks GA. Aging delays the suppression of lipolysis and fatty acid oxidation in the postprandial period. J Appl Physiol (1985) 2024; 137:1200-1219. [PMID: 39236144 PMCID: PMC11563596 DOI: 10.1152/japplphysiol.00437.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024] Open
Abstract
Plasma glycerol and free fatty acid concentrations decrease following oral glucose consumption, but changes in the rate of lipolysis during an oral glucose tolerance test (OGTT) have not been documented in conjunction with changes in fatty acid (FA) oxidation or reesterification rates in healthy individuals. After a 12-h overnight fast, 15 young (21-35 yr; 7 men and 8 women) and 14 older (60-80 yr; 7 men and 7 women) participants had the forearm vein catheterized for primed continuous infusion of [1,1,2,3,3-2H]glycerol. A contralateral hand vein was catheterized for arterialized blood sampling. Indirect calorimetry was performed simultaneously to determine total FA and carbohydrate (CHO) oxidation rates (Rox). Total FA reesterification rates (Rs) were estimated from tracer-measured lipolytic and FA oxidation rates. After a 90-min equilibration period, participants underwent a 120-min, 75-g OGTT. Glycerol rate of appearance (Ra), an index of lipolysis, decreased significantly from baseline 5 min postchallenge in young participants and 30 min in older participants. At 60 min, FA Rox decreased in both groups, but was significantly higher in older participants. Between 5 and 90 min, CHO Rox was significantly lower in older participants. In addition, FA Rs was significantly lower in older participants at 60 and 90 min. The area under the curve (AUC) for FA Rox was greater than that for FA Rs in older, but not in young participants. Our results indicate that, in aging, the postprandial suppression of lipolysis and FA oxidation are delayed such that FA oxidation is favored over CHO oxidation and FA reesterification.NEW & NOTEWORTHY To our knowledge, our investigation is the first to demonstrate changes in lipolysis during an oral glucose tolerance test (OGTT) in healthy young and older individuals. Plasma glycerol and free fatty acid concentrations changed after glycerol rate of appearance (Ra), indicating that plasma concentrations are incomplete surrogates of the lipolytic rate. Moreover, simultaneous determinations of substrate oxidation rates are interpreted to indicate that metabolic inflexibility in aging is characterized by delayed changes in postprandial substrate utilization related to the lipolytic rate.
Collapse
Affiliation(s)
- Adam D Osmond
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Robert G Leija
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Jose A Arevalo
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Casey C Curl
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Justin J Duong
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Melvin J Huie
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Umesh Masharani
- Division of Endocrinology, Department of Medicine, University of California, San Francisco, California, United States
| | - George A Brooks
- Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, California, United States
| |
Collapse
|
28
|
Cai J, Song L, Zhang F, Wu S, Zhu G, Zhang P, Chen S, Du J, Wang B, Cai Y, Yang Y, Wan J, Zhou J, Fan J, Dai Z. Targeting SRSF10 might inhibit M2 macrophage polarization and potentiate anti-PD-1 therapy in hepatocellular carcinoma. Cancer Commun (Lond) 2024; 44:1231-1260. [PMID: 39223929 PMCID: PMC11570766 DOI: 10.1002/cac2.12607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The efficacy of immune checkpoint blockade therapy in patients with hepatocellular carcinoma (HCC) remains poor. Although serine- and arginine-rich splicing factor (SRSF) family members play crucial roles in tumors, their impact on tumor immunology remains unclear. This study aimed to elucidate the role of SRSF10 in HCC immunotherapy. METHODS To identify the key genes associated with immunotherapy resistance, we conducted single-nuclear RNA sequencing, multiplex immunofluorescence, and The Cancer Genome Atlas and Gene Expression Omnibus database analyses. We investigated the biological functions of SRSF10 in immune evasion using in vitro co-culture systems, flow cytometry, various tumor-bearing mouse models, and patient-derived organotypic tumor spheroids. RESULTS SRSF10 was upregulated in various tumors and associated with poor prognosis. Moreover, SRSF10 positively regulated lactate production, and SRSF10/glycolysis/ histone H3 lysine 18 lactylation (H3K18la) formed a positive feedback loop in tumor cells. Increased lactate levels promoted M2 macrophage polarization, thereby inhibiting CD8+ T cell activity. Mechanistically, SRSF10 interacted with the 3'-untranslated region of MYB, enhancing MYB RNA stability, and subsequently upregulating key glycolysis-related enzymes including glucose transporter 1 (GLUT1), hexokinase 1 (HK1), lactate dehydrogenase A (LDHA), resulting in elevated intracellular and extracellular lactate levels. Lactate accumulation induced histone lactylation, which further upregulated SRSF10 expression. Additionally, lactate produced by tumors induced lactylation of the histone H3K18la site upon transport into macrophages, thereby activating transcription and enhancing pro-tumor macrophage activity. M2 macrophages, in turn, inhibited the enrichment of CD8+ T cells and the proportion of interferon-γ+CD8+ T cells in the tumor microenvironment (TME), thus creating an immunosuppressive TME. Clinically, SRSF10 could serve as a biomarker for assessing immunotherapy resistance in various solid tumors. Pharmacological targeting of SRSF10 with a selective inhibitor 1C8 enhanced the efficacy of programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) in both murine and human preclinical models. CONCLUSIONS The SRSF10/MYB/glycolysis/lactate axis is critical for triggering immune evasion and anti-PD-1 resistance. Inhibiting SRSF10 by 1C8 may overcome anti-PD-1 tolerance in HCC.
Collapse
Affiliation(s)
- Jialiang Cai
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Lina Song
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Feng Zhang
- Department of Gastroenterology and HepatologyZhongshan HospitalFudan University, 180 Fenglin RoadShanghaiP. R. China
- Shanghai Institute of Liver DiseaseShanghaiP. R. China
| | - Suiyi Wu
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Guiqi Zhu
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Department of Liver Surgery and TransplantationZhongshan HospitalFudan UniversityShanghaiP. R. China
- Research Unit of Liver Cancer Recurrence and MetastasisChinese Academy of Medical SciencesBeijingP. R. China
| | - Peiling Zhang
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Shiping Chen
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Junxian Du
- Department of general surgeryZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Biao Wang
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Yufan Cai
- Department of general surgeryZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Yi Yang
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghaiP. R. China
| | - Jinglei Wan
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| | - Jian Zhou
- Department of Liver Surgery and TransplantationZhongshan HospitalFudan UniversityShanghaiP. R. China
- Research Unit of Liver Cancer Recurrence and MetastasisChinese Academy of Medical SciencesBeijingP. R. China
| | - Jia Fan
- Department of Liver Surgery and TransplantationZhongshan HospitalFudan UniversityShanghaiP. R. China
- Research Unit of Liver Cancer Recurrence and MetastasisChinese Academy of Medical SciencesBeijingP. R. China
| | - Zhi Dai
- Liver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiP. R. China
- State Key Laboratory of Genetic EngineeringFudan UniversityShanghaiP. R. China
- Key Laboratory of Carcinogenesis and Cancer InvasionFudan UniversityMinistry of EducationShanghaiP. R. China
| |
Collapse
|
29
|
Yao Z, Liang S, Chen J, Zhang H, Chen W, Li H. Dietary Lactate Intake and Physical Exercise Synergistically Reverse Brown Adipose Tissue Whitening to Ameliorate Diet-Induced Obesity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39486070 DOI: 10.1021/acs.jafc.4c06899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Physical exercise represents an effective strategy for combating obesity via brown adipose tissue (BAT) activation, but the mechanism remains unclear. In this study, we demonstrated that the cooperation between lactate and adrenoceptor signaling regulated BAT activity during exercise. The lactate receptor GPR81 was highly expressed in the BAT of lean mice, whereas its expression was markedly decreased in obese mice. Notably, the level of GPR81 in BAT could be upregulated by exercise. The blockade of lactate production or GPR81 significantly impaired exercise-induced BAT activation. In addition, dietary lactate intake enhanced the efficacy of physical exercise in alleviating BAT whitening in obese mice, as evidenced by the improved mitochondrial ultrastructure, reduced lipid droplets, increased UCP1 expression, and elevated mitochondrial DNA content. Further data indicated that norepinephrine triggered UCP1 activation through both the cAMP/PKA and Ca2+/CaMK pathways during exercise, while lactate mediated this process via the GPR81-Ca2+/CaMK cascade. Our findings unveil a novel mechanism in the regulation of BAT function by physical exercise, providing a promising lifestyle intervention to improve metabolic health.
Collapse
Affiliation(s)
- Zhijie Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuxiao Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinxiang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
30
|
Yan P, Yang K, Xu M, Zhu M, Duan Y, Li W, Liu L, Liang C, Li Z, Pan X, Wang L, Yu G. CCT6A alleviates pulmonary fibrosis by inhibiting HIF-1α-mediated lactate production. J Mol Cell Biol 2024; 16:mjae021. [PMID: 38760881 PMCID: PMC11574388 DOI: 10.1093/jmcb/mjae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/03/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal progressive fibrotic lung disease. The development of IPF involves different molecular and cellular processes, and recent studies indicate that lactate plays a significant role in promoting the progression of the disease. Nevertheless, the mechanism by which lactate metabolism is regulated and the downstream effects remain unclear. The molecular chaperone CCT6A performs multiple functions in a variety of biological processes. Our research has identified a potential association between CCT6A and serum lactate levels in IPF patients. Herein, we found that CCT6A was highly expressed in type 2 alveolar epithelial cells (AEC2s) of fibrotic lung tissues and correlated with disease severity. Lactate increases the accumulation of lipid droplets in epithelial cells. CCT6A inhibits lipid synthesis by blocking the production of lactate in AEC2s and alleviates bleomycin-induced pulmonary fibrosis in mice. In addition, our results revealed that CCT6A blocks HIF-1α-mediated lactate production by driving the VHL-dependent ubiquitination and degradation of HIF-1α and further inhibits lipid accumulation in fibrotic lungs. In conclusion, we propose that there is a pivotal regulatory role of CCT6A in lactate metabolism in pulmonary fibrosis, and strategies aimed at targeting these key molecules could represent potential therapeutic approaches for pulmonary fibrosis.
Collapse
Affiliation(s)
- Peishuo Yan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Kun Yang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengwei Xu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Miaomiao Zhu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yudi Duan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Wenwen Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Lulu Liu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Chenxi Liang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Zhongzheng Li
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xin Pan
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, Pingyuan Laboratory, College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
31
|
Clemons HJ, Hogan DJ, Brown PO. Depot-specific mRNA expression programs in human adipocytes suggest physiological specialization via distinct developmental programs. PLoS One 2024; 19:e0311751. [PMID: 39401200 PMCID: PMC11472956 DOI: 10.1371/journal.pone.0311751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/24/2024] [Indexed: 10/17/2024] Open
Abstract
Adipose tissue is distributed in diverse locations throughout the human body. Not much is known about the extent to which anatomically distinct adipose depots are functionally distinct, specialized organs, nor whether depot-specific characteristics result from intrinsic developmental programs, as opposed to reversible physiological responses to differences in tissue microenvironment. We used DNA microarrays to compare mRNA expression patterns of isolated human adipocytes and cultured adipose stem cells, before and after ex vivo adipocyte differentiation, from seven anatomically diverse adipose tissue depots. Adipocytes from different depots display distinct gene expression programs, which are most closely shared with anatomically related depots. mRNAs whose expression differs between anatomically diverse groups of depots (e.g., subcutaneous vs. internal) suggest important functional specializations. These depot-specific differences in gene expression were recapitulated when adipocyte progenitor cells from each site were differentiated ex vivo, suggesting that progenitor cells from specific anatomic sites are deterministically programmed to differentiate into depot-specific adipocytes. Many developmental transcription factors show striking depot-specific patterns of expression, suggesting that adipocytes in each anatomic depot are programmed during early development in concert with anatomically related tissues and organs. Our results support the hypothesis that adipocytes from different depots are functionally distinct and that their depot-specific specialization reflects distinct developmental programs.
Collapse
Affiliation(s)
- Heather J. Clemons
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Daniel J. Hogan
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
32
|
Peng X, He Z, Yuan D, Liu Z, Rong P. Lactic acid: The culprit behind the immunosuppressive microenvironment in hepatocellular carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189164. [PMID: 39096976 DOI: 10.1016/j.bbcan.2024.189164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/05/2024]
Abstract
As a solid tumor with high glycolytic activity, hepatocellular carcinoma (HCC) produces excess lactic acid and increases extracellular acidity, thus forming a unique immunosuppressive microenvironment. L-lactate dehydrogenase (LDH) and monocarboxylate transporters (MCTs) play a very important role in glycolysis. LDH is the key enzyme for lactic acid (LA) production, and MCT is responsible for the cellular import and export of LA. The synergistic effect of the two promotes the formation of an extracellular acidic microenvironment. In the acidic microenvironment of HCC, LA can not only promote the proliferation, survival, transport and angiogenesis of tumor cells but also have a strong impact on immune cells, ultimately leading to an inhibitory immune microenvironment. This article reviews the role of LA in HCC, especially its effect on immune cells, summarizes the progress of LDH and MCT-related drugs, and highlights the potential of immunotherapy targeting lactate combined with HCC.
Collapse
Affiliation(s)
- Xiaopei Peng
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenhu He
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Dandan Yuan
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China
| | - Zhenguo Liu
- Department of Infectious Disease, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Pengfei Rong
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China; Molecular Imaging Research Center, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
33
|
Park SY, Jung SR, Kim JY, Kim YW, Sung HK, Park SY, Doh KO, Koh JH. Lactate promotes fatty acid oxidation by the tricarboxylic acid cycle and mitochondrial respiration in muscles of obese mice. Am J Physiol Cell Physiol 2024; 327:C619-C633. [PMID: 38981606 DOI: 10.1152/ajpcell.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/04/2024] [Accepted: 06/20/2024] [Indexed: 07/11/2024]
Abstract
Lower oxidative capacity in skeletal muscles (SKMs) is a prevailing cause of metabolic diseases. Exercise not only enhances the fatty acid oxidation (FAO) capacity of SKMs but also increases lactate levels. Given that lactate may contribute to tricarboxylic acid cycle (TCA) flux and impact monocarboxylate transporter 1 in the SKMs, we hypothesize that lactate can influence glucose and fatty acid (FA) metabolism. To test this hypothesis, we investigated the mechanism underlying lactate-driven FAO regulation in the SKM of mice with diet-induced obesity (DIO). Lactate was administered to DIO mice immediately after exercise for over 3 wk. We found that increased lactate levels enhanced energy expenditure mediated by fat metabolism during exercise recovery and decreased triglyceride levels in DIO mice SKMs. To determine the lactate-specific effects without exercise, we administered lactate to mice on a high-fat diet (HFD) for 8 wk. Similar to our exercise conditions, lactate increased FAO, TCA cycle activity, and mitochondrial respiration in the SKMs of HFD-fed mice. In addition, under sufficient FA conditions, lactate increased uncoupling protein-3 abundance via the NADH-NAD+ shuttle. Conversely, ATP synthase abundance decreased in the SKMs of HFD mice. Taken together, our results suggest that lactate amplifies the adaptive increase in FAO capacity mediated by the TCA cycle and mitochondrial respiration in SKMs under sufficient FA abundance.NEW & NOTEWORTHY Lactate administration post-exercise promotes triglyceride content loss in skeletal muscles (SKMs) and reduced body weight. Lactate enhances fatty acid oxidation in the SKMs of high-fat diet (HFD)-fed mice due to enhanced mitochondrial oxygen consumption. In addition, lactate restores the malate-aspartate shuttle, which is reduced by a HFD, and activates the tricarboxylic acid cycle (TCA) cycle in SKMs. Interestingly, supraphysiological lactate facilitates uncoupling protein-3 expression through NADH/NAD+, which is enhanced under high-fat levels in SKMs.
Collapse
Affiliation(s)
- Sol-Yi Park
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Su-Ryun Jung
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jong-Yeon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Yong-Woon Kim
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - So-Young Park
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Kyung-Oh Doh
- Department of Physiology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Jin-Ho Koh
- Department of Convergence Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| |
Collapse
|
34
|
Zhu W, Guo S, Sun J, Zhao Y, Liu C. Lactate and lactylation in cardiovascular diseases: current progress and future perspectives. Metabolism 2024; 158:155957. [PMID: 38908508 DOI: 10.1016/j.metabol.2024.155957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Cardiovascular diseases (CVDs) are often linked to structural and functional impairments, such as heart defects and circulatory dysfunction, leading to compromised peripheral perfusion and heightened morbidity risks. Metabolic remodeling, particularly in the context of cardiac fibrosis and inflammation, is increasingly recognized as a pivotal factor in the pathogenesis of CVDs. Metabolic syndromes further predispose individuals to these conditions, underscoring the need to elucidate the metabolic underpinnings of CVDs. Lactate, a byproduct of glycolysis, is now recognized as a key molecule that connects cellular metabolism with the regulation of cellular activity. The transport of lactate between different cells is essential for metabolic homeostasis and signal transduction. Disruptions to lactate dynamics are implicated in various CVDs. Furthermore, lactylation, a novel post-translational modification, has been identified in cardiac cells, where it influences protein function and gene expression, thereby playing a significant role in CVD pathogenesis. In this review, we summarized recent advancements in understanding the role of lactate and lactylation in CVDs, offering fresh insights that could guide future research directions and therapeutic interventions. The potential of lactate metabolism and lactylation as innovative therapeutic targets for CVD is a promising avenue for exploration.
Collapse
Affiliation(s)
- Wengen Zhu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou 510080, PR China.
| | - Siyu Guo
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou 510080, PR China
| | - Junyi Sun
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China
| | - Yudan Zhao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, PR China.
| | - Chen Liu
- Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, PR China; Key Laboratory of Assisted Circulation and Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou 510080, PR China.
| |
Collapse
|
35
|
Romero M, Miller K, Gelsomini A, Garcia D, Li K, Suresh D, Frasca D. Immunometabolic effects of lactate on humoral immunity in healthy individuals of different ages. Nat Commun 2024; 15:7515. [PMID: 39209820 PMCID: PMC11362567 DOI: 10.1038/s41467-024-51207-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Aging is characterized by chronic systemic inflammation and metabolic changes. We compare the metabolic status of B cells from young and elderly donors and found that aging is associated with higher oxygen consumption rates, and especially higher extracellular acidification rates, measures of oxidative phosphorylation and of anaerobic glycolysis, respectively. Importantly, this higher metabolic status, which reflects age-associated expansion of pro-inflammatory B cells, is found associated with higher secretion of lactate and autoimmune antibodies after in vitro stimulation. B cells from elderly individuals induce in vitro polarization of CD4+ T cells from young individuals into pro-inflammatory CD4+ T cells through metabolic pathways mediated by lactate, which can be inhibited by targeting lactate enzymes and transporters, as well as signaling pathways supporting anaerobic glycolysis. Lactate also induces immunosenescent B cells that are glycolytic, express transcripts for multiple pro-inflammatory molecules, and are characterized by a higher metabolic status. These results altogether may have relevant clinical implications and suggest alternative targets for therapeutic interventions in the elderly and patients with inflammatory conditions and diseases.
Collapse
Affiliation(s)
- Maria Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kate Miller
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Gelsomini
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kevin Li
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dhananjay Suresh
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniela Frasca
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
36
|
Keller CR, Martinez SR, Keltz A, Chen M, Li W. Lactate Oxidase Disrupts Lactate-Activated RAS and PI3K Oncogenic Signaling. Cancers (Basel) 2024; 16:2817. [PMID: 39199589 PMCID: PMC11353192 DOI: 10.3390/cancers16162817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
LOX was recently shown to inhibit cancer cell proliferation and tumor growth. The mechanism of this inhibition, however, has been exclusively attributed to LOX depletion of TME lactate, a cancer cell energy source, and production of H2O2, an oxidative stressor. We report that TME lactate triggers the assembly of the lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1)-associated protein complex, which includes GRB2, SOS1, KRAS, GAB1, and PI3K, for the activation of both the RAS and the PI3K oncogenic signaling pathways in breast cancer (BCa) cells. LOX treatment decreased the levels of the proteins in the protein complex via induction of their proteasomal degradation. In addition, LOX inhibited lactate-stimulated expression of the lactate transporters MCT1 and MCT4. Our data suggest that HCAR1 activation by lactate is crucial for the assembly and function of the RAS and PI3K signaling nexus. Shutting down lactate signaling by disrupting this nexus could be detrimental to cancer cells. HCAR1 is therefore a promising target for the control of the RAS and the PI3K signaling required for BCa progression. Thus, our study provides insights into lactate signaling regulation of cancer progression and extends our understanding of LOX's functional mechanisms that are fundamental for exploring its therapeutic potential.
Collapse
Affiliation(s)
- Chandler R. Keller
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Steve R. Martinez
- Department of Surgery, The Everett Clinic, Part of Optum, Everett, WA 98201, USA
- Providence Regional Cancer Partnership, Providence Regional Medical Center, Everett, WA 98201, USA
- Department of Medical Education and Clinical Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Alexys Keltz
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Eastern Washington University, Cheney, WA 99004, USA
| | - Michelle Chen
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
- Ferris High School, Spokane, WA 99223, USA
| | - Weimin Li
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
37
|
Yu J, Du Y, Liu C, Xie Y, Yuan M, Shan M, Li N, Liu C, Wang Y, Qin J. Low GPR81 in ER + breast cancer cells drives tamoxifen resistance through inducing PPARα-mediated fatty acid oxidation. Life Sci 2024; 350:122763. [PMID: 38823505 DOI: 10.1016/j.lfs.2024.122763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
AIMS The intricate molecular mechanisms underlying estrogen receptor-positive (ER+) breast carcinogenesis and resistance to endocrine therapy remain elusive. In this study, we elucidate the pivotal role of GPR81, a G protein-coupled receptor, in ER+ breast cancer (BC) by demonstrating low expression of GPR81 in tamoxifen (TAM)-resistant ER+ BC cell lines and tumor samples, along with the underlying molecular mechanisms. MAIN METHODS Fatty acid oxidation (FAO) levels and lipid accumulation were explored using MDA and FAβO assay, BODIPY 493/503 staining, and Lipid TOX staining. Autophagy levels were assayed using CYTO-ID detection and Western blotting. The impact of GPR81 on TAM resistance in BC was investigated through CCK8 assay, colony formation assay and a xenograft mice model. RESULTS Aberrantly low GPR81 expression in TAM-resistant BC cells disrupts the Rap1 pathway, leading to the upregulation of PPARα and CPT1. This elevation in PPARα/CPT1 enhances FAO, impedes lipid accumulation and lipid droplet (LD) formation, and subsequently inhibits cell autophagy, ultimately promoting TAM-resistant BC cell growth. Moreover, targeting GPR81 and FAO emerges as a promising therapeutic strategy, as the GPR81 agonist and the CPT1 inhibitor etomoxir effectively inhibit ER+ BC cell and tumor growth in vivo, re-sensitizing TAM-resistant ER+ cells to TAM treatment. CONCLUSION Our data highlight the critical and functionally significant role of GPR81 in promoting ER+ breast tumorigenesis and resistance to endocrine therapy. GPR81 and FAO levels show potential as diagnostic biomarkers and therapeutic targets in clinical settings for TAM-resistant ER+ BC.
Collapse
Affiliation(s)
- Jing Yu
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yongjun Du
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yu Xie
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Mengci Yuan
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Meihua Shan
- Department of Clinical Biochemistry, Army Medical University, Chongqing 400038, China
| | - Ning Li
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yue Wang
- School of Medicine, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Hospital of Stomatology, Nankai University, Tianjin 300041, China.
| | - Junfang Qin
- School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
38
|
Wu D, Spencer CB, Ortoga L, Zhang H, Miao C. Histone lactylation-regulated METTL3 promotes ferroptosis via m6A-modification on ACSL4 in sepsis-associated lung injury. Redox Biol 2024; 74:103194. [PMID: 38852200 PMCID: PMC11219935 DOI: 10.1016/j.redox.2024.103194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Elevated lactate levels are a significant biomarker of sepsis and are positively associated with sepsis-related mortality. Sepsis-associated lung injury (ALI) is a leading cause of poor prognosis in clinical patients. However, the underlying mechanisms of lactate's involvement in sepsis-associated ALI remain unclear. In this study, we demonstrate that lactate regulates N6-methyladenosine (m6A) modification levels by facilitating p300-mediated H3K18la binding to the METTL3 promoter site. The METTL3-mediated m6A modification is enriched in ACSL4, and its mRNA stability is regulated through a YTHDC1-dependent pathway. Furthermore, short-term lactate stimulation upregulates ACSL4, which promotes mitochondria-associated ferroptosis. Inhibition of METTL3 through knockdown or targeted inhibition effectively suppresses septic hyper-lactate-induced ferroptosis in alveolar epithelial cells and mitigates lung injury in septic mice. Our findings suggest that lactate induces ferroptosis via the GPR81/H3K18la/METTL3/ACSL4 axis in alveolar epithelial cells during sepsis-associated ALI. These results reveal a histone lactylation-driven mechanism inducing ferroptosis through METTL3-mediated m6A modification. Targeting METTL3 represents a promising therapeutic strategy for patients with sepsis-associated ALI.
Collapse
Affiliation(s)
- Dan Wu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China; Department of Anesthesiology, Shanghai Medical College, Fudan University, China
| | - Charles B Spencer
- Department of Cardiac Surgery, The Ohio State University, Columbus, USA
| | - Lilibeth Ortoga
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China; Department of Anesthesiology, Shanghai Medical College, Fudan University, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China; Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China; Department of Anesthesiology, Shanghai Medical College, Fudan University, China.
| |
Collapse
|
39
|
Rauseo D, Contreras-Baeza Y, Faurand H, Cárcamo N, Suárez R, von Faber-Castell A, Silva F, Mora-González V, Wyss MT, Baeza-Lehnert F, Ruminot I, Alvarez-Navarro C, San Martín A, Weber B, Sandoval PY, Barros LF. Lactate-carried Mitochondrial Energy Overflow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604361. [PMID: 39071354 PMCID: PMC11275747 DOI: 10.1101/2024.07.19.604361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We addressed the question of mitochondrial lactate metabolism using genetically-encoded sensors. The organelle was found to contain a dynamic lactate pool that leads to dose- and time-dependent protein lactylation. In neurons, mitochondrial lactate reported blood lactate levels with high fidelity. The exchange of lactate across the inner mitochondrial membrane was found to be mediated by a high affinity H+-coupled transport system involving the mitochondrial pyruvate carrier MPC. Assessment of electron transport chain activity and determination of lactate flux showed that mitochondria are tonic lactate producers, a phenomenon driven by energization and stimulated by hypoxia. We conclude that an overflow mechanism caps the redox level of mitochondria, while saving energy in the form of lactate.
Collapse
Affiliation(s)
- Daniela Rauseo
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Yasna Contreras-Baeza
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
- Universidad Austral de Chile, Valdivia, Chile
| | - Hugo Faurand
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Nataly Cárcamo
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Raibel Suárez
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Alexandra von Faber-Castell
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland
- Neuroscience Center Zurich, ETH and University Zurich, Switzerland
| | - Franco Silva
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | | | - Matthias T Wyss
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland
- Neuroscience Center Zurich, ETH and University Zurich, Switzerland
| | - Felipe Baeza-Lehnert
- Carl-Ludwig-Institute for Physiology, Faculty of Medicine, University of Leipzig, Germany
| | - Iván Ruminot
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Carlos Alvarez-Navarro
- Instituto de Inmunología, Facultad de Medicina, Universidad Austral de Chile
- Unidad de Proteómica, AUSTRAL-omics, Universidad Austral de Chile
| | - Alejandro San Martín
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University and ETH Zurich, Switzerland
- Neuroscience Center Zurich, ETH and University Zurich, Switzerland
| | - Pamela Y Sandoval
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Valdivia, Chile
| | - L Felipe Barros
- Centro de Estudios Científicos-CECs, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| |
Collapse
|
40
|
Zhi Y, Fan K, Liu S, Hu K, Zan X, Lin L, Yang Y, Gong X, Chen K, Tang L, Li L, Huang J, Zhang S, Zhang L. Deletion of GPR81 activates CREB/Smad7 pathway and alleviates liver fibrosis in mice. Mol Med 2024; 30:99. [PMID: 38982366 PMCID: PMC11234765 DOI: 10.1186/s10020-024-00867-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/24/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Enhanced glycolysis is a crucial metabolic event that drives the development of liver fibrosis, but the molecular mechanisms have not been fully understood. Lactate is the endproduct of glycolysis, which has recently been identified as a bioactive metabolite binding to G-protein-coupled receptor 81 (GPR81). We then questioned whether GPR81 is implicated in the development of liver fibrosis. METHODS The level of GPR81 was determined in mice with carbon tetrachloride (CCl4)-induced liver fibrosis and in transforming growth factor beta 1 (TGF-β1)-activated hepatic stellate cells (HSCs) LX-2. To investigate the significance of GPR81 in liver fibrosis, wild-type (WT) and GPR81 knockout (KO) mice were exposed to CCl4, and then the degree of liver fibrosis was determined. In addition, the GPR81 agonist 3,5-dihydroxybenzoic acid (DHBA) was supplemented in CCl4-challenged mice and TGF-β1-activated LX-2 cells to further investigate the pathological roles of GPR81 on HSCs activation. RESULTS CCl4 exposure or TGF-β1 stimulation significantly upregulated the expression of GPR81, while deletion of GPR81 alleviated CCl4-induced elevation of aminotransferase, production of pro-inflammatory cytokines, and deposition of collagen. Consistently, the production of TGF-β1, the expression of alpha-smooth muscle actin (α-SMA) and collagen I (COL1A1), as well as the elevation of hydroxyproline were suppressed in GPR81 deficient mice. Supplementation with DHBA enhanced CCl4-induced liver fibrogenesis in WT mice but not in GPR81 KO mice. DHBA also promoted TGF-β1-induced LX-2 activation. Mechanistically, GPR81 suppressed cAMP/CREB and then inhibited the expression of Smad7, a negative regulator of Smad3, which resulted in increased phosphorylation of Smad3 and enhanced activation of HSCs. CONCLUSION GPR81 might be a detrimental factor that promotes the development of liver fibrosis by regulating CREB/Smad7 pathway.
Collapse
Affiliation(s)
- Ying Zhi
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Kerui Fan
- Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Anatomy, Basic Medical College, Chongqing Medical University, Chongqing, China
| | - Shuang Liu
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Kai Hu
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Xinyan Zan
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Ling Lin
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Yongqiang Yang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Xianqiong Gong
- Hepatology Center, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Kun Chen
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Li Tang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Longjiang Li
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Jiayi Huang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Li Zhang
- Department of Pathophysiology, Basic Medical College, Chongqing Medical University, 1 Yixueyuan Road, Chongqing, 400016, China.
- Laboratory of Integrated Traditional and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, China.
| |
Collapse
|
41
|
Yao S, Chai H, Tao T, Zhang L, Yang X, Li X, Yi Z, Wang Y, An J, Wen G, Jin H, Tuo B. Role of lactate and lactate metabolism in liver diseases (Review). Int J Mol Med 2024; 54:59. [PMID: 38785162 PMCID: PMC11188982 DOI: 10.3892/ijmm.2024.5383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/22/2024] [Indexed: 05/25/2024] Open
Abstract
Lactate is a byproduct of glycolysis, and before the Warburg effect was revealed (in which glucose can be fermented in the presence of oxygen to produce lactate) it was considered a metabolic waste product. At present, lactate is not only recognized as a metabolic substrate that provides energy, but also as a signaling molecule that regulates cellular functions under pathophysiological conditions. Lactylation, a post‑translational modification, is involved in the development of various diseases, including inflammation and tumors. Liver disease is a major health challenge worldwide. In normal liver, there is a net lactate uptake caused by gluconeogenesis, exhibiting a higher net lactate clearance rate compared with any other organ. Therefore, abnormalities of lactate and lactate metabolism lead to the development of liver disease, and lactate and lactate metabolism‑related genes can be used for predicting the prognosis of liver disease. Targeting lactate production, regulating lactate transport and modulating lactylation may be potential treatment approaches for liver disease. However, currently there is not a systematic review that summarizes the role of lactate and lactate metabolism in liver diseases. In the present review, the role of lactate and lactate metabolism in liver diseases including liver fibrosis, non‑alcoholic fatty liver disease, acute liver failure and hepatocellular carcinoma was summarized with the aim to provide insights for future research.
Collapse
Affiliation(s)
- Shun Yao
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hongyu Chai
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Ting Tao
- Department of Burns and Plastic Surgery, Fuling Hospital, Chongqing University, Chongqing 408099, P.R. China
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xingyue Yang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xin Li
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Zhiqiang Yi
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Jiaxin An
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Guorong Wen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
42
|
Lecoutre S, Maqdasy S, Rizo-Roca D, Renzi G, Vlassakev I, Alaeddine LM, Higos R, Jalkanen J, Zhong J, Zareifi DS, Frendo-Cumbo S, Massier L, Hodek O, Juvany M, Moritz T, de Castro Barbosa T, Omar-Hmeadi M, López-Yus M, Merabtene F, Abatan JB, Marcelin G, El Hachem EJ, Rouault C, Bergo MO, Petrus P, Zierath JR, Clément K, Krook A, Mejhert N, Rydén M. Reduced adipocyte glutaminase activity promotes energy expenditure and metabolic health. Nat Metab 2024; 6:1329-1346. [PMID: 39009762 PMCID: PMC11272588 DOI: 10.1038/s42255-024-01083-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 06/14/2024] [Indexed: 07/17/2024]
Abstract
Glutamine and glutamate are interconverted by several enzymes and alterations in this metabolic cycle are linked to cardiometabolic traits. Herein, we show that obesity-associated insulin resistance is characterized by decreased plasma and white adipose tissue glutamine-to-glutamate ratios. We couple these stoichiometric changes to perturbed fat cell glutaminase and glutamine synthase messenger RNA and protein abundance, which together promote glutaminolysis. In human white adipocytes, reductions in glutaminase activity promote aerobic glycolysis and mitochondrial oxidative capacity via increases in hypoxia-inducible factor 1α abundance, lactate levels and p38 mitogen-activated protein kinase signalling. Systemic glutaminase inhibition in male and female mice, or genetically in adipocytes of male mice, triggers the activation of thermogenic gene programs in inguinal adipocytes. Consequently, the knockout mice display higher energy expenditure and improved glucose tolerance compared to control littermates, even under high-fat diet conditions. Altogether, our findings highlight white adipocyte glutamine turnover as an important determinant of energy expenditure and metabolic health.
Collapse
Affiliation(s)
- Simon Lecoutre
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Salwan Maqdasy
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - David Rizo-Roca
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Gianluca Renzi
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Ivan Vlassakev
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Lynn M Alaeddine
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Romane Higos
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Jutta Jalkanen
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Jiawei Zhong
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Danae S Zareifi
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Scott Frendo-Cumbo
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Lucas Massier
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Ondrej Hodek
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Marta Juvany
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas Moritz
- Swedish Metabolomics Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- The Novo Nordisk Foundation Centre for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thais de Castro Barbosa
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Muhmmad Omar-Hmeadi
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Marta López-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Zaragoza, Spain
- Instituto Aragonés de Ciencias de La Salud (IACS), Zaragoza, Spain
- Instituto de Investigación Sanitaria (IIS)-Aragón, Zaragoza, Spain
| | - Fatiha Merabtene
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Jimon Boniface Abatan
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Geneviève Marcelin
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Elie-Julien El Hachem
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Christine Rouault
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
| | - Martin O Bergo
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Paul Petrus
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Juleen R Zierath
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Karine Clément
- Nutrition and Obesities: Systemic Approaches Research Group, NutriOmics, Sorbonne Université, INSERM, Paris, France
- Nutrition Department, Assistance Publique Hôpitaux de Paris, CRNH Ile-de-France, Pitié-Salpêtrière Hospital, Paris, France
| | - Anna Krook
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Niklas Mejhert
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden.
| | - Mikael Rydén
- Department of Medicine (Huddinge), Karolinska Institutet, ME Endokrinologi, Karolinska University Hospital Huddinge, Huddinge, Sweden.
| |
Collapse
|
43
|
Zhang L, Xin C, Wang S, Zhuo S, Zhu J, Li Z, Liu Y, Yang L, Chen Y. Lactate transported by MCT1 plays an active role in promoting mitochondrial biogenesis and enhancing TCA flux in skeletal muscle. SCIENCE ADVANCES 2024; 10:eadn4508. [PMID: 38924407 PMCID: PMC11204292 DOI: 10.1126/sciadv.adn4508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Once considered as a "metabolic waste," lactate is now recognized as a major fuel for tricarboxylic acid (TCA) cycle. Our metabolic flux analysis reveals that skeletal muscle mainly uses lactate to fuel TCA cycle. Lactate is transported through the cell membrane via monocarboxylate transporters (MCTs) in which MCT1 is highly expressed in the muscle. We analyzed how MCT1 affects muscle functions using mice with specific deletion of MCT1 in skeletal muscle. MCT1 deletion enhances running performance, increases oxidative fibers while decreasing glycolytic fibers, and enhances flux of glucose to TCA cycle. MCT1 deficiency increases the expression of mitochondrial proteins, augments cell respiration rate, and elevates mitochondrial activity in the muscle. Mechanistically, the protein level of PGC-1α, a master regulator of mitochondrial biogenesis, is elevated upon loss of MCT1 via increases in cellular NAD+ level and SIRT1 activity. Collectively, these results demonstrate that MCT1-mediated lactate shuttle plays a key role in regulating muscle functions by modulating mitochondrial biogenesis and TCA flux.
Collapse
Affiliation(s)
| | | | - Shuo Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Shixuan Zhuo
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Jing Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Zi Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Yuyi Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | | | - Yan Chen
- Corresponding author. (Y.C.); (L.Y.)
| |
Collapse
|
44
|
Kiselova-Kaneva Y, Vankova D, Kolev N, Kalinov T, Zlatarov A, Komosinska-Vassev K, Olczyk P, Yaneva G, Slavova S, Ivanov K, Ivanova D. Plasma Uric Acid, Lactate, and Osmolality in Colorectal Cancer. APPLIED SCIENCES 2024; 14:5630. [DOI: 10.3390/app14135630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
A complex evaluation of colorectal cancer (CRC) in relation to screening, diagnosis, stage determination, prognosis, and treatment requires valuable biomarkers. The aim of this study was to measure selected biomarkers—uric acid (UA), lactate, Na+, Cl−, and osmolality—in CRC patients and to assess their diagnostic value to distinguish between CRC and healthy controls. Plasma lactate (2.21 ± 0.11 vs. 2.88 ± 0.19, p < 0.01), Na+ (130.79 ± 0.42 vs. 133.23 ± 0.25, p < 0.001), Cl− (102.59 ± 0.45 vs. 103.94 ± 0.23, p < 0.01), and osmolality (266.44 ± 0.86 vs. 271.72 ± 0.62, p < 0.001) were found to be significantly lower in CRC patients as compared to the healthy controls group. Among them, with satisfactory diagnostic potential, were plasma Na+ concentrations and osmolality (AUCNa+ = 0.752, p < 0.0001; AUCosmolality = 0.757, p < 0.05), respectively. UA concentrations were detected at higher concentrations in CRC patients (333.67 ± 13.05 vs. 295.88 ± 13.78, p < 0.05). The results of this study contribute to the elucidation of molecular mechanisms of CRC pathogenesis and the role of studied metabolic parameters in this process. Plasma uric acid, lactate, and osmolality parameters can be used for screening and monitoring colorectal cancer. Further studies are required to elucidate the molecular mechanisms of their action in cancer development. The action of circulating plasma lactate may be different from those locally produced in the tumor microenvironment.
Collapse
Affiliation(s)
- Yoana Kiselova-Kaneva
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria
| | - Deyana Vankova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria
| | - Nikola Kolev
- Department of General and Operative Surgery, Faculty of Medicine, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria
| | - Turgay Kalinov
- Department of General and Operative Surgery, Faculty of Medicine, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria
| | - Alexandar Zlatarov
- Department of General and Operative Surgery, Faculty of Medicine, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria
| | - Katarzyna Komosinska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostics, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Pawel Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
| | - Galina Yaneva
- Department of Biology, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria
| | - Svetla Slavova
- Department of Biology, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria
| | - Krasimir Ivanov
- Department of General and Operative Surgery, Faculty of Medicine, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria
| | - Diana Ivanova
- Department of Biochemistry, Molecular Medicine and Nutrigenomics, Faculty of Pharmacy, Medical University “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria
| |
Collapse
|
45
|
Zhao J, Jin D, Huang M, Ji J, Xu X, Wang F, Zhou L, Bao B, Jiang F, Xu W, Lu X, Xiao M. Glycolysis in the tumor microenvironment: a driver of cancer progression and a promising therapeutic target. Front Cell Dev Biol 2024; 12:1416472. [PMID: 38933335 PMCID: PMC11199735 DOI: 10.3389/fcell.2024.1416472] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Even with sufficient oxygen, tumor cells use glycolysis to obtain the energy and macromolecules they require to multiply, once thought to be a characteristic of tumor cells known as the "Warburg effect". In fact, throughout the process of carcinogenesis, immune cells and stromal cells, two major cellular constituents of the tumor microenvironment (TME), also undergo thorough metabolic reprogramming, which is typified by increased glycolysis. In this review, we provide a full-scale review of the glycolytic remodeling of several types of TME cells and show how these TME cells behave in the acidic milieu created by glucose shortage and lactate accumulation as a result of increased tumor glycolysis. Notably, we provide an overview of putative targets and inhibitors of glycolysis along with the viability of using glycolysis inhibitors in combination with immunotherapy and chemotherapy. Understanding the glycolytic situations in diverse cells within the tumor immunological milieu will aid in the creation of subsequent treatment plans.
Collapse
Affiliation(s)
- Junpeng Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Dandan Jin
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Mengxiang Huang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Jie Ji
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Xuebing Xu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Fei Wang
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| | - Lirong Zhou
- Department of Clinical Medicine, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Baijun Bao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Feng Jiang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
| | - Weisong Xu
- Department of Gastroenterology, Affiliated Nantong Rehabilitation Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xiaomin Lu
- Department of Oncology Affiliated Haian Hospital of Nantong University, Nantong, Jiangsu, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China
- Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
46
|
Yao Z, Liang S, Chen J, Dai Y, Zhang H, Li H, Chen W. A Combination of Exercise and Yogurt Intake Protects Mice against Obesity by Synergistic Promotion of Adipose Browning. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38857171 DOI: 10.1021/acs.jafc.4c00982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Exercise exerts many beneficial effects on obesity, but the mechanism remains elusive. Here, we report a previously unidentified role of the lactate receptor GPR81 in exercise. We observed that GPR81 was significantly up-regulated in white adipose tissues (WAT) upon exercise training in both lean and obese mice. Exercise could induce thermogenesis and beige adipocyte development, whereas such an effect was markedly impaired by the deficiency of GPR81. Furthermore, the activation of GPR81 by exercise and lactate supplementation (250 or 500 mg/kg) yielded a synergistic enhancement of WAT browning and thermogenesis. Yogurt is a dairy product enriched with lactate. A combination of exercise and yogurt intake (20 g/kg) synergistically protected mice against high-fat-diet-induced obesity, as evidenced by decreased body weight, ameliorative dyslipidemia, improved glucose tolerance, and reduced hepatic steatosis. Mechanistically, lactate-GPR81 axis might aid in the norepinephrine-stimulated beige adipocyte biogenesis cascade via the Ca2+/CaMK pathway. Together, these findings reveal the critical role of lactate-GPR81 signaling in exercise-induced WAT browning and provide a new strategy for personalized diet and lifestyle interventions for obesity management.
Collapse
Affiliation(s)
- Zhijie Yao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuxiao Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jinxiang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yufeng Dai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Haitao Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
47
|
Fang Y, Li Z, Yang L, Li W, Wang Y, Kong Z, Miao J, Chen Y, Bian Y, Zeng L. Emerging roles of lactate in acute and chronic inflammation. Cell Commun Signal 2024; 22:276. [PMID: 38755659 PMCID: PMC11097486 DOI: 10.1186/s12964-024-01624-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/20/2024] [Indexed: 05/18/2024] Open
Abstract
Traditionally, lactate has been considered a 'waste product' of cellular metabolism. Recent findings have shown that lactate is a substance that plays an indispensable role in various physiological cellular functions and contributes to energy metabolism and signal transduction during immune and inflammatory responses. The discovery of lactylation further revealed the role of lactate in regulating inflammatory processes. In this review, we comprehensively summarize the paradoxical characteristics of lactate metabolism in the inflammatory microenvironment and highlight the pivotal roles of lactate homeostasis, the lactate shuttle, and lactylation ('lactate clock') in acute and chronic inflammatory responses from a molecular perspective. We especially focused on lactate and lactate receptors with either proinflammatory or anti-inflammatory effects on complex molecular biological signalling pathways and investigated the dynamic changes in inflammatory immune cells in the lactate-related inflammatory microenvironment. Moreover, we reviewed progress on the use of lactate as a therapeutic target for regulating the inflammatory response, which may provide a new perspective for treating inflammation-related diseases.
Collapse
Affiliation(s)
- Yunda Fang
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhengjun Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lili Yang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jingwen Library, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Wen Li
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yutong Wang
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ziyang Kong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Jia Miao
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanqi Chen
- School of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yaoyao Bian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- School of Acupuncture-Moxibustion and Tuina, ·School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- TCM Rehabilitation Center, Jiangsu Second Chinese Medicine Hospital, Nanjing, 210023, China.
| | - Li Zeng
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, 999078, China.
| |
Collapse
|
48
|
Benarroch E. What Is the Role of Lactate in Brain Metabolism, Plasticity, and Neurodegeneration? Neurology 2024; 102:e209378. [PMID: 38574305 DOI: 10.1212/wnl.0000000000209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/06/2024] Open
|
49
|
Borges K. The Benefits of "Spoilt Milk": Lactic Acid Can Limit Excitability via HCAR1. Epilepsy Curr 2024; 24:206-208. [PMID: 38898908 PMCID: PMC11185210 DOI: 10.1177/15357597241249037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Glycolysis Regulates Neuronal Excitability via Lactate Receptor, HCA1R Skwarzynska D, Sun H, Williamson J, Kasprzak I, Kapur J. Brain. 2023;146:1888-1902. doi: 10.1093/brain/awac419 Repetitively firing neurons during seizures accelerate glycolysis to meet energy demand, which leads to the accumulation of extracellular glycolytic by-product lactate. Here, we demonstrate that lactate rapidly modulates neuronal excitability in times of metabolic stress via the hydroxycarboxylic acid receptor type 1 (HCA1R) to modify seizure activity. The extracellular lactate concentration, measured by a biosensor, rose quickly during brief and prolonged seizures. In two epilepsy models, mice lacking HCA1R (lactate receptor) were more susceptible to developing seizures. Moreover, HCA1R deficient (knockout) mice developed longer and more severe seizures than wild-type littermates. Lactate perfusion decreased tonic and phasic activity of CA1 pyramidal neurons in genetically encoded calcium indicator 7 imaging experiments. HCA1R agonist 3-chloro-5-hydroxybenzoic acid (3CL-HBA) reduced the activity of CA1 neurons in HCA1R WT but not in knockout mice. In patch-clamp recordings, both lactate and 3CL-HBA hyperpolarized CA1 pyramidal neurons. HCA1R activation reduced the spontaneous excitatory postsynaptic current frequency and altered the paired-pulse ratio of evoked excitatory postsynaptic currents in HCA1R wild-type but not in knockout mice, suggesting it diminished presynaptic release of excitatory neurotransmitters. Overall, our studies demonstrate that excessive neuronal activity accelerates glycolysis to generate lactate, which translocates to the extracellular space to slow neuronal firing and inhibit excitatory transmission via HCA1R. These studies may identify novel anticonvulsant target and seizure termination mechanisms.
Collapse
Affiliation(s)
- Karin Borges
- Department of Pharmacology, The University of Queensland
| |
Collapse
|
50
|
Li C, Szeto CC. Urinary podocyte markers in diabetic kidney disease. Kidney Res Clin Pract 2024; 43:274-286. [PMID: 38325865 PMCID: PMC11181047 DOI: 10.23876/j.krcp.23.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 02/09/2024] Open
Abstract
Podocytes are involved in maintaining kidney function and are a major focus of research on diabetic kidney disease (DKD). Urinary biomarkers derived from podocyte fragments and molecules have been proposed for the diagnosis and monitoring of DKD. Various methods have been used to detect intact podocytes and podocyte-derived microvesicles in urine, including centrifugation, visualization, and molecular quantification. Quantification of podocyte-specific protein targets and messenger RNA levels can be performed by Western blotting or enzyme-linked immunosorbent assay and quantitative polymerase chain reaction, respectively. At present, many of these techniques are expensive and labor-intensive, all limiting their widespread use in routine clinical tests. While the potential of urinary podocyte markers for monitoring and risk stratification of DKD has been explored, systematic studies and external validation are lacking in the current literature. Standardization and automation of laboratory methods should be a priority for future research, and the added value of these methods to routine clinical tests should be defined.
Collapse
Affiliation(s)
- Chuanlei Li
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Cheuk-Chun Szeto
- Carol & Richard Yu Peritoneal Dialysis Research Centre, Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|