1
|
Beldjoudi G, Bosson F, Bernard V, Puel LM, Martel-Lafay I, Ayadi M, Tanguy R. Harmonization of dose prescription for lung stereotactic radiotherapy. Phys Imaging Radiat Oncol 2022; 24:65-70. [PMID: 36213173 PMCID: PMC9535417 DOI: 10.1016/j.phro.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Doses standardization achieved between dedicated linac and robotic-assisted unit. Both methods delivered 3×18.3 Gy to the near minimum dose of the tumor volume. Four-Dimensional deformable method allowed to estimate dose to a mobile tumor. The reliability of a double-check software using a Monte-Carlo algorithm was validated. Gross Tumor Volume-based prescription presented less dose heterogeneities to the tumor. Background and purpose Pulmonary stereotactic treatments can be performed using dedicated linear accelerators as well as robotic-assisted units, and different strategies can be used for dose prescription. This study aimed to compare the doses received by the tumor with a gross tumor volume (GTV)-based prescription on D98%GTV using a robotic-assisted unit (method A) and planning target volume (PTV)-based prescription on D95%PTV using a dedicated linac (method B). Material & methods Plans of 32 patients were collected for method A, and a dose of 3 × 18 Gy was prescribed using type A algorithm and recalculated using a Monte-Carlo (MC) algorithm. The plans were normalized to match D98%GTV with the mean D98%GTV¯ of the cohort. The plans of 23 patients were collected for method B, and a dose of 3 × 18 Gy was prescribed to D95%PTV using a MC algorithm. A 4D-sum method was developed to estimate doses for PTV and GTV. For validation, all plans were recalculated using an independent MC double-check software. A dose harmonization on D98% GTV was determined for both methods. Results For method A, mean doses were D2%GTV = 59.9 ± 2.1 Gy, D50%GTV = 55.6 ± 1.2 Gy, D98%GTV = 49.5 ± 0.0 Gy. For method B, the reported doses were D2%GTV = 64.6 ± 2.1 Gy, D50%GTV = 62.8 ± 1.7 Gy, and D98%GTV = 60.0 ± 1.7 Gy. The dose trade-off of D98%GTV = 55 Gy was obtained for both methods. For method A, it corresponded to a dose prescription of 3 × 20 Gy using type A algorithm, followed by rescaling to obtain D98%GTV = 55 Gy. For method B, it corresponded to a dose prescription of D95%PTV = 3 × 16.5 Gy using the MC algorithm. Conclusions This study determined similar near-minimum doses D98% GTV of approximately 3 × 18.3 Gy (55 Gy) using a GTV-based prescription on a robotic-assisted unit (method A) and a PTV-based prescription on a dedicated linac (method B).
Collapse
|
2
|
Eriguchi T, Takeda A, Nemoto T, Tsurugai Y, Sanuki N, Tateishi Y, Kibe Y, Akiba T, Inoue M, Nagashima K, Horita N. Relationship between Dose Prescription Methods and Local Control Rate in Stereotactic Body Radiotherapy for Early Stage Non-Small-Cell Lung Cancer: Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:3815. [PMID: 35954478 PMCID: PMC9367274 DOI: 10.3390/cancers14153815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Variations in dose prescription methods in stereotactic body radiotherapy (SBRT) for early stage non-small-cell lung cancer (ES-NSCLC) make it difficult to properly compare the outcomes of published studies. We conducted a comprehensive search of the published literature to summarize the outcomes by discerning the relationship between local control (LC) and dose prescription sites. We systematically searched PubMed to identify observational studies reporting LC after SBRT for peripheral ES-NSCLC. The correlations between LC and four types of biologically effective doses (BED) were evaluated, which were calculated from nominal, central, and peripheral prescription points and, from those, the average BED. To evaluate information on SBRT for peripheral ES-NSCLC, 188 studies were analyzed. The number of relevant articles increased over time. The use of an inhomogeneity correction was mentioned in less than half of the articles, even among the most recent. To evaluate the relationship between the four BEDs and LC, 33 studies were analyzed. Univariate meta-regression revealed that only the central BED significantly correlated with the 3-year LC of SBRT for ES-NSCLC (p = 0.03). As a limitation, tumor volume, which might affect the results of this study, could not be considered due to a lack of data. In conclusion, the central dose prescription is appropriate for evaluating the correlation between the dose and LC of SBRT for ES-NSCLC. The standardization of SBRT dose prescriptions is desirable.
Collapse
Affiliation(s)
- Takahisa Eriguchi
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Atsuya Takeda
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Takafumi Nemoto
- Department of Radiation Oncology, Keio University Hospital, Shinjuku, Tokyo 160-8582, Japan
| | - Yuichiro Tsurugai
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Naoko Sanuki
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Yudai Tateishi
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Yuichi Kibe
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Takeshi Akiba
- Department of Radiation Oncology, Tokai University Hachioji Hospital, Hachioji 192-0032, Japan
| | - Mari Inoue
- Department of Respiratory Medicine, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Shinjuku, Tokyo 160-8582, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama 236-0004, Japan
| |
Collapse
|
3
|
Mueller M, Poulsen P, Hansen R, Verbakel W, Berbeco R, Ferguson D, Mori S, Ren L, Roeske JC, Wang L, Zhang P, Keall P. The markerless lung target tracking AAPM Grand Challenge (MATCH) results. Med Phys 2022; 49:1161-1180. [PMID: 34913495 PMCID: PMC8828678 DOI: 10.1002/mp.15418] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Lung stereotactic ablative body radiotherapy (SABR) is a radiation therapy success story with level 1 evidence demonstrating its efficacy. To provide real-time respiratory motion management for lung SABR, several commercial and preclinical markerless lung target tracking (MLTT) approaches have been developed. However, these approaches have yet to be benchmarked using a common measurement methodology. This knowledge gap motivated the MArkerless lung target Tracking CHallenge (MATCH). The aim was to localize lung targets accurately and precisely in a retrospective in silico study and a prospective experimental study. METHODS MATCH was an American Association of Physicists in Medicine sponsored Grand Challenge. Common materials for the in silico and experimental studies were the experiment setup including an anthropomorphic thorax phantom with two targets within the lungs, and a lung SABR planning protocol. The phantom was moved rigidly with patient-measured lung target motion traces, which also acted as ground truth motion. In the retrospective in silico study a volumetric modulated arc therapy treatment was simulated and a dataset consisting of treatment planning data and intra-treatment kilovoltage (kV) and megavoltage (MV) images for four blinded lung motion traces was provided to the participants. The participants used their MLTT approach to localize the moving target based on the dataset. In the experimental study, the participants received the phantom experiment setup and five patient-measured lung motion traces. The participants used their MLTT approach to localize the moving target during an experimental SABR phantom treatment. The challenge was open to any participant, and participants could complete either one or both parts of the challenge. For both the in silico and experimental studies the MLTT results were analyzed and ranked using the prospectively defined metric of the percentage of the tracked target position being within 2 mm of the ground truth. RESULTS A total of 30 institutions registered and 15 result submissions were received, four for the in silico study and 11 for the experimental study. The participating MLTT approaches were: Accuray CyberKnife (2), Accuray Radixact (2), BrainLab Vero, C-RAD, and preclinical MLTT (5) on a conventional linear accelerator (Varian TrueBeam). For the in silico study the percentage of the 3D tracking error within 2 mm ranged from 50% to 92%. For the experimental study, the percentage of the 3D tracking error within 2 mm ranged from 39% to 96%. CONCLUSIONS A common methodology for measuring the accuracy of MLTT approaches has been developed and used to benchmark preclinical and commercial approaches retrospectively and prospectively. Several MLTT approaches were able to track the target with sub-millimeter accuracy and precision. The study outcome paves the way for broader clinical implementation of MLTT. MATCH is live, with datasets and analysis software being available online at https://www.aapm.org/GrandChallenge/MATCH/ to support future research.
Collapse
Affiliation(s)
- Marco Mueller
- Corresponding author; Room 221, ACRF Image X institute, 1 Central Ave, Eveleigh NSW 2015, Australia; +61 2 8627 1106,
| | - Per Poulsen
- Danish Center for Particle Therapy and Department of Oncology, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Rune Hansen
- Department of Medical Physics, Aarhus University Hospital, Aarhus 8200, Denmark
| | - Wilko Verbakel
- Amsterdam University Medical Centers, location VUmc, Amsterdam 1081 HV, Netherlands
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA
| | | | - Shinichiro Mori
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-0024, Japan
| | - Lei Ren
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - John C. Roeske
- Department of Radiation Oncology, Loyola University Medical Center, Maywood, IL 60153, USA
| | - Lei Wang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pengpeng Zhang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center New York, NY, USA
| | - Paul Keall
- ACRF Image X Institute, The University of Sydney, Sydney, NSW 2015, Australia
| |
Collapse
|
4
|
CEYLAN C, HAMAMCI A, AYATA H, BERBEROĞLU K, GÜNDOĞDU Ö, ENGİN K. Erken Evre Küçük Hücreli Dışı Akciğer Kanserlerinin Tedavisinde Robotik Radyocerrahi. KOCAELI ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2021. [DOI: 10.30934/kusbed.760034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
5
|
Claude L, Morelle M, Mahé MA, Pasquier D, Boisselier P, Bondiau PY, Touboul E, Peignaux-Casasnovas K, Martel-Lafay I, Gassa F, Perrier L, Dussart S, Beckendorf V. A comparison of two modalities of stereotactic body radiation therapy for peripheral early-stage non-small cell lung cancer: results of a prospective French study. Br J Radiol 2020; 93:20200256. [PMID: 32970478 DOI: 10.1259/bjr.20200256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES This prospective, observational, non-randomized multicentric study was conducted to compare efficiency and toxicity using different modalities of stereotactic body radiation therapy (SBRT) in early-stage peripheral non-small cell lung cancer (NSCLC). METHODS From 9 April to 11 December, 106 patients were treated according to the local equipment availability for peripheral NSCLC with SBRT: 68 by linear accelerator equipped for SBRT and 38 by Cyberknife®. Multivariate analysis and propensity score analysis using Inverse Probability Treatment Weighting (IPTW) were undertaken in an effort to adjust for potential bias due to non-randomization. RESULTS 2-year local control rates were 97.0% (95% CI: [90.6%; 99.4%]) with SBRT by Linac vs 100% (95% CI: ([100%; 100%]) with Cyberknife® (p = 0.2839). 2-year PFS and 2-year OS rates were 52.7% (95% CI [39.9%;64.0%]) versus 54.1% (95% CI [36.8; 68.6%]) (p = 0.8582) and 65.1% (95% CI: [51.9%; 75.5%] versus 83.9% (95% CI: [67.5%; 92.4%] (p = 0.0831) using Linac and Cyberknife® respectively. Multivariate regression analysis indicates no significant effect of SBRT treatment type on PFS or OS. Local relapse could not be modeled due to the small number of events (n = 2). Acute and late toxicity rates were not significantly different. After IPTW adjustment, results were unchanged. CONCLUSIONS No difference in efficiency or toxicity was shown after SBRT of peripheral NSCLC treatment using Linac or Cyberknife®. ADVANCES IN KNOWLEDGE This is the first large prospective non-randomized study focusing on peripheral localized NSCLC comparing SBRT using an appropriately equipped linac with Cyberknife®. No significant difference in efficiency or toxicity was shown in this situation.
Collapse
Affiliation(s)
- Line Claude
- Radiation Therapy Department, Léon Bérard Cancer Center, Lyon, France
| | - Magali Morelle
- Univ Lyon, Centre Léon Bérard, Lyon, France.,Clinical Research and Innovation Direction, Centre Léon Bérard, Lyon, France
| | - Marc-André Mahé
- Radiation Therapy Department, Institut de Cancérologie de l'Ouest - René Gauducheau, SaintHerblain, France
| | - David Pasquier
- Academic Department of Radiation Therapy, Oscar Lambret Center, Lille University, Lille, France.,CRISTAL UMR CNRS 9189, Lille, France
| | - Pierre Boisselier
- Radiation Therapy Department, Val d'Aurelle-Paul Lamarque Cancer Center, Montpellier, France
| | | | | | | | | | - Frederic Gassa
- Radiation Therapy Department, Léon Bérard Cancer Center, Lyon, France
| | - Lionel Perrier
- Univ Lyon, Centre Léon Bérard, Lyon, France.,Clinical Research and Innovation Direction, Centre Léon Bérard, Lyon, France
| | - Sophie Dussart
- Clinical Research and Innovation Direction, Centre Léon Bérard, Lyon, France
| | - Veronique Beckendorf
- Université de Lorraine, Vandœuvre-lès-Nancy, France.,Département de radiothérapie, Institut de Cancérologie deLorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
6
|
Ijsseldijk MA, Shoni M, Siegert C, Wiering B, van Engelenburg AKC, Tsai TC, Ten Broek RPG, Lebenthal A. Oncologic Outcomes of Surgery Versus SBRT for Non-Small-Cell Lung Carcinoma: A Systematic Review and Meta-analysis. Clin Lung Cancer 2020; 22:e235-e292. [PMID: 32912754 DOI: 10.1016/j.cllc.2020.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The optimal treatment of stage I non-small-cell lung carcinoma is subject to debate. The aim of this study was to compare overall survival and oncologic outcomes of lobar resection (LR), sublobar resection (SR), and stereotactic body radiotherapy (SBRT). METHODS A systematic review and meta-analysis of oncologic outcomes of propensity matched comparative and noncomparative cohort studies was performed. Outcomes of interest were overall survival and disease-free survival. The inverse variance method and the random-effects method for meta-analysis were utilized to assess the pooled estimates. RESULTS A total of 100 studies with patients treated for clinical stage I non-small-cell lung carcinoma were included. Long-term overall and disease-free survival after LR was superior over SBRT in all comparisons, and for most comparisons, SR was superior to SBRT. Noncomparative studies showed superior long-term overall and disease-free survival for both LR and SR over SBRT. Although the papers were heterogeneous and of low quality, results remained essentially the same throughout a large number of stratifications and sensitivity analyses. CONCLUSION Results of this systematic review and meta-analysis showed that LR has superior outcomes compared to SBRT for cI non-small-cell lung carcinoma. New trials are underway evaluating long-term results of SBRT in potentially operable patients.
Collapse
Affiliation(s)
- Michiel A Ijsseldijk
- Division of Surgery, Slingeland Ziekenhuis, Doetinchem, The Netherlands; Division of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Melina Shoni
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Charles Siegert
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA; Division of Thoracic Surgery, West Roxbury Veterans Administration, West Roxbury, MA
| | - Bastiaan Wiering
- Division of Surgery, Slingeland Ziekenhuis, Doetinchem, The Netherlands
| | | | - Thomas C Tsai
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Richard P G Ten Broek
- Division of Surgery, Slingeland Ziekenhuis, Doetinchem, The Netherlands; Division of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Abraham Lebenthal
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA; Division of Thoracic Surgery, West Roxbury Veterans Administration, West Roxbury, MA; Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Galpayage Dona KNU, Shang C, Leventouri T. Dosimetric Comparison of Treatment Plans Computed With Finite Size Pencil Beam and Monte Carlo Algorithms Using the InCise™ Multileaf Collimator-Equipped Cyberknife ® System. J Med Phys 2020; 45:7-15. [PMID: 32355430 PMCID: PMC7185708 DOI: 10.4103/jmp.jmp_64_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/02/2019] [Accepted: 11/19/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose: InCise™ multileaf collimator (MLC) was introduced for CyberKnife® (CK) Robotic Radiosurgery System (CK-MLC) in 2015, and finite size pencil beam (FSPB) was the only available dose computation algorithm for treatment plans of CK-MLC system. The more advanced Monte Carlo (MC) dose calculation algorithm of lnCise™ was initially released in 2017 for the CK Precision™ treatment planning system (TPS) (v1.1) with new graphic processing unit (GPU) platform. GPU based TPS of the CK offers more accurate, faster treatment planning time and intuitive user interface with smart three-dimensional editing tools and fully automated autosegmentation tools. The MC algorithm used in CK TPS simulates the energy deposited by each individual photon and secondary particles to calculate more accurate dose. In the present study, the dose disparities between MC and FSPB algorithms for selected Stereotactic Ablative Radiation Therapy (SABR) CK-MLC treatment plans are quantified. Materials and Methods: A total of 80 CK-MLC SABR plans computed with FSPB were retrospectively reviewed and compared with MC computed results, including plans for detached lung cancer (or tumors fully surrounded by lung tissues, n = 21), nondetached lung cancer (or tumor touched the chest wall or mediastinum, n = 23), intracranial (n = 21), and pancreas lesions (n = 15). Dosimetric parameters of each planning target volume and major organs at risk (OAR) are compared in terms of normalized percentage deviations (Ndev). Results: This study revealed an average of 24.4% overestimated D95 values in plans using FSPB over MC for detached lung (n = 21) and 14.9% for nondetached lung (n = 23) lesions. No significant dose differences are found in intracranial (0.3%, n = 21) and pancreatic (0.9%, n = 15) cases. Furthermore, no significant differences were found in Ndev of OARs. Conclusion: In this study, it was found that FSPB overestimates dose to inhomogeneous treatment sites. This indicates, the employment of MC algorithm in CK-MLC-based lung SABR treatment plans is strongly suggested.
Collapse
Affiliation(s)
| | - Charles Shang
- Department of Physics, Florida Atlantic University, Boca Raton, Florida, USA.,South Florida Proton Therapy Institute, Delray Beach, Florida, USA
| | - Theodora Leventouri
- Department of Physics, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
8
|
Alaswad M, Kleefeld C, Foley M. Optimal tumour control for early-stage non-small-cell lung cancer: A radiobiological modelling perspective. Phys Med 2019; 66:55-65. [DOI: 10.1016/j.ejmp.2019.09.074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 12/25/2022] Open
|
9
|
Abstract
The world is embracing the information age, with real-time data at hand to assist with many decisions. Similarly, in cancer radiotherapy we are inexorably moving toward using information in a smarter and faster fashion, to usher in the age of real-time adaptive radiotherapy. The three critical steps of real-time adaptive radiotherapy, aligned with driverless vehicle technology are a continuous see, think, and act loop. See: use imaging systems to probe the patient anatomy or physiology as it evolves with time. Think: use current and prior information to optimize the treatment using the available adaptive degrees of freedom. Act: deliver the real-time adapted treatment. This paper expands upon these three critical steps for real-time adaptive radiotherapy, provides a historical context, reviews the clinical rationale, and gives a future outlook for real-time adaptive radiotherapy.
Collapse
Affiliation(s)
- Paul Keall
- ACRF Image X Institute, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
| | - Per Poulsen
- Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Jeremy T Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital and Institute of Medical Physics, School of Physics, University of Sydney, Sydney Australia
| |
Collapse
|
10
|
IJsseldijk MA, Shoni M, Siegert C, Wiering B, van Engelenburg KCA, Lebenthal A, Ten Broek RPG. Survival After Stereotactic Body Radiation Therapy for Clinically Diagnosed or Biopsy-Proven Early-Stage NSCLC: A Systematic Review and Meta-Analysis. J Thorac Oncol 2019; 14:583-595. [PMID: 30721798 DOI: 10.1016/j.jtho.2018.12.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Stereotactic body radiation therapy (SBRT) is a promising curative treatment for early-stage NSCLC. It is unclear if survival outcomes for SBRT are influenced by a lack of pathological confirmation of malignancy and staging of disease in these patients. In this systematic review and meta-analysis, we assess survival outcomes after SBRT in studies with patients with clinically diagnosed versus biopsy-proven early-stage NSCLC. METHODS The main databases were searched for trials and cohort studies without restrictions to publication status or language. Two independent researchers performed the screening and selection of eligible studies. Outcomes were overall survival, cancer-specific survival, and disease-free survival. The inverse variance method and the random effects method for meta-analysis were used to assess pooled survival estimates. RESULTS A total of 11,195 nonduplicate records were identified by the original search strategy. After screening by title and abstract, 1051 potentially eligible records were identified. A total of 43 articles were included. The comparative studies showed lower 3-year overall survival and lower 2-year and 5-year cancer-specific survival for biopsy-proven disease compared to clinical disease. However, 5-year overall survival was the same for both groups. For the pooled estimates, 3-year disease-free survival and 2-year cancer-specific survival were lower for biopsied disease. CONCLUSIONS Results of this systematic review and meta-analysis show a discrepancy in oncological outcomes for patients undergoing SBRT for suspected early-stage NSCLC in whom there is pathologic conformation of malignancy and those who there is only a clinical diagnose of NSCLC. These results emphasize the importance of obtaining pathologic proof of malignancy.
Collapse
Affiliation(s)
- Michiel A IJsseldijk
- Division of Surgery, Slingeland Ziekenhuis, Doetinchem, Gelderland, Netherlands; Division of Surgery, Radboud University Medical Centre, Nijmegen, Netherlands.
| | - Melina Shoni
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts; Division of Thoracic Surgery, West Roxbury Veterans Administration, West Roxbury, Massachusetts
| | - Charles Siegert
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts
| | - Bastiaan Wiering
- Division of Surgery, Slingeland Ziekenhuis, Doetinchem, Gelderland, Netherlands
| | | | - Abraham Lebenthal
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, Massachusetts; Division of Thoracic Surgery, West Roxbury Veterans Administration, West Roxbury, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Richard P G Ten Broek
- Division of Surgery, Slingeland Ziekenhuis, Doetinchem, Gelderland, Netherlands; Division of Surgery, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
11
|
Awano N, Ikushima S, Izumo T, Tone M, Fukuda K, Miyamoto S, Bae Y, Kumasaka T, Terada Y, Furuhata Y, Nomura R, Sato K. Efficacy and safety of stereotactic body radiotherapy using CyberKnife in Stage I primary lung tumor. Jpn J Clin Oncol 2017; 47:969-975. [DOI: 10.1093/jjco/hyx100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/27/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
- Nobuyasu Awano
- Department of Respiratory Medicine, Japanese Red Cross Medical Center
| | - Soichiro Ikushima
- Department of Respiratory Medicine, Japanese Red Cross Medical Center
| | - Takehiro Izumo
- Department of Respiratory Medicine, Japanese Red Cross Medical Center
| | - Mari Tone
- Department of Respiratory Medicine, Japanese Red Cross Medical Center
| | - Kensuke Fukuda
- Department of Respiratory Medicine, Japanese Red Cross Medical Center
| | - Shingo Miyamoto
- Department of Medical Oncology, Japanese Red Cross Medical Center
| | - Yuan Bae
- Department of Pathology, Japanese Red Cross Medical Center
| | | | - Yuriko Terada
- Department of Thoracic Surgery, Japanese Red Cross Medical Center
| | | | - Ryutaro Nomura
- CyberKnife Center, Japanese Red Cross Medical Center, Tokyo, Japan
| | - Kengo Sato
- CyberKnife Center, Japanese Red Cross Medical Center, Tokyo, Japan
| |
Collapse
|
12
|
Jumeau R, Filion É, Bahig H, Vu T, Lambert L, Roberge D, Doucet R, Campeau MP. A dosimetric parameter to limit chest wall toxicity in SABR of NSCLC. Br J Radiol 2017; 90:20170196. [PMID: 28590814 DOI: 10.1259/bjr.20170196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Chest wall (CW) toxicity (rib fracture and/or pain) is a recognized complication of stereotactic ablative radiotherapy (SABR) for non-small-cell lung cancer. The aim of this study was to evaluate the frequency of CW toxicity following SABR and to propose a new dosimetric parameter. METHODS We reviewed the charts and SABR plans from patients treated for T1-T2N0 peripheral non-small-cell lung cancer between 2009 and 2015. The CW structure was created through a 3-cm expansion of the lung. The median dose delivered to the planning target volume was 60 Gy. SABR was delivered in three fractions for patients with CW V30 < 30 cm3. If the CW V30 exceeded 30 cm3, five fractions were used, and the plan was optimized based on CW V37 (biologically equivalent to the V30 of three-fraction plans). RESULTS In 6 years, 361 lesions from 356 patients were treated (3 fractions: 297; 5 fractions: 64). The median follow-up was 16 months. 23 patients (6.5%) developed CW toxicity after a median time of 10 months following treatment. The mean CW V30/V37 was 21 cm3 for patients with CW toxicity and 17 cm3 for patients without toxicity (p < 0.05). The 2-year local control and the CW toxicity rates were similar, whether patients received three or five fractions (97% vs 96% and 7% vs 5%). CONCLUSION When the CW V30 is >30 cm3, altered fractionation combined with V37 optimization can limit CW toxicity. Advances in knowledge: The CW V37 is a suggested dosimetric parameter adapted to fractionation that may potentially limit CW toxicity after lung SABR.
Collapse
Affiliation(s)
- Raphaël Jumeau
- 1 Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Édith Filion
- 1 Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Houda Bahig
- 1 Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Toni Vu
- 1 Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Louise Lambert
- 1 Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - David Roberge
- 1 Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Robert Doucet
- 2 Department of Radiation Physics, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Marie-Pierre Campeau
- 1 Department of Radiation Oncology, Centre hospitalier de l'Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
13
|
Chi A, Chen H, Wen S, Yan H, Liao Z. Comparison of particle beam therapy and stereotactic body radiotherapy for early stage non-small cell lung cancer: A systematic review and hypothesis-generating meta-analysis. Radiother Oncol 2017; 123:346-354. [PMID: 28545956 DOI: 10.1016/j.radonc.2017.05.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 03/28/2017] [Accepted: 05/05/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE To assess hypo-fractionated particle beam therapy (PBT)'s efficacy relative to that of photon stereotactic body radiotherapy (SBRT) for early stage (ES) non-small cell lung cancer (NSCLC). METHODS Eligible studies were identified through extensive searches of the PubMed, Medline, Google-scholar, and Cochrane library databases from 2000 to 2016. Original English publications of ES NSCLC were included. A meta-analysis was performed to compare the survival outcome, toxicity profile, and patterns of failure following each treatment. RESULTS 72 SBRT studies and 9 hypo-fractionated PBT studies (mostly single-arm) were included. PBT was associated with improved overall survival (OS; p=0.005) and progression-free survival (PFS; p=0.01) in the univariate meta-analysis. The OS benefit did not reach its statistical significance after inclusion of operability into the final multivariate meta-analysis (p=0.11); while the 3-year local control (LC) still favored PBT (p=0.03). CONCLUSION Although hypo-fractionated PBT may lead to additional clinical benefit when compared with photon SBRT, no statistically significant survival benefit from PBT over SBRT was observed in the treatment of ES NSCLC in this hypothesis-generating meta-analysis after adjusting for potential confounding variables.
Collapse
Affiliation(s)
- Alexander Chi
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, China.
| | - Haiquan Chen
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, China
| | - Sijin Wen
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, USA.
| | - Haijuan Yan
- Department of Biostatistics, School of Public Health, West Virginia University, Morgantown, USA
| | - Zhongxing Liao
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, USA
| |
Collapse
|
14
|
Janvary ZL, Jansen N, Baart V, Devillers M, Dechambre D, Lenaerts E, Seidel L, Barthelemy N, Berkovic P, Gulyban A, Lakosi F, Horvath Z, Coucke PA. Clinical Outcomes of 130 Patients with Primary and Secondary Lung Tumors treated with Cyberknife Robotic Stereotactic Body Radiotherapy. Radiol Oncol 2017; 51:178-186. [PMID: 28740453 PMCID: PMC5514658 DOI: 10.1515/raon-2017-0015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/27/2017] [Indexed: 12/25/2022] Open
Abstract
Background Authors report clinical outcomes of patients treated with robotic stereotactic body radiotherapy (SBRT) for primary, recurrent and metastatic lung lesions. Patients and methods 130 patients with 160 lesions were treated with Cyberknife SBRT, including T1-3 primary lung cancers (54%), recurrent tumors (22%) and pulmonary metastases (24%). The mean biologically equivalent dose (BED10Gy) was 151 Gy (72–180 Gy). Median prescribed dose for peripheral and central lesions was 3×20 Gy and 3×15 Gy, respectively. Local control (LC), overall survival (OS), and cause-specific survival (CSS) rates, early and late toxicities are reported. Statistical analysis was performed to identify factors influencing local tumor control. Results Median follow-up time was 21 months. In univariate analysis, higher dose was associated with better LC and a cut-off value was detected at BED10Gy ≤ 112.5 Gy, resulting in 1-, 2-, and 3-year actuarial LC rates of 93%, vs 73%, 80% vs 61%, and 63% vs 54%, for the high and low dose groups, respectively (p = 0.0061, HR = 0.384). In multivariate analysis, metastatic origin, histological confirmation and larger Planning Target Volume (PTV) were associated with higher risk of local failure. Actuarial OS and CSS rates at 1, 2, and 3 years were 85%, 74% and 62%, and 93%, 89% and 80%, respectively. Acute and late toxicities ≥ Gr 3 were observed in 3 (2%) and 6 patients (5%), respectively. Conclusions Our favorable LC and survival rates after robotic SBRT, with low rates of severe toxicities, are coherent with the literature data in this mixed, non-selected study population.
Collapse
Affiliation(s)
- Zsolt Levente Janvary
- Division of Radiotherapy, Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nicolas Jansen
- Department of Radiation Oncology, Liege University Hospital, Liege, Belgium
| | - Veronique Baart
- Department of Radiation Oncology, Liege University Hospital, Liege, Belgium
| | - Magali Devillers
- Department of Radiation Oncology, Liege University Hospital, Liege, Belgium
| | - David Dechambre
- Department of Radiation Oncology, Liege University Hospital, Liege, Belgium
| | - Eric Lenaerts
- Department of Radiation Oncology, Liege University Hospital, Liege, Belgium
| | - Laurence Seidel
- Department of Biostatistics, Liege University Hospital, Liege, Belgium
| | - Nicole Barthelemy
- Department of Radiation Oncology, Liege University Hospital, Liege, Belgium
| | - Patrick Berkovic
- Department of Radiation Oncology, Liege University Hospital, Liege, Belgium
| | - Akos Gulyban
- Department of Radiation Oncology, Liege University Hospital, Liege, Belgium
| | - Ferenc Lakosi
- Department of Radiation Oncology, Liege University Hospital, Liege, Belgium
| | - Zsolt Horvath
- Division of Radiotherapy, Department of Clinical Oncology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Philippe A Coucke
- Department of Radiation Oncology, Liege University Hospital, Liege, Belgium
| |
Collapse
|
15
|
Park SH, Kim JC, Kang MK. Technical advances in external radiotherapy for hepatocellular carcinoma. World J Gastroenterol 2016; 22:7311-7321. [PMID: 27621577 PMCID: PMC4997637 DOI: 10.3748/wjg.v22.i32.7311] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/21/2016] [Accepted: 07/21/2016] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy techniques have substantially improved in the last two decades. After the introduction of 3-dimensional conformal radiotherapy, radiotherapy has been increasingly used for the treatment of hepatocellular carcinoma (HCC). Currently, more advanced techniques, including intensity-modulated radiotherapy (IMRT), stereotactic ablative body radiotherapy (SABR), and charged particle therapy, are used for the treatment of HCC. IMRT can escalate the tumor dose while sparing the normal tissue even though the tumor is large or located near critical organs. SABR can deliver a very high radiation dose to small HCCs in a few fractions, leading to high local control rates of 84%-100%. Various advanced imaging modalities are used for radiotherapy planning and delivery to improve the precision of radiotherapy. These advanced techniques enable the delivery of high dose radiotherapy for early to advanced HCCs without increasing the radiation-induced toxicities. However, as there have been no effective tools for the prediction of the response to radiotherapy or recurrences within or outside the radiation field, future studies should focus on selecting the patients who will benefit from radiotherapy.
Collapse
|
16
|
Lischalk JW, Woo SM, Kataria S, Aghdam N, Paydar I, Repka MC, Anderson ED, Collins BT. Long-term outcomes of stereotactic body radiation therapy (SBRT) with fiducial tracking for inoperable stage I non-small cell lung cancer (NSCLC). ACTA ACUST UNITED AC 2016; 5:379-387. [PMID: 28018523 PMCID: PMC5149392 DOI: 10.1007/s13566-016-0273-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/10/2016] [Indexed: 12/25/2022]
Abstract
Background Stereotactic body radiation therapy (SBRT) for stage I non-small cell lung cancer (NSCLC) is considered standard of care in the medically inoperable patient population. Multiple methods of SBRT delivery exist including fiducial-based tumor tracking, which allows for smaller treatment margins and avoidance of patient immobilization devices. We explore the long-term clinical outcomes of this novel fiducial-based SBRT method. Methods In this single institutional retrospective review, we detail the outcomes of medically inoperable pathologically confirmed stage I NSCLC. Patients were treated with the Cyberknife SBRT system using a planning target volume (PTV) defined as a 5-mm expansion from gross tumor volume (GTV) without creation of an internal target volume (ITV). Dose was delivered in three or five equal fractions of 10 to 20 Gy. Pretreatment and posttreatment pulmonary function test (PFT) changes and evidence of late radiological rib fractures were analyzed for the majority of patients. Actuarial local control, locoregional control, distant control, and overall survival were calculated using the Kaplan-Meier method. Results Sixty-one patients with a median age of 75 years were available for analysis. The majority (80 %) of patients were deemed to be medically inoperable due to underlying pulmonary dysfunction. Eleven patients (18 %) developed symptomatic pneumothoraces secondary to fiducial placement under CT guidance, which precipitously dropped to 0 % following transition to bronchoscopic fiducial placement. The 2-year rib fracture risk was 21.4 % with a median time to rib fracture of 2.9 years. PFTs averaged over all patients and parameters demonstrated small absolute declines, 5.7 % averaged PFT decline, at approximately 1 year of follow-up, but only the diffusing capacity of lung for carbon monoxide (DLCO) demonstrated a statistically significant decline (10.29 vs. 9.01 mL/min/mmHg, p = 0.01). Five-year local control, locoregional control, and overall survival were 87.6, 71.8, and 39.3 %, respectively. Conclusions Despite reduced treatment margins and lack of patient immobilization, SBRT with fiducial-based tumor tracking achieves clinically comparable long-term outcomes to other linac-based SBRT approaches.
Collapse
Affiliation(s)
- Jonathan W Lischalk
- Department of Radiation Medicine, Georgetown University Hospital, Lower Level Bles, 3800 Reservoir Road, N.W, Washington, DC 20007 USA
| | - Stephanie M Woo
- Department of Radiation Medicine, Georgetown University Hospital, Lower Level Bles, 3800 Reservoir Road, N.W, Washington, DC 20007 USA
| | - Shaan Kataria
- Department of Radiation Medicine, Georgetown University Hospital, Lower Level Bles, 3800 Reservoir Road, N.W, Washington, DC 20007 USA
| | - Nima Aghdam
- Department of Radiation Medicine, Georgetown University Hospital, Lower Level Bles, 3800 Reservoir Road, N.W, Washington, DC 20007 USA
| | - Ima Paydar
- Department of Radiation Medicine, Georgetown University Hospital, Lower Level Bles, 3800 Reservoir Road, N.W, Washington, DC 20007 USA
| | - Michael C Repka
- Department of Radiation Medicine, Georgetown University Hospital, Lower Level Bles, 3800 Reservoir Road, N.W, Washington, DC 20007 USA
| | - Eric D Anderson
- Division of Pulmonary, Critical Care, and Sleep Medicine, Georgetown University Hospital, Pasquerilla Healthcare Center, 5th floor, 3800 Reservoir Road, N.W., Washington, DC 20007 USA
| | - Brian T Collins
- Department of Radiation Medicine, Georgetown University Hospital, Lower Level Bles, 3800 Reservoir Road, N.W, Washington, DC 20007 USA
| |
Collapse
|
17
|
Treatment of Peripheral Non-Small Cell Lung Carcinoma with Stereotactic Body Radiation Therapy. J Thorac Oncol 2016; 10:1261-1267. [PMID: 26291009 DOI: 10.1097/jto.0000000000000610] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Stereotactic body radiation therapy (SBRT) is an effective and well-tolerated noninvasive treatment for medically inoperable patients with peripheral non-small cell lung carcinoma. The term "peripheral" refers to lesions that lie 2 cm or more from the mediastinum and proximal bronchial tree and was instituted based on results from a specific dose and fractionation schedule. Improvements in immobilization, respiratory motion management, and image guidance have allowed for SBRT's highly conformal and accurate delivery of large radiation doses per fraction. Results from prospective and retrospective studies suggest that lung SBRT has superior outcomes when compared with conventionally fractionated treatments and is comparable with surgical resection. Investigations into the optimal SBRT dosing regimen for peripheral lesions are ongoing, with recent trials suggesting comparable efficacy between single and multiple fraction schedules. Chest wall toxicity after peripheral treatment is common, but it usually resolves with conservative management. Pneumonitis is less often observed after treatment of peripheral lesions, and changes in pulmonary function tests are minimal. Studies in the frail and elderly suggest that neither baseline pulmonary function tests nor age should preclude treatment. Recent technical developments have reduced delivery time and resulted in more conformal treatments. This review is on behalf of the IASLC Advanced Radiation Technology Committee.
Collapse
|
18
|
Santiago A, Barczyk S, Jelen U, Engenhart-Cabillic R, Wittig A. Challenges in radiobiological modeling: can we decide between LQ and LQ-L models based on reviewed clinical NSCLC treatment outcome data? Radiat Oncol 2016; 11:67. [PMID: 27154064 PMCID: PMC4859978 DOI: 10.1186/s13014-016-0643-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/27/2016] [Indexed: 01/31/2023] Open
Abstract
Aim To study the dose-response of stage I non-small-cell lung cancer (NSCLC) in terms of long-term local tumor control (LC) after conventional and hypofractionated photon radiotherapy, modeled with the linear-quadratic (LQ) and linear-quadratic-linear (LQ-L) approaches and to estimate the clinical α/β ratio within the LQ frame. Material and methods We identified studies of curative radiotherapy as single treatment through MedLine search reporting 3-year LC as primary outcome of interest. Logistic models coupled with the biologically effective dose (BED) at isocenter and PTV edge according to both the LQ and LQ-L models with α/β = 10 Gy were fitted. Additionally, α/β was estimated from direct LQ fits. Results Thirty one studies were included reporting outcome of 2319 patients. The LQ-L fit yielded a significant value of 11.0 ± 5.2 Gy for the dose threshold (Dt) for BED10 at the isocenter. The LQ and LQ-L fits did not differ substantially. Concerning the estimation of α/β, the value obtained from the direct LQ fit for the complete fractionation range was 3.9 [68 % CI: 2.2–9.0] Gy (p > 0.05). Conclusion Both LQ and LQ-L fits can model local tumor control after conventionally and hypofractionated irradiation and are robust methods for predicting clinical effects. The observed dose-effect for local control in NSCLC is weaker at high doses due to data dispersion. For BED10 values of 100–150 Gy in ≥3 fractions, the differences in isoeffects predicted by both models can be neglected. Electronic supplementary material The online version of this article (doi:10.1186/s13014-016-0643-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alina Santiago
- Department of Radiotherapy and Radiation Oncology, University Hospital Giessen and Marburg, Philipps-University Marburg, Baldingerstrasse, Marburg, 35043, Germany.
| | - Steffen Barczyk
- Department of Radiotherapy and Radiation Oncology, University Hospital Giessen and Marburg, Philipps-University Marburg, Baldingerstrasse, Marburg, 35043, Germany.,Present address: Gemeinschaftspraxis Strahlentherapie am St. Agnes Hospital, Bocholt, Germany
| | - Urszula Jelen
- Department of Radiotherapy and Radiation Oncology, University Hospital Giessen and Marburg, Philipps-University Marburg, Baldingerstrasse, Marburg, 35043, Germany.,Present address: Marburger Ionenstrahl-Therapiezentrum MIT, Marburg, Germany
| | - Rita Engenhart-Cabillic
- Department of Radiotherapy and Radiation Oncology, University Hospital Giessen and Marburg, Philipps-University Marburg, Baldingerstrasse, Marburg, 35043, Germany
| | - Andrea Wittig
- Department of Radiotherapy and Radiation Oncology, University Hospital Giessen and Marburg, Philipps-University Marburg, Baldingerstrasse, Marburg, 35043, Germany
| |
Collapse
|
19
|
Song JH, Kang KM, Choi HS, Jeong H, Ha IB, Lee JD, Kim HC, Jeong YY, Cho YJ, Lee SJ, Kim SH, Jang IS, Jeong BK. Comparing the clinical outcomes in stereotactic body radiotherapy for lung tumors between Ray-Tracing and Monte-Carlo algorithms. Oncotarget 2016; 7:19045-19053. [PMID: 26544622 PMCID: PMC4951350 DOI: 10.18632/oncotarget.5992] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/13/2015] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The purpose of this study was to compare the clinical outcomes between the groups using Ray-Tracing (RAT) and Monte-Carlo (MC) calculation algorithms for stereotactic body radiotherapy (SBRT) of lung tumors. MATERIALS AND METHODS Thirty-five patients received SBRT with CyberKnife for 47 primary or metastatic lung tumors. RAT was used for 22 targets in 12 patients, and MC for 25 targets in 23 patients. Total dose of 48 to 60 Gy was prescribed in 3 to 5 fractions on median 80% isodose line. The response rate, local control rate, and toxicities were compared between RAT and MC groups. RESULTS The response rate was lower in the RAT group (77.3%) compared to the MC group (100%) (p = 0.008). The response rates showed an association with the mean dose to the gross tumor volume, which the doses were re-calculated with MC algorithm in both groups. However, the local control rate and toxicities did not differ between the groups. CONCLUSIONS The clinical outcome and toxicity of lung SBRT between the RAT and MC groups were similar except for the response rate when the same apparent doses were prescribed. The lower response rate in the RAT group, however, did not compromise the local control rates. As such, reducing the prescription dose for MC algorithm may be performed but done with caution.
Collapse
Affiliation(s)
- Jin Ho Song
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Ki Mun Kang
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Hoon-Sik Choi
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hojin Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - In Bong Ha
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jong Deog Lee
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Ho Cheol Kim
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Yi Yeong Jeong
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Yu Ji Cho
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Seung Jun Lee
- Department of Internal Medicine, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Sung Hwan Kim
- Department of Thoracic and Cardiovascular Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - In-Seok Jang
- Department of Thoracic and Cardiovascular Surgery, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Bae Kwon Jeong
- Department of Radiation Oncology, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, Republic of Korea
- Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
20
|
Goggin LM, Descovich M, McGuinness C, Shiao S, Pouliot J, Park C. Dosimetric Comparison Between 3-Dimensional Conformal and Robotic SBRT Treatment Plans for Accelerated Partial Breast Radiotherapy. Technol Cancer Res Treat 2015; 15:437-45. [DOI: 10.1177/1533034615601280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 07/22/2015] [Indexed: 12/31/2022] Open
Abstract
Accelerated partial breast irradiation is an attractive alternative to conventional whole breast radiotherapy for selected patients. Recently, CyberKnife has emerged as a possible alternative to conventional techniques for accelerated partial breast irradiation. In this retrospective study, we present a dosimetric comparison between 3-dimensional conformal radiotherapy plans and CyberKnife plans using circular (Iris) and multi-leaf collimators. Nine patients who had undergone breast-conserving surgery followed by whole breast radiation were included in this retrospective study. The CyberKnife planning target volume (PTV) was defined as the lumpectomy cavity + 10 mm + 2 mm with prescription dose of 30 Gy in 5 fractions. Two sets of 3-dimensional conformal radiotherapy plans were created, one used the same definitions as described for CyberKnife and the second used the RTOG-0413 definition of the PTV: lumpectomy cavity + 15 mm + 10 mm with prescription dose of 38.5 Gy in 10 fractions. Using both PTV definitions allowed us to compare the dose delivery capabilities of each technology and to evaluate the advantage of CyberKnife tracking. For the dosimetric comparison using the same PTV margins, CyberKnife and 3-dimensional plans resulted in similar tumor coverage and dose to critical structures, with the exception of the lung V5%, which was significantly smaller for 3-dimensional conformal radiotherapy, 6.2% when compared to 39.4% for CyberKnife-Iris and 17.9% for CyberKnife-multi-leaf collimator. When the inability of 3-dimensional conformal radiotherapy to track motion is considered, the result increased to 25.6%. Both CyberKnife-Iris and CyberKnife-multi-leaf collimator plans demonstrated significantly lower average ipsilateral breast V50% (25.5% and 24.2%, respectively) than 3-dimensional conformal radiotherapy (56.2%). The CyberKnife plans were more conformal but less homogeneous than the 3-dimensional conformal radiotherapy plans. Approximately 50% shorter treatment times and 50% lower number of delivered monitor units (MU) were achievable with CyberKnife-multi-leaf collimator than with CyberKnife-Iris. The CyberKnife-multi-leaf collimator treatment times were comparable to 3-dimensional conformal radiotherapy, however, the number of MU delivered was approximately 2.5 times larger. The suitability of 10 + 2 mm margins warrants further investigation.
Collapse
Affiliation(s)
- L. M. Goggin
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| | - M. Descovich
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| | - C. McGuinness
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| | - S. Shiao
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| | - J. Pouliot
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| | - C. Park
- Department of Radiation Oncology, University of California San Francisco, CA, USA
| |
Collapse
|
21
|
Abstract
In this review, image guidance and motion management in radiotherapy for lung cancer is discussed. Motion characteristics of lung tumours and image guidance techniques to obtain motion information are elaborated. Possibilities for management of image guidance and motion in the various steps of the treatment chain are explained, including imaging techniques and beam delivery techniques. Clinical studies using different motion management techniques are reviewed, and finally future directions for image guidance and motion management are outlined.
Collapse
Affiliation(s)
- S S Korreman
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| |
Collapse
|
22
|
Hagmeyer L, Priegnitz C, Kocher M, Schilcher B, Budach W, Treml M, Stieglitz S, Randerath W. Fiducial marker placement via conventional or electromagnetic navigation bronchoscopy (ENB): an interdisciplinary approach to the curative management of lung cancer. CLINICAL RESPIRATORY JOURNAL 2014; 10:291-7. [PMID: 25308297 DOI: 10.1111/crj.12214] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/29/2014] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND AIMS Conventional and electromagnetic navigation bronchoscopy (ENB) is generally used as a diagnostic tool in suspicious pulmonary nodules. The use of this technique for the placement of fiducial markers in patients with inoperable but early-stage lung cancer could present an innovative approach enabling risk-reduced therapy. METHODS We present seven clinical cases where conventional bronchoscopy and ENB were used as part of an experimental interdisciplinary approach to clinical management and therapy planning. In each case, we analyzed the clinical indication, endoscopic procedures and post-interventional outcome. RESULTS In six patients (three females, three males) with peripheral non-small cell lung cancer (NSCLC), stage cT1cN0cM0, surgery and conventional stereotactic radiation therapy was not possible because of end-stage chronic obstructive pulmonary disease. ENB was used for fiducial marker placement prior to cyberknife radiotherapy. No procedure-related complications were observed. Complete remission could be achieved in four cases, partial remission in two cases and no relevant complications induced by radiotherapy were observed. In one male patient, an endoluminal relapse in the right lower lobe was diagnosed following a right upper lobe resection for a NSCLC. The tumor could not be clearly identified by computerized tomography, so that the bronchoscopic placement of a fiducial marker in the tumor was performed in order to allow stereotactic radiochemotherapy, by which complete remission could be achieved. CONCLUSION Fiducial marker placement may be an interesting bronchoscopic technique in the interdisciplinary therapeutic approach to inoperable early-stage lung cancer. In the described cases, therapy planning was successful and no procedure-related complications were observed.
Collapse
Affiliation(s)
- Lars Hagmeyer
- Klinik für Pneumologie und Allergologie, Zentrum für Schlaf- und Beatmungsmedizin, Krankenhaus Bethanien, Solingen, Germany
| | - Christina Priegnitz
- Klinik für Pneumologie und Allergologie, Zentrum für Schlaf- und Beatmungsmedizin, Krankenhaus Bethanien, Solingen, Germany
| | - Martin Kocher
- Klinik und Poliklinik für Strahlentherapie, Universitätsklinik Köln, Köln, Germany
| | - Burkhart Schilcher
- Klinik für Strahlentherapie und Radioonkologie, Klinikum Stadt Soest, Soest, Germany
| | - Wilfried Budach
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, Universitätsklinikum Düsseldorf, Düsseldorf, Germany
| | - Marcel Treml
- Klinik für Pneumologie und Allergologie, Zentrum für Schlaf- und Beatmungsmedizin, Krankenhaus Bethanien, Solingen, Germany
| | - Sven Stieglitz
- Klinik für Pneumologie und Allergologie, Zentrum für Schlaf- und Beatmungsmedizin, Krankenhaus Bethanien, Solingen, Germany
| | - Winfried Randerath
- Klinik für Pneumologie und Allergologie, Zentrum für Schlaf- und Beatmungsmedizin, Krankenhaus Bethanien, Solingen, Germany
| |
Collapse
|
23
|
Factor OB, Vu CC, Schneider JG, Witten MR, Schubach SL, Gittleman AE, Catell DT, Haas JA. Stereotactic body radiation therapy for stage I non-small cell lung cancer: a small academic hospital experience. Front Oncol 2014; 4:287. [PMID: 25368843 PMCID: PMC4202727 DOI: 10.3389/fonc.2014.00287] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/05/2014] [Indexed: 12/25/2022] Open
Abstract
PURPOSE/OBJECTIVE(S) Stereotactic body radiation therapy (SBRT) has been shown to have increased local control and overall survival relative to conventional external beam radiation therapy in patients with medically inoperable stage I non-small cell lung cancer (NSCLC). Excellent rates of local control have been demonstrated both in clinical trials and in single-center studies at large academic institutions. However, there is limited data on the experiences of small academic hospitals with SBRT for stage I NSCLC. The purpose of this study is to report the local control and overall survival rates in patients treated with SBRT for stage I NSCLC at Winthrop-University Hospital (WUH), a small academic hospital. MATERIALS/METHODS This is a retrospective review of 78 stage I central and peripheral NSCLC tumors treated between December 2006 and July 2012 with SBRT at WUH. Treatment was given utilizing fiducials and a respiratory tracking system. If the fiducials were not trackable, a spine tracking system was used for tumor localization. CT-based planning was performed using the ray trace algorithm. Treatment was delivered over consecutive days to a median dose of 4800 cGy delivered in four fractions. The Kaplan-Meier method was used to calculate local control and overall survival. RESULTS The median age was 78.5 years. Fifty-four percent of the patient population was female. Sixty seven percent of the tumors were stage IA, and 33% of the tumors were stage IB. Fifty-three percent of the tumors were adenocarcinomas and 29% were squamous cell carcinomas, with the remainder being of unknown histology or NSCLC, not otherwise specified The 2-year local control rate was 87%, and the 2-year overall survival was 68%. CONCLUSION Our findings support that local control and overall survival at a small academic hospital are comparable to that of larger academic institutions' published experiences with SBRT for stage I NSCLC.
Collapse
Affiliation(s)
- Oren B Factor
- Division of Radiation Oncology, Winthrop-University Hospital , New York, NY , USA ; Stony Brook School of Medicine , New York, NY , USA
| | - Charles C Vu
- Stony Brook School of Medicine , New York, NY , USA
| | - Jeffrey G Schneider
- Division of Medical Oncology, Winthrop-University Hospital , New York, NY , USA
| | - Matthew R Witten
- Division of Radiation Oncology, Winthrop-University Hospital , New York, NY , USA
| | - Scott L Schubach
- Department of Thoracic and Cardiovascular Surgery, Winthrop-University Hospital , New York, NY , USA
| | - Alicia E Gittleman
- Division of Radiation Oncology, Winthrop-University Hospital , New York, NY , USA
| | - Donna T Catell
- Division of Radiation Oncology, Winthrop-University Hospital , New York, NY , USA
| | - Jonathan A Haas
- Division of Radiation Oncology, Winthrop-University Hospital , New York, NY , USA
| |
Collapse
|
24
|
Lacornerie T, Lisbona A, Mirabel X, Lartigau E, Reynaert N. GTV-based prescription in SBRT for lung lesions using advanced dose calculation algorithms. Radiat Oncol 2014; 9:223. [PMID: 25319444 PMCID: PMC4205279 DOI: 10.1186/s13014-014-0223-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 09/29/2014] [Indexed: 12/31/2022] Open
Abstract
Background The aim of current study was to investigate the way dose is prescribed to lung lesions during SBRT using advanced dose calculation algorithms that take into account electron transport (type B algorithms). As type A algorithms do not take into account secondary electron transport, they overestimate the dose to lung lesions. Type B algorithms are more accurate but still no consensus is reached regarding dose prescription. The positive clinical results obtained using type A algorithms should be used as a starting point. Methods In current work a dose-calculation experiment is performed, presenting different prescription methods. Three cases with three different sizes of peripheral lung lesions were planned using three different treatment platforms. For each individual case 60 Gy to the PTV was prescribed using a type A algorithm and the dose distribution was recalculated using a type B algorithm in order to evaluate the impact of the secondary electron transport. Secondly, for each case a type B algorithm was used to prescribe 48 Gy to the PTV, and the resulting doses to the GTV were analyzed. Finally, prescriptions based on specific GTV dose volumes were evaluated. Results When using a type A algorithm to prescribe the same dose to the PTV, the differences regarding median GTV doses among platforms and cases were always less than 10% of the prescription dose. The prescription to the PTV based on type B algorithms, leads to a more important variability of the median GTV dose among cases and among platforms, (respectively 24%, and 28%). However, when 54 Gy was prescribed as median GTV dose, using a type B algorithm, the variability observed was minimal. Conclusion Normalizing the prescription dose to the median GTV dose for lung lesions avoids variability among different cases and treatment platforms of SBRT when type B algorithms are used to calculate the dose. The combination of using a type A algorithm to optimize a homogeneous dose in the PTV and using a type B algorithm to prescribe the median GTV dose provides a very robust method for treating lung lesions. Electronic supplementary material The online version of this article (doi:10.1186/s13014-014-0223-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Albert Lisbona
- Service de Physique Médicale, Institut de Cancérologie de l'Ouest, Nantes, France.
| | - Xavier Mirabel
- Département Universitaire de Radiothérapie, Centre Oscar Lambret, Lille, France.
| | - Eric Lartigau
- Département Universitaire de Radiothérapie, Centre Oscar Lambret, Lille, France.
| | - Nick Reynaert
- Service de Physique Médicale, Centre Oscar Lambret, Lille, France.
| |
Collapse
|
25
|
Nuyttens JJ, van de Pol M. The CyberKnife radiosurgery system for lung cancer. Expert Rev Med Devices 2014; 9:465-75. [DOI: 10.1586/erd.12.35] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Soldà F, Lodge M, Ashley S, Whitington A, Goldstraw P, Brada M. Stereotactic radiotherapy (SABR) for the treatment of primary non-small cell lung cancer; systematic review and comparison with a surgical cohort. Radiother Oncol 2013; 109:1-7. [PMID: 24128806 DOI: 10.1016/j.radonc.2013.09.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND PURPOSE To assess the efficacy of stereotactic ablative radiotherapy (SABR) for the treatment of non-small cell lung cancer (NSCLC) through a systematic review of all relevant publications from 2006 to the present compared to controls treated with surgery. In the absence of Grade I evidence, the objective outcome data should form the basis for planning future studies and commissioning SABR services. MATERIALS AND METHODS Standard systematic review methodology extracting patient and disease characteristics, treatment and outcome data from published articles reporting patient data from populations of 20 or more Stage I NSCLC patients treated with SABR with a median follow up of minimum of 1 year. The individual outcome measures were corrected for stage and summary weighted outcome data were compared to outcome data from a large International Association for the Study of Lung Cancer (IASLC) cohort matched for stage of disease with survival as the principal endpoint and local control (local progression free survival - local PFS) as the secondary endpoint. RESULTS Forty-five reports containing 3771 patients treated with SABR for NSCLC were identified that fulfilled the selection criteria; both survival and staging data were reported in 3171 patients. The 2 year survival of the 3201 patients with localized stage I NSCLC treated with SABR was 70% (95% CI: 67-72%) with a 2 year local control of 91% (95% CI: 90-93%). This was compared to a 68% (95% CI: 66-70) 2 year survival of 2038 stage I patients treated with surgery. There was no survival or local PFS difference with different radiotherapy technologies used for SABR. CONCLUSIONS Systematic review of a large cohort of patients with stage I NSCLC treated with SABR suggests that survival outcome in the short and medium term is equivalent to surgery for this population of patients regardless of co-morbidity. As selection bias cannot be assessed from the published reports and treatment related morbidity data are limited, a direct comparison between the two treatment approaches should be a priority. In the meantime, SABR can be offered to stage I patients with NSCLC as an alternative to surgery.
Collapse
|
27
|
Wu VWC, Tam KW, Tong SM. Evaluation of the influence of tumor location and size on the difference of dose calculation between Ray Tracing algorithm and Fast Monte Carlo algorithm in stereotactic body radiotherapy of non-small cell lung cancer using CyberKnife. J Appl Clin Med Phys 2013; 14:68-78. [PMID: 24036860 PMCID: PMC5714561 DOI: 10.1120/jacmp.v14i5.4280] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 04/29/2013] [Accepted: 04/04/2013] [Indexed: 11/23/2022] Open
Abstract
This study evaluated the extent of improvement in dose predication accuracy achieved by the Fast Monte Carlo algorithm (MC) compared to the Ray Tracing algorithm (RAT) in stereotactic body radiotherapy (SBRT) of non-small cell lung cancer (NSCLC), and how their differences were influenced by the tumor site and size. Thirty-three NSCLC patients treated with SBRT by CyberKnife in 2011 were recruited. They were divided into the central target group (n = 17) and peripheral target group (n = 16) according to the RTOG 0236 guidelines. Each group was further divided into the large and small target subgroups. After the computation of treatment plans using RAT, a MC plan was generated using the same patient data and treatment parameters. Apart from the target reference point dose measurements, various dose parameters for the planning target volume (PTV) and organs at risk (OARs) were assessed. In addition, the "Fractional Deviation" (FDev) was also calculated for comparison, which was defined as the ratio of the RAT and MC values. For peripheral lung cases, RAT produced significantly higher dose values in all the reference points than MC. The FDev of all reference point doses and dose parameters was greater in the small target than the large target subgroup. For central lung cases, there was no significant reference point and OAR dose differences between RAT and MC. When comparing between the small target and large target subgroups, the FDev values of all the dose parameters and reference point doses did not show significant difference. Despite the shorter computation time, RAT was inferior to MC, in which the target dose was usually overestimated. RAT would not be recommended for SBRT of peripheral lung tumors regardless of the target size. However, it could be considered for large central lung tumors because its performance was comparable to MC.
Collapse
|
28
|
Karam SD, Horne ZD, Hong RL, Baig N, Gagnon GJ, McRae D, Duhamel D, Nasr NM. Robotic stereotactic body radiation therapy for elderly medically inoperable early-stage non-small cell lung cancer. LUNG CANCER-TARGETS AND THERAPY 2013; 4:35-42. [PMID: 28210133 DOI: 10.2147/lctt.s48121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Stereotactic body radiation therapy (SBRT) is being increasingly applied in the treatment of non-small cell lung cancer (NSCLC) because of its high local efficacy. This study aims to examine survival outcomes in elderly patients with inoperable stage I NSCLC treated with SBRT. METHODS A total of 31 patients with single lesions treated with fractionated SBRT from 2008 to 2011 were retrospectively analyzed. A median prescribed dose of 48 Gy was delivered to the prescription isodose line, over a median of four treatments. The median biologically effective dose (BED) was 105.6 (range 37.50-180), and the median age was 73 (65-90 years). No patient received concurrent chemotherapy. RESULTS With a median follow up of 13 months (range, 4-40 months), the actuarial median overall survival (OS) and progression-free survival (PFS) were 32 months, and 19 months, respectively. The actuarial median local control (LC) time was not reached. The survival outcomes at median follow up of 13 months were 80%, 68%, and 70% for LC, PFS, and OS, respectively. Univariate analysis revealed a BED of >100 Gy was associated with improved LC rates (P = 0.02), while squamous cell histology predicted for worse LC outcome at median follow up time of 13 months (P = 0.04). Increased tumor volume was a worse prognostic indicator of both LC and OS outcomes (P < 0.05). Finally, female gender was a better prognostic factor for OS than male gender (P = 0.006). There were no prognostic indicators of PFS that reached statistical significance. No acute or subacute high-grade toxicities were documented. CONCLUSION SBRT is a safe, feasible, and effective treatment option for elderly patients with inoperable early stage NSCLC. BED, histology, and tumor size are predictors of local control, while tumor size and gender predict OS.
Collapse
Affiliation(s)
- Sana D Karam
- Department of Radiation Oncology, Georgetown University Hospital, Washington, DC, USA
| | - Zachary D Horne
- Department of Radiation Oncology, Georgetown University Hospital, Washington, DC, USA
| | - Robert L Hong
- Department of Radiation Oncology, Georgetown University Hospital, Washington, DC, USA; Department of Radiation Oncology, Virginia Hospital Center, Arlington, VA, USA
| | - Nimrah Baig
- Department of Radiation Oncology, Georgetown University Hospital, Washington, DC, USA
| | - Gregory J Gagnon
- Department of Radiation Oncology, Frederick Memorial Hospital, Frederick, MD, USA
| | - Don McRae
- Department of Radiation Oncology, Virginia Hospital Center, Arlington, VA, USA
| | - David Duhamel
- Department of Pulmonary/Critical Care Medicine, Virginia Hospital Center, Arlington, VA, USA
| | - Nadim M Nasr
- Department of Radiation Oncology, Georgetown University Hospital, Washington, DC, USA; Department of Radiation Oncology, Virginia Hospital Center, Arlington, VA, USA
| |
Collapse
|
29
|
Riboldi M, Orecchia R, Baroni G. Real-time tumour tracking in particle therapy: technological developments and future perspectives. Lancet Oncol 2012; 13:e383-91. [PMID: 22935238 DOI: 10.1016/s1470-2045(12)70243-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A key challenge in radiation oncology is accurate delivery of the prescribed dose to tumours that move because of respiration. Tumour tracking involves real-time target localisation and correction of radiation beam geometry to compensate for motion. Uncertainties in tumour localisation are important in particle therapy (proton therapy, carbon-ion therapy) because charged particle beams are highly sensitive to geometrical and associated density and radiological variations in path length, which will affect the treatment plan. Target localisation and motion compensation methods applied in x-ray photon radiotherapy require careful performance assessment for clinical applications in particle therapy. In this Review, we summarise the efforts required for an application of real-time tumour tracking in particle therapy, by comparing and assessing competing strategies for time-resolved target localisation and related clinical outcomes in x-ray radiation oncology.
Collapse
Affiliation(s)
- Marco Riboldi
- Department of Bioengineering, Politecnico di Milano, Milan, Italy.
| | | | | |
Collapse
|
30
|
Zimmermann F, Mosna-Firlejczyk K, Papachristofilou A, Groß M. Results of stereotactic radiotherapy for stage I non-small-cell lung cancer: is there a need for image guidance and highly sophisticated devices? Lung Cancer Manag 2012. [DOI: 10.2217/lmt.12.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY In stage I non-small-cell lung cancer, stereotactic body radiation therapy achieves a local control of 90%, by accurate dose delivery with stereotactic beam navigation and/or image-guided techniques, and extremely dose-escalated hypofractionated radiotherapy. Three-to-ten fractions over 1–2 weeks or one single fraction as radiosurgery are used. A broad spectrum of different techniques have also been introduced, some encouraged by electric companies, and heavily commercialized by institutions and physicians. Although a direct comparison of these techniques has been carried out only in technical and not within clinical trials; clinical data from the few prospective Phase I and II trials and the majority of retrospective evaluations have not shown superiority of either technique. Based on personal experiences, there are nearly no limitations for the use of very simple and cheap techniques, and the broad and increasing disposition of dedicated systems is questionable.
Collapse
Affiliation(s)
- Frank Zimmermann
- Clinic of Radiation Oncology, Petersgraben 4, University Hospital, University Basel, 4031 Basel, Switzerland
| | - Katarzyna Mosna-Firlejczyk
- Clinic of Radiation Oncology, Petersgraben 4, University Hospital, University Basel, 4031 Basel, Switzerland
| | - Alexandros Papachristofilou
- Clinic of Radiation Oncology, Petersgraben 4, University Hospital, University Basel, 4031 Basel, Switzerland
| | - Markus Groß
- Clinic of Radiation Oncology, Petersgraben 4, University Hospital, University Basel, 4031 Basel, Switzerland
| |
Collapse
|
31
|
Munshi A, Krishnatry R, Banerjee S, Agarwal J. Stereotactic Conformal Radiotherapy in Non-small Cell Lung Cancer — An Overview. Clin Oncol (R Coll Radiol) 2012; 24:556-68. [DOI: 10.1016/j.clon.2012.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 02/07/2012] [Accepted: 03/27/2012] [Indexed: 12/25/2022]
|
32
|
Defining Target Volumes for Stereotactic Ablative Radiotherapy of Early-stage Lung Tumours: A Comparison of Three-dimensional 18F-fluorodeoxyglucose Positron Emission Tomography and Four-dimensional Computed Tomography. Clin Oncol (R Coll Radiol) 2012; 24:e71-80. [DOI: 10.1016/j.clon.2012.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 01/15/2012] [Accepted: 03/08/2012] [Indexed: 12/21/2022]
|
33
|
Sahgal A, Roberge D, Schellenberg D, Purdie TG, Swaminath A, Pantarotto J, Filion E, Gabos Z, Butler J, Letourneau D, Masucci GL, Mulroy L, Bezjak A, Dawson LA, Parliament M. The Canadian Association of Radiation Oncology scope of practice guidelines for lung, liver and spine stereotactic body radiotherapy. Clin Oncol (R Coll Radiol) 2012; 24:629-39. [PMID: 22633542 DOI: 10.1016/j.clon.2012.04.006] [Citation(s) in RCA: 181] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/29/2012] [Accepted: 04/25/2012] [Indexed: 12/12/2022]
Abstract
AIMS The Canadian Association of Radiation Oncology-Stereotactic Body Radiotherapy (CARO-SBRT) Task Force was established in 2010. The aim was to define the scope of practice guidelines for the profession to ensure safe practice specific for the most common sites of lung, liver and spine SBRT. MATERIALS AND METHODS A group of Canadian SBRT experts were charged by our national radiation oncology organisation (CARO) to define the basic principles and technologies for SBRT practice, to propose the minimum technological requirements for safe practice with a focus on simulation and image guidance and to outline procedural considerations for radiation oncology departments to consider when establishing an SBRT programme. RESULTS We recognised that SBRT should be considered as a specific programme within a radiation department, and we provide a definition of SBRT according to a Canadian consensus. We outlined the basic requirements for safe simulation as they pertain to spine, lung and liver tumours, and the fundamentals of image guidance. The roles of the radiation oncologist, medical physicist and dosimetrist have been detailed such that we strongly recommend the development of SBRT-specific teams. Quality assurance is a key programmatic aspect for safe SBRT practice, and we outline the basic principles of appropriate quality assurance specific to SBRT. CONCLUSION This CARO scope of practice guideline for SBRT is specific to liver, lung and spine tumours. The task force recommendations are designed to assist departments in establishing safe and robust SBRT programmes.
Collapse
Affiliation(s)
- A Sahgal
- Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang J, Yang F, Li B, Li H, Liu J, Huang W, Wang D, Yi Y, Wang J. Which Is the Optimal Biologically Effective Dose of Stereotactic Body Radiotherapy for Stage I Non–Small-Cell Lung Cancer? A Meta-Analysis. Int J Radiat Oncol Biol Phys 2011; 81:e305-16. [PMID: 21658853 DOI: 10.1016/j.ijrobp.2011.04.034] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 04/04/2011] [Accepted: 04/19/2011] [Indexed: 12/16/2022]
|
35
|
Pepin EW, Wu H, Zhang Y, Lord B. Correlation and prediction uncertainties in the cyberknife synchrony respiratory tracking system. Med Phys 2011; 38:4036-44. [PMID: 21859002 DOI: 10.1118/1.3596527] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The CyberKnife uses an online prediction model to improve radiation delivery when treating lung tumors. This study evaluates the prediction model used by the CyberKnife radiation therapy system in terms of treatment margins about the gross tumor volume (GTV). METHODS From the data log files produced by the CyberKnife synchrony model, the uncertainty in radiation delivery can be calculated. Modeler points indicate the tracked position of the tumor and Predictor points predict the position about 115 ms in the future. The discrepancy between Predictor points and their corresponding Modeler points was analyzed for 100 treatment model data sets from 23 de-identified lung patients. The treatment margins were determined in each anatomic direction to cover an arbitrary volume of the GTV, derived from the Modeler points, when the radiation is targeted at the Predictor points. Each treatment model had about 30 min of motion data, of which about 10 min constituted treatment time; only these 10 min were used in the analysis. The frequencies of margin sizes were analyzed and truncated Gaussian normal functions were fit to each direction's distribution. The standard deviation of each Gaussian distribution was then used to describe the necessary margin expansions in each signed dimension in order to achieve the desired coverage. In this study, 95% modeler point coverage was compared to 99% modeler coverage. Two other error sources were investigated: the correlation error and the targeting error. These were added to the prediction error to give an aggregate error for the CyberKnife during treatment of lung tumors. RESULTS Considering the magnitude of 2sigma from the mean of the Gaussian in each signed dimension, the margin expansions needed for 95% modeler point coverage were 1.2 mm in the lateral (LAT) direction and 1.7 mm in the anterior-posterior (AP) direction. For the superior-inferior (SI) direction, the fit was poor; but empirically, the expansions were 3.5 mm. For 99% modeler point coverage, the AP margin was 3.6 mm and the lateral margin was 2.9 mm. The SI margins for 99% modeler point coverage were highly variable. The aggregate error at 95% was 6.9 mm in the SI direction, 4.6 mm in the AP direction, and 3.5 in the lateral direction. CONCLUSIONS The Predictor points follow the Modeler points closely. Margins were found in each clinical direction that would provide 95% modeler point coverage for 95% of the models reviewed in this study. Similar margins were found in two clinical directions for 99% modeler point coverage in 95% of models. These results can offer guidance in the selection of CTV margins for treatment with the CyberKnife.
Collapse
Affiliation(s)
- Eric W Pepin
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
36
|
Wang X, Wang YY, Jiang P, Ma JJ, Qu Z, Liu HC, Wang SS, Wang YS. Clinical application of CyberKnife for high-risk central nervous system tumors: A clinical trial report of 60 cases. Exp Ther Med 2011; 3:105-108. [PMID: 22969853 DOI: 10.3892/etm.2011.356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 09/13/2011] [Indexed: 01/02/2023] Open
Abstract
The objective of the present study was to evaluate the application potential of CyberKnife for high-risk tumors of the central nervous system and to analyze the effectiveness of CyberKnife in relation to dose recovery and gain division (times). A total of Eighty-one targeted areas from 139 central nervous tumor lesions in 60 patients were treated with I-VI ranged CyberKnife for 1 week. Following CyberKnife treatment, imaging tests revealed a decrease in tumor volume, reduction of central nervous system symptoms and an increase in the life quality of patients. The advantages of CyberKnife include non-invasiveness, individualized treatment, flexibility, high accuracy and rapid treatment. CyberKnife produces slight damage and a favorable therapeutic effect and expands our concepts concerning precise radiotherapy for tumors. It is an indispensable method for personalized tumor treatment.
Collapse
Affiliation(s)
- Xin Wang
- Center for Non-Traumatic Treatment and Diagnosis of Tumors, The People's Liberation Army 107th Hospital, Affiliated Hospital of Bin Zhou Medical College, Shandong 264002, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Brown WT, Fayad F, Hevezi J, Fowler J, Monterroso MI, Garcia S, Medina A, Schwade J. Individualized higher dose of 70-75 Gy using five-fraction robotic stereotactic radiotherapy for non-small-cell lung cancer: a feasibility study. ACTA ACUST UNITED AC 2011; 16:1-10. [PMID: 21198423 DOI: 10.3109/10929088.2010.537483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To determine whether robotic stereotactic radiotherapy of 70-75 Gy delivered in five fractions results in an improved therapeutic ratio, compared with three fractions, in the treatment of peripheral non-small-cell lung cancer (NSCLC), in which case doses of up to 85 Gy in five fractions may be feasible. MATERIALS AND METHODS Between December 2006 and May 2010, 20 patients (9 female, 11 male, aged 65 to 88) were treated using the CyberKnife® Robotic Radiosurgery System for NSCLC with doses ranging from 67 Gy to 75 Gy based on location, histopathological type, grade of histopathological differentiation, tumor diameter/volume, and normal tissue constraints, with the doses being delivered in five fractions over 5 to 8 days. Tumor diameters ranged from 1.5 cm to 3.4 cm (median: 2.5 cm). Patients with Stage I to IV NSCLC were treated, and the results and observations were analyzed for clinical characteristics and outcomes including toxicity. All patients, except one who had refused surgery, had co-morbid conditions that precluded a lobectomy. RESULTS Twenty patients were followed every three months by positron emission tomography/computed tomography (PET/CT). Mean follow-up was 23 months (range: four to 58 months). Local control was achieved in all treated tumors. Three patients expired, and three developed new regional metastases, none of which was within the planning target volume (PTV). The remainder of the patients demonstrated no evidence of recurrence or continued growth detectable by PET/CT. There was no toxicity above Grade 1. CONCLUSIONS It is feasible to treat peripheral NSCLC with individualized maximal tolerable doses ranging from 67 Gy to 75 Gy in five fractions chosen on the basis of location, histopathological type, grade of histopathological differentiation, tumor diameter/volume, and normal tissue constraints.
Collapse
Affiliation(s)
- W T Brown
- CyberKnife Center of Miami, Miami, Florida, USA.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
吕 艳, 王 振, 朱 锡, 沈 泽, 袁 冬, 缪 小, 施 毅, 宋 勇. [Preliminary effect of Cyberknife radiosurgery in the treatment of 31 patients with advanced non-small cell lung cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2011; 14:329-34. [PMID: 21496431 PMCID: PMC5999721 DOI: 10.3779/j.issn.1009-3419.2011.04.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/17/2010] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVE Recently, Cyberknife is a new flame-less stereotactic radiation therapy technology, which has several advantages, such as large dose, high precision and minimizing exposure to the surrounding normal tissue or adjacent vital structures, so it is successful in the treatment of non-small cell lung cancer (NSCLC). The aim of this study is to determine the effectiveness and safety of robotic stereotactic radiotherapy-Cyberknife with image guidance and realtime respiratory tracking against clinical stage III-IV peripheral NSCLC. METHODS A review of treatment details and outcomes for 31 patients, with 34 tumors with histologically proven cancers treated by Cyberknife at the CyberKnife Center of Nanjing general hospital of Nanjing military command between March 2009 and March 2010 is presented. Of the 31 patients, 15 were adenocarcinoma and 12 were squamous cell cancer. Twenty-eight patients received other forms of antineoplastic therapy such as chemotherapy. A total dose of 36 Gy-60 Gy was prescribed to the 65%-85% isodose line and given in two to five fractions in less than 1 week using the CyberKnife radiosurgery system. CT scans were performed after one-two months, then patients were followed every 3 months. RESULTS Two patients had complete radiographic responses, 16 patients showed PRs, 7 patients showed SDs. Two patients showed PRs (reduction in tumor size), but developed distant metastases. Response rate was 58% and disease control rate was 81%. All patients tolerated the radiosurgery well, fatigue being the main side effect. No grade 4 or above toxicity was encountered. CONCLUSIONS In this small cohort of patients with advanced peripheral NSCLC, Cyberknife seems to be a safe and has good therapeutic effects with slight adverse reaction, but long time follow-up is necessary to evaluate the survival data and late toxicity.
Collapse
Affiliation(s)
- 艳玲 吕
- 210002 南京,南方医科大学南京临床学院,南京军区南京总医院呼吸内科Department of Respiratory Disease, Nanjing Clinical school of Southern Medical University, Nanjing General Hospital Of Nanjing Military Command, Nanjing 210002, China
| | - 振 王
- 210002 南京,南京大学医学临床学院,南京军区南京总医院放疗科Department of Radiotherapy Center, Nanjing University School of Medicine, Nanjing General Hospital Of Nanjing Military Command, Nanjing 210002, China
| | - 锡旭 朱
- 210002 南京,南京大学医学临床学院,南京军区南京总医院放疗科Department of Radiotherapy Center, Nanjing University School of Medicine, Nanjing General Hospital Of Nanjing Military Command, Nanjing 210002, China
| | - 泽天 沈
- 210002 南京,南京大学医学临床学院,南京军区南京总医院放疗科Department of Radiotherapy Center, Nanjing University School of Medicine, Nanjing General Hospital Of Nanjing Military Command, Nanjing 210002, China
| | - 冬梅 袁
- 210002 南京,南京大学医学临床学院,南京军区南京总医院呼吸内科Department of Respiratory Medicine, Nanjing University School of Medicine, Nanjing General Hospital Of Nanjing Military Command, Nanjing 210002, China
| | - 小辉 缪
- 210002 南京,南京大学医学临床学院,南京军区南京总医院呼吸内科Department of Respiratory Medicine, Nanjing University School of Medicine, Nanjing General Hospital Of Nanjing Military Command, Nanjing 210002, China
| | - 毅 施
- 210002 南京,南京大学医学临床学院,南京军区南京总医院呼吸内科Department of Respiratory Medicine, Nanjing University School of Medicine, Nanjing General Hospital Of Nanjing Military Command, Nanjing 210002, China
| | - 勇 宋
- 210002 南京,南方医科大学南京临床学院,南京军区南京总医院呼吸内科Department of Respiratory Disease, Nanjing Clinical school of Southern Medical University, Nanjing General Hospital Of Nanjing Military Command, Nanjing 210002, China
- 210002 南京,南京大学医学临床学院,南京军区南京总医院呼吸内科Department of Respiratory Medicine, Nanjing University School of Medicine, Nanjing General Hospital Of Nanjing Military Command, Nanjing 210002, China
| |
Collapse
|
39
|
Gibbs IC, Loo BW. CyberKnife stereotactic ablative radiotherapy for lung tumors. Technol Cancer Res Treat 2011; 9:589-96. [PMID: 21070081 DOI: 10.1177/153303461000900607] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Stereotactic ablative radiotherapy (SABR) has emerged as a promising treatment for early stage non-small cell lung cancer, particularly for patients unable to tolerate surgical resection. High rates of local tumor control have been demonstrated with acceptable toxicity and the practical advantage of a short course of treatment. The CyberKnife image-guided robotic radiosurgery system has unique technical characteristics that make it well suited for SABR of tumors that move with breathing, including lung tumors. We review the qualities of the CyberKnife platform for lung tumor SABR, and provide a summary of clinical data using this system specifically.
Collapse
Affiliation(s)
- Iris C Gibbs
- Department of Radiation Oncology Stanford University and Cancer Center 875 Blake Wilbur Drive, MC 5847 Stanford, CA 94305-5847, USA.
| | | |
Collapse
|
40
|
Kim W, Kim HJ, Park JH, Huh HD, Choi SH. Treatment Results of CyberKnife Radiosurgery for Patients with Primary or Recurrent Non-Small Cell Lung Cancer. ACTA ACUST UNITED AC 2011. [DOI: 10.3857/jkstro.2011.29.1.28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Woochul Kim
- Department of Radiation Oncology, Inha University School of Medicine, Incheon, Korea
| | - Hun-Jung Kim
- Department of Radiation Oncology, Inha University School of Medicine, Incheon, Korea
| | - Jeong Hoon Park
- Department of Radiation Oncology, Inha University School of Medicine, Incheon, Korea
| | - Hyun Do Huh
- Department of Radiation Oncology, Inha University School of Medicine, Incheon, Korea
| | - Sang Huoun Choi
- Department of Radiation Oncology, Inha University School of Medicine, Incheon, Korea
| |
Collapse
|
41
|
Gómez FM, Palussière J. [Why radiofrequency for the treatment of primary lung tumors?]. Med Clin (Barc) 2010; 135:596-7. [PMID: 20541778 DOI: 10.1016/j.medcli.2010.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 11/18/2022]
|
42
|
Kilby W, Dooley JR, Kuduvalli G, Sayeh S, Maurer CR. The CyberKnife® Robotic Radiosurgery System in 2010. Technol Cancer Res Treat 2010; 9:433-52. [DOI: 10.1177/153303461000900502] [Citation(s) in RCA: 256] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This review provides a complete technical description of the CyberKnife® VSI™ System, the latest addition to the CyberKnife product family, which was released in September 2009. This review updates the previous technical reviews of the original system version published in the late 1990s. Technical developments over the last decade have impacted virtually every aspect of the CyberKnife System. These developments have increased the geometric accuracy of the system and have enhanced the dosimetric accuracy and quality of treatment, with advanced inverse treatment planning algorithms, rapid Monte Carlo dose calculation, and post-processing tools that allow trade-offs between treatment efficiency and dosimetric quality to be explored. This review provides a system overview with detailed descriptions of key subsystems. A detailed review of studies of geometric accuracy is also included, reporting a wide range of experiments involving phantom tests and patient data. Finally, the relationship between technical developments and the greatly increased range of clinical applications they have allowed is reviewed briefly.
Collapse
Affiliation(s)
- W. Kilby
- Accuray Incorporated, 1310 Chesapeake Terrace, Sunnyvale, CA 94089, USA
| | - J. R. Dooley
- Accuray Incorporated, 1310 Chesapeake Terrace, Sunnyvale, CA 94089, USA
| | - G. Kuduvalli
- Accuray Incorporated, 1310 Chesapeake Terrace, Sunnyvale, CA 94089, USA
| | - S. Sayeh
- Accuray Incorporated, 1310 Chesapeake Terrace, Sunnyvale, CA 94089, USA
| | - C. R. Maurer
- Accuray Incorporated, 1310 Chesapeake Terrace, Sunnyvale, CA 94089, USA
| |
Collapse
|
43
|
Adaptive radiation for lung cancer. JOURNAL OF ONCOLOGY 2010; 2011. [PMID: 20814539 PMCID: PMC2931378 DOI: 10.1155/2011/898391] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 06/24/2010] [Indexed: 12/25/2022]
Abstract
The challenges of lung cancer radiotherapy are intra/inter-fraction tumor/organ anatomy/motion changes and the
need to spare surrounding critical structures. Evolving radiotherapy technologies, such as four-dimensional (4D) image-based motion management, daily on-board imaging and adaptive radiotherapy based on volumetric images over the course of radiotherapy, have enabled us to deliver higher dose to target while minimizing normal tissue toxicities. The image-guided radiotherapy adapted to changes of motion and anatomy has made the radiotherapy more precise and allowed ablative dose delivered to the target using novel treatment approaches such as intensity-modulated radiation therapy, stereotactic body radiation therapy, and proton therapy in lung cancer, techniques used to be considered very sensitive to motion change. Future clinical trials using real time tracking and biological adaptive radiotherapy based on functional images are proposed.
Collapse
|
44
|
Sharma A, Wong D, Weidlich G, Fogarty T, Jack A, Sumanaweera T, Maguire P. Noninvasive stereotactic radiosurgery (CyberHeart) for creation of ablation lesions in the atrium. Heart Rhythm 2010; 7:802-10. [DOI: 10.1016/j.hrthm.2010.02.010] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 02/05/2010] [Indexed: 11/29/2022]
|