1
|
He L, Lu X, Xu Y, Yang Z, Zhang J, Li C, Yao X, Yi Y, Yao Z. Fabrication of Fe-doped UiO-66-NH 2@b-TiO 2 Z-scheme heterojunction for enhanced visible light-driven degradation of VSCs and antibiotics. ENVIRONMENTAL RESEARCH 2025; 276:121498. [PMID: 40164424 DOI: 10.1016/j.envres.2025.121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/12/2025] [Accepted: 03/29/2025] [Indexed: 04/02/2025]
Abstract
Volatile sulfur compounds (VSCs) and sulfur-containing antibiotic wastewater are pervasive environmental pollutants that pose significant risks to atmospheric and aquatic ecosystems. Traditional photocatalysts often lack the versatility to simultaneously address multiple pollutants, highlighting the need for multifunctional materials. A novel FeUiO-66-NH2@b-TiO2 composite with a Z-scheme heterojunction has been developed as a highly efficient and tunable visible-light photocatalyst for the degradation of both VSCs and sulfur-containing antibiotics. The composite was synthesized through a one-pot hydrothermal method, and its photocatalytic performance was optimized by varying the ratio of FeUiO-66-NH2 to b-TiO2. The Z-scheme heterojunction facilitates effective separation and transfer of photogenerated carriers, significantly enhancing the material's photocatalytic activity. The material's structure and photoresponse were evaluated using XRD and FTIR. Under visible light, the composite exhibited remarkable degradation performance. For example, FU1T6 achieved complete degradation of CH3SH within 20 min, while FU3T1 degraded 90 % of the antibiotic cefixime within 140 min. Moreover, the material demonstrated excellent degradation efficiency for other cephalosporins and amoxicillin, proving its broad-spectrum capability for sulfur-containing antibiotics. This study highlights the FeUiO-66-NH2@b-TiO2 composite as a promising candidate for the treatment of complex environmental pollutants, including odorous gases and antibiotic wastewater. The results suggest that material design, particularly the integration of the Z-scheme heterojunction, enables multifunctional pollutant treatment, contributing significantly to environmental protection and public health. These findings provide an innovative strategy for tackling diverse sulfur-based pollutants in environmental remediation.
Collapse
Affiliation(s)
- Li He
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xingkai Lu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Yuyao Xu
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Zichang Yang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Jiayao Zhang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Changming Li
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Xiaolong Yao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China
| | - Yue Yi
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiliang Yao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
2
|
Mwizerwa JP, Li J, Nsengiyumva W, Li C, Xu K, Rasaki SA, Liu C. Thick 3D-Printed Hierarchical Li 4Ti 5O 12@MOF anode and Grid-Lined micropores for High-Performance Lithium-Ion batteries. J Colloid Interface Sci 2025; 696:137883. [PMID: 40381320 DOI: 10.1016/j.jcis.2025.137883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
Li4Ti5O12 (LTO) anode is a promising candidate for high-energy-density lithium-ion batteries (LIBs), but achieving high mass loading, a porous structure, and efficient ion transport remains a challenge. Herein, we present a high-mass-loading, hierarchically porous LTO anode with a conductive network and grid-lined micropores, embedded with a metal-organic framework (MOF) as both an electrode additive and surface protective layer. This novel structure is fabricated using extrusion-based three-dimensional (3D) printing technology. The self-standing framework provides mechanical stability and high conductivity, enabling a thick (316 μm) 3D-printed LTO@UiO-66-MOF (3D-LTO@U) anode with a mass loading of 11 mg/cm2. It delivers a high-rate capability of 161 mAh/g at 5C, an areal specific capacity of 5.37 mAh/cm2, and 78.9 % areal capacity retention after 150 cycles. Additionally, it achieves a high specific energy density of 382.35 Wh/kg. The UiO-66 MOF provides strong binding affinity, suppressing side reactions and enhancing Li-ion/electron transport within the 3D-printed interconnected channels. This improves active material utilization during charge and discharge. Furthermore, a 3D-printed full cell integrating a grid-lined 3D-LTO@U anode and a 3D-printed LiFePO4 cathode exhibits enhanced electrochemical performance. This work demonstrates an effective strategy for designing thick, high-mass-loading, and porous conductive network anodes for advanced LIBs.
Collapse
Affiliation(s)
- Jean Pierre Mwizerwa
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China
| | - Jie Li
- Additive Manufacturing Institute, College of Mechatronics & Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Walter Nsengiyumva
- Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China; The Institute of Precision Instrument and Intelligent Measurement & Control, Fuzhou University, Fuzhou, China
| | - Chen Li
- Additive Manufacturing Institute, College of Mechatronics & Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kun Xu
- Additive Manufacturing Institute, College of Mechatronics & Control Engineering, Shenzhen University, Shenzhen 518060, China
| | - Sefiu Abolaji Rasaki
- Institute: Department of Chemical and Petroleum Engineering, University of Calgary, Alberta T2N 1N4, Canada
| | - Changyong Liu
- Additive Manufacturing Institute, College of Mechatronics & Control Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Fu R, Wang R, Wang C, Zhang S, Wang J, Peng R, Zhu X, Kang H, Mao Y. MOFs-based aerogels and their derivatives for water treatment: A review. ENVIRONMENTAL RESEARCH 2025; 279:121824. [PMID: 40373992 DOI: 10.1016/j.envres.2025.121824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 04/28/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Metal-organic frameworks (MOFs) are a class of environmental nano-materials composed of metal ions and organic ligands with remarkable physical and chemical properties, such as huge specific surface area as well as abundant pore volume. Based on their unique structures and properties, MOFs have demonstrated potential applications in the fields of adsorption, gas storage, separation membranes, and catalysis, and have become popular candidates in water treatment technologies. However, MOFs particles in powder form are prone to agglomeration and adhesion effects in water, which leads to problems such as difficult separation and secondary pollution. As an ideal carrier for MOFs, aerogels exhibit a unique three-dimensional interconnected pore structure, which endows aerogels with high porosity properties and excellent adsorption capacity. Researchers have skillfully combined MOFs with aerogels to create a new type of MOF aerogel composites (MOFACs). These composites are converted into highly porous and high-strength carbon aerogels through a high-temperature pyrolysis process in an inert environment. These carbon aerogels not only retain the high catalytic efficiency of MOFs, but also inherit the advantages of aerogels in terms of light weight, low density and easy handling. This paper reviews various types of MOFACs, each of which possesses different chemical compositions and physical properties, thus adapting to different applications. The paper also discusses the applications of MOFACs and carbon aerogels in water treatment for catalysis, selective adsorption and solid phase microextraction.
Collapse
Affiliation(s)
- Ranran Fu
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450000, China; Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Ruixue Wang
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, 450000, China; Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Chaohai Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China.
| | - Shiyu Zhang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China; School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, 450045, China
| | - Junning Wang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Rongfu Peng
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Xinfeng Zhu
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Haiyan Kang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Yanli Mao
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan International Joint Laboratory for Green Low Carbon Water Treatment Technology and Water Resources Utilization, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
4
|
Zhang Q, Chen S, Zhang H, Bao Z, Chen Y, Zhang G, Liu Z, Yang J, He R, Liu Y, Tian X. Optimizing cancer therapy through metal organic frameworks-based nanozymes. Int J Biol Macromol 2025; 306:141409. [PMID: 39993671 DOI: 10.1016/j.ijbiomac.2025.141409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Cancer remains a leading global health challenge, with conventional treatments facing limitations due to drug resistance and adverse effects arising from tumor heterogeneity. Nanozymes, nanomaterials mimicking natural enzymes, have emerged as promising therapeutic agents owing to their catalytic efficiency, stability, and biocompatibility. Among nanozymes, MOFs-based nanozymes are particularly attractive due to the inherent tunability of MOFs, which allows for precise control over their structure, porosity, and catalytic activity. This review comprehensively explores the recent advancements in optimizing cancer therapy through MOFs-based nanozymes. We delve into the classification of these nanozymes based on their enzyme-mimicking activities, including peroxidase, oxidase, catalase, and superoxide dismutase, and discuss their underlying catalytic mechanisms. Additionally, emerging single-atom nanozymes are discussed as a distinct category. Furthermore, we highlight the diverse therapeutic strategies employing MOFs-based nanozymes, such as starvation therapy, oxygen supply, catalytic therapy, glutathione depletion, and activation of therapeutic agents within tumor microenvironment. By exploiting the unique properties of MOFs, these nanozymes demonstrate enhanced therapeutic efficacy in various cancer treatment modalities, including chemotherapy, radiotherapy, photodynamic therapy, and sonodynamic therapy. This review underscores the significant potential of MOFs-based nanozymes as a versatile platform for developing next-generation cancer therapeutics, offering improved targeting, reduced systemic toxicity, and enhanced treatment outcomes.
Collapse
Affiliation(s)
- Qinxin Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan 063000, China; Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China
| | - Sai Chen
- Hebei Key Laboratory of Green Development of Rock and Mineral Materials and Institute of Basalt Fiber Materials, School of Gemmology and Materials Science, Hebei GEO University, Shijiazhuang 050031, China
| | - Hongwei Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Zitong Bao
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu 610041, China
| | - Yangyang Chen
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan 063000, China; Hebei Key Laboratory of Green Development of Rock and Mineral Materials and Institute of Basalt Fiber Materials, School of Gemmology and Materials Science, Hebei GEO University, Shijiazhuang 050031, China
| | - Guangling Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan 063000, China
| | - Zhiyong Liu
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan 063000, China
| | - Jichun Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing 400044, China
| | - Runhe He
- Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China.
| | - Yatao Liu
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xuetao Tian
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, School of Clinical Medicine, North China University of Science and Technology, Tangshan 063000, China.
| |
Collapse
|
5
|
Wang C, Xiang C, Zhang H, Zhang G, Zhang Q, Li P, Tang X. Multifunctional metal-organic frameworks-mediated colorimetric/photothermal immunosensor for highly sensitivity detection of dibutyl phthalate. Food Chem 2025; 472:142928. [PMID: 39827561 DOI: 10.1016/j.foodchem.2025.142928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Dibutyl phthalate (DBP), a priority pollutant among phthalic acid esters (PAEs) exhibits significant reproductive and respiratory toxicity. In this study, a multifunctional metal-organic frameworks-mediated colorimetric/photothermal immunosensor was established for the quantitative detection of DBP. Firstly, a highly sensitive and specific monoclonal antibody (mAb), designated 3A5, was prepared with a sensitivity IC50 value of 16.29 ng/mL. Secondly, a metal-organic framework material (ZrO₂@C) was synthesized via a two-step pyrolysis process of UiO-66. Subsequently, a multifunctional immunoprobe was prepared for the detection of DBP. Using ZrO₂@C-based colorimetric and photothermal dual-signal immunosensor ensured the accuracy of the detection results, as the multiple of these signals effectively guaranteed the reliability of the results. The limit of detection (LOD) for the dual signal was 0.766 ng/mL (colorimetric signal) and 0.465 ng/mL (photothermal signal). In conclusion, this work presented a novel and feasible approach for the development of multifunctional nanomaterials for the fabrication of immunosensors.
Collapse
Affiliation(s)
- Chen Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chengyan Xiang
- Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Haoran Zhang
- Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Gao Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhang
- Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Peiwu Li
- Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Xiaoqian Tang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Laboratory of Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture and Rural Affairs, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; Food Safety Research Institute, HuBei University, Wuhan 430062, China.
| |
Collapse
|
6
|
Zhao Y, Wen Y, Xu X, Fan M, Guo S, Chen Z, Zhao X, Wang B, Huang W. Removal of Cu(II) and Cr(VI) from electroplating wastewater by magnetic Fe 3O 4@SiO 2-UiO-66-EDTA: Adsorption behavior and mechanism. ENVIRONMENTAL RESEARCH 2025; 278:121647. [PMID: 40252797 DOI: 10.1016/j.envres.2025.121647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 04/21/2025]
Abstract
The heavy metals discharged from electroplating wastewater, represented as copper and chromium ions, is harmful to aquatic lives and human beings, and will break the ecological balance. In this work, magnetic hybrid porous structure adsorbent of Fe3O4@SiO2-UiO-66-EDTA is prepared for recycling copper and chromium ions. The adsorbent exhibits a maximum adsorption capacity of 212.10 mg/g for Cu(II) and 118.10 mg/g for Cr(VI). Notably, it shows excellent regenerability of 80.89% after 10 cycles. The adsorption of Cu(II) and Cr(VI) on Fe3O4@SiO2-UiO-66-EDTA follows the pseudo-second-order model, where chemical adsorption is dominant and it occurs spontaneously and exothermally. Based on XRD, FTIR, XPS, and DFT calculations, the adsorption mechanisms are driven by electrostatic attraction, chelation, and redox reactions. This work provides a novel and promising strategy for designing highly efficient adsorbents, paving the way for more effective treatments of electroplating wastewater contaminated with Cu(II) and Cr(VI).
Collapse
Affiliation(s)
- Yuxuan Zhao
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China
| | - Yueli Wen
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China; College of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA.
| | - Xiaonuo Xu
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China
| | - Maohong Fan
- Shanxi Yunbo Environmental New Technology Co., LTD, Taiyuan, 030024, Shanxi, China
| | - Shiyun Guo
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China
| | - Zhiju Chen
- College of Environment and Ecology, Taiyuan University of Technology, Taiyuan, 030600, Shanxi, China
| | - Xiaoxiao Zhao
- Bureau of Industry and Information Technology of Linshu, Linyi, 276700, Shandong, China
| | - Bin Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China; College of Engineering and Physical Sciences and School of Energy Resources, University of Wyoming, Laramie, WY, 82071, USA; Shanxi Yunbo Environmental New Technology Co., LTD, Taiyuan, 030024, Shanxi, China.
| | - Wei Huang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, China
| |
Collapse
|
7
|
Deng S, Huang ZW, Fu X, Zhou ZH, Guo ZR, Mei L, Yu JP, Zhu YQ, Wang NN, Hu KQ, Shi WQ. A uranyl-based metal-organic framework featuring an eight-connected U 4L 2 cage for guest capture. Dalton Trans 2025; 54:6239-6245. [PMID: 40126503 DOI: 10.1039/d5dt00307e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
A novel (3,6)-connected uranyl-based MOF (IHEP-50) was synthesized by a judicious combination of UO22+ and polycarboxylic acid, 4,4',4'',4''',4'''',4'''''-(((1,3,5-triazine-2,4,6-triyl)tris(azanetriyl))hexakis(methylene))hexabenzoic acid (H6DTPCA). Two DTPCA6- ligands are connected together via four uranyl cations to form a lantern-shaped cage U4L2, which is further connected with other eight equivalent ones to form a 3D porous framework with two kinds of 1D channels. These large pore structures give it certain potential for guest molecule capture. Adsorption experiments indicate that IHEP-50 can selectively remove positively charged dyes over negatively charged and neutral ones. In addition, IHEP-50 demonstrates notable adsorption performance for gaseous iodine, achieving a maximum adsorption capacity of 253.5 mg g-1.
Collapse
Affiliation(s)
- Shuang Deng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Xuan Fu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Heng Zhou
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhi-Ren Guo
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Yan-Qiu Zhu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Nan-Nan Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.
- School of Nuclear Science and Engineering, and Key Laboratory of Nuclear Power Systems and Equipment/Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
8
|
Sun Y, Zhang Y, Chen Z, Li C, Duan C, Kawi S, Li Y. Construction of amino functional metal-organic framework modified aramid composite separators with high Li + transport channels for dendrite-free lithium-ion batteries. J Colloid Interface Sci 2025; 683:262-273. [PMID: 39733541 DOI: 10.1016/j.jcis.2024.12.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/05/2024] [Accepted: 12/22/2024] [Indexed: 12/31/2024]
Abstract
The formation and growth of lithium dendrites is an ever-present and urgent problem in lithium-ion batteries (LIBs). At the same time, the low melting point of commercial polyolefin separators may lead to safety issues during application. On this basis, in this work, poly (m-phenylene isophthalamide) (PMIA)/Zr-based metal-organic framework (NH2-UiO-66) composite separator was prepared by non-solvent induced phase separation (NIPS). Firstly, the substantial quantity of Lewis acid sites and channels present in NH2-UiO-66 plays a great role in obstructing anions in electrolytes while improving the transport of lithium-ion (Li+). Besides, simultaneously, because of the incorporation of -NH2 within NH2-UiO-66, electrolyte uptake and retention were further enhanced, while the resistance to Li+ migration is reduced, resulting in a lower interfacial impedance (the interface resistance is 2.3 Ω). And the ion conductivity of the PMIA/NH2-UiO-66 composite separator is measured at 0.79 mS/cm, with a Li+ migration number also at 0.79, indicating superior performance. Furthermore, when MOF nanoparticles are incorporated into PMIA, the exposed Zr sites significantly increase the lithium affinity. It also regulates the Li+ transport path at the electrolyte-anode interface, resulting in a uniform and smooth Li metal surface topography after cycling, achieving excellent electrochemical performance, and ensuring long-term electrochemical stability over a wide range. The results show that the battery constructed using PMIA/NH2-UiO-66 composite separator demonstrated outstanding rate performance and cycling stability. In a word, the designed PMIA/NH2-UiO-66 composite separator provides an innovative way to develop high-performance separators in LIBs.
Collapse
Affiliation(s)
- Yingxue Sun
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400 PR China
| | - Yonglian Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400 PR China
| | - Zan Chen
- Key Laboratory of Membrane and Membrane Process, China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute, Tianjin 300131, PR China
| | - Claudia Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore
| | - Cuijia Duan
- Key Laboratory of Membrane and Membrane Process, China National Offshore Oil Corporation Tianjin Chemical Research & Design Institute, Tianjin 300131, PR China
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585 Singapore, Singapore.
| | - Yinhui Li
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300400 PR China.
| |
Collapse
|
9
|
Iqbal A, Ullah H, Iqbal M, Khan MS, Ullah RS, Gul Z, Rehman R, Altaf AA, Ullah S. MOF UiO-66 and its composites: design strategies and applications in drug and antibiotic removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35922-6. [PMID: 39885068 DOI: 10.1007/s11356-025-35922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025]
Abstract
Antibiotics and pharmaceuticals exert significant environmental risks to aquatic ecosystems and human health. Many effective remedies to this problem have been developed through research. Metal-organic frameworks (MOFs) are potential constituents, for drug and antibiotic removal. This article explores the potential of MOFs like UiO-66 (University of Oslo-66) to remove pharmaceutical and antibiotic contaminants from water. Zr-based MOF UiO-66 is used in water treatment due to its well-known chemical, thermal, and mechanical stability. The review covers several modifications, including metal doping, organic-group functionalization, and composite construction, to increase the UiO-66 selectivity and adsorption capacity for various pollutants. Recent studies have shown that UiO-66 is an effective material for pharmaceutical pollutants such as ciprofloxacin, tetracycline, and sulfamethoxazole removal. Practical application, photostability, and large-scale synthesis remain challenges in water treatment methods. Moreover, recent studies indicate the recycling potential of UiO-66 that validates its capability to retain its efficiency over multiple cycles, indicating its cost-effectiveness and sustainability. Besides, the toxicity of UiO-66 and its derivatives, which occur during water treatment, has also been highlighted, addressing the health and environmental risks. Prospective research directions include designing flaws, producing stable analogs of UiO-66, and transforming powdered UiO-66 into other forms that might be utilized, including films and membranes. This review is crucial as no comprehensive literature is currently available that thoroughly discusses the design techniques and applications of UiO-66 and its composites for drug and antibiotic removal. Our study specifically concentrates on the latest developments, emphasizing particular alterations that improve performance in water treatment.
Collapse
Affiliation(s)
- Aqsa Iqbal
- Department of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Hayat Ullah
- Department of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Maham Iqbal
- School of Chemistry, University of the Punjab, Quaid-I-Azam Campus, Lahore, 54590, Punjab, Pakistan
| | - Malik Saddam Khan
- Department of Chemistry, Kohsar University Murree, Murree, 47150, Punjab, Pakistan
| | - Raja Summe Ullah
- Department of Chemistry, Kohsar University Murree, Murree, 47150, Punjab, Pakistan
| | - Zarif Gul
- Department of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Rafia Rehman
- Section of Phytochemistry and Natural Products, Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, 46000, Punjab, Pakistan
| | - Ataf Ali Altaf
- Department of Chemistry, University of Okara, Okara, 56300, Punjab, Pakistan
| | - Shaheed Ullah
- Department of Chemistry, Kohsar University Murree, Murree, 47150, Punjab, Pakistan.
| |
Collapse
|
10
|
Li QJ, Xing F, Wu WT, Zhe M, Zhang WQ, Qin L, Huang LP, Zhao LM, Wang R, Fan MH, Zou CY, Duan WQ, Li-Ling J, Xie HQ. Multifunctional metal-organic frameworks as promising nanomaterials for antimicrobial strategies. BURNS & TRAUMA 2025; 13:tkaf008. [PMID: 40276581 PMCID: PMC12018305 DOI: 10.1093/burnst/tkaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 04/26/2025]
Abstract
Bacterial infections pose a serious threat to human health. While antibiotics have been effective in treating bacterial infectious diseases, antibiotic resistance significantly reduces their effectiveness. Therefore, it is crucial to develop new and effective antimicrobial strategies. Metal-organic frameworks (MOFs) have become ideal nanomaterials for various antimicrobial applications due to their crystalline porous structure, tunable size, good mechanical stability, large surface area, and chemical stability. Importantly, the performance of MOFs can be adjusted by changing the synthesis steps and conditions. Pure MOFs can release metal ions to modulate cellular behaviors and kill various microorganisms. Additionally, MOFs can act as carriers for delivering antimicrobial agents in a desired manner. Importantly, the performance of MOFs can be adjusted by changing the synthesis steps and conditions. Furthermore, certain types of MOFs can be combined with traditional photothermal or other physical stimuli to achieve broad-spectrum antimicrobial activity. Recently an increasing number of researchers have conducted many studies on applying various MOFs for diseases caused by bacterial infections. Based on this, we perform this study to report the current status of MOF-based antimicrobial strategy. In addition, we also discussed some challenges that MOFs currently face in biomedical applications, such as biocompatibility and controlled release capabilities. Although these challenges currently limit their widespread use, we believe that with further research and development, new MOFs with higher biocompatibility and targeting capabilities can provide diversified treatment strategies for various diseases caused by bacterial infections.
Collapse
Affiliation(s)
- Qian-Jin Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Xing
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China School of Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China
| | - Wen-Ting Wu
- Department of Pediatric Surgery, Division of Orthopedic Surgery, Orthopedic Research Institute, Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China School of Medicine, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, China
| | - Man Zhe
- Animal Experiment Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Wen-Qian Zhang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Qin
- Integrated Care Management Center, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Li-Ping Huang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Long-Mei Zhao
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ming-Hui Fan
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chen-Yu Zou
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Qiang Duan
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, No. 37 Guoxue Lane, Chengdu 610041, Sichuan, China
| | - Jesse Li-Ling
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Tianfu Jincheng Laboratory, Chengdu, 610093, China
| | - Hui-Qi Xie
- Department of Orthopedic Surgery and Orthopedic Research Institute, Stem Cell and Tissue Engineering Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Tianfu Jincheng Laboratory, Chengdu, 610093, China
| |
Collapse
|
11
|
Nadol A, Venel F, Giovine R, Leloire M, Volkringer C, Loiseau T, Gervais C, Mellot-Draznieks C, Doumert B, Trébosc J, Lafon O, Pourpoint F. Probing the water adsorption and stability under steam flow of Zr-based metal-organic frameworks using 91Zr solid-state NMR spectroscopy. Chem Sci 2024; 16:69-82. [PMID: 39583566 PMCID: PMC11580029 DOI: 10.1039/d4sc04589k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
The stability of metal-organic frameworks (MOFs) in the presence of water is crucial for a wide range of applications, including the production of freshwater, desiccation, humidity control, heat pumps/chillers and capture and separation of gases. In particular, their stability under steam flow is essential since most industrial streams contain water vapor. Nevertheless, to the best of our knowledge, the stability under steam flow of Zr-based MOFs, which are among the most widely studied MOFs, has not been investigated so far. We explore it herein for three UiO-like Zr-based MOFs built from the same Zr cluster but distinct organic linkers at temperature ranging from 80 to 200 °C. We demonstrate the possibility of acquiring their 91Zr NMR spectra using high magnetic field (18.8 T) and low temperature (140 K) and of interpreting them by comparing experimental data with NMR parameters calculated by DFT. NMR observation of this challenging isotope combined with more conventional techniques, such as N2 adsorption, X-ray diffraction, IR, and 1H and 13C solid-state NMR spectroscopies, provides information not only on the possible collapse of the MOF framework but also on the adsorption of molecules into the pores. We notably show that UiO-66(Zr) and UiO-66-Fum(Zr) built from terephthalate and fumarate linkers, respectively, are stable over 24 h (and even over 7 days for UiO-66(Zr)) under steam flow at all investigated temperatures, whereas UiO-67-NH2 containing a 2-amino-[1,1'-biphenyl]-4,4'-dicarboxylate linker degrades under steam flow at temperatures ranging from 80 to 150 °C but is preserved at 200 °C. The lower stability of UiO-67-NH2 stems from its larger pores and its weaker Zr-O coordination bonds, whereas its preservation at 200 °C results from a more limited condensation of water in the pores.
Collapse
Affiliation(s)
- Athulya Nadol
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Florian Venel
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Raynald Giovine
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Maëva Leloire
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Christophe Volkringer
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Thierry Loiseau
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | | | - Caroline Mellot-Draznieks
- Laboratoire de Chimie des Processus Biologiques (LCPB), CNRS UMR 8229, Collège de France, PSL University, Sorbonne Université Paris 75231 France
| | - Bertrand Doumert
- IMEC, Univ. Lille, CNRS, Centrale Lille, Univ. Artois FR 2638 F-59000 Lille France
| | - Julien Trébosc
- IMEC, Univ. Lille, CNRS, Centrale Lille, Univ. Artois FR 2638 F-59000 Lille France
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide F-59000 Lille France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide F-59000 Lille France
- Institut Universitaire de France 1, rue Descartes 75231 Paris CEDEX 05 France
| |
Collapse
|
12
|
Deng W, Fan C, Zhang R, Jin M. Deep-Eutectic-Solvent-Decorated Metal-Organic Framework for Food and Environmental Sample Preparation. Foods 2024; 13:3614. [PMID: 39594030 PMCID: PMC11594261 DOI: 10.3390/foods13223614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Deep eutectic solvent (DES) is distinguished by its unique solvent properties, chemical stability, and eco-friendly nature, which are pivotal in a spectrum of chemical processes. It enhances the sample preparation process by increasing efficiency and minimizing the environmental impact. Metal-organic frameworks (MOFs), which are porous structures formed through coordination bonds between metal ions and organic ligands, are defined by their adjustable pore dimensions, extensive surface areas, and customizable architectures. The integration of DES within MOF to create DES@MOF capitalizes on the beneficial attributes of both materials, augmenting MOFs' stability and versatility while providing a multifunctional carrier for DES. This composite material is both highly stable and readily tunable, establishing it as a leading contender for applications in sample preparation for food and environmental samples. This comprehensive review explores the application of DES-decorated MOF in food and environmental sample preparation and highlights the expansive potential of DES@MOF in diverse fields. We provide a detailed analysis of the characteristics of DES@MOF and its individual components, methods for decorating MOFs with DES, the advantages of these composite materials in sample pretreatment, and their specific applications in food safety and environmental monitoring. DESs are employed to modify MOFs, offering a multitude of benefits that can substantially improve the overall performance and applicability of MOFs. The review also discusses current challenges and future directions in this field, offering valuable insights for further research and development. The synergistic effects of DES and MOFs offer new opportunities for applications in food safety and other areas, leading to the development of more efficient, sensitive, and environmentally friendly analytical methods. This collaboration paves the way for sustainable technologies and innovative solutions to complex challenges.
Collapse
Affiliation(s)
| | - Chen Fan
- School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | | | | |
Collapse
|
13
|
Yang F, Xie HH, Du F, Hou X, Tang SF. Insight into the efficient loading and enhanced activity of enzymes immobilized on functionalized UiO-66. Int J Biol Macromol 2024; 279:135557. [PMID: 39265898 DOI: 10.1016/j.ijbiomac.2024.135557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/21/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Enzyme immobilization is an effective strategy for achieving efficient and sustainable enzyme catalysis. As a kind of promising enzyme-loading materials, the systematic research on zirconium based metal organic frameworks (Zr-MOFs) about immobilization performance at molecular level is still in its initial stage. In this work, UiO-66 was functionalized with various groups (-H, -NH2, -COOH, -OH, -2OH) for the immobilization of cytochrome c (Cyt c) and antioxidant enzyme catalase (CAT). Then the effects of surface-functionalized UiO-66 derivatives on the loading efficiency, enzyme stability and catalysis kinetics were systematically investigated. In addition, the affinity constants of Cyt c and CAT towards UiO-66-series MOFs carriers were also compared. The results have shown that hydroxyl group functionalized UiO-66 represents the highest enzyme loading capacity, enhanced activity and improved stability for Cyt c and CAT possibly due to high surface area and suitable microenvironments as well as enhanced affinity towards the enzymes provided by the introduction of a single hydroxyl group. Our research would foresee immense potential of MOFs in engineering biocatalysts.
Collapse
Affiliation(s)
- Fan Yang
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hui-Hui Xie
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fan Du
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomin Hou
- Shandong Province Key Laboratory of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Si-Fu Tang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
14
|
Rezaie MA, Khojastehnezhad A, Shiri A. Post-synthetic modification of Zr-based metal organic framework by schiff base zinc complex for catalytic applications in a click reaction. Sci Rep 2024; 14:24644. [PMID: 39428419 PMCID: PMC11491475 DOI: 10.1038/s41598-024-76199-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/11/2024] [Indexed: 10/22/2024] Open
Abstract
A novel nanocatalyst, denoted as UiO-66/Sal-ZnCl2, has been synthesized and systematically characterized employing a range of analytical techniques, including Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) surface area analysis, and inductively coupled plasma (ICP) analysis. The comprehensive analyses collectively affirm the effective coordination of zinc chloride onto the functionalized UiO-66. Subsequently, the catalytic efficacy of UiO-66/Sal-ZnCl2 was assessed in a one-pot, three-component click reaction involving terminal alkynes, alkyl halides, and sodium azide, conducted in an aqueous medium. The catalyst demonstrated remarkable catalytic activity, showcasing the capability to facilitate the reaction with high yields and exceptional regioselectivity. Noteworthy attributes of this nanocatalyst and the method include its elevated efficiency, recyclability, convenient product workup, and, significantly, the utilization of a sustainable solvent medium. The synthesis, characterization, and catalytic performance of this catalyst collectively contribute to its potential as an innovative and reusable nanocatalyst for diverse synthetic transformations.
Collapse
Affiliation(s)
- Mohammad-Aqa Rezaie
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amir Khojastehnezhad
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ali Shiri
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
15
|
Duojie Z, Chen K, Chen J, Zeng Q, Bai J, Li T, Ma C, Zhang M. Tailoring Morphology of MgO with Mg-MOF for the Enhanced Adsorption of Congo Red. ACS OMEGA 2024; 9:41676-41686. [PMID: 39398156 PMCID: PMC11466303 DOI: 10.1021/acsomega.4c05680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
The active site is a highly anticipated property of adsorbent in the field of separation, as it enables a concurrent enhancement of both adsorption efficiency and adsorption rate. Herein, employing morphology-oriented regulation, we successfully fabricated heterogeneous MgO adsorbent from a magnesium-based metal-organic framework (MOF) precursor, octahedral MgO-M and laminated sheets MgO-P, for the capture of Congo red (CR). Specifically, the octahedron MgO-M exhibits a greater abundant of moderately and strongly alkaline sites, which facilitate the adsorption of CR. Furthermore, the synergistic effect between alkaline site and lattice oxygen further enhances the adsorption process. The adsorption data align more closely with the Pseudo-second-order kinetic model and Langmuir models. Notably, the exceptional adsorption capacity (exceeding 1900 mg·g-1 for MgO-M) and the secondary regeneration efficiency (over 96% removal rate across six cycles) offer promising prospects for future industrial applications, effectively addressing challenges related to poor water stability and difficult storability. Additionally, characterizations reveal the positive roles of alkaline sites, lattice oxygen, and pore structure in capturing significant quantities of CR through mechanisms such as electrostatic interactions, hydrogen bonding, and pore filling.
Collapse
Affiliation(s)
- Zhuome Duojie
- School of Chemistry
and Chemical
Engineering/Qinghai Provincial Key Laboratory of Advanced Technology
and Application of Environmental Functional Materials, Qinghai Normal University, Xining 810008, China
| | - Keru Chen
- School of Chemistry
and Chemical
Engineering/Qinghai Provincial Key Laboratory of Advanced Technology
and Application of Environmental Functional Materials, Qinghai Normal University, Xining 810008, China
| | - Jinxin Chen
- School of Chemistry
and Chemical
Engineering/Qinghai Provincial Key Laboratory of Advanced Technology
and Application of Environmental Functional Materials, Qinghai Normal University, Xining 810008, China
| | - Qiuming Zeng
- School of Chemistry
and Chemical
Engineering/Qinghai Provincial Key Laboratory of Advanced Technology
and Application of Environmental Functional Materials, Qinghai Normal University, Xining 810008, China
| | - Juanjuan Bai
- School of Chemistry
and Chemical
Engineering/Qinghai Provincial Key Laboratory of Advanced Technology
and Application of Environmental Functional Materials, Qinghai Normal University, Xining 810008, China
| | - Tingting Li
- School of Chemistry
and Chemical
Engineering/Qinghai Provincial Key Laboratory of Advanced Technology
and Application of Environmental Functional Materials, Qinghai Normal University, Xining 810008, China
| | - Cunhua Ma
- School of Chemistry
and Chemical
Engineering/Qinghai Provincial Key Laboratory of Advanced Technology
and Application of Environmental Functional Materials, Qinghai Normal University, Xining 810008, China
| | - Mingjin Zhang
- School of Chemistry
and Chemical
Engineering/Qinghai Provincial Key Laboratory of Advanced Technology
and Application of Environmental Functional Materials, Qinghai Normal University, Xining 810008, China
| |
Collapse
|
16
|
Lv H, Ma X, Zhang G, Wang H, Hai X, Bi S. A bimetallic peroxidase-mimicking nanozyme with antifouling property for construction of sensor array to identify phosphoproteins and diagnose cancers. Biosens Bioelectron 2024; 258:116370. [PMID: 38744115 DOI: 10.1016/j.bios.2024.116370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Protein phosphorylation is a significant post-translational modification that plays a decisive role in the occurrence and development of diseases. However, the rapid and accurate identification of phosphoproteins remains challenging. Herein, a high-throughput sensor array has been constructed based on a magnetic bimetallic nanozyme (Fe3O4@ZNP@UiO-66) for the identification and discrimination of phosphoproteins. Attributing to the formation of Fe-Zr bimetallic dual active centers, the as-prepared Fe3O4@ZNP@UiO-66 exhibits enhanced peroxidase-mimicking catalytic activity, which promotes the electron transfer from Zr center to Fe(II)/Fe(III). The catalytic activity of Fe3O4@ZNP@UiO-66 can be selectively inhibited by phosphoproteins due to the strong interaction between phosphate groups and Zr centers, as well as the ultra-robust antifouling capability of zwitterionic dopamine nanoparticle (ZNP). Considering the diverse binding affinities between various proteins with the nanozyme, the catalytic activity of Fe3O4@ZNP@UiO-66 can be changed to various degree, leading to the different absorption responses at 420 nm in the hydrogen peroxide (H2O2) - 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) system. By simply extracting different absorbance intensities at various time points, a sensor array based on reaction kinetics for the discrimination of phosphoproteins from other proteins is constructed through linear discriminant analysis (LDA). Besides, the quantitative determination of phosphoproteins and identification of protein mixtures have been realized. Further, based on the differential level of phosphoproteins in cells, the differentiation of cancer cells from normal cells can also be implemented by utilizing the proposed sensor array, showing great potential in disease diagnosis.
Collapse
Affiliation(s)
- Han Lv
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, PR China
| | - Xinxin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, PR China
| | - Guofang Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, PR China
| | - Huijie Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, PR China
| | - Xin Hai
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, PR China.
| | - Sai Bi
- College of Chemistry and Chemical Engineering, Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
17
|
Eram S, Nabavi SR, Chaichi MJ, Alizadeh N. A liter scale synthesis of hierarchically mesoporous UiO-66 for removal of large antibiotics from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52485-52500. [PMID: 39150667 DOI: 10.1007/s11356-024-34687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/07/2024] [Indexed: 08/17/2024]
Abstract
The presence of antibiotics in water sources is a significant concern due to their potential environmental impact and the risks to human health. In the present research, hierarchically mesoporous UiO-66 (HP-UiO-66) with a high surface area (1011 m2/g) and large pore volume was synthesized using the reflux method on the liter scale. The successful synthesis was confirmed by FT-IR, XRD, FESEM/EDS, N2-adsorption/desorption, and zeta potential techniques. The HP-UiO-66 was utilized to remove two large structure antibiotics, chlortetracycline hydrochloride (CTC), and oxytetracycline (OTC). Box Behnken design was used to investigate the factors affecting the removal process and the interactions between them. The maximum adsorption capacities for OTC and CTC antibiotics were 252.9 mg/g and 234.2 mg/g at 35 °C, respectively. The sum of the normalized error method was applied to the analysis of various error functions in the nonlinear fitting of equilibrium and kinetic data. The CTC and OTC adsorption kinetic followed a fractal-like pseudo-second-order model. The Langmuir isotherm fitted well to adsorption data. The results demonstrate that HP-UiO-66 can be used as a recyclable and efficient adsorbent for large molecule antibiotics removal.
Collapse
Affiliation(s)
- Sorour Eram
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Seyed Reza Nabavi
- Department of Applied Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran.
| | - Mohammad Javad Chaichi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, Iran
| | - Nina Alizadeh
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
18
|
Wei F, Gong J, Ren Q, Yu X, Wang Y, Chen H, Liang Z. Preparation of Zn/Zr-MOFs by microwave-assisted ball milling and adsorption of lomefloxacin hydrochloride and levofloxacin hydrochloride in wastewater. ENVIRONMENTAL RESEARCH 2024; 252:118941. [PMID: 38649015 DOI: 10.1016/j.envres.2024.118941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
The Zn/Zr-MOFs were synthesized via microwave-assisted ball milling and subsequently characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The thermal stability of the Zn/Zr-MOFs was evaluated through thermogravimetry (TGA). The results demonstrated the exceptional adsorption properties of the Zn/Zr-MOFs towards Lomefloxacin hydrochloride and Levofloxacin hydrochloride. At a concentration of 30 ppm for Lomefloxacin hydrochloride, the addition of 30 mg of Zn/Zr-MOFs material resulted in an adsorption capacity of 179.2 mg•g-1. Similarly, at a concentration of 40 ppm for Levofloxacin hydrochloride, the addition of 30 mg Zn/Zr-MOFs material led to an adsorption capacity of 187.1 mg•g-1. Kinetic analysis revealed that the experimental data aligned well with a pseudo-second order kinetic model. Overall, these findings highlight the significant potential application of Zn/Zr-MOF materials in wastewater treatment.
Collapse
Affiliation(s)
- Fuhua Wei
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, Guizhou, China.
| | - Jie Gong
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, Guizhou, China
| | - Qinhui Ren
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, Guizhou, China
| | - Xiang Yu
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, Guizhou, China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, Guizhou, China
| | - Hongliang Chen
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, Guizhou, China
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City, 315211, China; State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
19
|
Salahshoori I, Yazdanbakhsh A, Baghban A. Machine learning-powered estimation of malachite green photocatalytic degradation with NML-BiFeO 3 composites. Sci Rep 2024; 14:8676. [PMID: 38622235 PMCID: PMC11018770 DOI: 10.1038/s41598-024-58976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
This study explores the potential of photocatalytic degradation using novel NML-BiFeO3 (noble metal-incorporated bismuth ferrite) compounds for eliminating malachite green (MG) dye from wastewater. The effectiveness of various Gaussian process regression (GPR) models in predicting MG degradation is investigated. Four GPR models (Matern, Exponential, Squared Exponential, and Rational Quadratic) were employed to analyze a dataset of 1200 observations encompassing various experimental conditions. The models have considered ten input variables, including catalyst properties, solution characteristics, and operational parameters. The Exponential kernel-based GPR model achieved the best performance, with a near-perfect R2 value of 1.0, indicating exceptional accuracy in predicting MG degradation. Sensitivity analysis revealed process time as the most critical factor influencing MG degradation, followed by pore volume, catalyst loading, light intensity, catalyst type, pH, anion type, surface area, and humic acid concentration. This highlights the complex interplay between these factors in the degradation process. The reliability of the models was confirmed by outlier detection using William's plot, demonstrating a minimal number of outliers (66-71 data points depending on the model). This indicates the robustness of the data utilized for model development. This study suggests that NML-BiFeO3 composites hold promise for wastewater treatment and that GPR models, particularly Matern-GPR, offer a powerful tool for predicting MG degradation. Identifying fundamental catalyst properties can expedite the application of NML-BiFeO3, leading to optimized wastewater treatment processes. Overall, this study provides valuable insights into using NML-BiFeO3 compounds and machine learning for efficient MG removal from wastewater.
Collapse
Affiliation(s)
- Iman Salahshoori
- Department of Polymer Processing, Iran Polymer and Petrochemical Institute, PO Box 14965-115, Tehran, Iran
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhosein Yazdanbakhsh
- Department of Polymer Engineering, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Baghban
- Department of Process Engineering, NISOC Company, Ahvaz, Iran.
| |
Collapse
|
20
|
Li Y, Wang WX. Toxic effects and action mechanism of metal-organic framework UiO-66-NH 2 in Microcystisaeruginosa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123595. [PMID: 38369089 DOI: 10.1016/j.envpol.2024.123595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
The zirconium metal-organic framework UiO-66-NH2 has garnered considerable attention for their potentials of removing environmental contaminants from water. The production and application of UiO-66-NH2 make their releases into the aquatic environment inevitable. Nevertheless, little information is available regarding its potential risk to the environment and aquatic organisms, thus limiting the evaluation of its safe and sustainable use. In this study, the ecotoxicity of UiO-66-NH2 was evaluated, specifically its impacts on growth, extracellular organic matter release, and metabolomic changes of the model phytoplankton Microcystis aeruginosa (M. aeruginosa). UiO-66-NH2 exhibited moderate effects on algal physiology including growth, viability, and photosynthetic system. At concentrations below 20 mg/L, UiO-66-NH2 induced negligible inhibition of algal growth, algal viability, and photosynthesis. In contrast, UiO-66-NH2 boosted the release of extracellular organic matter even at concentration as low as 0.02 mg/L. These findings indicated that, while no evident damage to algal cells was observed, UiO-66-NH2 was hazardous to the aquatic environment as it stimulated the release of algal toxins. Moreover, UiO-66-NH2 entered algal cells rather than adhering to the surface of M. aeruginosa as observed by the fluorescence imaging. Based on metabolic analysis, UiO-66-NH2 influenced the cyanobacteria mainly through interference with purine metabolism and ABC transporter. This study sheds light on the potential threat UiO-66-NH2 posing to microalgae, and has potential implications for its safe utilization in the environmental field.
Collapse
Affiliation(s)
- Yiling Li
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
21
|
Eldin ZE, Dishisha T, Sayed OM, Salama HM, Farghali A. A novel synergistic enzyme-antibiotic therapy with immobilization of mycobacteriophage Lysin B enzyme onto Rif@UiO-66 nanocomposite for enhanced inhaled anti-TB therapy; Nanoenzybiotics approach. Int J Biol Macromol 2024; 262:129675. [PMID: 38280693 DOI: 10.1016/j.ijbiomac.2024.129675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/01/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
The emergence of antibiotic-resistant and phage-resistant strains of Mycobacterium tuberculosis (M. tuberculosis) necessitates improving new therapeutic plans. The objective of the current work was to ensure the effectiveness of rifampicin and the mycobacteriophage LysB D29 (LysB)enzyme in the treatment of multi-drug resistant tuberculosis (MDR-TB) infection, where new and safe metal-organic framework (MOF) nanoparticles were used in combination. UiO-66 nanoparticles were synthesized under mild conditions in which the antimycobacterial agent (rifampicin) was loaded (Rif@UiO-66) and LysB D29 enzyme immobilized onto Rif@UiO-66, which were further characterized. Subsequently, the antibacterial activity of different ratios of Rif@UiO-66 and LysB/Rif@uio-66 against the nonpathogenic tuberculosis model Mycobacterium smegmatis (M. smegmatis) was evaluated by minimum inhibitory concentration (MIC) tests. Impressively, the MIC of LysB/Rif@uio-66 was 16-fold lower than that of pure rifampicin. In vitro and in vivo toxicity studies proved that LysB/Rif@UiO-66 is a highly biocompatible therapy for pulmonary infection. A biodistribution assay showed that LysB/Rif@UiO-66 showed a 5.31-fold higher drug concentration in the lungs than free rifampicin. A synergistic interaction between UiO-66, rifampicin and the mycobacteriophage lysB D29 enzyme was shown in the computational method (docking). Therefore, all results indicated that the LysB/Rif@UiO-66 nanocomposite exhibited promising innovative enzyme-antibiotic therapy for tuberculosis treatment.
Collapse
Affiliation(s)
- Zienab E Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62511 Beni-Suef, Egypt.
| | - Tarek Dishisha
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia 41636, Egypt
| | - Hanaa M Salama
- Department of Chemistry, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, 62511 Beni-Suef, Egypt
| |
Collapse
|
22
|
Chen S, Liu Y, Qin Z, Wen G, Jiang Z. A new and highly efficient CuMOF-based nanoenzyme and its application to the aptamer SERS/FL/RRS/Abs quadruple-mode analysis of ultratrace malachite green. Analyst 2024; 149:1179-1189. [PMID: 38206348 DOI: 10.1039/d3an01902k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Malachite green (MG) is highly toxic, persistent, and carcinogenic, and its widespread use is a danger to the ecosystem and a threat to public health and food safety, making it necessary to develop new sensitive multimode molecular spectroscopy methods. In this work, a new copper-based nanomaterial (CuNM) was prepared by a high-temperature roasting using a copper metal-organic framework (CuMOF) as precursor. The as-prepared CuNM was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy, transmission electron microscopy (TEM), and BET surface area analysis. CuNM was found to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce the oxidation product TMBOX; however, subsequently, the MG aptamer (Apt) could be adsorbed on the CuNM surface by intermolecular interaction, which would inhibit the catalytic performance. After the addition of MG to be tested, the CuNM previously adsorbed by the Apt was transformed into its free state, thus restoring its catalytic activity. This new nanocatalytic indicator reaction could be monitored by surface-enhanced Raman scattering (SERS)/resonance Rayleigh scattering (RRS)/fluorescence (FL)/absorption (Abs) quadruple-mode methods. The SERS determination range was 0.004-0.4 nmol L-1 MG, with a limit of detection of 0.0032 nM. In this way, a rapid, stable, and sensitive method for the determination of MG residues in the environment was established.
Collapse
Affiliation(s)
- Shuxin Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| | - Yue Liu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| | - Zhiyu Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| | - Guiqing Wen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| | - Zhiliang Jiang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541004, China
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guilin, 541004, China.
| |
Collapse
|
23
|
Shah SSA, Sohail M, Murtza G, Waseem A, Rehman AU, Hussain I, Bashir MS, Alarfaji SS, Hassan AM, Nazir MA, Javed MS, Najam T. Recent trends in wastewater treatment by using metal-organic frameworks (MOFs) and their composites: A critical view-point. CHEMOSPHERE 2024; 349:140729. [PMID: 37989439 DOI: 10.1016/j.chemosphere.2023.140729] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Respecting the basic need of clean and safe water on earth for every individual, it is necessary to take auspicious steps for waste-water treatment. Recently, metal-organic frameworks (MOFs) are considered as promising material because of their intrinsic features including the porosity and high surface area. Further, structural tunability of MOFs by following the principles of reticular chemistry, the MOFs can be functionalized for the high adsorption performance as well as adsorptive removal of target materials. However, there are still some major concerns associated with MOFs limiting their commercialization as promising adsorbents for waste-water treatment. The cost, toxicity and regenerability are the major issues to be addressed for MOFs to get insightful results. In this article, we have concise the current strategies to enhance the adsorption capacity of MOFs during the water-treatment for the removal of toxic dyes, pharmaceuticals, and heavy metals. Further, we have also discussed the role of metallic nodes, linkers and associated functional groups for effective removal of toxic water pollutants. In addition to conformist overview, we have critically analyzed the MOFs as adsorbents in terms of toxicity, cost and regenerability. These factors are utmost important to address before commercialization of MOFs as adsorbents for water-treatment. Finally, some future perspectives are discussed to give directions for potential research.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ghulam Murtza
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhammad Sohail Bashir
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Saleh S Alarfaji
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ahmed M Hassan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| | - Tayyaba Najam
- College of Chemistry and Environmental Sciences, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
24
|
Wang Y, Huang J, Zhang Y, Zhang S, Li L, Pang X. The Design of PAN-Based Janus Membrane with Adjustable Asymmetric Wettability in Wastewater Purification. MATERIALS (BASEL, SWITZERLAND) 2024; 17:417. [PMID: 38255585 PMCID: PMC10817498 DOI: 10.3390/ma17020417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
In this paper, an environmentally friendly polyacrylonitrile-based (PAN-based) composite membrane with a Janus structure for wastewater treatment was successfully fabricated. To achieve the optimum adsorption of PAN-based Janus composite membrane, the asymmetric wettability was regulated through electrospinning, resulting in TiO2 modifying PAN as the hydrophilic substrate layer, and PCL gaining a different thickness as the hydrophobic layer. The prepared Janus composite membrane (PAN/TiO2-PCL20) showed excellent oil/water separation performance for diverse surfactant-stabilized oil-in-water emulsions. For n-hexane-in-water emulsion, the permeate flux and separation efficiency reached 1344 L m-2 h-1 and 99.52%, respectively. Even after 20 cycles of separation, it still had outstanding reusability and the separation efficiency remained above 99.15%. Meanwhile, the PAN/TiO2-PCL20 also exhibited an excellent photocatalytic activity, and the removal rate for RhB reached 93.2%. In addition, the research revealed that PAN/TiO2-PCL20 possessed good mechanical property and unidirectional water transfer capability. All results indicated that PAN/TiO2-PCL20 with photocatalysis and oil/water separation performance could be used for practical complex wastewater purification.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130022, China; (Y.W.); (J.H.); (Y.Z.); (S.Z.)
| | - Jun Huang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130022, China; (Y.W.); (J.H.); (Y.Z.); (S.Z.)
| | - Ye Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130022, China; (Y.W.); (J.H.); (Y.Z.); (S.Z.)
| | - Shiwen Zhang
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130022, China; (Y.W.); (J.H.); (Y.Z.); (S.Z.)
| | - Lili Li
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130022, China; (Y.W.); (J.H.); (Y.Z.); (S.Z.)
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
25
|
Assafi A, El Hadj Ali YA, Almufarij RS, Hejji L, Raza N, Villarejo LP, Souhail B, Azzouz A, Abdelrahman EA. Ultrasound-assisted adsorption of organic dyes in real water samples using zirconium (IV)-based metal-organic frameworks UiO-66-NH 2 as an adsorbent. Heliyon 2023; 9:e22001. [PMID: 38027594 PMCID: PMC10679492 DOI: 10.1016/j.heliyon.2023.e22001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
The utilization of dye adsorption through metal-organic frameworks represents an eco-friendly and highly effective approach in real water treatment. Here, ultrasound assisted adsorption approach was employed for the remediation of three dyes including methylene blue (MB), malachite green (MG), and congo red (CR) from real water samples using zirconium(IV)-based adsorbent (UiO-66-NH2). The adsorbent was characterized for structural, elemental, thermal and morphological features through XRD, XPS, FTIR, thermogravimetric analysis, SEM, BET , and Raman spectroscopy. The adsorption capacity of adsorbent to uptake the pollutants in aqueous solutions was investigated under different experimental conditions such as amount of UiO-66-NH2 at various contact durations, temperatures, pH levels, and initial dye loading amounts. The maximum removal of dyes under optimal conditions was found to be 938, 587, and 623 mg g-1 towardMB, MG, and CR, respectively. The adsorption of the studied dyes on the adsorbent surface was found to be a monolayer and endothermic process. The probable mechanism for the adsorption was chemisorption and follows pseudo-second-order kinetics. From the findings of regeneration studies, it was deduced that the adsorbent can be effectively used for three consecutive cycles without any momentous loss in its adsorption efficacy. Furthermore, UiO-66-NH2 with ultrasound-assisted adsorption might help to safeguard the environment and to develop new strategies for sustainability of natural resources.
Collapse
Affiliation(s)
- Abdeslam Assafi
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco
| | - Youssef Aoulad El Hadj Ali
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco
| | - Rasmiah S. Almufarij
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Lamia Hejji
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco
- Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700, Linares, Jaén, Spain
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Luis Pérez Villarejo
- Department of Chemical, Environmental, and Materials Engineering, Higher Polytechnic School of Linares, University of Jaén, Campus Científico-Tecnológico, Cinturón Sur s/n, 23700, Linares, Jaén, Spain
| | - Badredine Souhail
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco
| | - Abdelmonaim Azzouz
- Department of Chemistry, Faculty of Science, University of Abdelmalek Essaadi, B.P. 2121, M'Hannech II, 93002, Tetouan, Morocco
| | - Ehab A. Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University, Benha, 13518, Egypt
| |
Collapse
|
26
|
Peng M, You D, Jin Z, Ni C, Shi H, Shao J, Shi X, Zhou L, Shao P, Yang L, Luo X. Investigating the potential of structurally defective UiO-66 for Sb (V) removal from tailing wastewater. ENVIRONMENTAL RESEARCH 2023; 236:116752. [PMID: 37527747 DOI: 10.1016/j.envres.2023.116752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Antimony contamination of tailings from the mining process remain attracted a great amount of concern. In this study, defective UiO-66-X crystal materials are rationally constructed using trifluoroacetic acid and hydrochloric acid as modulators for the removal of Sb(V) from actual tailing sand leachates. XRD and TG characterizations reveal that the number and kind of defects in UiO-66 are influenced by the type of modulators and the addition of trifluoroacetic acid makes UiO-66-TFA contain both cluster and ligand defects. Adsorption experiments show that UiO-66 and UiO-66-HCl achieve 100% removal of Sb(V) at pH 7.5 of the tailing sand leachate, and up to 90% removal of Sb(V) by the three materials at pH 2.5. It is noteworthy that the removal rate of Sb(V) by UiO-66-HCl is still satisfactory even under strongly acidic conditions at pH 0.5, with good potential for practical applications. Four kinetic models are used to fit the adsorption data and the analysis shows that the mechanism of Sb(V) adsorption by three adsorbent is all pseudo-second order and chemisorption acts as an important role in the adsorption process. In addition, the fixed bed adsorption experiments show that the material exhibit good prospects for practical applications.
Collapse
Affiliation(s)
- Mingming Peng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Deng You
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhennan Jin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Chenquan Ni
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Jiachuang Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xuanyu Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Lei Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China; School of Life Science, Jinggangshan University, Ji'an, 343009, PR China.
| |
Collapse
|
27
|
Rego RM, Ajeya KV, Jung HY, Kabiri S, Jafarian M, Kurkuri MD, Kigga M. Nanoarchitectonics of Bimetallic MOF@Lab-Grade Flexible Filter Papers: An Approach Towards Real-Time Water Decontamination and Circular Economy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302692. [PMID: 37469019 DOI: 10.1002/smll.202302692] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/15/2023] [Indexed: 07/21/2023]
Abstract
This study presents a novel approach to decontaminate ferrocyanide-contaminated wastewater. The work effectively demonstrates the use of bimetallic Mo/Zr-UiO-66 as a super-adsorbent for rapid sequestration of Prussian blue, a frequently found iron complex in cyanide-contaminated soils/groundwater. The exceptional performance of Mo/Zr-UiO-66 is attributed to the insertion of secondary metallic sites, which deliver synergistic effects, benefiting the inherent qualities of the framework. Moreover, to extend the industrial applications of metal-organic frameworks (MOFs) in real-world scenarios, an approach is delivered to structure the nanocrystalline powders into MOF-based macrostructures. The work demonstrates an interfacial process to develop continuous MOF nanostructures on ordinary laboratory-grade filter papers. The novelty of the work lies in the development of robust free-standing filtration materials to purify PB dye-contaminated water. Additionally, the work embraces a circular economy concept to address problems related to resource scarcity, excessive waste production, and maintenance of economic benefits. Consequently, the PB dye-loaded adsorbent waste is re-employed for the adsorption of heavy metals (Pb2+ and Cd2+ ). Simultaneously, the study aims to address the problems related to the real-time handling of powdered adsorbents, and the generation of ecologically harmful secondary waste, thereby, progressing toward a more sustainable system.
Collapse
Affiliation(s)
- Richelle M Rego
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| | - Kanalli V Ajeya
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Shervin Kabiri
- School of Agriculture, Food and Wine, Faculty of Sciences, Engineering and Technology, The University of Adelaide, PMB 1 Waite Campus, Glen Osmond, SA, 5005, Australia
| | - Mehdi Jafarian
- School of Mechanical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mahaveer D Kurkuri
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru, Karnataka, 562112, India
| |
Collapse
|
28
|
Poschmann MPM, Lillerud KP, Stock N. Acidic Properties of Known and New COOH-Functionalized M(IV) Metal-Organic Frameworks. Chemistry 2023; 29:e202301760. [PMID: 37272919 DOI: 10.1002/chem.202301760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/06/2023]
Abstract
Herein, we report two new COOH-functionalized metal-organic frameworks (MOFs) of composition [M6 O4 (OH)6 (PMA)2 (H2 PMA)]×H2 O, M=Zr, Hf), denoted CAU-61, synthesized by using pyromellitic acid (H4 PMA), a tetracarboxylic acid, as the linker and acetic acid as the solvent. The structure was determined from powder X-ray diffraction data and one-dimensional inorganic building units are connected through tetracarboxylate as well as dicarboxylate linker molecules, resulting in highly stable microporous framework structures with limiting and maximum pore diameter of ∼3.6 and ∼5.0 Å, respectively, lined with -COOH groups. Thermal stabilities of up to 400 °C in air, chemical stability in water at pH 1 to 12 and water uptake of 17 mol/mol prompted us to study the proton exchange of the μ2 -OH, μ3 -OH of the IBU and -COOH groups of the linker by titration with LiOH. Comparison of the pKa values with three UiO-66 derivatives confirms distinct pKa value ranges and trends for the different acidic protons. Furthermore, the preparation of Zr-CAU-61 membranes and first results on permeation of dyes and ions in aqueous solutions are presented.
Collapse
Affiliation(s)
| | | | - Norbert Stock
- Department of Inorganic Chemistry, Christian-Albrechts-University, Max-Eyth-Straße 2, 24118, Kiel, Germany
| |
Collapse
|
29
|
N P, Varshney R, Singh S, Kumar Naik TS, Ramamurthy PC. 3D rhombohedral microcrystals metal-organic frameworks for electrochemical and fluorescence sensing of tetracycline. CHEMOSPHERE 2023; 333:138977. [PMID: 37209853 DOI: 10.1016/j.chemosphere.2023.138977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/22/2023]
Abstract
Zirconium-based metal-organic frameworks (MOF) exhibiting 3D rhombohedral microcrystals were synthesized by the solvothermal method. The structure, morphology, composition, and optical properties of the synthesized MOF were carried out using different spectroscopic, microscopic, and diffraction techniques. Synthesized MOF was rhombohedral in shape and the cage structure of these crystalline molecules was the active binding site of the analyte, tetracycline (TET). The electronic property and size of the cages are chosen such that a specific interaction with TET was observed. Sensing of the analyte was demonstrated by both the electrochemical and fluorescent techniques. The MOF had significant luminescent properties and exhibited excellent electro-catalytic activity due to embedded zirconium metal ions. An electrochemical and fluorescence sensor was fabricated towards TET where TET binds via hydrogen bond to MOF, and causes fluorescence quenching due to the transfer of electrons. Both approaches exhibited high selectivity and good stability in the presence of interfering molecules such as antibiotics, biomolecules, and ions; and showed excellent reliability in tap water and wastewater sample analysis.
Collapse
Affiliation(s)
- Pavithra N
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, 560012, India
| | - Radhika Varshney
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, 560012, India
| | - Simranjeet Singh
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, 560012, India
| | - Ts Sunil Kumar Naik
- Department of Materials Engineering Indian Institute of Science, Bengaluru, 560012, India
| | - Praveen C Ramamurthy
- Interdisciplinary Centre for Water Research (ICWaR) Indian Institute of Science, Bengaluru, 560012, India; Department of Materials Engineering Indian Institute of Science, Bengaluru, 560012, India.
| |
Collapse
|
30
|
Poryvaev AS, Larionov KP, Albrekht YN, Efremov AA, Kiryutin AS, Smirnova KA, Evtushok VY, Fedin MV. UiO-66 framework with an encapsulated spin probe: synthesis and exceptional sensitivity to mechanical pressure. Phys Chem Chem Phys 2023; 25:13846-13853. [PMID: 37161549 DOI: 10.1039/d3cp01063e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Probes sensitive to mechanical stress are in demand for the analysis of pressure distribution in materials, and the design of pressure sensors based on metal-organic frameworks (MOFs) is highly promising due to their structural tunability. We report a new pressure-sensing material, which is based on the UiO-66 framework with trace amounts of a spin probe (0.03 wt%) encapsulated in cavities. To obtain this material, we developed an approach for encapsulation of stable nitroxide radical TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) into the micropores of UiO-66 during its solvothermal synthesis. Pressure read-out using electron paramagnetic resonance (EPR) spectroscopy allows monitoring the degradation of the defected MOF structure upon pressurization, where full collapse of pores occurs at as low a pressure as 0.13 GPa. The developed methodology can be used in and ex situ and provides sensitive tools for non-destructive mapping of pressure effects in various materials.
Collapse
Affiliation(s)
- Artem S Poryvaev
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
| | - Kirill P Larionov
- Boreskov Institute of Catalysis SB RAS, Lavrentiev av. 5, Novosibirsk, 630090, Russia
| | - Yana N Albrekht
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
| | - Alexander A Efremov
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| | - Alexey S Kiryutin
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
| | - Kristina A Smirnova
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| | - Vasiliy Y Evtushok
- Boreskov Institute of Catalysis SB RAS, Lavrentiev av. 5, Novosibirsk, 630090, Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Pirogova str. 1, Novosibirsk, 630090, Russia
| |
Collapse
|
31
|
Yu Y, Shang M, Kong L, Li X, Wang L, Sun T. Influence of ligands within Al-based metal-organic frameworks for selective separation of methane from unconventional natural gas. CHEMOSPHERE 2023; 321:138160. [PMID: 36796522 DOI: 10.1016/j.chemosphere.2023.138160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Efficient CH4/N2 separation from unconventional natural gas is vital for both energy recycling and climate change control. Figuring out the reason for the disparity between ligands in the framework and CH4 is the crucial problem for developing adsorbents in PSA progress. In this study, a series of eco-friendly Al-based MOFs, including Al-CDC, Al-BDC, CAU-10, and MIL-160, were synthesized to investigate the influence of ligands on CH4 separation through experimental and theoretical analyses. The hydrothermal stability and water affinity of synthetic MOFs were explored through experimental characterization. The active adsorption sites and adsorption mechanisms were investigated via quantum calculation. The results manifested that the interactions between CH4 and MOFs materials were affected by the synergetic effects of pore structure and ligand polarities, and the disparities of ligands within MOFs determined the separation efficiency of CH4. Especially, the CH4 separation performance of Al-CDC with high sorbent selection (68.56), moderate isosteric adsorption heat for CH4 (26.3 kJ/mol), and low water affinity (0.1 g/g at 40% RH) was superior to most porous adsorbents, which was attributed to its nanosheet structure, proper polarity, reduced local steric hindrance, and extra functional groups. The analysis of active adsorption sites indicated that hydrophilic carboxyl groups and hydrophobic aromatic ring were the dominant CH4 adsorption sites for liner ligands and bent ligands, respectively. The methylene groups with saturated C-H bonds enhanced the wdV interaction between ligands and CH4, resulting in the highest binding energy of CH4 for Al-CDC. The results provided valuable guidance for the design and optimization of high-performance adsorbents for CH4 separation from unconventional natural gas.
Collapse
Affiliation(s)
- Yixuan Yu
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, PR China
| | - Mingyang Shang
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, PR China; Environmental Science and Engineering College, Dalian Maritime University, Dalian, 116026, PR China
| | - Lingtong Kong
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, PR China
| | - Xianhai Li
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, PR China
| | - Lina Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.
| | - Tianjun Sun
- Marine Engineering College, Dalian Maritime University, Dalian, 116026, PR China.
| |
Collapse
|
32
|
Lei S, Du Z, Song Y, Zhang T, Wang B, Zhou C, Sun L. Performance and mechanisms of iron/copper-doped zirconium-based catalyst containing hydroxyl radicals for enhanced removal of gaseous benzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56594-56607. [PMID: 36920609 DOI: 10.1007/s11356-023-26276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
In the present study, novel copper-doped zirconium-based MOF (UIO-66) and copper-doped iron-based UIO-66 catalysts were prepared by hydrothermal synthesis method to improve the removal performance of gaseous benzene. The characteristics of the catalysts were analyzed by means of XRD, SEM, XPS, BET, and EPR. The copper loading catalyst had high crystallinity and irregular globular. The three kinds of catalysts with different Cu/Fe ratios had regular cubic shape. Compared with the catalyst supported with single copper, the bimetal Cu/Fe modification had a certain adjustment effect on the morphology, which specifically reflected in the uniform size and shape of catalyst particles with better dispersibility. The factors of different metal loading, dose of H2O2, and reaction temperature on benzene removal have been studied. It has been observed that in heterogeneous advanced oxidation removal of benzene, 3-Cu@UIO-66 and Cu1.5/Fe1.5@UIO-66 achieved the highest benzene removal efficiency of 81.2% and 94.6%, respectively. EPR results showed that the increase of Cu loading and different Cu/Fe ratios promoted the yield of hydroxyl radicals, thus promoted the benzene removal efficiency. The efficiency of heterogeneous oxidation removal of benzene first increased and then decreased with the increase of temperature due to H2O2 instability. DFT calculations exhibited that the Feoct-Cu-O site was a more effective activation site than the single Feoct-O site. Dissociative adsorption occurred with the O-O bond of H2O2 cracked, and the formed hydroxyls parallel adsorbed on the benzene surface. The combination of benzene and hydroxyls was strong chemisorption with the torsion angle of benzene ring obviously turned. The work was of great importance for identifying the roles of the novel catalyst for the removal of benzene pollutant from waste gases.
Collapse
Affiliation(s)
- Siyuan Lei
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Xi'an Thermal Power Research Institute Co. Ltd. (Suzhou Branch), Suzhou, 215153, Jiangsu, China
| | - Zhaohui Du
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Yujia Song
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Tingting Zhang
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Ben Wang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Changsong Zhou
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing, 210023, China
| | - Lushi Sun
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
33
|
Mastropietro TF. Metal-organic frameworks and plastic: an emerging synergic partnership. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2189890. [PMID: 37007671 PMCID: PMC10054298 DOI: 10.1080/14686996.2023.2189890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 06/19/2023]
Abstract
Mismanagement of plastic waste results in its ubiquitous presence in the environment. Despite being durable and persistent materials, plastics are reduced by weathering phenomena into debris with a particle size down to nanometers. The fate and ecotoxicological effects of these solid micropollutants are not fully understood yet, but they are raising increasing concerns for the environment and people's health. Even if different current technologies have the potential to remove plastic particles, the efficiency of these processes is modest, especially for nanoparticles. Metal-organic frameworks (MOFs) are crystalline nano-porous materials with unique properties, have unique properties, such as strong coordination bonds, large and robustus porous structures, high accessible surface areas and adsorption capacity, which make them suitable adsorbent materials for micropollutants. This review examines the preliminary results reported in literature indicating that MOFs are promising adsorbents for the removal of plastic particles from water, especially when MOFs are integrated in porous composite materials or membranes, where they are able to assure high removal efficiency, superior water flux and antifouling properties, even in the presence of other dissolved co-pollutants. Moreover, a recent trend for the alternative preparation of MOFs starting from plastic waste, especially polyethylene terephthalate, as a sustainable source of organic linkers is also reviewed, as it represents a promising route for mitigating the impact of the costs deriving from the widescale MOFs production and application. This connubial between MOFs and plastic has the potential to contribute at implementing a more effective waste management and the circular economy principles in the polymer life cycle.
Collapse
|
34
|
Bariki R, Kumar Pradhan S, Panda S, Kumar Nayak S, Majhi D, Das K, Mishra B. In-situ synthesis of structurally oriented hierarchical UiO-66(-NH2)/CdIn2S4/CaIn2S4 heterostructure with dual S-scheme engineering for photocatalytic renewable H2 production and asulam degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
35
|
Zafari R, Mendonça FG, Tom Baker R, Fauteux-Lefebvre C. Efficient SO2 capture using an amine-functionalized, nanocrystalline cellulose-based adsorbent. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Piao J, Lu M, Ren J, Wang Y, Feng T, Wang Y, Jiao C, Chen X, Kuang S. MOF-derived LDH modified flame-retardant polyurethane sponge for high-performance oil-water separation: Interface engineering design based on bioinspiration. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130398. [PMID: 36402109 DOI: 10.1016/j.jhazmat.2022.130398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/22/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Frequent petrochemical spill accidents and secondary fire hazards have threatened the ecological environment and environmental safety. The traditional purification technology has the problems of high energy consumption and secondary pollution, which also brings new challenges to spill disposal. Herein, we demonstrate a biomimetic structure-based flame-retardant polyurethane (PU) sponge (FPUF@MOF-LDH@HDTMS) for continuous oil-water separation. Inspired by desert beetle and lotus leaf, the biomimetic micro-nano composite structure was constructed by in-situ growth of metal-organic framework-derived layered double hydroxide (MOF-LDH) on the surface of the PU sponge. After grafting MOF-LDH with hexadecyltrimethoxysilane, FPUF@MOF-LDH@HDTMS showed excellent superhydrophobic/superoleophilic performance (water contact angle=153° and oil contact angle=0°). FPUF@MOF-LDH@HDTMS can easily and quickly adsorb oily liquids suspended/settled in the water thanks to the unique bionic structure. FPUF@MOF-LDH@HDTMS has excellent oil/organic solvents absorption capacity; even after 20 cycles of use still maintains high adsorption capacity. More importantly, the continuous oil-water separation through FPUF@MOF-LDH@HTMS has achieved a separation efficiency of up to 99.1%. In addition, the bionic superhydrophobic sponge has excellent flame retardancy, which reduces the possibility of secondary fire caused by PU sponges. Thus, the biomimetic micro-nano composite structure provides a new design strategy for the more high-performance oil-water separation sponges.
Collapse
Affiliation(s)
- Junxiu Piao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Mingjie Lu
- State Key Laboratory of Petroleum Pollution Control, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China
| | - Jinyong Ren
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Yaofei Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Tingting Feng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Yaxuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| | - Chuanmei Jiao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China.
| | - Xilei Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China.
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266042, PR China
| |
Collapse
|
37
|
Jaffari ZH, Abbas A, Lam SM, Park S, Chon K, Kim ES, Cho KH. Machine learning approaches to predict the photocatalytic performance of bismuth ferrite-based materials in the removal of malachite green. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130031. [PMID: 36179629 DOI: 10.1016/j.jhazmat.2022.130031] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
This study focuses on the potential capability of numerous machine learning models, namely CatBoost, GradientBoosting, HistGradientBoosting, ExtraTrees, XGBoost, DecisionTree, Bagging, light gradient boosting machine (LGBM), GaussianProcess, artificial neural network (ANN), and light long short-term memory (LightLSTM). These models were investigated to predict the photocatalytic degradation of malachite green from wastewater using various NM-BiFeO3 composites. A comprehensive databank of 1200 data points was generated under various experimental conditions. The ten input variables selected were the catalyst type, reaction time, light intensity, initial concentration, catalyst loading, solution pH, humic acid concentration, anions, surface area, and pore volume of various photocatalysts. The MG dye degradation efficiency was selected as the output variable. An evaluation of the performance metrics suggested that the CatBoost model, with the highest test coefficient of determination (0.99) and lowest mean absolute error (0.64) and root-mean-square error (1.34), outperformed all other models. The CatBoost model showed that the photocatalytic reaction conditions were more important than the material properties. The modeling results suggested that the optimized process conditions were a light intensity of 105 W, catalyst loading of 1.5 g/L, initial MG dye concentration of 5 mg/L and solution pH of 7. Finally, the implications and drawbacks of the current study were stated in detail.
Collapse
Affiliation(s)
- Zeeshan Haider Jaffari
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Ather Abbas
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Sze-Mun Lam
- Department of Environmental Engineering, Faculty of Engineering and Green Technology, Universiti Tunku Abdul Rahman, 31900 Kampar, Perak, Malaysia
| | - Sanghun Park
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kangmin Chon
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea; Department of Integrated Energy and Infra system, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do 24341, Republic of Korea
| | - Eun-Sik Kim
- Department of Environmental System Engineering, Chonnam National University, Yeosu 59626, Republic of Korea.
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| |
Collapse
|
38
|
A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Zhao B, Sun M, Guo Z, Wang L, Qian Y, He X, Li J. Enhanced water permeance and EDCs rejection using a UiO-66-NH 2-predeposited polyamide membrane. CHEMOSPHERE 2023; 312:137114. [PMID: 36334752 DOI: 10.1016/j.chemosphere.2022.137114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Endocrine disrupting compounds (EDCs) have been increasingly detected in drinking water sources, and pose severe threat to human health. Polyamide (PA) based nanofiltration (NF) membrane has great potential for EDCs removal from water, but the removal of hydrophobic EDCs is not satisfying due to strong hydrophobic affinity. In this study, UiO-66-NH2/PA membranes were prepared by predepositing hydrophilic UiO-66-NH2 onto the substrate prior to interfacial polymerization. The UiO-66-NH2 aggregates increased the permeable area and strengthened the "gutter effect". Therefore, the pure water flux of UiO-66-NH2/PA increased by 115% compared with that of the thin-film composite (TFC) membrane, and its rejection of Na2SO4 was 96%. The hydrophilicity-enhanced PA film reduced its adsorption of EDCs and decreased the driving force for EDCs diffusion. Moreover, the UiO-66-NH2-induced hydrophilic nanochannels, including the interfacial gaps between PA film and UiO-66-NH2 aggregates, the gaps in UiO-66-NH2 aggregates, and the inherent pores in UiO-66-NH2 crystals, alleviated the hydrophobic affinity and effectively restricted EDCs diffusion. The rejection rates of methylparaben, propylparaben, bisphenol A, and benzylparaben by the optimal UiO-66-NH2/PA were 50%, 67%, 75%, and 85%, respectively, and the water/benzylparaben selectivity was 4.4 times as high as that of TFC. The results demonstrate that incorporating hydrophilic metal-organic frameworks (MOFs) can improve the membrane hydrophilicity and create hydrophilic nanochannels, and is an effective strategy to enhance EDCs removal by nanofiltration.
Collapse
Affiliation(s)
- Bin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Min Sun
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhiqiang Guo
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/ National Center for International Joint Research on Separation Membranes, Tiangong University, Tianjin, 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China.
| | - Yiran Qian
- School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Xiaojia He
- The Administrative Center for China's Agenda 21, Beijing, 100038, China
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 200120, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
40
|
Devi S, Aarushi, Tyagi S. Porous zinc-discs as nanocatalysts for methylene blue dye treatment in water: sensing, adsorption and photocatalytic degradation. RSC Adv 2022; 12:34951-34961. [PMID: 36540260 PMCID: PMC9728022 DOI: 10.1039/d2ra05245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/07/2022] [Indexed: 09/19/2023] Open
Abstract
This paper reports a zinc derived (ZD) porous nanosystem that has been used for selective sensing, adsorption, and photocatalytic degradation of the known hazardous dye, Methylene blue (MB). Using zinc nitrate and 2-aminoterphthalic acid as precursors, the synthesis has been optimized to yield disc-shaped nanoparticles. This luminescent ZD nanoparticles exhibit absorption and emission wavelengths of 328 nm and 427 nm, respectively at an excitation wavelength of 330 nm. In the presence of MB, there is a sharp decrease in the photoluminescence emission intensity of ZD nanoparticles. The detection limit, quenching constant and the binding constant of ZD nanoparticles with MB are found to be 0.31 × 10-9 M, 3.30 × 106 M-1 and 2.27 × 106 M-1 respectively. The impact of contact time, initial MB concentration, and pH on the adsorption process were investigated. The equilibrium data fit well with the Langmuir adsorption isotherm model (R 2 = 0.989) and superlatively fitted to the pseudo-second-order rate model (rate constant: 0.00011 g mg-1 min-1; adsorption capacity (q e, calc.): 386.1 mg g-1; R 2: 0.990). Further, the MB dye degradation was performed under ultra-violet irradiation and ∼95% MB degradation was achieved within 70 min. The experimental data are well fitted to the pseudo-first order kinetics (R 2: 0.99; rate constant: 0.015 min-1). These disc shaped ZD nanoparticles can not only facilitate the detection, but also the adsorption and photocatalytic degradation of MB, which can be further processed for environmental remediation applications.
Collapse
Affiliation(s)
- Sarita Devi
- CSIR-Central Scientific Instruments Organization, Analytical Techniques Division Chandigarh 160030 India +91-172-2657267 +91-172-2642545
| | - Aarushi
- CSIR-Central Scientific Instruments Organization, Analytical Techniques Division Chandigarh 160030 India +91-172-2657267 +91-172-2642545
- Acadamy of Scientific and Innovative Research Chennai India
| | - Sachin Tyagi
- CSIR-Central Scientific Instruments Organization, Analytical Techniques Division Chandigarh 160030 India +91-172-2657267 +91-172-2642545
- Acadamy of Scientific and Innovative Research Chennai India
| |
Collapse
|
41
|
Tran XT, Vo VLN, Chung YM. Strategy for improving H2O2 selectivity during direct H2O2 synthesis: Using palladium catalyst supported on UiO-66 functionalized with hydrophobic linker. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Song Y, Ruan P, Mao C, Chang Y, Wang L, Dai L, Zhou P, Lu B, Zhou J, He Z. Metal-Organic Frameworks Functionalized Separators for Robust Aqueous Zinc-Ion Batteries. NANO-MICRO LETTERS 2022; 14:218. [PMID: 36352159 PMCID: PMC9646683 DOI: 10.1007/s40820-022-00960-z] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/05/2022] [Indexed: 05/04/2023]
Abstract
Aqueous zinc-ion batteries (AZIBs) are one of the promising energy storage systems, which consist of electrode materials, electrolyte, and separator. The first two have been significantly received ample development, while the prominent role of the separators in manipulating the stability of the electrode has not attracted sufficient attention. In this work, a separator (UiO-66-GF) modified by Zr-based metal organic framework for robust AZIBs is proposed. UiO-66-GF effectively enhances the transport ability of charge carriers and demonstrates preferential orientation of (002) crystal plane, which is favorable for corrosion resistance and dendrite-free zinc deposition. Consequently, Zn|UiO-66-GF-2.2|Zn cells exhibit highly reversible plating/stripping behavior with long cycle life over 1650 h at 2.0 mA cm-2, and Zn|UiO-66-GF-2.2|MnO2 cells show excellent long-term stability with capacity retention of 85% after 1000 cycles. The reasonable design and application of multifunctional metal organic frameworks modified separators provide useful guidance for constructing durable AZIBs.
Collapse
Affiliation(s)
- Yang Song
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Pengchao Ruan
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, 410083, People's Republic of China
| | - Caiwang Mao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Yuxin Chang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China
| | - Peng Zhou
- Hunan Provincial Key Defense Laboratory of High Temperature Wear-Resisting Materials and Preparation Technology, Hunan University of Science and Technology, Xiangtan, 411201, People's Republic of China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China
| | - Jiang Zhou
- School of Materials Science and Engineering, Hunan Provincial Key Laboratory of Electronic Packaging and Advanced Functional Materials, Central South University, Changsha, 410083, People's Republic of China.
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, People's Republic of China.
| |
Collapse
|
43
|
Removal of copper by Azolla filiculoides and Lemna minor: phytoremediation potential, adsorption kinetics and isotherms. Heliyon 2022; 8:e11456. [PMID: 36406685 PMCID: PMC9668539 DOI: 10.1016/j.heliyon.2022.e11456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
Phytoremediation is an eco-friendly biotechnology with low costs. The removal of copper (Cu) from polluted water by the two floating plant species Azolla filiculoides and Lemna minor was observed and recorded. Plants were exposed to different Cu (II) concentration (0.25–1.00 mg/L) and sampling time (Days 0, 1, 2, 5 and 7). Both plants can remove Cu at 1.00 mg Cu/L water, with the highest removal rates of 100% for A. filiculoides and 74% for L. minor on the fifth day of exposure. At the end of the exposure period (Day 7), the growth of A. filiculoides exposed to 1.00 mg Cu/L was inhibited by Cu, but the structure of the inner cells of A. filiculoides was well organized as compared to the initial treatment period. Regarding L. minor, Cu at 1.00 mg/L negatively impacted both the growth and morphology (shrinking of its inner structure) of this plant. This is due to the higher accumulation of Cu in L. minor (2.86 mg/g) than in A. filiculoides (1.49 mg/g). Additionally, the rate of Cu removal per dry mass of plant fitted a pseudo-second order model for both plants, whereas the adsorption equilibrium data fitted the Freundlich isotherm, indicating that Cu adsorption occurs in multiple layers. Based on the results, both species can be applied in the phytoremediation of Cu-polluted water.
Collapse
|
44
|
Pang S, Si Z, Li G, Wu H, Cui Y, Zhang C, Ren C, Yang S, Pang S, Qin P. A fluorinated, defect-free ZIF-8/PDMS mixed matrix membrane for enhancing ethanol pervaporation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
The application of Bimetallic metal–organic frameworks for antibiotics adsorption. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Bimetallic MOF derived ZnCo2O4 nanocages as a novel class of high performance photocatalyst for the removal of organic pollutants. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Hu W, Chen S, Hao H, Jiang H. Enhanced Photoreactivity of
MOFs
by Intercalating Interlayer Bands via Simultaneous −N=C=O and −
SCu
Modification. AIChE J 2022. [DOI: 10.1002/aic.17879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei‐Fei Hu
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| | - Shuo Chen
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| | - Hong‐Chao Hao
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| | - Hong Jiang
- Department of Applied Chemistry University of Science and Technology of China Hefei China
| |
Collapse
|
48
|
Zhou L, Liu H, Pan PH, Deng B, Zhao SY, Liu P, Wang YY, Li JL. Development of Cationic Benzimidazole-Containing UiO-66 through Step-by-Step Linker Modification to Enhance the Initial Sorption Rate and Sorption Capacities for Heavy Metal Oxo-Anions. Inorg Chem 2022; 61:11992-12002. [PMID: 35866632 DOI: 10.1021/acs.inorgchem.2c01816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Effective and rapid capture of heavy metal oxo-anions from wastewater is a fascinating research topic, but it remains a great challenge. Herein, benzimidazole and -CH3 groups were integrated into UiO-66 in succession via a step-by-step linker modification strategy that was performed by presynthesis modification (to give Bim-UiO-66) and subsequently by postsynthetic ionization (to give Bim-UiO-66-Me). The UiO-66s (UiO-66, Bim-UiO-66, and Bim-UiO-66-Me) were applied in the removal of heavy metal oxo-anions from water. The two benzimidazole derivatives (Bim-UiO-66 and Bim-UiO-66-Me) showed much better performance than UiO-66, as both the initial sorption rate and sorption capacities decreased in the order Bim-UiO-66-Me > Bim-UiO-66 > UiO-66. The maximum performances of Bim-UiO-66 are 5.1 and 1.7 times those of UiO-66. Remarkably, Bim-UiO-66-Me shows 7.5 and 3.0 times better performance than UiO-66. The higher absorptivity of cationic Bim-UiO-66-Me compared with UiO-66 can be attributed to a strong Coulombic interaction as well as an anion-π interaction and hydrogen bonding between the benzimidazolium functional group and heavy metal oxo-anions. The as-synthesized Bim-UiO-66-Me not only provides a promising candidate for application in removal of heavy metal oxo-anions in wastewater treatment but also opens up a new strategy for the design of high-performance adsorbents.
Collapse
Affiliation(s)
- Li Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Hua Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Peng-Hui Pan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Bing Deng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Shu-Ya Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Ping Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Jian-Li Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| |
Collapse
|
49
|
Single-Step Synthesized Functionalized Copper Carboxylate Framework Meshes as Hierarchical Catalysts for Enhanced Reduction of Nitrogen-Containing Phenolic Contaminants. Catalysts 2022. [DOI: 10.3390/catal12070765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Nitrogen-containing phenolic contaminants (NCPCs) represent typical pollutants of industrial wastewaters. As catalytic reduction of NCPCs is a useful technique and Cu is an efficient metal catalyst, Cu-carboxylate frameworks (CuCF) are favorable materials. However, they are in powder form, making them difficult to use; thus, in this study, CuCF was grown on macroscale supports. Herein, we present a facile approach to develop such a CuCF composite by directly using a Cu mesh to grow CuCF on the mesh through a single-step electrochemical synthesis method, forming CuCF mesh (CFM). CFM could be further modified to afford CuCF mesh with amines (NH2) (CFNM), and CuCF mesh with carboxylates (COOH) (CFCM). These CuCF meshes are compared to investigate how their physical and chemical characteristics influenced their catalytic behaviors for reduction/hydrogenation of NPCPs, including nitrophenols (NPs) and dyes. Their nanostructures and surface properties influence their behaviors in catalytic reactions. In particular, CFCM appears to be the most efficient mesh for catalyzing 4-NP, with a much higher rate constant. CFCM also shows a significantly lower Ea (28.1 kJ/mol). CFCM is employed for many consecutive cycles, as well as convenient filtration-type 4-NP reduction. These CuCF meshes can also be employed for decolorization of methylene blue and methyl orange dyes via catalytic hydrogenation.
Collapse
|