1
|
Chao C, Niu J, Liu Y, Zhao M, Wan H, Zhai S, Wang Q, Wu Y, Zhao Y. 3D-printed controllable bio-accelerators with sustained release property to boost chromium (VI) inhibited denitrification recovery. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135928. [PMID: 39332254 DOI: 10.1016/j.jhazmat.2024.135928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
Although soluble bio-accelerators have proven effective in mitigating Cr(VI) inhibition within denitrification system, issues persist in immobilizing bio-accelerators and making them slow-release for sustained regulation. In this study, a novel strategy was proposed to fabricate immobilized bio-accelerators with controlled structure, sustained release property by 3D printing technology. Notably, the sustained release of bio-accelerators from 3D-printed bio-accelerators (3DP-B) lasted for at least 144 h. Compared to control group, 3DP-B with basic components (3DP-BB) shortened the recovery time by 1.4 folds, and the COD and NO3--N removal efficiency was 36.5 % and 38.0 % higher than that of natural recovery. Correspondingly, the activity of key enzymes (nitrate reductase, nitrite reductase, nitric oxide reductase, and nitrous oxide reductase), electron transfer system activity and extracellular polymer substances of denitrification biofilm maintained at relatively high levels. Furthermore, introducing 60 mg·L-1 anthraquinone-2,6-disulfonate (AQDS) into the ink showed noticeable superiority on the bio-inhibition release over 1000 mg·L-1 AQDS. The released AQDS facilitated the electron transport capacity by 1.25 times compared with control group. The groundbreaking findings of this study could advance the development of 3D printing technology and utilization of bio-accelerators in the field of wastewater treatment.
Collapse
Affiliation(s)
- Chunfang Chao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Minghao Zhao
- Power China Zhongnan Engineering Corporation Limited, Changsha 410019, China
| | - Huilin Wan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Siyuan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Qian Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
2
|
Fu S, Xie Z, Feng K, Zou H, Guo R, Lian S. Energetic utilization of corn stalk and elimination of methyl orange in ECMO-like integrated reactor: Co-occurrence of anaerobic digestion and aerobic treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 360:121139. [PMID: 38744212 DOI: 10.1016/j.jenvman.2024.121139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
For the simultaneous energetic utilization of corn stalk and azo-dye contaminated wastewater, an ECMO-like integrated reactor was come up to achieve the biogas production and azo-dye degradation during anaerobic digestion (AD). Methyl orange (MO) was selected as the model compound for azo-dye. The ECMO-like reactor included AD main reactor with a spray device and solid-liquid separation components, integrated with an aeration reactor for biogas slurry. Methane yields of corn stalks (100.82 mL/g VS) were highest in the ECMO-like reactor, compared with reactors without aeration. As a stable metabolite, 4-aminobenzenesulfonic acid (4-ABA) was detected in AD, while it was assumed that the metabolites can be further transformed in the ECMO-like reactor (R3), due to the 4-ABA removal efficiency as 92.87 % after 35 days' digestion. Class Alphaproteobacteria and Clostridia were assumed as functional microbes responding to aeration. Overall, this ECMO-like integrated reactor provided a novel biotechnology strategy for agricultural and azo dye waste treatment.
Collapse
Affiliation(s)
- Shanfei Fu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, NO.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, PR China; Shandong Energy Institute, NO. 189 Songling Road, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, NO. 189 Songling Road, Qingdao, 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China.
| | - Zhong Xie
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, NO.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, PR China.
| | - Kai Feng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, NO.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, PR China.
| | - Hua Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, NO.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, PR China.
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China; Shandong Energy Institute, NO. 189 Songling Road, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, NO. 189 Songling Road, Qingdao, 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China.
| | - Shujuan Lian
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China; Shandong Energy Institute, NO. 189 Songling Road, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, NO. 189 Songling Road, Qingdao, 266101, PR China.
| |
Collapse
|
3
|
Wen S, Huang J, Li W, Wu M, Steyskal F, Meng J, Xu X, Hou P, Tang J. Henna plant biomass enhanced azo dye removal: Operating performance, microbial community and machine learning modeling. CHEMOSPHERE 2024; 352:141471. [PMID: 38373445 DOI: 10.1016/j.chemosphere.2024.141471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/17/2023] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
The bio-reduction of azo dyes is significantly dependent on the availability of electron donors and external redox mediators. In this study, the natural henna plant biomass was supplemented to promote the biological reduction of an azo dye of Acid Orange 7 (AO7). Besides, the machine learning (ML) approach was applied to decipher the intricate process of henna-assisted azo dye removal. The experimental results indicated that the hydrolysis and fermentation of henna plant biomass provided both electron donors such as volatile fatty acid (VFA) and redox mediator of lawsone to drive the bio-reduction of AO7 to sulfanilic acid (SA). The high henna dosage selectively enriched certain bacteria, such as Firmicutes phylum, Levilinea and Paludibacter genera, functioning in both the henna fermentation and AO7 reduction processes simultaneously. Among the three tested ML algorithms, eXtreme Gradient Boosting (XGBoost) presented exceptional accuracy and generalization ability in predicting the effluent AO7 concentrations with pH, oxidation-reduction potential (ORP), soluble chemical oxygen demand (SCOD), VFA, lawsone, henna dosage, and cumulative henna as input variables. The validating experiments with tailored optimal operating conditions and henna dosage (pH 7.5, henna dosage of 2 g/L, and cumulative henna of 14 g/L) confirmed that XGBoost was an effective ML model to predict the efficient AO7 removal (91.6%), with a negligible calculating error of 3.95%. Overall, henna plant biomass addition was a cost-effective and robust method to improve the bio-reduction of AO7, which had been demonstrated by long-term operation, ML modeling, and experimental validation.
Collapse
Affiliation(s)
- Shilin Wen
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China; China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University, Hangzhou, 310018, PR China.
| | - Weishuai Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Mengke Wu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Felix Steyskal
- China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University, Hangzhou, 310018, PR China; M-U-T Maschinen-Umwelttechnik-Transportanlagen GmbH, Stockerau, 2000, Austria
| | - Jianfang Meng
- China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University, Hangzhou, 310018, PR China; M-U-T Maschinen-Umwelttechnik-Transportanlagen GmbH, Stockerau, 2000, Austria
| | - Xiaobin Xu
- China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Pingzhi Hou
- China-Austria Belt and Road Joint Laboratory on Artificial Intelligence and Advanced Manufacturing, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| | - Junhong Tang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310018, PR China
| |
Collapse
|
4
|
Lin X, Zhou Q, Xu H, Chen H, Xue G. Advances from conventional to biochar enhanced biotreatment of dyeing wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167975. [PMID: 37866601 DOI: 10.1016/j.scitotenv.2023.167975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
DW (Dyeing wastewater) contains a large amount of dye organic compounds. A considerable proportion of dye itself or its intermediate products generated during wastewater treatment process exhibits CMR (Carcinogenic/Mutagenic/Toxic to Reproduction) toxicity. Compared with physicochemical methods, biological treatment is advantageous in terms of operating costs and greenhouse gas emissions, and has become the indispensable mainstream technology for DW treatment. This article reviews the adsorption and degradation mechanisms of dye organic compounds in wastewater and analyzed different biological processes, ranging from traditional methods to processes enhanced by biochar (BC). For traditional biological processes, microbial characteristics and communities were discussed, as well as the removal efficiency of different bioreactors. BC has adsorption and redox electron mediated effects, and coupling with biological treatment can further enhance the process of biosorption and degradation. Although BC coupled biological treatment shows promising dye removal, further research is still needed to optimize the treatment process, especially in terms of technical and economic competitiveness.
Collapse
Affiliation(s)
- Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qifan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huanghuan Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China.
| |
Collapse
|
5
|
Xia J, Li Y, Jiang X, Chen D, Shen J. The humic substance analogue antraquinone-2, 6-disulfonate (AQDS) enhanced zero-valent iron based autotrophic denitrification: Performances and mechanisms. ENVIRONMENTAL RESEARCH 2023; 238:117241. [PMID: 37778602 DOI: 10.1016/j.envres.2023.117241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
Zero-valent iron based autotrophic denitrification (ZVI-AD) has attracted increasing attentions in nitrate removal due to saving organic carbon budget in wastewater treatment, but limited by the low reaction speed, poor electron transfer efficiency as well as the compaction/blocking by iron hydrolysis products. Humic substances (HS) were promising to regulate iron cycle and accelerate electron transfer by serving as electron mediators. In this study, HS analogue, antraquinone-2, 6-disulfonate (AQDS), was added to enhance ZVI-AD process. Results showed that the dosage of AQDS led to a NO3--N removal efficiency of 83.37 ± 3.98% within 96 h, which was 32.28 ± 1.25% higher than that in ZVI-AD system. The corrosion of ZVI and microbially nitrate reduction were both improved at the presence of AQDS. The addition of AQDS enriched the functional species, including autotrophic denitrobacteria namely Thauera and Hydrogenophaga, iron redox-related species namely Ferruginibacter and HS respiration related species namely Flavobacterium. The genes napA and napB related to electron transfer, nirK and nosZ related to the accumulation of intermediate products were also enriched by the addition of AQDS. AQDS addition boosted the electrons flowing to both abiotic and biotic nitrate reduction. Nitrate removal mechanism involved in ZVI-AQDS coupled system was proposed. This study provided an alternative strategy for improving ZVI-AD by HS.
Collapse
Affiliation(s)
- Jiaohui Xia
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
6
|
Alkas TR, Purnomo AS, Ediati R, Ersam T. Adsorption and decolorization study of reactive black 5 by immobilized metal-organic framework of UiO-66 and Gloeophyllum trabeum fungus. RSC Adv 2023; 13:30885-30897. [PMID: 37869392 PMCID: PMC10588372 DOI: 10.1039/d3ra03804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/14/2023] [Indexed: 10/24/2023] Open
Abstract
This study aimed to investigate immobilized metal-organic framework (MOF) UiO-66 and brown-rot fungus Gloeophyllum trabeum (GT) in PVA-SA matrices for adsorption and decolorization of reactive black 5 (RB5). Furthermore, UiO-66/GT@PVA-SA composite was successfully fabricated and obtained by immobilizing UiO-66 and GT mycelia into a mixture of PVA-SA. This composite demonstrated a decolorization ability of 80.12% for RB5 after 7 days. The composite's reusability was assessed for three cycles; at last, it only achieved 21%. This study reported that adsorption of RB5 by the composite followed a pseudo-second-order kinetic model with a correlation coefficient (R2) of 0.9997. The Freundlich model was found to be suitable for the isotherm adsorption. The process was also spontaneous and feasible, as indicated by the negative ΔG value. Subsequently, four metabolite products resulting from decolorization of RB5 by UiO-66/GT@PVA-SA composite were proposed, namely: C24H19N5Na2O13S4 (m/z = 762), C10H13N2O8S2- (m/z = 353), C12H9N4O7S2- (m/z = 384), and C10H13O8S2- (m/z = 325).
Collapse
Affiliation(s)
- Taufiq Rinda Alkas
- Departement of Environment Management, Politeknik Pertanian Negeri Samarinda Samarinda 75131 Indonesia
| | - Adi Setyo Purnomo
- Department of Chemistry, Institut Teknologi Sepuluh Nopember (ITS) Surabaya 60111 Indonesia
| | - Ratna Ediati
- Department of Chemistry, Institut Teknologi Sepuluh Nopember (ITS) Surabaya 60111 Indonesia
| | - Taslim Ersam
- Department of Chemistry, Institut Teknologi Sepuluh Nopember (ITS) Surabaya 60111 Indonesia
| |
Collapse
|
7
|
Fu S, Xie Z, Wang R, Zou H, Lian S, Guo R. Combined disposal of methyl orange and corn straw via stepwise adsorption-biomethanation-composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118358. [PMID: 37329578 DOI: 10.1016/j.jenvman.2023.118358] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Agriculture wastes have been proved to be the potential adsorbents to remove azo dye from textile wastewater, but the post-treatment of azo dye loaded agriculture waste is generally ignored. A three-step strategy including sequential adsorption-biomethanation-composting was developed to realize the co-processing of azo dye and corn straw (CS). Results showed that CS represented a potential adsorbent to remove methyl orange (MO) from textile wastewater, with the maximum MO adsorption capacity of 10.00 ± 0.46 mg/g, deriving from the Langmuir model. During the biomethanation, CS could serve as electron donor for MO decolorization and substrate for biogas production simultaneously. Though the cumulative methane yield of CS loaded with MO was 11.7 ± 2.28% lower than that of blank CS, almost complete de-colorization of MO could be achieved within 72 h. Composting could achieve the further degradation of aromatic amines (intermediates during the degradation of MO) and decomposition of digestate. After 5 days' composting, 4-aminobenzenesulfonic acid (4-ABA) was not detectable. The germination index (GI) also indicated that the toxicity of aromatic amine was eliminated. The overall utilization strategy gives novel light on the management of agriculture waste and textile wastewater.
Collapse
Affiliation(s)
- Shanfei Fu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China; Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, NO.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, PR China; Shandong Energy Institute, NO. 189 Songling Road, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, NO. 189 Songling Road, Qingdao, 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China.
| | - Zhong Xie
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, NO.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, PR China.
| | - Ruonan Wang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China; Shandong Energy Institute, NO. 189 Songling Road, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, NO. 189 Songling Road, Qingdao, 266101, PR China.
| | - Hua Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, NO.1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, PR China.
| | - Shujuan Lian
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China; Shandong Energy Institute, NO. 189 Songling Road, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, NO. 189 Songling Road, Qingdao, 266101, PR China.
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, NO. 189 Songling Road, Qingdao, 266101, PR China; Shandong Energy Institute, NO. 189 Songling Road, Qingdao, 266101, PR China; Qingdao New Energy Shandong Laboratory, NO. 189 Songling Road, Qingdao, 266101, PR China; Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China.
| |
Collapse
|
8
|
Xia J, Li Y, Jiang X, Chen D, Shen J. Enhanced 4-bromophenol anaerobic biodegradation in electricity-stimulated anaerobic system: The key role of humic acid in reshaping microbial eco-interrelations and functions. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131426. [PMID: 37084513 DOI: 10.1016/j.jhazmat.2023.131426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Electricity-stimulated anaerobic system (ESAS) has shown great potential for halogenated organic pollutants removal. Exogenous redox mediators can improve electron transfer efficiency to enhance pollutants removal in ESAS. In this study, humic acid (HA), a low-cost electron mediator, was added into ESAS to enhance the simultaneous reductive debromination and mineralization of 4-bromophenol (4-BP). Results showed that the highest 4-BP removal efficiency at 48 h was 95.43 % with HA dosage of 30 mg/L at - 700 mV, which was 34.67 % higher than that without HA. The addition of HA decreased the requirement for electron donors and enriched Petrimonas and Rhodococcus for humus respiratory. HA addition regulated microbial interactions, and enhanced species cooperation between Petrimonas and dehalogenation species (Thauera and Desulfovibrio), phenol degradation-related species (Rhodococcus) as well as fermentative species (Desulfobulbus). Functional genes related to 4-BP degradation (dhaA/hemE/xylC/chnB/dmpN) and electron transfer (etfB/nuoA/qor/ccoN/coxA) were increased in abundance by HA addition. The enhanced microbial functions, as well as species cooperation and facilitation, all contributed to the improved 4-BP biodegradation in HA-added ESAS. This study provided a deep insight into microbial mechanism driven by HA and offered a promising strategy for improving halogenated organic pollutants removal from wastewater.
Collapse
Affiliation(s)
- Jiaohui Xia
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yan Li
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Xinbai Jiang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Dan Chen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jinyou Shen
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Chen RP, Wei XY, Gan CH, Cai BC, Xu WJ, Niyazi S, Wang Q, Yu L, Min HH, Yong Q. The acceleration on decolorization of azo dyes by magnetic lignin-based materials via enhancing the extracellular electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118022. [PMID: 37150166 DOI: 10.1016/j.jenvman.2023.118022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
Two novel and eco-friendly redox mediators (RMs), magnetic oxidative vanillin (MOV) and magnetic oxidative syringaldehyde (MOS), both derived from lignin, were prepared to improve the decolorization of the methyl orange (MO) dye. The Decolorization Efficiency (DE) of MO in the batch experiments with MOV and MOS were increased by more than 60% and 22%, respectively, when compared to the control experiment without magnetic RMs. Moreover, the two magnetic RMs could maintain stable DE of MO in sequenced batch reactors (SBRs), and negligible leaching of the oxidized lignin monomers was observed under various environmental conditions. Density Function Theory (DFT) calculations were used to propose three potential biodegradation mechanisms for azo dyes, and the key intermediates were confirmed using high-performance liquid chromatography. This study proposed a feasible strategy for functional utilization of lignin resource, as well as a practical method for effectively treating azo dye-containing wastewater.
Collapse
Affiliation(s)
- Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xin-Yuan Wei
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Cheng-Hao Gan
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing-Cai Cai
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Wen-Jie Xu
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Shareen Niyazi
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Hui-Hua Min
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiang Yong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
10
|
Deng Y, Zhang K, Zou J, Li X, Wang Z, Hu C. Electron shuttles enhanced the removal of antibiotics and antibiotic resistance genes in anaerobic systems: A review. Front Microbiol 2022; 13:1004589. [PMID: 36160234 PMCID: PMC9490129 DOI: 10.3389/fmicb.2022.1004589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The environmental and epidemiological problems caused by antibiotics and antibiotic resistance genes have attracted a lot of attention. The use of electron shuttles based on enhanced extracellular electron transfer for anaerobic biological treatment to remove widespread antibiotics and antibiotic resistance genes efficiently from wastewater or organic solid waste is a promising technology. This paper reviewed the development of electron shuttles, described the mechanism of action of different electron shuttles and the application of enhanced anaerobic biotreatment with electron shuttles for the removal of antibiotics and related genes. Finally, we discussed the current issues and possible future directions of electron shuttle technology.
Collapse
|
11
|
Zou D, Tong J, Feng C, Wang Y, Li X, Zheng X, Wang X, Liu Y. Synthesis of biochar@α-Fe 2O 3@Shewanella loihica complex for remediation of soil contaminated by hexavalent chromium: Optimization of conditions and mechanism. CHEMOSPHERE 2022; 303:134858. [PMID: 35533938 DOI: 10.1016/j.chemosphere.2022.134858] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 06/14/2023]
Abstract
The reduction of hexavalent chromium combined with the process of dissimilatory iron reduction is an important strategy for microbial remediation of chromium-contaminated soil. However, its applicability is limited by the slow speed of bacterial bioreduction and the toxic effect of heavy metals on bacteria. Here, biochar (BC) was used as a substrate and was loaded with iron oxide in the form of hematite and Shewanella loihica to synthesize a BC@α-Fe2O3@S. loihica complex and thus achieve combined microbial-chemical remediation. After optimization by a Box-Behnken design, the optimal dosages of the complex, humic acid (as an electron shuttle), and sodium lactate (as an electron donor) were found to be 1.38 mL/g, 33.94 mg/g, and 12.95%, respectively. The Cr(VI) reduction rate in soil contaminated with 1000 mg/kg Cr(VI) reached 98.26%, and remediation could be achieved within 7 days. Characterization of the BC@α-Fe2O3@S. loihica complex before and after it was used for remediation by energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy proved that the oxygen-containing functional groups and aromatic compounds on the surface of the BC participated in the adsorption and reduction of Cr(VI) and that the loaded hematite particles were fully utilized by microorganisms. Therefore, the BC@α-Fe2O3@S. loihica complex has great potential for the remediation of Cr(VI)-contaminated soil.
Collapse
Affiliation(s)
- Dexun Zou
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingjing Tong
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Chenyu Feng
- China Tianchen Engineering Corporation, Tianjin, 300400, China
| | - Yang Wang
- Sinopec Engineering Incorporation, Beijing, 100101, China
| | - Xinxin Li
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xusheng Zheng
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuebo Wang
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanping Liu
- Department of Environmental Science & Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
12
|
Chang ZY, Wang ZY, Zhang R, Yu L. Acceleration of biotic decolorization and partial mineralization of methyl orange by a photo-assisted n-type semiconductor. CHEMOSPHERE 2022; 291:132846. [PMID: 34767853 DOI: 10.1016/j.chemosphere.2021.132846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
In this study, a n-type semiconductor perylene diimide (PDI) was coupled with biodegradation to accelerate the biotic decolorization and mineralization of methyl orange (MO) under light condition. The decolorization rates (k1) of MO in pure and mixed cultures with PDI were promoted by 1.35 and 1.79 folds, respectively, comparing to the cultures without PDI. The total mineralization efficiency of 4-aminobenzenesulfonic acid (4-ABA) was achieved to 22.10 ± 0.84% when in the presence of PDI. The quinone-like group and oxidation-reduction capacity of PDI were detected by Fourier transform infrared spectroscopy and cyclic voltammetry, respectively, but the enhancement on the biotic decolorization of MO was not promoted under dark condition indicating that microbial extracellular electron transfer was not promoted. The 4-ABA was confirmed to be partially mineralized when the PDI exposure to light. The generated free radicals i.e., h+, ⸱OH, was demonstrated as active species to accelerate the decolorization and mineralization of MO by ESR test and radical quenching experiments. The bond breaking of MO and 4-ABA molecules were successfully predicted by density functional theory calculations and were further proven by liquid-chromatography mass spectra. The synergistic mechanism of decolorization and mineralization of MO by microorganism and photocatalysis was proposed. Moreover, High-throughput sequencing and Live/dead cell results indicated that the presence of PDI has no obvious toxicity to the microorganisms and will not change the microbial communities during the short-term treatment period. The results of study provided a biological intimate photocatalytic material and suggested a feasible way for its combination with biodegradation of azo dyes.
Collapse
Affiliation(s)
- Zhong-Yue Chang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Yang Wang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Rui Zhang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
13
|
Huang D, Ye J, Yu S, Tian Y, Wen X, Wang Y, Ren L, Chen X. Study on a fast non-contact detection method for key parameters of refractory organic wastewater treatment. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Zhou Z, Wang Y, Wang M, Zhou Z. Co-metabolic Effect of Glucose on Methane Production and Phenanthrene Removal in an Enriched Phenanthrene-Degrading Consortium Under Methanogenesis. Front Microbiol 2021; 12:749967. [PMID: 34712215 PMCID: PMC8546250 DOI: 10.3389/fmicb.2021.749967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/16/2021] [Indexed: 11/13/2022] Open
Abstract
Anaerobic digestion is used to treat diverse waste classes, and polycyclic aromatic hydrocarbons (PAHs) are a class of refractory compounds that common in wastes treated using anaerobic digestion. In this study, a microbial consortium with the ability to degrade phenanthrene under methanogenesis was enriched from paddy soil to investigate the cometabolic effect of glucose on methane (CH4) production and phenanthrene (a representative PAH) degradation under methanogenic conditions. The addition of glucose enhanced the CH4 production rate (from 0.37 to 2.25mg⋅L-1⋅d-1) but had no influence on the degradation rate of phenanthrene. Moreover, glucose addition significantly decreased the microbial α-diversity (from 2.59 to 1.30) of the enriched consortium but showed no significant effect on the microbial community (R 2=0.39, p=0.10), archaeal community (R 2=0.48, p=0.10), or functional profile (R 2=0.48, p=0.10). The relative abundance of genes involved in the degradation of aromatic compounds showed a decreasing tendency with the addition of glucose, whereas that of genes related to CH4 synthesis was not affected. Additionally, the abundance of genes related to the acetate pathway was the highest among the four types of CH4 synthesis pathways detected in the enriched consortium, which averagely accounted for 48.24% of the total CH4 synthesis pathway, indicating that the acetate pathway is dominant in this phenanthrene-degrading system during methanogenesis. Our results reveal that achieving an ideal effect is diffcult via co-metabolism in a single-stage digestion system of PAH under methanogenesis; thus, other anaerobic systems with higher PAH removal efficiency should be combined with methanogenic digestion, assembling a multistage pattern to enhance the PAH removal rate and CH4 production in anaerobic digestion.
Collapse
Affiliation(s)
- Ziyan Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yanqin Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Mingxia Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Zhifeng Zhou
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|