1
|
Wang W, Wang H, Liu X, Xu F, Tang Q, Zhang C, Lin J, Zhu L, Lin T. E2F2(E2F transcription factor 2) as a potential therapeutic target in meibomian gland carcinoma: evidence from functional and epigenetic studies. BMC Cancer 2025; 25:880. [PMID: 40380087 PMCID: PMC12082859 DOI: 10.1186/s12885-025-13833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/27/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND Meibomian Gland Carcinoma (MGC) is a highly malignant eyelid tumor with a poor prognosis. This study investigates the molecular mechanisms underlying MGC, focusing on the abnormal expression of E2F transcription factor 2 (E2F2), often observed in tumors and potentially linked to DNA methylation. METHODS E2F2 expression was measured in MGC cells and tissues. Tissue samples from 3 normal meibomian glands (MG) and 36 MGC patients were used to construct a tissue microarray. Functional assays were performed by modifying E2F2 expression, including CCK8, wound healing, Transwell, and analysis of epithelial-mesenchymal transition (EMT)-related markers. Flow cytometry was used to assess cell apoptosis and cell cycle. RNA sequencing was conducted to identify differential genes after treating MGC cells with the methylation inhibitor 5-aza-2'-deoxycytidine (5-aza-2-dc), to explore the relationship between E2F2 downregulation in MGC and methylation. RESULTS E2F2 expression was significantly lower in MGC cells compared to normal MG cells. Immunohistochemical analysis showed low E2F2 expression in MGC. Specifically, immunohistochemical staining results have revealed a negative correlation trend between E2F2 and Ki-67 expression, as well as a positive correlation trend between E2F2 and P21, P27 expression. E2F2 knockdown increased MGC cell proliferation, migration, and invasion. Flow cytometry revealed that E2F2 knockdown reduced apoptosis, decreased the G0/G1 phase, and increased the S phase, while E2F2 overexpression produced opposite effects. RNA sequencing revealed that a total of 87 genes were differentially expressed in the 5-aza-2-dc experimental group compared to the control group, with 72 mRNAs showing upregulated expression and 15 mRNAs showing downregulated expression. Bioinformatics analysis results indicated that the functions of these differentially expressed genes were concentrated, and the biological processes mainly involved DNA replication, among others. The signaling pathways associated with these genes primarily included DNA replication and the cell cycle. RNA sequencing identified differential gene expression after methylation inhibition in MGC cells with 5-aza-2-dc, demonstrating that demethylation significantly upregulated E2F2. MSP assays confirmed reduced methylation levels. Additionally, inhibiting gene methylation in MGC cells suppressed proliferation, migration, and invasion. CONCLUSION E2F2 presents a promising therapeutic target for MGC. Overexpression of E2F2 and methylation inhibition in MGC cells may reverse E2F2 gene silencing, inhibiting malignant progression. These findings provide new perspectives for targeted therapies and precise, individualized treatment in MGC.
Collapse
Affiliation(s)
- Wei Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Hetong Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Xun Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China
| | - Fei Xu
- Chengdu Women'S and Children'S Central Hospital, School of Medicine,, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qin Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chuanli Zhang
- Tianjin Eye Hospital Optometric Center, Tianjin, 300020, China
| | - Jiaqi Lin
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin Eye Hospital, Tianjin, 300020, China
| | - Limin Zhu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| | - Tingting Lin
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, 300384, China.
| |
Collapse
|
2
|
Baldassarre G, L de la Serna I, Vallette FM. Death-ision: the link between cellular resilience and cancer resistance to treatments. Mol Cancer 2025; 24:144. [PMID: 40375296 PMCID: PMC12080166 DOI: 10.1186/s12943-025-02339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/22/2025] [Indexed: 05/18/2025] Open
Abstract
One of the key challenges in defeating advanced tumors is the ability of cancer cells to evade the selective pressure imposed by chemotherapy, targeted therapies, immunotherapy and cellular therapies. Both genetic and epigenetic alterations contribute to the development of resistance, allowing cancer cells to survive initially effective treatments. In this narration, we explore how genetic and epigenetic regulatory mechanisms influence the state of tumor cells and their responsiveness to different therapeutic strategies. We further propose that an altered balance between cell growth and cell death is a fundamental driver of drug resistance. Cell death programs exist in various forms, shaped by cell type, triggering factors, and microenvironmental conditions. These processes are governed by temporal and spatial constraints and appear to be more heterogeneous than previously understood. To capture the intricate interplay between death-inducing signals and survival mechanisms, we introduce the concept of Death-ision. This framework highlights the dynamic nature of cell death regulation, determining whether specific cancer cell clones evade or succumb to therapy. Building on this understanding offers promising strategies to counteract resistant clones and enhance therapeutic efficacy. For instance, combining DNMT inhibitors with immune checkpoint blockade may counteract YAP1-driven resistance or the use of transcriptional CDK inhibitors could prevent or overcome chemotherapy resistance. Death-ision aims to provide a deeper understanding of the diversity and evolution of cell death programs, not only at diagnosis but also throughout disease progression and treatment adaptation.
Collapse
Affiliation(s)
- Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, 33081, Italy.
| | - Ivana L de la Serna
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - François M Vallette
- Centre de Recherche en Cancérologie et Immunologie Intégrées Nantes Angers (CRCI2 NA), INSERM UMR1307/CNRS UMR 6075/Nantes Université/Univ. Angers. Nantes, 44007, Nantes, France.
- Institut de Cancérologie de L'Ouest (ICO), 44085, Saint-Herblain, France.
| |
Collapse
|
3
|
Lavoro A, Ricci D, Gattuso G, Longo F, Spoto G, Vitale ACV, Giuliana MC, Falzone L, Libra M, Candido S. Recent advances on gene-related DNA methylation in cancer diagnosis, prognosis, and treatment: a clinical perspective. Clin Epigenetics 2025; 17:76. [PMID: 40325471 PMCID: PMC12054201 DOI: 10.1186/s13148-025-01884-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/13/2025] [Indexed: 05/07/2025] Open
Abstract
Recent advances in screening programs and the development of innovative therapeutic strategies have significantly improved the clinical outcomes of cancer patients. However, many patients still experience treatment failure, primarily due to inherent or acquired drug resistance mechanisms. This challenge underscores the urgent need for novel therapeutic targets for the effective treatment of malignancies, as well as cancer-specific biomarkers to enhance early diagnosis and guide interventions. Epigenetic mechanisms, including DNA methylation, have recently garnered growing interest as key regulators of gene expression under both physiological and pathological conditions. Although epigenetic dysregulations are reliable tumor hallmarks, DNA methylation is still not routinely integrated into clinical practice, highlighting the need for further research to translate preclinical findings from the bench to the bedside. On these bases, the present review aims to illustrate the state of the art regarding the role of DNA methylation in cancer, describing the technologies currently available for DNA methylation profiling. Furthermore, the latest evidence on the application of DNA methylation hotspots in cancer diagnosis and prognosis, as well as the impact of epidrugs in cancer care, is discussed to provide a comprehensive overview of the potential clinical relevance of DNA methylation in advancing personalized medicine.
Collapse
Affiliation(s)
- Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Daria Ricci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Federica Longo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Graziana Spoto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | | | - Maria Chiara Giuliana
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123, Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123, Catania, Italy
| |
Collapse
|
4
|
Bruhm DC, Vulpescu NA, Foda ZH, Phallen J, Scharpf RB, Velculescu VE. Genomic and fragmentomic landscapes of cell-free DNA for early cancer detection. Nat Rev Cancer 2025; 25:341-358. [PMID: 40038442 DOI: 10.1038/s41568-025-00795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2025] [Indexed: 03/06/2025]
Abstract
Genomic analyses of cell-free DNA (cfDNA) in plasma are enabling noninvasive blood-based biomarker approaches to cancer detection and disease monitoring. Current approaches for identification of circulating tumour DNA typically use targeted tumour-specific mutations or methylation analyses. An emerging approach is based on the recognition of altered genome-wide cfDNA fragmentation in patients with cancer. Recent studies have revealed a multitude of characteristics that can affect the compendium of cfDNA fragments across the genome, collectively called the 'cfDNA fragmentome'. These changes result from genomic, epigenomic, transcriptomic and chromatin states of an individual and affect the size, position, coverage, mutation, structural and methylation characteristics of cfDNA. Identifying and monitoring these changes has the potential to improve early detection of cancer, especially using highly sensitive multi-feature machine learning approaches that would be amenable to broad use in populations at increased risk. This Review highlights the rapidly evolving field of genome-wide analyses of cfDNA characteristics, their comparison to existing cfDNA methods, and recent related innovations at the intersection of large-scale sequencing and artificial intelligence. As the breadth of clinical applications of cfDNA fragmentome methods have enormous public health implications for cancer screening and personalized approaches for clinical management of patients with cancer, we outline the challenges and opportunities ahead.
Collapse
Affiliation(s)
- Daniel C Bruhm
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicholas A Vulpescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zachariah H Foda
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jillian Phallen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert B Scharpf
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Victor E Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Reyila A, Gao X, Yu J, Nie Y. Insight into the role of DNA methylation in prognosis and treatment response prediction of gastrointestinal cancers. Epigenomics 2025; 17:475-488. [PMID: 40084815 PMCID: PMC12026041 DOI: 10.1080/17501911.2025.2476380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/04/2025] [Indexed: 03/16/2025] Open
Abstract
Gastrointestinal (GI) cancers impose a significant disease burden, underscoring the critical importance of accurate prognosis prediction and treatment response evaluation. DNA methylation, one of the most extensively studied epigenetic modifications, has gained prominence due to its reliable measurement across various sample types. Numerous studies have reported that DNA methylation was linked to the diagnosis, prognosis and treatment response in malignancies, including GI cancers. While its diagnostic role in GI cancers has been comprehensively reviewed. Recent research has increasingly highlighted its potential in prognosis prediction and treatment response evaluation. However, no existing reviews have exclusively focused on these two aspects. In this review, we retrieved relevant studies and included 230 of them in our discussion, thereby providing an overview of the clinical applicability of aberrant DNA methylation in these two fields among patients with esophageal, gastric, colorectal, pancreatic cancers, and hepatocellular carcinomas. Additionally, we discuss the limitations of the current literature and propose directions for future research. Specifically, we emphasize the need for standardized DNA methylation methodologies and advocate for the integration of gene panels, rather than single genes, to address tumor heterogeneity more effectively.
Collapse
Affiliation(s)
- Abudurousuli Reyila
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xianchun Gao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jun Yu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Fourth Military Medical University, Xi’an, Shaanxi, China
- National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Pinto R, Vedeld HM, Lind GE, Jeanmougin M. Unraveling epigenetic heterogeneity across gastrointestinal adenocarcinomas through a standardized analytical framework. Mol Oncol 2025; 19:1117-1131. [PMID: 39696831 PMCID: PMC11977639 DOI: 10.1002/1878-0261.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
In this study, we propose an alternative approach for stratifying genome-scale DNA methylation profiles of gastrointestinal (GI) adenocarcinomas based on a robust analytical framework. A set of 978 GI adenocarcinomas and 120 adjacent normal tissues from public repositories was quality controlled and analyzed. Hierarchical consensus clustering of the tumors, based on differential epigenetic variability between malignant and normal samples, identified six distinct subtypes defined either by a pan-GI or a lower GI-specific phenotype. In addition to methylation levels, aberrant methylation frequencies and the degree of DNA methylation instability contributed to the characterization of each subtype. We found significant differences in the outcome of patients, with the poorest overall survival seen for those belonging to a pan-GI subtype with infrequent aberrant methylation. In conclusion, our standardized approach contributes to a refined characterization of the epigenetic heterogeneity in GI adenocarcinomas, offering insights into subtype-specific methylation with the potential to support prognostication.
Collapse
Affiliation(s)
- Rita Pinto
- Department of Molecular Oncology, Institute for Cancer ResearchOslo University Hospital – Norwegian Radium HospitalOsloNorway
| | - Hege Marie Vedeld
- Department of Molecular Oncology, Institute for Cancer ResearchOslo University Hospital – Norwegian Radium HospitalOsloNorway
| | - Guro Elisabeth Lind
- Department of Molecular Oncology, Institute for Cancer ResearchOslo University Hospital – Norwegian Radium HospitalOsloNorway
- Department of Biosciences, The Faculty of Mathematics and Natural SciencesUniversity of OsloNorway
| | - Marine Jeanmougin
- Department of Molecular Oncology, Institute for Cancer ResearchOslo University Hospital – Norwegian Radium HospitalOsloNorway
| |
Collapse
|
7
|
Lei X, Mao S, Li Y, Huang S, Li J, Du W, Kuang C, Yuan K. ERVcancer: a web resource designed for querying activation of human endogenous retroviruses across major cancer types. J Genet Genomics 2025; 52:583-591. [PMID: 39265822 DOI: 10.1016/j.jgg.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Human endogenous retroviruses (HERVs) comprise approximately 8% of the human genome, integrated into the dynamic regulatory network of cellular potency during early embryonic development. In recent studies, resurgent the transcriptional activity of HERVs has been frequently observed in many types of human cancers, suggesting their potential functions in the occurrence and progression of malignancy. However, a dedicated web resource for querying the relationship between the activation of HERVs and cancer development is lacking. Here, we construct a database to explore the sequence information, expression profiles, survival prognosis, and genetic interactions of HERVs in diverse cancer types. Our database currently contains RNA sequencing data of 580 HERVs across 16,246 samples, including that of 6478 tumoral and 634 normal tissues, 932 cancer cell lines, as well as 151 early embryonic and 8051 human adult tissues. The primary goal is to provide an easily accessible and user-friendly database for professionals in the fields of bioinformatics, pathology, pharmacology, and related areas, enabling them to efficiently screen the activity of HERVs of interest in normal and cancerous tissues and evaluate the clinical relevance. The ERVcancer database is available at http://kyuanlab.com/ervcancer/.
Collapse
Affiliation(s)
- Xiaoyun Lei
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, China
| | - Song Mao
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yinshuang Li
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shi Huang
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China
| | - Jinchen Li
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China
| | - Wei Du
- Department of Pathology, Changde Hospital, Xiangya School of Medicine, Central South University, Changde, Hunan 415000, China
| | - Chunmei Kuang
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410000, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Furong Laboratory, Changsha, Hunan 410000, China; The Biobank of Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
8
|
Sandoval JE, Carullo NVN, Salisbury AJ, Day JJ, Reich NO. Mechanism of non-coding RNA regulation of DNMT3A. Epigenetics Chromatin 2025; 18:15. [PMID: 40148869 PMCID: PMC11951571 DOI: 10.1186/s13072-025-00574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND De novo DNA methylation by DNMT3A is a fundamental epigenetic modification for transcriptional regulation. Histone tails and regulatory proteins regulate DNMT3A, and the crosstalk between these epigenetic mechanisms ensures appropriate DNA methylation patterning. Based on findings showing that Fos ecRNA inhibits DNMT3A activity in neurons, we sought to characterize the contribution of this regulatory RNA in the modulation of DNMT3A in the presence of regulatory proteins and histone tails. RESULTS We show that Fos ecRNA and mRNA strongly correlate in primary cortical neurons on a single cell level and provide evidence that Fos ecRNA modulation of DNMT3A at these actively transcribed sites occurs in a sequence-independent manner. Further characterization of the Fos ecRNA-DNMT3A interaction showed that Fos-1 ecRNA binds the DNMT3A tetramer interface and clinically relevant DNMT3A substitutions that disrupt the inhibition of DNMT3A activity by Fos-1 ecRNA are restored by the formation of heterotetramers with DNMT3L. Lastly, using DNMT3L and Fos ecRNA in the presence of synthetic histone H3 tails or reconstituted polynucleosomes, we found that regulatory RNAs play dominant roles in the modulation of DNMT3A activity. CONCLUSION Our results are consistent with a model for RNA regulation of DNMT3A that involves localized production of short RNAs binding to a nonspecific site on the protein, rather than formation of localized RNA/DNA structures. We propose that regulatory RNAs play a dominant role in the regulation of DNMT3A catalytic activity at sites with increased production of regulatory RNAs.
Collapse
Affiliation(s)
- Jonathan E Sandoval
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, 93106-9510, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106-9510, USA
| | - Nancy V N Carullo
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Aaron J Salisbury
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Norbert O Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, 93106-9510, USA.
| |
Collapse
|
9
|
Gitto SB, Pantel AR, Maxwell KN, Pryma DA, Farwell MD, Liu F, Cao Q, O'Brien SR, Clark AS, Shah PD, McDonald ES. [ 18F]FluorThanatrace PET imaging as a biomarker of response to PARP inhibitors in breast cancer. COMMUNICATIONS MEDICINE 2025; 5:90. [PMID: 40133542 PMCID: PMC11937411 DOI: 10.1038/s43856-025-00791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/27/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPi) are approved for Breast Cancer gene (BRCA)-mutant HER2- breast cancer, and there is clinical interest in expanding indications to include homologous recombination deficient (HRD) breast cancers. Yet, response in these populations remains variable, suggesting clinical utility in developing a better biomarker to select patients for PARPi and predict response. Here, we evaluate a radiolabeled PARPi, [18F]FluorThanatrace ([18F]FTT), as a functional biomarker of PARPi response in breast cancer. METHODS A single-arm prospective observational trial was conducted at the University of Pennsylvania. [18F]FTT-PET uptake was measured in 24 women with untreated primary breast cancer and correlated with tumor HRD score. In a separate cohort of ten subjects with metastatic HER- breast cancer, [18F]FTT-PET uptake was measured at baseline and after a short interval on a PARPi (a measure of drug-target engagement) and correlated to progression free survival (PFS). RESULTS Here we show that baseline [18F]FTT-PET uptake does not correlate to HRD tissue score, supporting that [18F]FTT provides distinct information from genetic features. Baseline [18F]FTT-PET uptake and the change in uptake from baseline to after PARPi initiation significantly correlates to PFS in woman with breast cancer who received a PARPi (ρ = 0.74, P = 0.023 and ρ = -0.86, P = 0.012, respectively). CONCLUSIONS These early results suggest the potential of [18F]FTT-PET to select patients for PARPi treatment and monitor in vivo pharmacodynamics after therapy start. Absence of association with HRD scores supports [18F]FTT uptake as a novel measure that may be leveraged as a biomarker. Further studies are warranted.
Collapse
Affiliation(s)
- Sarah B Gitto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Austin R Pantel
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kara N Maxwell
- Department of Medicine, Division of Hematology and Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel A Pryma
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael D Farwell
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fang Liu
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Quy Cao
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sophia R O'Brien
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy S Clark
- Department of Medicine, Division of Hematology and Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Payal D Shah
- Department of Medicine, Division of Hematology and Oncology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth S McDonald
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Cen X, Lan Y, Zou J, Chen R, Hu C, Tong Y, Zhang C, Chen J, Wang Y, Zhou R, He W, Lu T, Dubee F, Jovic D, Dong W, Gao Q, Ma M, Lu Y, Xue Y, Cheng X, Li Y, Yang H. Pan-cancer analysis shapes the understanding of cancer biology and medicine. Cancer Commun (Lond) 2025. [PMID: 40120098 DOI: 10.1002/cac2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/13/2025] [Accepted: 02/16/2025] [Indexed: 03/25/2025] Open
Abstract
Advances in multi-omics datasets and analytical methods have revolutionized cancer research, offering a comprehensive, pan-cancer perspective. Pan-cancer studies identify shared mechanisms and unique traits across different cancer types, which are reshaping diagnostic and treatment strategies. However, continued innovation is required to refine these approaches and deepen our understanding of cancer biology and medicine. This review summarized key findings from pan-cancer research and explored their potential to drive future advancements in oncology.
Collapse
Affiliation(s)
- Xiaoping Cen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang, P. R. China
- BGI Research, Shenzhen, Guangdong, P. R. China
- Guangzhou National Laboratory, Guangzhou, Guangdong, P. R. China
| | - Yuanyuan Lan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang, P. R. China
| | - Jiansheng Zou
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang, P. R. China
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Ruilin Chen
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang, P. R. China
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, P. R. China
| | - Can Hu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, P. R. China
| | - Yahan Tong
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, P. R. China
| | - Chen Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang, P. R. China
- BGI Research, Shenzhen, Guangdong, P. R. China
| | - Jingyue Chen
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, P. R. China
| | - Yuanmei Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang, P. R. China
- BGI Research, Shenzhen, Guangdong, P. R. China
| | - Run Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang, P. R. China
- BGI Research, Shenzhen, Guangdong, P. R. China
| | - Weiwei He
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang, P. R. China
| | - Tianyu Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
- BGI Research, Shenzhen, Guangdong, P. R. China
| | - Fred Dubee
- BGI Research, Shenzhen, Guangdong, P. R. China
| | | | - Wei Dong
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang, P. R. China
- Clin Lab, BGI Genomics, Beijing, P. R. China
| | - Qingqing Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang, P. R. China
- BGI Research, Shenzhen, Guangdong, P. R. China
| | - Man Ma
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, Zhejiang, P. R. China
| | - Youyong Lu
- Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, P. R. China
| | - Yu Xue
- MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - Xiangdong Cheng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, P. R. China
| | - Yixue Li
- Guangzhou National Laboratory, Guangzhou, Guangdong, P. R. China
- GZMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, Guangdong, P. R. China
| | - Huanming Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
- BGI, Shenzhen, Guangdong, P. R. China
- James D. Watson Institute of Genome Sciences, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
11
|
Cox M, Vitello D, Chawla A. Translating the multifaceted use of liquid biopsy to management of early disease in pancreatic adenocarcinoma. Front Oncol 2025; 15:1520717. [PMID: 40182037 PMCID: PMC11966063 DOI: 10.3389/fonc.2025.1520717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/25/2025] [Indexed: 04/05/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related mortality, primarily due to late stage at diagnosis. This review examines the multifaceted applications of liquid biopsy and circulating tumor DNA (ctDNA) analysis in the diagnosis and management of PDAC. We review the current literature on the technological advancements in liquid biopsy analysis such as next generation sequencing (NGS) and digital droplet PCR (ddPCR) as well as multi-omics technologies, highlighting their potential for accurate molecular subtyping through ctDNA analysis. This review highlights the significant role of ctDNA in the assessment of tumor behavior, disease subtyping, prediction and monitoring of treatment response, and evaluation of minimal residual disease. We discuss the implications of integrating liquid biopsy techniques into clinical practice as well as its challenges and limitations. By drawing insights from recent studies, this review aims to provide a comprehensive overview of how liquid biopsy and ctDNA analysis can enhance early disease management strategies in PDAC. We underscore the need for additional prospective studies and clinical trials to validate its feasibility and accuracy in order to establish clinical utility, with the ultimate goal of routine incorporation into practice to improve patient outcomes and transform the treatment landscape for PDAC.
Collapse
Affiliation(s)
- Madison Cox
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern Medicine Cancer Centers, Northwestern Medicine Regional Medical Group, Winfield, IL, United States
| | - Dominic Vitello
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern Quality Improvement, Research and Education in Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Akhil Chawla
- Division of Surgical Oncology, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Northwestern Medicine Cancer Centers, Northwestern Medicine Regional Medical Group, Winfield, IL, United States
- Northwestern Quality Improvement, Research and Education in Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
| |
Collapse
|
12
|
Zi R, Shen K, Zheng P, Su X, Yang Y, Chen Y, Dai H, Mao C, Lu Y, Wang L, Ma H, Wang W, Li Q, Lu W, Li C, Zheng S, Shi H, Liu X, Chen Z, Liang H, Ou J. NPC1L1 on pancreatic adenocarcinoma cell functions as a two-pronged checkpoint against antitumor activity. Innovation (N Y) 2025; 6:100783. [PMID: 40098667 PMCID: PMC11910884 DOI: 10.1016/j.xinn.2024.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 12/30/2024] [Indexed: 03/19/2025] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly lethal malignancy with an immunosuppressive microenvironment and a limited immunotherapy response. Cholesterol is necessary for rapid growth of cancer cells, and cholesterol metabolism reprogramming is a hallmark of PAAD. How PAAD cells initiate cholesterol reprogramming to sustain their growth demand and suppressive immunomicroenvironment remains elusive. In this study, we for the first time revealed that PAAD cells overcome cholesterol shortage and immune surveillance via ectopically overexpressing NPC1L1, a cholesterol transporter, but function as a two-pronged checkpoint, which not only directly suppresses TCR activation of CD8+T cells but also hijacks the intracellular cholesterol from CD8+T cells. In vivo, we showed that ezetimibe, an NPC1L1 inhibitor usually for hypercholesterolemia, efficiently prevented PAAD cells from depriving cholesterol of CD8+T cells, and improved the anti-tumor immunity of PAAD to synergize with PD-1 blockade, suggesting NPC1L1 as a promising target to rescue the anti-tumor activity in PAAD.
Collapse
Affiliation(s)
- Ruiyang Zi
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kaicheng Shen
- Department of Oncology, Fuling Hospital of Chongqing University, Chongqing 408000, China
| | - Pengfei Zheng
- College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xingxing Su
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yishi Yang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yanrong Chen
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Haisu Dai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chengyi Mao
- Department of Pathology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Hongbo Ma
- Department of Oncology, Fuling Hospital of Chongqing University, Chongqing 408000, China
| | - Wei Wang
- Department of Oncology, Fuling Hospital of Chongqing University, Chongqing 408000, China
| | - Qingyun Li
- Genecast Biotechnology Co., Wuxi 214104, China
| | - Wei Lu
- Galixir Technologies, Beijing 100086, China
| | | | | | - Hui Shi
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaohong Liu
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China
| | - Zhiyu Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Juanjuan Ou
- Yu-Yue Pathology Scientific Research Center, Chongqing 401329, China
- Center for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu 610042, China
| |
Collapse
|
13
|
Cereghetti AS, Turko P, Cheng P, Benke S, Al Hrout A, Dzung A, Dummer R, Hottiger MO, Chahwan R, Ferretti LP, Levesque MP. DNA Methyltransferase Inhibition Upregulates the Costimulatory Molecule ICAM-1 and the Immunogenic Phenotype of Melanoma Cells. JID INNOVATIONS 2025; 5:100319. [PMID: 39867570 PMCID: PMC11759630 DOI: 10.1016/j.xjidi.2024.100319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 01/28/2025] Open
Abstract
In cutaneous melanoma, epigenetic dysregulation is implicated in drug resistance and tumor immune escape. However, the epigenetic mechanisms that influence immune escape remain poorly understood. To elucidate how epigenetic dysregulation alters the expression of surface proteins that may be involved in drug targeting and immune escape, we performed a 3-dimensional surfaceome screen in primary melanoma cultures and identified the DNA-methyltransferase inhibitor decitabine as significantly upregulating the costimulatory molecule ICAM-1. By analyzing The Cancer Genome Atlas melanoma dataset, we further propose ICAM-1 upregulation on melanoma cells as a biomarker of a proinflammatory and antitumorigenic signature. Specifically, we showed that DNA-methyltransferase inhibitor administration upregulated the expression of the antigen-presenting machinery, HLA class I/II, as well as the secretion of the proinflammatory chemokines CXCL9 and CXCL10. Our in silico analysis on The Cancer Genome Atlas and ex vivo experiments on human primary melanoma samples revealed that increased ICAM-1 expression positively correlated with increased immunogenicity of human melanoma cells and correlated with increased immune cell infiltration. These findings suggest a therapeutic approach to modulate the immunogenic phenotype of melanoma cells, hence supporting the exploration of DNA-methyltransferase inhibitor as a potential inducer of infiltration in immunologically cold tumors.
Collapse
Affiliation(s)
| | - Patrick Turko
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Schlieren, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Schlieren, Switzerland
| | - Stephan Benke
- Flow Cytometry Facility, University of Zurich, Zurich, Switzerland
| | - Ala’a Al Hrout
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andreas Dzung
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Schlieren, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Schlieren, Switzerland
| | - Michael O. Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Richard Chahwan
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lorenza P. Ferretti
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Schlieren, Switzerland
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Mitchell P. Levesque
- Department of Dermatology, University Hospital of Zurich, University of Zurich, Schlieren, Switzerland
| |
Collapse
|
14
|
Pop NS, Dolt KS, Hohenstein P. Understanding developing kidneys and Wilms tumors one cell at a time. Curr Top Dev Biol 2025; 163:129-167. [PMID: 40254343 DOI: 10.1016/bs.ctdb.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Single-cell sequencing-based techniques are revolutionizing all fields of biomedical sciences, including normal kidney development and how this is disturbed in the development of Wilms tumor. The many different techniques and the differences between them can obscure which technique is best used to answer which question. In this review we summarize the techniques currently available, discuss which have been used in kidney development or Wilms tumor context, and which techniques can or should be combined to maximize the increase in biological understanding we can get from them.
Collapse
Affiliation(s)
- Nine Solee Pop
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Karamjit Singh Dolt
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter Hohenstein
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands.
| |
Collapse
|
15
|
MacDonald WJ, Purcell C, Pinho-Schwermann M, Stubbs NM, Srinivasan PR, El-Deiry WS. Heterogeneity in Cancer. Cancers (Basel) 2025; 17:441. [PMID: 39941808 PMCID: PMC11816170 DOI: 10.3390/cancers17030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer heterogeneity is a major challenge in oncology, complicating diagnosis, prognostication, and treatment. The clinical heterogeneity of cancer, which leads to differential treatment outcomes between patients with histopathologically similar cancers, is attributable to molecular diversity manifesting through genetic, epigenetic, transcriptomic, microenvironmental, and host biology differences. Heterogeneity is observed between patients, individual metastases, and within individual lesions. This review discusses clinical implications of heterogeneity, emphasizing need for personalized approaches to overcome challenges posed by cancer's diverse presentations. Understanding of emerging molecular diagnostic and analytical techniques can provide a view into the multidimensional complexity of cancer heterogeneity. With over 90% of cancer-related deaths associated with metastasis, we additionally explore the role heterogeneity plays in treatment resistance and recurrence of metastatic lesions. Molecular insights from next-generation sequencing, single-cell transcriptomics, liquid biopsy technology, and artificial intelligence will facilitate the development of combination therapy regimens that can potentially induce lasting and even curative treatment outcomes.
Collapse
Affiliation(s)
- William J. MacDonald
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Connor Purcell
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Maximilian Pinho-Schwermann
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Nolan M. Stubbs
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Praveen R. Srinivasan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (W.J.M.); (M.P.-S.); (N.M.S.)
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- The Joint Program in Cancer Biology, Brown University and Brown University Health, Providence, RI 02903, USA
- Hematology-Oncology Division, Department of Medicine, Rhode Island Hospital, Brown University, Providence, RI 02903, USA
| |
Collapse
|
16
|
Tse AY, Spakowitz AJ. Modeling DNA methyltransferase function to predict epigenetic correlation patterns in healthy and cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2415530121. [PMID: 39792289 PMCID: PMC11745332 DOI: 10.1073/pnas.2415530121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/16/2024] [Indexed: 01/12/2025] Open
Abstract
DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established. Our model predicts DNA methylation-state correlation distributions arising from the transport and kinetic properties that are crucial for the establishment of unique methylation profiles. We model the methylation correlation distributions of nine cancerous human cell types to determine how these properties affect the epigenetic profile. Our theory is capable of recapitulating experimental methylation patterns, suggesting the importance of DNA methyltransferase transport in epigenetic regulation. Through this work, we propose a mechanistic description for the establishment of methylation profiles, capturing the key behavioral characteristics of methyltransferase that lead to aberrant methylation.
Collapse
Affiliation(s)
- Ariana Y. Tse
- Department of Materials Science, Stanford University, Stanford, CA94305
| | | |
Collapse
|
17
|
Zhou W, Reizel Y. On correlative and causal links of replicative epimutations. Trends Genet 2025; 41:60-75. [PMID: 39289103 PMCID: PMC12048181 DOI: 10.1016/j.tig.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for >40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yitzhak Reizel
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
18
|
Nguyen THH, Vu GH, Nguyen TT, Nguyen TA, Tran VU, Vu LT, Nguyen GTH, Nguyen ND, Tran TH, Nguyen VTC, Nguyen TD, Nguyen TH, Vo DH, Van TTV, Do TT, Le MP, Huynh LAK, Nguyen DS, Tang HS, Nguyen H, Phan M, Giang H, Tu LN, Tran LS. Combination of Hotspot Mutations With Methylation and Fragmentomic Profiles to Enhance Multi-Cancer Early Detection. Cancer Med 2025; 14:e70575. [PMID: 39748775 PMCID: PMC11695824 DOI: 10.1002/cam4.70575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/15/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Multi-cancer early detection (MCED) through a single blood test significantly advances cancer diagnosis. However, most MCED tests rely on a single type of biomarkers, leading to limited sensitivity, particularly for early-stage cancers. We previously developed SPOT-MAS, a multimodal ctDNA-based assay analyzing methylation and fragmentomic profiles to detect five common cancers. Despite its potential, SPOT-MAS exhibited moderate sensitivities for early-stage cancers. This study investigated whether integrating hotspot mutations into SPOT-MAS could enhance its detection rates. METHOD A targeted amplicon sequencing approach was developed to profile 700 hotspot mutations in cell-free DNA and integrated into the SPOT-MAS assay, creating a single-blood draw workflow. This workflow, namely SPOT-MAS Plus was retrospectively validated in a cohort of 255 non-metastatic cancer patients (breast, colorectal, gastric, liver, and lung) and 304 healthy individuals. RESULTS Hotspot mutations were detected in 131 of 255 (51.4%) cancer patients, with the highest rates in liver cancer (96.5%), followed by colorectal (59.3%) and lung cancer (53.7%). Lower detection rates were found for cancers with low tumor mutational burden, such as breast (31.3%) and gastric (41.9%) cancers. In contrast, SPOT-MAS demonstrated higher sensitivities for these cancers (51.6% for breast and 62.9% for gastric). The combination of hotspot mutations with SPOT-MAS predictions improved early-stage cancer detection, achieving an overall sensitivity of 78.5% at a specificity of 97.7%. Enhanced sensitivities were observed for colorectal (81.36%) and lung cancer (82.9%). CONCLUSION The integration of genetic and epigenetic alterations into a multimodal assay significantly enhances the early detection of various cancers. Further validation in larger cohorts is necessary to support broader clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Dac Ho Vo
- Medical Genetics InstituteHo Chi MinhVietnam
| | | | | | | | | | | | | | | | | | - Hoa Giang
- Medical Genetics InstituteHo Chi MinhVietnam
| | - Lan N. Tu
- Medical Genetics InstituteHo Chi MinhVietnam
| | - Le Son Tran
- Medical Genetics InstituteHo Chi MinhVietnam
| |
Collapse
|
19
|
Zhou J, Li M, Chen Y, Wang S, Wang D, Suo C, Chen X. Attenuated sex-related DNA methylation differences in cancer highlight the magnitude bias mediating existing disparities. Biol Sex Differ 2024; 15:106. [PMID: 39716176 DOI: 10.1186/s13293-024-00682-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND DNA methylation (DNAm) influences both sex differences and cancer development, yet the mechanisms connecting these factors remain unclear. METHODS Utilizing data from The Cancer Genome Atlas, we conducted a comprehensive analysis of sex-related DNAm effects in nine non-reproductive cancers, compared to paired normal adjacent tissues (NATs), and validated the results using independent datasets. First, we assessed the extent of sex differential DNAm between cancers and NATs to explore how sex-related DNAm differences change in cancerous tissues. Next, we employed a multivariate adaptive shrinkage approach to model the covariance of cancer-related DNAm effects between sexes, aiming to elucidate how sex impacts aberrant DNAm patterns in cancers. Finally, we investigated correlations between the methylome and transcriptome to identify key signals driving sex-biased DNAm regulation in cancers. RESULTS Our analysis revealed a significant attenuation of sex differences in DNAm within cancerous tissues compared to baseline differences in normal tissues. We identified 3,452 CpGs (Pbonf < 0.05) associated with this reduction, with 72% of the linked genes involved in X chromosome inactivation. Through covariance analysis, we demonstrated that sex differences in cancer are predominantly driven by variations in the magnitude of shared DNAm signals, referred to as "amplification." Based on these patterns, we classified cancers into female- and male-biased groups and identified key CpGs exhibiting sex-specific amplification. These CpGs were enriched in binding sites of critical transcription factors, including P53, SOX2, and CTCF. Integrative multi-omics analyses uncovered 48 CpG-gene-cancer trios for females and 380 for males, showing similar magnitude differences in DNAm and gene expression, pointing to a sex-specific regulatory role of DNAm in cancer risk. Notably, several genes regulated by these trios were previously identified as drug targets for cancers, highlighting their potential as sex-specific therapeutic targets. CONCLUSIONS These findings advance our understanding of how sex, DNAm, and gene expression interact in cancer, offering insights into the development of sex-specific biomarkers and precision medicine.
Collapse
Affiliation(s)
- Jiaqi Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Miao Li
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Yu Chen
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Shangzi Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Danke Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China.
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
- Yiwu Research Institute of Fudan University, Yiwu, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
20
|
De Velasco MA, Sakai K, Mitani S, Kura Y, Minamoto S, Haeno T, Hayashi H, Nishio K. A machine learning-based method for feature reduction of methylation data for the classification of cancer tissue origin. Int J Clin Oncol 2024; 29:1795-1810. [PMID: 39292320 PMCID: PMC11588780 DOI: 10.1007/s10147-024-02617-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Genome DNA methylation profiling is a promising yet costly method for cancer classification, involving substantial data. We developed an ensemble learning model to identify cancer types using methylation profiles from a limited number of CpG sites. METHODS Analyzing methylation data from 890 samples across 10 cancer types from the TCGA database, we utilized ANOVA and Gain Ratio to select the most significant CpG sites, then employed Gradient Boosting to reduce these to just 100 sites. RESULTS This approach maintained high accuracy across multiple machine learning models, with classification accuracy rates between 87.7% and 93.5% for methods including Extreme Gradient Boosting, CatBoost, and Random Forest. This method effectively minimizes the number of features needed without losing performance, helping to classify primary organs and uncover subgroups within specific cancers like breast and lung. CONCLUSIONS Using a gradient boosting feature selector shows potential for streamlining methylation-based cancer classification.
Collapse
Affiliation(s)
- Marco A De Velasco
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan
| | - Kazuko Sakai
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan
| | - Seiichiro Mitani
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Yurie Kura
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan
| | - Shuji Minamoto
- Department of Molecular Tumor Pathobiology, Kindai University Graduate School of Medical Sciences, Osaka-Sayama, Japan
| | - Takahiro Haeno
- Department of Molecular Tumor Pathobiology, Kindai University Graduate School of Medical Sciences, Osaka-Sayama, Japan
| | - Hidetoshi Hayashi
- Department of Medical Oncology, Faculty of Medicine, Kindai University, Osaka-Sayama, Japan
| | - Kazuto Nishio
- Department of Genome Biology, Faculty of Medicine, Kindai University, Ohnohigashi 377-2, Osaka-Sayama, 589-9511, Japan.
- Department of Molecular Tumor Pathobiology, Kindai University Graduate School of Medical Sciences, Osaka-Sayama, Japan.
| |
Collapse
|
21
|
Wan X, Deng Q, Chen A, Zhang X, Yang W. Bioinformatics analysis and experimental validation of the oncogenic role of COL11A1 in pan-cancer. 3 Biotech 2024; 14:290. [PMID: 39507058 PMCID: PMC11534945 DOI: 10.1007/s13205-024-04133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
The intricate expression patterns and oncogenic attributes of COL11A1 across different cancer types remain largely elusive. This study used several public databases (TCGA, GTEx, and CCLE) to investigate the pan-cancer landscape of COL11A1 expression, its prognostic implications, interplay with the immune microenvironment, and enriched signaling cascades. Concurrently, western blot analyses were performed to verify COL11A1 expression in lung adenocarcinoma (LUAD) cell lines and clinical samples. In addition, COL11A1 knockout cell lines were generated to scrutinize the functional consequences of COL11AI expression on cancer cell behavior by use MTT, colony formation, and scratch wound healing assays. A comprehensive database investigation revealed that COL11A1 was upregulated in a majority of tumor tissues and its expression was highly correlated with a patient's prognosis. Notably, genetic alterations in COL11A1 predominantly occurred as mutations, while its DNA methylation status inversely mirrored gene expression levels across multiple promoter regions. Our findings suggest that COL11A1 helps to modulate the tumor immune landscape and potentially acts through the epithelial-mesenchymal transition (EMT) pathway to exert its oncogenic function. Western blot analyses further substantiated the specific upregulation of COL11A1 in LUAD cell lines and tissues, suggesting a close association with the EMT process. Ablation of COL11A1 in cancer cells significantly reduced their proliferative, clonogenic, and migratory abilities, underscoring the functional significance of COL11A1 in tumor cell behavior. Collectively, this research revealed the prevalent overexpression of COL11A1 in pan-cancer tissues, its profound prognostic and microenvironmental correlations, and the mechanistic underpinnings of its tumor-promoting effects as mediated via EMT signaling. Our findings suggest that COL11A1 could serve as a prognostic and diagnostic biomarker and therapeutic target for cancer.
Collapse
Affiliation(s)
- Xiaofeng Wan
- Department of Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui China
| | - Qingmei Deng
- Department of Laboratory, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui China
| | - Anling Chen
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
- Science Island Branch, Graduate School of University of Science and Technology of China, Hefei, China
| | - Xinhui Zhang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| | - Wulin Yang
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031 Anhui China
| |
Collapse
|
22
|
Gorse M, Bianchi C, Proudhon C. [Epigenetics and cancer: the role of DNA methylation]. Med Sci (Paris) 2024; 40:925-934. [PMID: 39705563 DOI: 10.1051/medsci/2024180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024] Open
Abstract
Alterations in DNA methylation profiles are typically found in cancer cells, combining genome-wide hypomethylation with hypermethylation of specific regions, such as CpG islands, which are normally unmethylated. Driving effects in cancer development have been associated with alteration of DNA methylation in certain regions, inducing, for example, the repression of tumor suppressor genes or the activation of oncogenes and retrotransposons. These alterations represent prime candidates for the development of specific markers for the detection, diagnosis and prognosis of cancer. In particular, these markers, distributed along the genome, provide a wealth of information that offers potential for innovation in the field of liquid biopsy, in particular thanks to the emergence of artificial intelligence for diagnostic purposes. This could overcome the limitations related to sensitivities and specificities, which remain too low for the most difficult applications in oncology: the detection of cancers at an early stage, the monitoring of residual disease and the analysis of brain tumors. In addition, targeting the enzymatic processes that control the epigenome offers new therapeutic strategies that could reverse the regulatory anomalies of these altered epigenomes.
Collapse
Affiliation(s)
- Marine Gorse
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Charline Bianchi
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| | - Charlotte Proudhon
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR_S 1085, Rennes, France
| |
Collapse
|
23
|
Ankill J, Zhao Z, Tekpli X, Kure EH, Kristensen VN, Mathelier A, Fleischer T. Integrative pan-cancer analysis reveals a common architecture of dysregulated transcriptional networks characterized by loss of enhancer methylation. PLoS Comput Biol 2024; 20:e1012565. [PMID: 39556603 DOI: 10.1371/journal.pcbi.1012565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Aberrant DNA methylation contributes to gene expression deregulation in cancer. However, these alterations' precise regulatory role and clinical implications are still not fully understood. In this study, we performed expression-methylation Quantitative Trait Loci (emQTL) analysis to identify deregulated cancer-driving transcriptional networks linked to CpG demethylation pan-cancer. By analyzing 33 cancer types from The Cancer Genome Atlas, we identified and confirmed significant correlations between CpG methylation and gene expression (emQTL) in cis and trans, both across and within cancer types. Bipartite network analysis of the emQTL revealed groups of CpGs and genes related to important biological processes involved in carcinogenesis including proliferation, metabolism and hormone-signaling. These bipartite communities were characterized by loss of enhancer methylation in specific transcription factor binding regions (TFBRs) and the CpGs were topologically linked to upregulated genes through chromatin loops. Penalized Cox regression analysis showed a significant prognostic impact of the pan-cancer emQTL in many cancer types. Taken together, our integrative pan-cancer analysis reveals a common architecture where hallmark cancer-driving functions are affected by the loss of enhancer methylation and may be epigenetically regulated.
Collapse
Affiliation(s)
- Jørgen Ankill
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Zhi Zhao
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Xavier Tekpli
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Elin H Kure
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anthony Mathelier
- Department of Medical Genetics, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Norway, Oslo, Norway
| | - Thomas Fleischer
- Department of Cancer Genetics, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Mandal T, Gnanasegaran S, Rodrigues G, Kashipathi S, Tiwari A, Dubey AK, Bhattacharjee S, Manjunath Y, Krishna S, Madhusudhan MS, Ghosh M. Targeting LLT1 as a potential immunotherapy option for cancer patients non-responsive to existing checkpoint therapies in multiple solid tumors. BMC Cancer 2024; 24:1365. [PMID: 39511540 PMCID: PMC11545609 DOI: 10.1186/s12885-024-13074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND High levels of LLT1 expression have been found in several cancers, where it interacts with CD161 on NK cells to facilitate tumor immune escape. Targeting LLT1 could potentially relieve this inhibitory signal and enhance anti-tumor responses mediated through NK cells. Using the 'The Cancer Genome Atlas' (TCGA) database, we investigated the role of LLT1 in the tumor microenvironment (TME) across various cancers. Identifying such biomarkers could create new therapeutic options for patients in addition to complementing existing immunotherapies. METHODS LLT1 expression was evaluated in 33 cancers using TCGA transcriptome data. Univariate Cox regression analysis was employed to assess the correlation of LLT1 expression with patient survival. The relationship between LLT1 expression with immune infiltrates, immune gene signatures, and cancer genomic biomarkers (TMB, MSI, and MMR) was also investigated. Immunofluorescence studies were conducted to validate LLT1 expression in tumors. Furthermore, using the CRI iAtlas data, we evaluated LLT1 distribution and its correlation with other immune checkpoint genes in patients non-responsive to existing immune checkpoint therapies across multiple solid cancers. RESULTS High expression of LLT1 was observed in 12 cancers, including BRCA, CHOL, ESCA, GBM, HNSC, KIRC, KIRP, LIHC, LUAD, STAD, SARC, and PCPG. In certain cancers like COAD, KICH, and KIRC, high LLT1 expression was associated with poor prognosis. Further analysis revealed that upregulated LLT1 was associated with an abundance of NK and T cell infiltrates in the TME, as well as exhaustive immune biomarkers, and inversely associated with pro-inflammatory and tumor suppressor signatures. High LLT1 expression is also positively correlated with genomic biomarkers in certain cancers. Immunofluorescence studies confirmed moderate to high LLT1 expression in immune-resistant prostate cancer, glioma, ovarian cancer, and immune-sensitive liver cancer cell lines. An independent assessment of clinical cohorts from CRI iAtlas showed a correlation of upregulated LLT1 with multiple immunosuppressive genes in patients non-responsive to current ICIs. CONCLUSIONS The biomarker analysis revealed a clear association between elevated LLT1 expression and an immunosuppressive TME in patient cohorts from TCGA and clinical databases. Therefore, this study provides a foundation for utilizing LLT1 as a potential target to improve clinical responses in ICI non-responsive patients with upregulated LLT1.
Collapse
Affiliation(s)
| | | | - Golding Rodrigues
- Indian Institute of Science Education and Research (IISER), Pune, India
| | | | | | | | | | | | | | - M S Madhusudhan
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Maloy Ghosh
- Zumutor Biologics, Bangalore, Karnataka, India.
| |
Collapse
|
25
|
Liu P, Jacques J, Hwang CI. Epigenetic Landscape of DNA Methylation in Pancreatic Ductal Adenocarcinoma. EPIGENOMES 2024; 8:41. [PMID: 39584964 PMCID: PMC11587027 DOI: 10.3390/epigenomes8040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal malignancies, characterized by its aggressive progression and dismal prognosis. Advances in epigenetic profiling, specifically DNA methylation analysis, have significantly deepened our understanding of PDAC pathogenesis. This review synthesizes findings from recent genome-wide DNA methylation studies, which have delineated a complex DNA methylation landscape differentiating between normal and cancerous pancreatic tissues, as well as across various stages and molecular subtypes of PDAC. These studies identified specific differentially methylated regions (DMRs) that not only enhance our grasp of the epigenetic drivers of PDAC but also offer potential biomarkers for early diagnosis and prognosis, enabling the customization of therapeutic approaches. The review further explores how DNA methylation profiling could facilitate the development of subtype-tailored therapies, potentially improving treatment outcomes based on precise molecular characterizations. Overall, leveraging DNA methylation alterations as functional biomarkers holds promise for advancing our understanding of disease progression and refining PDAC management strategies, which could lead to improved patient outcomes and a deeper comprehension of the disease's underlying biological mechanisms.
Collapse
Affiliation(s)
- Peiyi Liu
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
| | - Juliette Jacques
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, Davis, CA 95616, USA; (P.L.); (J.J.)
- University of California Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
26
|
Conway K, Edmiston SN, Vondras A, Reiner A, Corcoran DL, Shen R, Parrish EA, Hao H, Lin L, Kenney JM, Ilelaboye G, Kostrzewa CE, Kuan PF, Busam KJ, Lezcano C, Lee TK, Hernando E, Googe PB, Ollila DW, Moschos S, Gorlov I, Amos CI, Ernstoff MS, Cust AE, Wilmott JS, Scolyer RA, Mann GJ, Vergara IA, Ko J, Rees JR, Yan S, Nagore E, Bosenberg M, Rothberg BG, Osman I, Lee JE, Saenger Y, Bogner P, Thompson CL, Gerstenblith M, Holmen SL, Funchain P, Brunsgaard E, Depcik-Smith ND, Luo L, Boyce T, Orlow I, Begg CB, Berwick M, Thomas NE, InterMEL Study Group.. DNA Methylation Classes of Stage II and III Primary Melanomas and Their Clinical and Prognostic Significance. JCO Precis Oncol 2024; 8:e2400375. [PMID: 39509669 PMCID: PMC11737429 DOI: 10.1200/po-24-00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
PURPOSE Patients with stage II and III cutaneous primary melanoma vary considerably in their risk of melanoma-related death. We explore the ability of methylation profiling to distinguish primary melanoma methylation classes and their associations with clinicopathologic characteristics and survival. MATERIALS AND METHODS InterMEL is a retrospective case-control study that assembled primary cutaneous melanomas from American Joint Committee on Cancer (AJCC) 8th edition stage II and III patients diagnosed between 1998 and 2015 in the United States and Australia. Cases are patients who died of melanoma within 5 years from original diagnosis. Controls survived longer than 5 years without evidence of melanoma recurrence or relapse. Methylation classes, distinguished by consensus clustering of 850K methylation data, were evaluated for their clinicopathologic characteristics, 5-year survival status, and differentially methylated gene sets. RESULTS Among 422 InterMEL melanomas, consensus clustering revealed three primary melanoma methylation classes (MethylClasses): a CpG island methylator phenotype (CIMP) class, an intermediate methylation (IM) class, and a low methylation (LM) class. CIMP and IM were associated with higher AJCC stage (both P = .002), Breslow thickness (CIMP P = .002; IM P = .006), and mitotic index (both P < .001) compared with LM, while IM had higher N stage than CIMP (P = .01) and LM (P = .007). CIMP and IM had a 2-fold higher likelihood of 5-year death from melanoma than LM (CIMP odds ratio [OR], 2.16 [95% CI, 1.18 to 3.96]; IM OR, 2.00 [95% CI, 1.12 to 3.58]) in a multivariable model adjusted for age, sex, log Breslow thickness, ulceration, mitotic index, and N stage. Despite more extensive CpG island hypermethylation in CIMP, CIMP and IM shared similar patterns of differential methylation and gene set enrichment compared with LM. CONCLUSION Melanoma MethylClasses may provide clinical value in predicting 5-year death from melanoma among patients with primary melanoma independent of other clinicopathologic factors.
Collapse
Affiliation(s)
- Kathleen Conway
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sharon N. Edmiston
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Amanda Vondras
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Allison Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David L. Corcoran
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eloise A. Parrish
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Honglin Hao
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
| | - Lan Lin
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
| | - Jessica M Kenney
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gbemisola Ilelaboye
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Caroline E. Kostrzewa
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pei Fen Kuan
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY
| | - Klaus J. Busam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Cecilia Lezcano
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tim K. Lee
- British Columbia Cancer Research Center, Vancouver, BC, Canada
| | - Eva Hernando
- Grossman School of Medicine, New York University, New York, NY
| | - Paul B. Googe
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David W. Ollila
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Stergios Moschos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ivan Gorlov
- Department of Medicine, Baylor Medical Center, Houston, TX
| | | | | | - Anne E. Cust
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, Australia
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - James S. Wilmott
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
| | - Richard A. Scolyer
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Graham J. Mann
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
- John Curtin School of Medical Research, Australian National University, ACT 2601, Australia
| | - Ismael A. Vergara
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Judy R. Rees
- Department of Epidemiology, Dartmouth Medical School, Lebanon NH
| | - Shaofeng Yan
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon NH
| | - Eduardo Nagore
- Instituto Valenciano de Oncologia, Valencia, Spain
- Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | | | | | - Iman Osman
- Grossman School of Medicine, New York University, New York, NY
| | - Jeffrey E. Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yvonne Saenger
- Columbia University Medical School, New York, NY
- Albert Einstein School of Medicine, New York, NY
| | - Paul Bogner
- Departments of Pathology and Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Cheryl L. Thompson
- Case Western Reserve University, Cleveland, OH
- Penn State University, Hershey, PA
| | | | - Sheri L. Holmen
- Department of Surgery, University of Utah Health Sciences Center and Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Elise Brunsgaard
- Department of Dermatology, Rush University Medical Center, Chicago, Il
| | | | - Li Luo
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Tawny Boyce
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Colin B. Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marianne Berwick
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Nancy E. Thomas
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | |
Collapse
|
27
|
Oliveira DVNP, Biskup E, O'Rourke CJ, Hentze JL, Andersen JB, Høgdall C, Høgdall EV. Developing a DNA Methylation Signature to Differentiate High-Grade Serous Ovarian Carcinomas from Benign Ovarian Tumors. Mol Diagn Ther 2024; 28:821-834. [PMID: 39414761 PMCID: PMC11512855 DOI: 10.1007/s40291-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 10/18/2024]
Abstract
INTRODUCTION Epithelial ovarian cancer (EOC) represents a significant health challenge, with high-grade serous ovarian cancer (HGSOC) being the most common subtype. Early detection is hindered by nonspecific symptoms, leading to late-stage diagnoses and poor survival rates. Biomarkers are crucial for early diagnosis and personalized treatment OBJECTIVE: Our goal was to develop a robust statistical procedure to identify a set of differentially methylated probes (DMPs) that would allow differentiation between HGSOC and benign ovarian tumors. METHODOLOGY Using the Infinium EPIC Methylation array, we analyzed the methylation profiles of 48 ovarian samples diagnosed with HGSOC, borderline ovarian tumors, or benign ovarian disease. Through a multi-step statistical procedure combining univariate and multivariate logistic regression models, we aimed to identify CpG sites of interest. RESULTS AND CONCLUSIONS We discovered 21 DMPs and developed a predictive model validated in two independent cohorts. Our model, using a distance-to-centroid approach, accurately distinguished between benign and malignant disease. This model can potentially be used in other types of sample material. Moreover, the strategy of the model development and validation can also be used in other disease contexts for diagnostic purposes.
Collapse
Affiliation(s)
| | - Edyta Biskup
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Colm J O'Rourke
- Biotech Research & Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julie L Hentze
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | - Jesper B Andersen
- Biotech Research & Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Høgdall
- Department of Gynecology, Juliane Marie Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid V Høgdall
- Department of Pathology, Herlev Hospital, University of Copenhagen, Herlev, Denmark.
| |
Collapse
|
28
|
Houlahan KE, Bihie M, Contreras JG, Fulop DJ, Lopez G, Huang HH, Van Loo P, Curtis C, Boutros PC, Huang KL. Deletions Rate-Limit Breast and Ovarian Cancer Initiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618945. [PMID: 39484366 PMCID: PMC11526986 DOI: 10.1101/2024.10.17.618945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Optimizing prevention and early detection of cancer requires understanding the number, types and timing of driver mutations. To quantify this, we exploited the elevated cancer incidence and mutation rates in germline BRCA1 and BRCA2 (gBRCA1/2) carriers. Using novel statistical models, we identify genomic deletions as the likely rate-limiting mutational processes, with 1-3 deletions required to initiate breast and ovarian tumors. gBRCA1/2-driven hereditary and sporadic tumors undergo convergent evolution to develop a similar set of driver deletions, and deletions explain the elevated cancer risk of gBRCA1/2-carriers. Orthogonal mutation timing analysis identifies deletions of chromosome 17 and 13q as early, recurrent events. Single-cell analyses confirmed deletion rate differences in gBRCA1/2 vs. non-carrier tumors as well as cells engineered to harbor gBRCA1/2. The centrality of deletion-associated chromosomal instability to tumorigenesis shapes interpretation of the somatic evolution of non-malignant tissue and guides strategies for precision prevention and early detection.
Collapse
Affiliation(s)
- Kathleen E. Houlahan
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USATable
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Vector Institute, Toronto, Canada
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | - Daniel J. Fulop
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gonzalo Lopez
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hsin-Hsiung Huang
- Department of Statistics, University of Central Florida, Orlando, FL, USA
| | - Peter Van Loo
- The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christina Curtis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul C. Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USATable
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
- Vector Institute, Toronto, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
- Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuan-lin Huang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
29
|
Li Y, Jia Z, Kong X, Zhao H, Liu X, Cui G, Luo J. Effect of 5-Aza-2'-deoxycytidine on T-cell acute lymphoblastic leukemia cell biological behaviors and PTEN expression. Cytojournal 2024; 21:36. [PMID: 39563669 PMCID: PMC11574681 DOI: 10.25259/cytojournal_31_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/20/2024] [Indexed: 11/21/2024] Open
Abstract
Objective We currently face a sharp increase of T-cell acute lymphoblastic leukemia (T-ALL) incidence and a challenge of unmasking its complex etiology. The deoxycytidine analog 5-Aza-2'-deoxycytidine (5-Aza-dC) is currently the most common nucleoside methyltransferase inhibitor. The objective of this study was to clarify the role of 5-Aza-dC in T-ALL cell biological behaviors and phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression. Material and Methods T-ALL cell lines were divided into the experimental group with 5-Aza-dC solution treatment, and the control group without treatment. PTEN methylation was detected using methylation-specific polymerase chain reaction (MS-PCR). Following the measurement of cell proliferation, viability, apoptosis, invasion, migration, etc., quantitative reverse transcription-polymerase chain reaction (PCR) was conducted to detect PTEN, DNA methyl-transferases (DNMT1), DNMT3a, MBD2, and MeCP2 expressions; Western blot to detect PTEN, PI3K, AKT, and mTOR protein expressions. In addition, rescue experiments to inhibit and restore the expression of PTEN in different groups were performed for further identification of the results in the former parts. Results MS-PCR results showed that in Jurkat cells, the target band was amplified using methylated primers for the PTEN gene promoter region; moreover, at 10 μmol/L of 5-Aza-dC for 24 h, PTEN methylation was completely removed without any un-methylated band observed. The experimental group had significantly lower cell proliferation and viability rates, higher apoptosis rates, decreased cell proportion in S phase, reduced invasion and migration; increased PTEN expression, decreased DNMT1, DNMT3a, MBD2, and MeCP2 mRNA expressions; and decreased PI3K, AKT, and mTOR protein expressions than those in the control group (all P < 0.05). Furthermore, according to the rescue experiment, silenced PTEN expression weakened the beneficial roles of 5-Aza-dC treatment, and resulted in significantly higher cell proliferation and viability rates, lower apoptosis rates, increased cell proportion in S phase, increased cell invasion and migration; decreased PTEN expression, elevated DNMT1, DNMT3a, MBD2, and MeCP2 mRNA expressions, and higher PI3K, AKT, and mTOR protein expressions (all P < 0.05). While restored PTEN expression enhanced functions of 5-Aza-dC treatment, leading to obviously lower cell proliferation and viability rates, higher apoptosis rates, increased cell proportion in G1 phase, and reduced cell invasion and migration; as well as increased PTEN expression, decreased DNMT1, DNMT3a, MBD2, and MeCP2 mRNA expressions, and lower PI3K, AKT, and mTOR protein expressions (all P < 0.05). Conclusion Demethylation treatment with 5-Aza-dC can inhibit T-ALL cell malignant biological behaviors and enhance the sensitivity to chemotherapy agents possibly, which may be related to the inhibited expressions of DNMT1, DNMT3a, MBD2, and MeCP2, and restored expression activity of PTEN to negatively regulate the PI3K/AKT signal transduction. Our silencing and restoration of PTEN expressions further support our findings, highlighting that demethylation with 5-Aza-dC to restore the anti-tumor activity of the tumor suppressor gene PTEN may be a promising therapeutic option for treating T-ALL.
Collapse
Affiliation(s)
- Yan Li
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Zhenwei Jia
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Xiaoyang Kong
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Hongbo Zhao
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Xiaoyan Liu
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Guirong Cui
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| | - Jianmin Luo
- Department of Hematology, Handan First Hospital, Handan, Hebei, China
| |
Collapse
|
30
|
Castro JP, Shindyapina AV, Barbieri A, Ying K, Strelkova OS, Paulo JA, Tyshkovskiy A, Meinl R, Kerepesi C, Petrashen AP, Mariotti M, Meer MV, Hu Y, Karamyshev A, Losyev G, Galhardo M, Logarinho E, Indzhykulian AA, Gygi SP, Sedivy JM, Manis JP, Gladyshev VN. Age-associated clonal B cells drive B cell lymphoma in mice. NATURE AGING 2024; 4:1403-1417. [PMID: 39117982 DOI: 10.1038/s43587-024-00671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/19/2024] [Indexed: 08/10/2024]
Abstract
Although cancer is an age-related disease, how the processes of aging contribute to cancer progression is not well understood. In this study, we uncovered how mouse B cell lymphoma develops as a consequence of a naturally aged system. We show here that this malignancy is associated with an age-associated clonal B cell (ACBC) population that likely originates from age-associated B cells. Driven by c-Myc activation, promoter hypermethylation and somatic mutations, IgM+ ACBCs clonally expand independently of germinal centers and show increased biological age. ACBCs become self-sufficient and support malignancy when transferred into young recipients. Inhibition of mTOR or c-Myc in old mice attenuates pre-malignant changes in B cells during aging. Although the etiology of mouse and human B cell lymphomas is considered distinct, epigenetic changes in transformed mouse B cells are enriched for changes observed in human B cell lymphomas. Together, our findings characterize the spontaneous progression of cancer during aging through both cell-intrinsic and microenvironmental changes and suggest interventions for its prevention.
Collapse
Affiliation(s)
- José P Castro
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Aging and Aneuploidy Laboratory, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | | | | | - Kejun Ying
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Olga S Strelkova
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - João A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Rico Meinl
- Retro Biosciences, Redwood City, CA, USA
| | - Csaba Kerepesi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Institute for Computer Science and Control (SZTAKI), Loránd Eötvös Research Network, Budapest, Hungary
| | - Anna P Petrashen
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Marco Mariotti
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Barcelona, Spain
| | - Margarita V Meer
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- San Diego Institute of Sciences, Altos Labs, San Diego, CA, USA
| | - Yan Hu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Grigoriy Losyev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mafalda Galhardo
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Elsa Logarinho
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Artur A Indzhykulian
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
- Department of Otolaryngology - Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - John M Sedivy
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - John P Manis
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim N Gladyshev
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Siddiqui MS, Shahi MH, Castresana JS. The role of the adenylate kinase 5 gene in various diseases and cancer. J Clin Transl Sci 2024; 8:e96. [PMID: 39655021 PMCID: PMC11626602 DOI: 10.1017/cts.2024.536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/21/2024] [Accepted: 05/01/2024] [Indexed: 12/12/2024] Open
Abstract
Adenylate kinases (AKs) are important enzymes involved in cellular energy metabolism. Among AKs, AK5 (adenylate kinase 5), a cytosolic protein, is emerging as a significant contributor to various diseases and cellular processes. This comprehensive review integrates findings from various research groups on AK5 since its discovery, shedding light on its multifaceted roles in nucleotide metabolism, energy regulation, and cellular differentiation. We investigate its implications in a spectrum of diseases, including autoimmune encephalitis, epilepsy, neurodegenerative disorders such as Alzheimer's and Parkinson's, diabetes, lower extremity arterial disease, celiac disease, and various cancers. Notably, AK5's expression levels and methylation status have been associated with cancer progression and patient outcomes, indicating its potential as a prognostic indicator. Furthermore, AK5 is implicated in regulating cellular processes in breast cancer, gastric cancer, colorectal carcinoma, prostate cancer, and colon adenocarcinoma, suggesting its relevance across different cancer types. However, a limitation lies in the need for more robust clinical validation and a deeper understanding of AK5's precise mechanisms in disease pathogenesis, despite its association with various pathophysiological conditions. Nonetheless, AK5 holds promise as a therapeutic target, with emerging evidence suggesting its potential in therapy development.
Collapse
Affiliation(s)
- M. Sarim Siddiqui
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh202002, India
| | - Mehdi H. Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh202002, India
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, Pamplona31008, Spain
| |
Collapse
|
32
|
Jiang X, Wang W, Wang Z, Wang Z, Shi H, Meng L, Pang S, Fan M, Lin R. Gamma-glutamyl transferase secreted by Helicobacter pylori promotes the development of gastric cancer by affecting the energy metabolism and histone methylation status of gastric epithelial cells. Cell Commun Signal 2024; 22:402. [PMID: 39148040 PMCID: PMC11328474 DOI: 10.1186/s12964-024-01780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection is critical in the development and occurrence of gastric cancer. H. pylori secretes gamma-glutamyl transferase (GGT), which affects energy metabolism and histone methylation in mesenchymal stem cells. However, its effect on human gastric epithelial cells remains unclear. This study aimed to investigate the effects of GGT on energy metabolism and histone methylation in gastric epithelial cells and determine its role in the development and progression of H. pylori-induced gastric cancer. METHODS A GGT knockout H. pylori strain and mouse gastric cancer model were constructed, and alpha-ketoglutarate (α-KG) was added. The underlying mechanism was investigated using proteomics, immunohistochemistry, Western blotting, and other experimental assays. RESULTS H. pylori can colonize the host's stomach and destroy the gastric epithelium. GGT secreted by H. pylori decreased the concentration of glutamine in the stomach and increased H3K9me3 and H3K27me3 expression, which promoted the proliferation and migration of gastric epithelial cells. Additionally, α-KG reversed this effect. GGT increased the tumorigenic ability of nude mice. GGT, secreted by H. pylori, promoted the expression of ribosomal protein L15 (RPL15), while GGT knockout and supplementation with α-KG and trimethylation inhibitors reduced RPL15 expression and Wnt signaling pathway expression. CONCLUSIONS H. pylori secreted GGT decreased the expression of glutamine and α-KG in gastric epithelial cells, increased the expression of histones H3K9me3 and H3K27me3, and activated the Wnt signaling pathway through RPL15 expression, ultimately changing the biological characteristics of the gastric epithelium and promoting the occurrence of gastric cancer. Altered energy metabolism and histone hypermethylation are important factors involved in this process.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weijun Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zeyu Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huiying Shi
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingjun Meng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Suya Pang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengke Fan
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rong Lin
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
33
|
Chen F, Zhang Y, Shen L, Creighton CJ. The DNA methylome of pediatric brain tumors appears shaped by structural variation and predicts survival. Nat Commun 2024; 15:6775. [PMID: 39117669 PMCID: PMC11310301 DOI: 10.1038/s41467-024-51276-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Structural variation heavily influences the molecular landscape of cancer, in part by impacting DNA methylation-mediated transcriptional regulation. Here, using multi-omic datasets involving >2400 pediatric brain and central nervous system tumors of diverse histologies from the Children's Brain Tumor Network, we report hundreds of genes and associated CpG islands (CGIs) for which the nearby presence of somatic structural variant (SV) breakpoints is recurrently associated with altered expression or DNA methylation, respectively, including tumor suppressor genes ATRX and CDKN2A. Altered DNA methylation near enhancers associates with nearby somatic SV breakpoints, including MYC and MYCN. A subset of genes with SV-CGI methylation associations also have expression associations with patient survival, including BCOR, TERT, RCOR2, and PDLIM4. DNA methylation changes in recurrent or progressive tumors compared to the initial tumor within the same patient can predict survival in pediatric and adult cancers. Our comprehensive and pan-histology genomic analyses reveal mechanisms of noncoding alterations impacting cancer genes.
Collapse
Affiliation(s)
- Fengju Chen
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Yiqun Zhang
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lanlan Shen
- USDA Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chad J Creighton
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
34
|
Dong Q, Gong C, Jiang Q, Liu Y, Hu Y, Wang D, Liu H, Zheng T, Song C, Wang T, Ju R, Wang C, Song D, Liu Z, Liu Y, Lu Y, Fan J, Liu M, Gao T, An Z, Zhang J, Li P, Cao C, Liu X. Identification of differentially expressed tumour-related genes regulated by UHRF1-driven DNA methylation. Sci Rep 2024; 14:18371. [PMID: 39112494 PMCID: PMC11306747 DOI: 10.1038/s41598-024-69110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an epigenetic regulator that plays critical roles in tumours. However, the DNA methylation alteration patterns driven by UHRF1 and the related differentially expressed tumour-related genes remain unclear. In this study, a UHRF1-shRNA MCF-7 cell line was constructed, and whole-genome bisulfite sequencing and RNA sequencing were performed. The DNA methylation alteration landscape was elucidated, and DNA methylation-altered regions (DMRs) were found to be distributed in both gene bodies and adjacent regions. The DMRs were annotated and categorized into 488 hypermethylated/1696 hypomethylated promoters and 1149 hypermethylated/5501 hypomethylated gene bodies. Through an integrated analysis with the RNA sequencing data, 217 methylation-regulated upregulated genes and 288 downregulated genes were identified, and these genes were primarily enriched in nervous system development and cancer signalling pathways. Further analysis revealed 21 downregulated oncogenes and 15 upregulated TSGs. We also showed that UHRF1 silencing inhibited cell proliferation and migration and suppressed tumour growth in vivo. Our study suggested that UHRF1 and the oncogenes or TSGs it regulates might serve as biomarkers and targets for breast cancer treatment.
Collapse
Affiliation(s)
- Qincai Dong
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Chunxue Gong
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Qian Jiang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Yue Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Di Wang
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Hainan Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Tong Zheng
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Caiwei Song
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Tingting Wang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Ruixia Ju
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Chen Wang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Dengcen Song
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Zijing Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yuting Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yuwei Lu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jinlian Fan
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Mengzi Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ting Gao
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ziqian An
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jiaxin Zhang
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Xuan Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
35
|
Xu H, Long S, Xu C, Li Z, Chen J, Yang B, He Y, Xu Z, Li Z, Wei W, Li X. TNC upregulation promotes glioma tumourigenesis through TDG-mediated active DNA demethylation. Cell Death Discov 2024; 10:347. [PMID: 39090080 PMCID: PMC11294444 DOI: 10.1038/s41420-024-02098-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Gliomas represent the most predominant primary malignant tumor in central nervous system. Thymine DNA glycosylase (TDG) is a central component in active DNA demethylation. However, the specific mechanisms of TDG-mediated active DNA demethylation in gliomas remain unclear. This research indicates TDG expression is overexpressed in gliomas and correlated with poor prognosis. TDG knockdown suppressed the malignant phenotype of gliomas both in vitro and vivo. Notably, RNA-seq analysis revealed a strong association between TDG and tenascin-C (TNC). ChIP-qPCR and MeDIP-qPCR assays were undertaken to confirm that TDG participates in TNC active DNA demethylation process, revealing decreased DNA methylation levels and elevated TNC expression as a result. Silencing TNC expression also suppressed the tumor malignant phenotype in both in vitro and in vivo experiments. Additionally, simultaneous silencing of TNC reduced or even reversed the glioma promotion caused by TDG overexpression. Based on our findings, we conclude that TDG exerts an indispensable role in TNC active DNA demethylation in gliomas. The DNA demethylation process leads to alternations in TNC methylation levels and promotes its expression, thereby contributing to the development of gliomas. These results suggest a novel epigenetic therapeutic strategy targeting active DNA demethylation in gliomas.
Collapse
Affiliation(s)
- Hongyu Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shengrong Long
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengshi Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Yang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongze He
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyue Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Medical Research Institute, Wuhan University, Wuhan, China.
- Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
36
|
Blanchett R, Lau KH, Pfeifer GP. Homeobox and Polycomb target gene methylation in human solid tumors. Sci Rep 2024; 14:13912. [PMID: 38886487 PMCID: PMC11183203 DOI: 10.1038/s41598-024-64569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in defining cancer phenotypes, with global hypomethylation and focal hypermethylation at CpG islands observed in tumors. These methylation marks can also be used to define tumor types and provide an avenue for biomarker identification. The homeobox gene class is one that has potential for this use, as well as other genes that are Polycomb Repressive Complex 2 targets. To begin to unravel this relationship, we performed a pan-cancer DNA methylation analysis using sixteen Illumina HM450k array datasets from TCGA, delving into cancer-specific qualities and commonalities between tumor types with a focus on homeobox genes. Our comparisons of tumor to normal samples suggest that homeobox genes commonly harbor significant hypermethylated differentially methylated regions. We identified two homeobox genes, HOXA3 and HOXD10, that are hypermethylated in all 16 cancer types. Furthermore, we identified several potential homeobox gene biomarkers from our analysis that are uniquely methylated in only one tumor type and that could be used as screening tools in the future. Overall, our study demonstrates unique patterns of DNA methylation in multiple tumor types and expands on the interplay between the homeobox gene class and oncogenesis.
Collapse
Affiliation(s)
- Reid Blanchett
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, 333 Bostwick Ave. NE, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
37
|
Pan W, Yun T, Ouyang X, Ruan Z, Zhang T, An Y, Wang R, Zhu P. A blood-based multi-omic landscape for the molecular characterization of kidney stone disease. Mol Omics 2024; 20:322-332. [PMID: 38623715 DOI: 10.1039/d3mo00261f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Kidney stone disease (KSD, also named renal calculi, nephrolithiasis, or urolithiasis) is a common urological disease entailing the formation of minerals and salts that form inside the urinary tract, frequently caused by diabetes, high blood pressure, hypertension, and monogenetic components in most patients. 10% of adults worldwide are affected by KSD, which continues to be highly prevalent and with increasing incidence. For the identification of novel therapeutic targets in KSD, we adopted high-throughput sequencing and mass spectrometry (MS) techniques in this study and carried out an integrative analysis of exosome proteomic data and DNA methylation data from blood samples of normal and KSD individuals. Our research delineated the profiling of exosomal proteins and DNA methylation in both healthy individuals and those afflicted with KSD, finding that the overexpressed proteins and the demethylated genes in KSD samples are associated with immune responses. The consistency of the results in proteomics and epigenetics supports the feasibility of the comprehensive strategy. Our insights into the molecular landscape of KSD pave the way for a deeper understanding of its pathogenic mechanism, providing an opportunity for more precise diagnosis and targeted treatment strategies for KSD.
Collapse
Affiliation(s)
- Weibing Pan
- Department of Urology, Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, China
| | - Tianwei Yun
- Department of Urology, Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, China
| | - Xin Ouyang
- Department of Laboratory Medicine, Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, China.
| | - Zhijun Ruan
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518020, China.
| | - Tuanjie Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518020, China.
| | - Yuhao An
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518020, China.
| | - Rui Wang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518020, China.
| | - Peng Zhu
- Department of Laboratory Medicine, Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, China.
| |
Collapse
|
38
|
Pekkarinen M, Nordfors K, Uusi-Mäkelä J, Kytölä V, Hartewig A, Huhtala L, Rauhala M, Urhonen H, Häyrynen S, Afyounian E, Yli-Harja O, Zhang W, Helen P, Lohi O, Haapasalo H, Haapasalo J, Nykter M, Kesseli J, Rautajoki KJ. Aberrant DNA methylation distorts developmental trajectories in atypical teratoid/rhabdoid tumors. Life Sci Alliance 2024; 7:e202302088. [PMID: 38499326 PMCID: PMC10948937 DOI: 10.26508/lsa.202302088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are pediatric brain tumors known for their aggressiveness and aberrant but still unresolved epigenetic regulation. To better understand their malignancy, we investigated how AT/RT-specific DNA hypermethylation was associated with gene expression and altered transcription factor binding and how it is linked to upstream regulation. Medulloblastomas, choroid plexus tumors, pluripotent stem cells, and fetal brain were used as references. A part of the genomic regions, which were hypermethylated in AT/RTs similarly as in pluripotent stem cells and demethylated in the fetal brain, were targeted by neural transcriptional regulators. AT/RT-unique DNA hypermethylation was associated with polycomb repressive complex 2 and linked to suppressed genes with a role in neural development and tumorigenesis. Activity of the several NEUROG/NEUROD pioneer factors, which are unable to bind to methylated DNA, was compromised via the suppressed expression or DNA hypermethylation of their target sites, which was also experimentally validated for NEUROD1 in medulloblastomas and AT/RT samples. These results highlight and characterize the role of DNA hypermethylation in AT/RT malignancy and halted neural cell differentiation.
Collapse
Affiliation(s)
- Meeri Pekkarinen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kristiina Nordfors
- Tampere Center for Child Health Research, Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Unit of Pediatric Hematology and Oncology, Tampere University Hospital, Tampere, Finland
| | - Joonas Uusi-Mäkelä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ville Kytölä
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Anja Hartewig
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Minna Rauhala
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Henna Urhonen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Sergei Häyrynen
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Ebrahim Afyounian
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Olli Yli-Harja
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Institute for Systems Biology, Seattle, WA, USA
| | - Wei Zhang
- Cancer Genomics and Precision Oncology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Pauli Helen
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, Tays Cancer Center, Tampere University and Tampere University Hospital, Tampere, Finland
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Hannu Haapasalo
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Joonas Haapasalo
- Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Department of Neurosurgery, Tays Cancer Centre, Tampere University Hospital and Tampere University, Tampere, Finland
- Fimlab Laboratories Ltd, Tampere University Hospital, Tampere, Finland
| | - Matti Nykter
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Juha Kesseli
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
- Tampere Institute for Advanced Study, Tampere University, Tampere, Finland
| |
Collapse
|
39
|
Huang F, Jin L, Zhang X, Wang M, Zhou C. Integrated pan-cancer analysis reveals the immunological and prognostic potential of RBFOX2 in human tumors. Front Pharmacol 2024; 15:1302134. [PMID: 38881877 PMCID: PMC11176534 DOI: 10.3389/fphar.2024.1302134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Background The role of RNA-binding fox one homolog 2 (RBFOX2) in the progression of multiple tumors is increasingly supported by evidence. However, the unclearness pertaining to the expression of RBFOX2, its prognostic potential, and its correlation with the tumor microenvironment (TME) in pan-cancer persists. This study aims to comprehensively investigate the immunological prognostic value of RBFOX2. Methods The Cancer Genome Atlas Gene Expression Omnibus Genotype-Tissue Expression (GTEx), TIMER2.0, Kaplan-Meier (K-M) Plotter, University of Alabama at Birmingham Cancer data analysis Portal (UALCAN), cbioportal, and Gene Expression Profiling Interactive Analysis 2 (GEPIA2) were utilized for a systematic analysis of RBFOX2. This analysis included studying its expression, prognostic value, DNA methylation, enrichment analysis, immune infiltration cells, and immune-related genes. Additionally, qRT-PCR, CCK-8, colony formation, transwell assays, and immunohistochemistry were employed to analyze the expression and biological function of RBFOX2 in liver cancer. Results Variations in RBFOX2 expression have been observed across diverse tumors and have been identified as indicators of unfavorable prognosis. It is closely linked to immune infiltration cells, immune checkpoints, chemokines, and chemokine receptors in the TME. Higher levels of RBFOX2 have been significantly associated with low response and poor prognosis in patients with non-small cell lung cancer (NSCLC) and melanoma who receive immunotherapy. Furthermore, the DNA methylation of RBFOX2 varies across different types of cancer and has shown better prognosis in patients with BLCA, BRCA, CESC, COAD, DLBC, HNSC, LAML, LGG, LUAD, PAAD, SKCM and THYM. Interestingly, RBFOX2 expression was found to be lower in hepatocellular carcinoma (HCC) patients' tumor tissues compared to their paired adjacent tissues. In vitro studies have shown that knockdown of RBFOX2 significantly promotes the growth and metastasis of liver cancer cells. Conclusion This study investigates the correlation between DNA methylation, prognostic value, and immune cell infiltration with the expression of RBFOX2 in pan-cancer and indicates its potential role to inhibit metastasis of liver cancer.
Collapse
Affiliation(s)
- Fengxian Huang
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Long Jin
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xinyue Zhang
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Min Wang
- Department of Science and Education, Xi'an Children's Hospital Affiliated of Xi'an Jiaotong University, Xi'an, China
| | - Congya Zhou
- Department of Radiation Oncology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
40
|
Liao X, Lin R, Zhang Z, Tian D, Liu Z, Chen S, Xu G, Su M. Genome-wide DNA methylation and transcriptomic patterns of precancerous gastric cardia lesions. J Natl Cancer Inst 2024; 116:681-693. [PMID: 38258659 DOI: 10.1093/jnci/djad244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/25/2023] [Accepted: 11/15/2023] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Intestinal metaplasia (IM) and intraepithelial neoplasia (IEN) are considered precursors of gastric cardia cancer (GCC). Here, we investigated the histopathologic and molecular profiles of precancerous gastric cardia lesions (PGCLs) and biomarkers for risk stratification of gastric cardia IM. METHODS We conducted a hospital-based evaluation (n = 4578) for PGCL profiles in high-incidence and non-high-incidence regions for GCC in China. We next performed 850K methylation arrays (n = 42) and RNA-seq (n = 44) in tissues with PGCLs. We then examined the protein expression of candidate biomarker using immunohistochemistry. RESULTS Of the 4578 participants, 791 were diagnosed with PGCLs (600 IM, 62 IM with IEN, and 129 IEN). We found that individuals from high-incidence regions (26.7%) were more likely to develop PGCLs than those from non-high-incidence areas (13.5%). DNA methylation and gene expression alterations, indicated by differentially methylated probes (DMPs) and differentially expressed genes (DEGs), exhibited a progressive increase from type I IM (DMP = 210, DEG = 24), type II IM (DMP = 3402, DEG = 129), to type III IM (DMP = 3735, DEG = 328), peaking in IEN (DMP = 47 373, DEG = 2278). Three DEGs with aberrant promoter methylation were identified, shared exclusively by type III IM and IEN. Of these DEGs, we found that OLFM4 expression appears in IMs and increases remarkably in IENs (P < .001). CONCLUSIONS We highlight that type III IM and IEN share similar epigenetic and transcriptional features in gastric cardia and propose biomarkers with potential utility in risk prediction.
Collapse
Affiliation(s)
- Xiaoqi Liao
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Runhua Lin
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Zhihua Zhang
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Dongping Tian
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| | - Zhaohui Liu
- Department of Gastroenterology, Shenzhen Second People's Hospital/The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, People's Republic of China
| | - Songqin Chen
- Department of Pathology, Jieyang People's Hospital, Jieyang, People's Republic of China
| | - Guohua Xu
- Department of Gastroenterology, Huiyang Sanhe Hospital, Huizhou, People's Republic of China
| | - Min Su
- Department of Pathology, Shantou University Medical College, Shantou, People's Republic of China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, People's Republic of China
| |
Collapse
|
41
|
Ding Y, Jiang Y, Zeng H, Zhou M, Zhou X, Yu Z, Pan J, Geng X, Zhu Y, Zheng H, Huang S, Gong Y, Huang H, Xiong C, Huang D. Identification of a robust biomarker LAPTM4A for glioma based on comprehensive computational biology and experimental verification. Aging (Albany NY) 2024; 16:6954-6989. [PMID: 38613802 PMCID: PMC11087115 DOI: 10.18632/aging.205736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/03/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Glioma, a highly invasive and deadly form of human neoplasm, presents a pressing need for the exploration of potential therapeutic targets. While the lysosomal protein transmembrane 4A (LATPM4A) has been identified as a risk factor in pancreatic cancer patients, its role in glioma remains unexplored. METHODS The analysis of differentially expressed genes (DEG) was conducted from The Cancer Genome Atlas (TCGA) glioma dataset and the Genotype Tissue Expression (GTEx) dataset. Through weighted gene co-expression network analysis (WGCNA), the key glioma-related genes were identified. Among these, by using Kaplan-Meier (KM) analysis and univariate/multivariate COX methods, LAPTM4A emerged as the most influential gene. Moreover, the bioinformatics methods and experimental verification were employed to analyze its relationships with diagnosis, clinical parameters, epithelial-mesenchymal transition (EMT), metastasis, immune cell infiltration, immunotherapy, drug sensitivity, and ceRNA network. RESULTS Our findings revealed that LAPTM4A was up-regulated in gliomas and was associated with clinicopathological features, leading to poor prognosis. Furthermore, functional enrichment analysis demonstrated that LATPM4A played a role in the immune system and cancer progression. In vitro experiments indicated that LAPTM4A may influence metastasis through the EMT pathway in glioma. Additionally, we found that LAPTM4A was associated with the tumor microenvironment (TME) and immunotherapy. Notably, drug sensitivity analysis revealed that patients with high LAPTM4A expression were sensitive to doxorubicin, which contributed to a reduction in LAPTM4A expression. Finally, we uncovered the FGD5-AS1-hsa-miR-103a-3p-LAPTM4A axis as a facilitator of glioma progression. CONCLUSIONS In conclusion, our study identifies LATPM4A as a promising biomarker for prognosis and immune characteristics in glioma.
Collapse
Affiliation(s)
- Yongqi Ding
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yike Jiang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hong Zeng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jingying Pan
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Shuhan Huang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Huabin Huang
- Department of Radiology, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chengfeng Xiong
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| | - Da Huang
- Department of Thyroid Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China
| |
Collapse
|
42
|
Gao J, Shi W, Wang J, Guan C, Dong Q, Sheng J, Zou X, Xu Z, Ge Y, Yang C, Li J, Bao H, Zhong X, Cui Y. Research progress and applications of epigenetic biomarkers in cancer. Front Pharmacol 2024; 15:1308309. [PMID: 38681199 PMCID: PMC11048075 DOI: 10.3389/fphar.2024.1308309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Epigenetic changes are heritable changes in gene expression without changes in the nucleotide sequence of genes. Epigenetic changes play an important role in the development of cancer and in the process of malignancy metastasis. Previous studies have shown that abnormal epigenetic changes can be used as biomarkers for disease status and disease prediction. The reversibility and controllability of epigenetic modification changes also provide new strategies for early disease prevention and treatment. In addition, corresponding drug development has also reached the clinical stage. In this paper, we will discuss the recent progress and application status of tumor epigenetic biomarkers from three perspectives: DNA methylation, non-coding RNA, and histone modification, in order to provide new opportunities for additional tumor research and applications.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wujiang Shi
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangang Wang
- Department of General Surgery, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Canghai Guan
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingfu Dong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jialin Sheng
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinlei Zou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaoqiang Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yifei Ge
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chengru Yang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiehan Li
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
43
|
He Q, Wei Y, Zhu H, Liang Q, Chen P, Li S, Song Y, Liu L, Wang B, Xu X, Dong Y. The combined effect of MTHFR C677T and A1298C polymorphisms on the risk of digestive system cancer among a hypertensive population. Discov Oncol 2024; 15:97. [PMID: 38565713 PMCID: PMC10987447 DOI: 10.1007/s12672-024-00960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/29/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND AND PURPOSE The enzyme methylenetetrahydrofolate reductase (MTHFR) plays a crucial role in directing folate species towards nucleotide synthesis or DNA methylation. The MTHFR polymorphisms C677T and A1298C have been linked to cancer susceptibility, but the evidence supporting this association has been equivocal. To investigate the individual and joint associations between MTHFR C677T, A1298C, and digestive system cancer in a Chinese hypertensive population, we conducted a population-based case-control study involving 751 digestive system cancer cases and one-to-one matched controls from the China H-type Hypertension Registry Study (CHHRS). METHODS We utilized the conditional logistic regression model to evaluate multivariate odds ratios (ORs) and 95% confidence intervals (CIs) of digestive system cancer. RESULTS The analysis revealed a significantly lower risk of digestive system cancer in individuals with the CT genotype (adjusted OR: 0.71; 95% CI 0.52, 0.97; P = 0.034) and TT genotype (adjusted OR: 0.57; 95% CI 0.40, 0.82; P = 0.003; P for trend = 0.003) compared to those with the 677CC genotype. Although A1298C did not show a measurable association with digestive system cancer risk, further stratification of 677CT genotype carriers by A1298C homozygotes (AA) and heterozygotes (AC) revealed a distinct trend within these subgroups. CONCLUSION These findings indicate a potential protective effect against digestive system cancer associated with the T allele of MTHFR C677T. Moreover, we observed that the presence of different combinations of MTHFR polymorphisms may contribute to varying susceptibilities to digestive system cancer.
Collapse
Affiliation(s)
- Qiangqiang He
- Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, No. 2279, Lishui Road. Nanshan District, Shenzhen, 518055, Guangdong, China
- Shenzhen Evergreen Medical Institute, Shenzhen, 518057, Guangdong, China
| | - Yaping Wei
- College of Public Health, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Hehao Zhu
- School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Qiongyue Liang
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Ping Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, Guangdong, China
- Inspection and Testing Center, Key Laboratory of Cancer FSMP for State Market Regulation, Shenzhen, 518057, China
| | - Shuqun Li
- Department of Gastrointestinal Surgery/Clinical Nutrition, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, 100038, China
| | - Yun Song
- Shenzhen Evergreen Medical Institute, Shenzhen, 518057, Guangdong, China
| | - Lishun Liu
- Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, No. 2279, Lishui Road. Nanshan District, Shenzhen, 518055, Guangdong, China
- Shenzhen Evergreen Medical Institute, Shenzhen, 518057, Guangdong, China
- Guangdong Key Laboratory of H-Type Hypertension and Stroke Precision Prevention Research and Development Enterprise, Shenzhen, 518057, China
| | - Binyan Wang
- Shenzhen Evergreen Medical Institute, Shenzhen, 518057, Guangdong, China
- Institute of Biomedicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xiping Xu
- National Clinical Research Center for Kidney Disease, State Key Laboratory for Organ Failure Research, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health, Guangdong Laboratory, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuhan Dong
- Shenzhen International Graduate School, Tsinghua University, University Town of Shenzhen, No. 2279, Lishui Road. Nanshan District, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
44
|
Zhang Z, Zhang Y. Transcriptional regulation of cancer stem cell: regulatory factors elucidation and cancer treatment strategies. J Exp Clin Cancer Res 2024; 43:99. [PMID: 38561775 PMCID: PMC10986082 DOI: 10.1186/s13046-024-03021-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer stem cells (CSCs) were first discovered in the 1990s, revealing the mysteries of cancer origin, migration, recurrence and drug-resistance from a new perspective. The expression of pluripotent genes and complex signal regulatory networks are significant features of CSC, also act as core factors to affect the characteristics of CSC. Transcription is a necessary link to regulate the phenotype and potential of CSC, involving chromatin environment, nucleosome occupancy, histone modification, transcription factor (TF) availability and cis-regulatory elements, which suffer from ambient pressure. Especially, the expression and activity of pluripotent TFs are deeply affected by both internal and external factors, which is the foundation of CSC transcriptional regulation in the current research framework. Growing evidence indicates that regulating epigenetic modifications to alter cancer stemness is effective, and some special promoters and enhancers can serve as targets to influence the properties of CSC. Clarifying the factors that regulate CSC transcription will assist us directly target key stem genes and TFs, or hinder CSC transcription through environmental and other related factors, in order to achieve the goal of inhibiting CSC and tumors. This paper comprehensively reviews the traditional aspects of transcriptional regulation, and explores the progress and insights of the impact on CSC transcription and status through tumor microenvironment (TME), hypoxia, metabolism and new meaningful regulatory factors in conjunction with the latest research. Finally, we present opinions on omnidirectional targeting CSCs transcription to eliminate CSCs and address tumor resistance.
Collapse
Affiliation(s)
- Zhengyue Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, People's Republic of China.
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, People's Republic of China.
| |
Collapse
|
45
|
Li Y, Gong J, Sun Q, Vong EG, Cheng X, Wang B, Yuan Y, Jin L, Gamazon ER, Zhou D, Lai M, Zhang D. Alternative polyadenylation quantitative trait methylation mapping in human cancers provides clues into the molecular mechanisms of APA. Am J Hum Genet 2024; 111:562-583. [PMID: 38367620 PMCID: PMC10940021 DOI: 10.1016/j.ajhg.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/19/2024] Open
Abstract
Genetic variants are involved in the orchestration of alternative polyadenylation (APA) events, while the role of DNA methylation in regulating APA remains unclear. We generated a comprehensive atlas of APA quantitative trait methylation sites (apaQTMs) across 21 different types of cancer (1,612 to 60,219 acting in cis and 4,448 to 142,349 in trans). Potential causal apaQTMs in non-cancer samples were also identified. Mechanistically, we observed a strong enrichment of cis-apaQTMs near polyadenylation sites (PASs) and both cis- and trans-apaQTMs in proximity to transcription factor (TF) binding regions. Through the integration of ChIP-signals and RNA-seq data from cell lines, we have identified several regulators of APA events, acting either directly or indirectly, implicating novel functions of some important genes, such as TCF7L2, which is known for its involvement in type 2 diabetes and cancers. Furthermore, we have identified a vast number of QTMs that share the same putative causal CpG sites with five different cancer types, underscoring the roles of QTMs, including apaQTMs, in the process of tumorigenesis. DNA methylation is extensively involved in the regulation of APA events in human cancers. In an attempt to elucidate the potential underlying molecular mechanisms of APA by DNA methylation, our study paves the way for subsequent experimental validations into the intricate biological functions of DNA methylation in APA regulation and the pathogenesis of human cancers. To present a comprehensive catalog of apaQTM patterns, we introduce the Pancan-apaQTM database, available at https://pancan-apaqtm-zju.shinyapps.io/pancanaQTM/.
Collapse
Affiliation(s)
- Yige Li
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Department of Pathology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jingwen Gong
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China
| | - Qingrong Sun
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China; Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, Zhejiang Province, China; College of Information Science and Technology, ZheJiang Shuren University, Hangzhou 310015, ZheJiang, China
| | - Eu Gene Vong
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Department of Biochemistry and Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xiaoqing Cheng
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Binghong Wang
- Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Ying Yuan
- Department of Medical Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, Chinese National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Eric R Gamazon
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Data Science Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan Zhou
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China; Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| | - Dandan Zhang
- Department of Pathology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China; Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China; Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, Zhejiang Province, China; Department of Pathology, Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Sciences (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
46
|
Xie J, Deng X, Xie Y, Zhu H, Liu P, Deng W, Ning L, Tang Y, Sun Y, Tang H, Cai M, Xie X, Zou Y. Multi-omics analysis of disulfidptosis regulators and therapeutic potential reveals glycogen synthase 1 as a disulfidptosis triggering target for triple-negative breast cancer. MedComm (Beijing) 2024; 5:e502. [PMID: 38420162 PMCID: PMC10901283 DOI: 10.1002/mco2.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Disruption of disulfide homeostasis during biological processes can have fatal consequences. Excess disulfides induce cell death in a novel manner, termed as "disulfidptosis." However, the specific mechanism of disulfidptosis has not yet been elucidated. To determine the cancer types sensitive to disulfidptosis and outline the corresponding treatment strategies, we firstly investigated the crucial functions of disulfidptosis regulators pan-cancer at multi-omics levels. We found that different tumor types expressed dysregulated levels of disulfidptosis regulators, most of which had an impact on tumor prognosis. Moreover, we calculated the disulfidptosis activity score in tumors and validated it using multiple independent datasets. Additionally, we found that disulfidptosis activity was correlated with classic biological processes and pathways in various cancers. Disulfidptosis activity was also associated with tumor immune characteristics and could predict immunotherapy outcomes. Notably, the disulfidptosis regulator, glycogen synthase 1 (GYS1), was identified as a promising target for triple-negative breast cancer and validated via in vitro and in vivo experiments. In conclusion, our study elucidated the complex molecular phenotypes and clinicopathological correlations of disulfidptosis regulators in tumors, laying a solid foundation for the development of disulfidptosis-targeting strategies for cancer treatment.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Xinpei Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yi Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Hongbo Zhu
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Peng Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Wei Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Li Ning
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yuhui Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yuying Sun
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Manbo Cai
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Xiaoming Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Yutian Zou
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| |
Collapse
|
47
|
Agudelo MC, Agudelo S, Lorincz A, Ramírez AT, Castañeda KM, Garcés-Palacio I, Zea AH, Piyathilake C, Sanchez GI. Folate deficiency modifies the risk of CIN3+ associated with DNA methylation levels: a nested case-control study from the ASCUS-COL trial. Eur J Nutr 2024; 63:563-572. [PMID: 38129362 PMCID: PMC10899296 DOI: 10.1007/s00394-023-03289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE To our knowledge, there are very few studies evaluating if the levels of folate modify the risk of cervical intraepithelial neoplasia grade 2 and higher (CIN2+ and CIN3+) associated with the levels of HPV genome methylation, two cofactors related to single carbon metabolism and independently associated with cervical cancer in previous studies. We conducted a case-control study nested in a three-arm randomized clinical pragmatic trial (ASCUS-COL trial) to evaluate the risk of CIN3+ associated with methylation levels according to serum folate concentrations. METHODS Cases (n = 155) were women with histologically confirmed CIN2+ (113 CIN2, 38 CIN3, and 4 SCC) and controls were age and follow-up time at diagnosis-matched women with histologically confirmed ≤ CIN1 (n = 155), selected from the 1122 hrHPV + women of this trial. The concentrations of serum folate were determined by the radioimmunoassay SimulTRAC-SNB-VitaminB12/Folate-RIAKit and the methylation levels by the S5 classifier. Stepwise logistic regression models were used to estimate the association between folate or methylation levels and CIN2+ or CIN3+. The joint effect of folate levels and methylation on the risk of CIN3+ was estimated using combinations of categorical stratifications. RESULTS Folate levels were significantly lower in women with CIN3+ than in other diagnostic groups (p = 0.019). The risk of CIN3+ was eight times higher (OR 8.9, 95% CI 3.4-24.9) in women with folate deficiency and high methylation levels than in women with normal folate and high methylation levels (OR 1.4, 95% CI 0.4-4.6). CONCLUSION High methylation and deficient folate independently increased the risk of CIN3+ while deficient folate combined with high methylation was associated with a substantially elevated risk of CIN3+.
Collapse
Affiliation(s)
- María C Agudelo
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia
| | - Samuel Agudelo
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia
| | - Attila Lorincz
- Centre for Cancer Prevention, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Arianis Tatiana Ramírez
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia
- Postdoctoral Fellow at the Prevention and Implementation Group, International Agency for Research On Cancer/World Health Organization, Lyon, France
| | - Kelly Melisa Castañeda
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia
| | - Isabel Garcés-Palacio
- Epidemiology Group, School of Public Health, Universidad de Antioquia, Medellín, Colombia
| | - Arnold H Zea
- Stanley S. Scott Cancer Center, Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, USA
| | - Chandrika Piyathilake
- Department of Nutrition Sciences, The University of Alabama at Birmingham, Birmingham, USA
| | - Gloria Ines Sanchez
- Infection and Cancer Group, School of Medicine, Universidad de Antioquia, Carrera 51D No 62-29, 050010, Medellín, Colombia.
| |
Collapse
|
48
|
Xue X, Feng Q, Hong X, Lin Z, Luo Y, Li Y, Yao G, Wang N, Chen L. Comprehensive analysis of ALG3 in pan-cancer and validation of ALG3 as an onco-immunological biomarker in breast cancer. Aging (Albany NY) 2024; 16:2320-2339. [PMID: 38329424 PMCID: PMC10911369 DOI: 10.18632/aging.205483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 02/09/2024]
Abstract
ALG3 has significant modulatory function in the process of tumor development. Yet how ALG3 involves in the advancement of different malignancies isn't fully understood. We performed a pan-cancer assessment on ALG3 utilizing datasets from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) to examine its tumor-related roles across malignancies and its link to particular molecules and cells in the tumor microenvironment (TME). Furthermore, we focused on breast cancer to examine the influence of ALG3-mediated signaling pathways and intercellular interactions in the advancement of tumors. The biological effects of ALG3 were verified by breast cancer cells. Enhanced ALG3 expression was discovered to be substantially linked to patients' grim prognoses in a number of malignancies. Furthermore, the expression of ALG3 in the TME was linked to the infiltration of stromal and immune cells, and ALG3-related immune checkpoints, TMB, and MSI were also discovered. We also discovered that cancer patients having a high level of ALG3 exhibited a lower probability of benefiting from immunotherapy. Furthermore, our research found that KEGG enrichment, single-cell RNA and spatial sequencing analyses were effective in identifying key signaling pathways in ALG3-associated tumor growth. In vitro, knockdown of ALG3 could decrease the proliferation of breast cancer cells. In summary, our research offers a comprehensive insight into the advancement of tumors under the mediation of ALG3. ALG3 appears to be intimately associated with tumor development in the TME. ALG3 might be a viable treatment target for cancer therapy, particularly in the case of breast cancer.
Collapse
Affiliation(s)
- Xiaolei Xue
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qiaoli Feng
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xi Hong
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhousheng Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yingrui Luo
- Basic Medical Academy, Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yingshi Li
- Basic Medical Academy, Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Nisha Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Lujia Chen
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
49
|
Geissler F, Nesic K, Kondrashova O, Dobrovic A, Swisher EM, Scott CL, J. Wakefield M. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther Adv Med Oncol 2024; 16:17588359231220511. [PMID: 38293277 PMCID: PMC10826407 DOI: 10.1177/17588359231220511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Epigenetic alterations, including aberrant DNA methylation, are now recognized as bone fide hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications. These include the mismatch DNA repair genes MLH1 and MSH2, homologous recombination DNA repair genes BRCA1 and RAD51C, the TERT oncogene and genes within the P15/P16/RB1/E2F tumour suppressor axis. We also discuss how these methylation changes might occur in the first place - whether in the context of the CpG island methylator phenotype or constitutional DNA methylation. The choice of assay used to measure methylation can have a significant impact on interpretation of methylation states, and some examples where this can influence clinical decision-making are presented. Aberrant DNA methylation patterns in circulating tumour DNA (ctDNA) are also showing great promise in the context of non-invasive cancer detection and monitoring using liquid biopsies; however, caution must be taken in interpreting these results in cases where constitutional methylation may be present. Thus, this review aims to provide researchers and clinicians with a comprehensive summary of this broad, but important subject, illustrating the potentials and pitfalls of assessing aberrant DNA methylation in cancer.
Collapse
Affiliation(s)
- Franziska Geissler
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | | | - Clare L. Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Matthew J. Wakefield
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
50
|
Waseem M, Wang BD. Organoids: An Emerging Precision Medicine Model for Prostate Cancer Research. Int J Mol Sci 2024; 25:1093. [PMID: 38256166 PMCID: PMC10816550 DOI: 10.3390/ijms25021093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer (PCa) has been known as the most prevalent cancer disease and the second leading cause of cancer mortality in men almost all over the globe. There is an urgent need for establishment of PCa models that can recapitulate the progress of genomic landscapes and molecular alterations during development and progression of this disease. Notably, several organoid models have been developed for assessing the complex interaction between PCa and its surrounding microenvironment. In recent years, PCa organoids have been emerged as powerful in vitro 3D model systems that recapitulate the molecular features (such as genomic/epigenomic changes and tumor microenvironment) of PCa metastatic tumors. In addition, application of organoid technology in mechanistic studies (i.e., for understanding cellular/subcellular and molecular alterations) and translational medicine has been recognized as a promising approach for facilitating the development of potential biomarkers and novel therapeutic strategies. In this review, we summarize the application of PCa organoids in the high-throughput screening and establishment of relevant xenografts for developing novel therapeutics for metastatic, castration resistant, and neuroendocrine PCa. These organoid-based studies are expected to expand our knowledge from basic research to clinical applications for PCa diseases. Furthermore, we also highlight the optimization of PCa cultures and establishment of promising 3D organoid models for in vitro and in vivo investigations, ultimately facilitating mechanistic studies and development of novel clinical diagnosis/prognosis and therapies for PCa.
Collapse
Affiliation(s)
- Mohammad Waseem
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
| | - Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA;
- Hormone Related Cancers Program, University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|