1
|
Han M, Han P, Wang Z, Kong L, Xu Q, Liu Q, Sun Y. Alternative splicing in aging and aging-related diseases: From pathogenesis to therapy. Pharmacol Ther 2025; 272:108887. [PMID: 40414568 DOI: 10.1016/j.pharmthera.2025.108887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 04/10/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Aging is a complex biological process associated with nearly all diseases. Alternative splicing is increasingly recognized as an important contributor to aging and a key research pathway for extending human lifespan. In this review, we highlight the findings of alternative splicing in the hallmarks of aging including key processes such as genomic instability, telomere length, protein stability, autophagy processes, etc., as well as antagonistic hallmarks of aging such as various metabolic signals, energy metabolism, clearance of senescent cells, stem cell self-renewal, cell communication and inflammatory process, etc. We also discuss the roles of alternative splicing in age-related diseases, including neurodegenerative diseases, cardiovascular diseases, skeletal muscle-related diseases, metabolic disorders, cancer, sensory degeneration, and chronic inflammation, etc. These studies suggest that new anti-aging therapies could be developed by regulating key splicing proteins or specific splicing events.
Collapse
Affiliation(s)
- Mingrui Han
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Peiru Han
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Zihui Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Qianqian Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China; Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China.
| |
Collapse
|
2
|
Lei Y, Lai M. Epigenetic Regulation and Therapeutic Targeting of Alternative Splicing Dysregulation in Cancer. Pharmaceuticals (Basel) 2025; 18:713. [PMID: 40430531 PMCID: PMC12115227 DOI: 10.3390/ph18050713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Alternative splicing enables a single precursor mRNA to generate multiple mRNA isoforms, leading to protein variants with different structures and functions. Abnormal alternative splicing is frequently associated with cancer development and progression. Recent studies have revealed a complex and dynamic interplay between epigenetic modifications and alternative splicing. On the one hand, dysregulated epigenetic changes can alter splicing patterns; on the other hand, splicing events can influence epigenetic landscapes. The reversibility of epigenetic modifications makes epigenetic drugs, both approved and investigational, attractive therapeutic options. This review provides a comprehensive overview of the bidirectional relationship between epigenetic regulation and alternative splicing in cancer. It also highlights emerging therapeutic approaches aimed at correcting splicing abnormalities, with a special focus on drug-based strategies. These include epigenetic inhibitors, antisense oligonucleotides (ASOs), small-molecule compounds, CRISPR-Cas9 genome editing, and the SMaRT (splice-switching molecule) technology. By integrating recent advances in research and therapeutic strategies, this review provides novel insights into the molecular mechanisms of cancer and supports the development of more precise and effective therapies targeting aberrant splicing.
Collapse
Affiliation(s)
- Yan Lei
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China;
| | - Maode Lai
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China;
- Research Unit of Intelligence Classification of Tumor Pathology and Precision Therapy, Chinese Academy of Medical Science (2019RU042), Key Laboratory of Disease Proteomics of Zhejiang Province, Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| |
Collapse
|
3
|
Techachakrit J, Malik AA, Pisitkun T, Sriswasdi S. Potential shared neoantigens from pan-cancer transcript isoforms. Sci Rep 2025; 15:15886. [PMID: 40335513 PMCID: PMC12059137 DOI: 10.1038/s41598-025-00817-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
Isoform switching in cancer is a prevalent phenomenon with significant implications for immunotherapy, as actionable neoantigens derived from these cancer-specific events would be applicable to broad categories of patients, reducing the necessity for personalized treatments. By integrating five large-scale transcriptomic datasets comprising over 19,500 samples across 29 cancer and 54 normal tissue types, we identified cancer-associated isoform switching events common to multiple cancer types, several of which involve genes with established mechanistic roles in oncogenesis. The presence of neoantigen-containing peptides derived from these transcripts was confirmed in broad cancer and normal tissue proteome datasets and the binding affinity of predicted neoantigens to the human leukocyte antigen (HLA) complex via molecular dynamics simulations. The study presents strong evidence that isoform switching in cancer is a significant source of actionable neoantigens that have the capability to trigger an immune response. These findings suggest that isoform switching events could potentially be leveraged for broad immunotherapeutic strategies across various cancer types.
Collapse
Affiliation(s)
- Jirapat Techachakrit
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aijaz Ahmad Malik
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center for Artificial Intelligence in Medicine, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Center for Artificial Intelligence in Medicine, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
4
|
Lei X, Zheng Y, Su W. RNA-binding proteins and autophagy in lung cancer: mechanistic insights and therapeutic perspectives. Discov Oncol 2025; 16:599. [PMID: 40272614 PMCID: PMC12022210 DOI: 10.1007/s12672-025-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/16/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Lung cancer remains a leading cause of cancer-related mortality worldwide. Its progression is intricately associated with the dynamic regulation of autophagy and RNA-binding proteins (RBPs), which play crucial roles in mRNA stability, alternative splicing, and cellular stress responses. OBJECTIVES This review aims to systematically analyze the mechanisms through which RBPs and autophagy contribute to lung cancer progression and explore potential therapeutic strategies targeting these pathways. METHODS We reviewed recent studies on the molecular mechanisms by which RBPs regulate tumor proliferation, metabolic adaptation, and their interaction with autophagy. The review also examines the dual roles of autophagy in lung cancer, highlighting its context-dependent effects on cell survival and death. RESULTS The interactions and regulatory networks between RBPs and autophagy involve multiple levels of regulation. RBPs can directly influence autophagy processes and act as microRNA (miRNA) sponges to regulate mRNA stability. The modulation of RBPs affects the expression of autophagy-related genes (ATGs) and autophagosome formation. Additionally, RBPs participate in complex regulatory interactions with non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other proteins. CONCLUSIONS This review proposes innovative therapeutic strategies that combine RBP-targeting approaches (e.g., small molecule inhibitors, CRISPR gene editing) with autophagy modulators (e.g., mTOR inhibitors, chloroquine) to enhance treatment efficacy. Nanoparticle drug delivery systems and epigenetic regulation offer further opportunities for targeted interventions. This review lays a theoretical foundation for advancing lung cancer research and provides novel insights into synergistic therapies that target both RBPs and autophagy to improve treatment outcomes for lung cancer.
Collapse
Affiliation(s)
- Xiao Lei
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China
- Department of Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuexin Zheng
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China
- Department of Guangdong Medical University, Zhanjiang, 524023, China
| | - Wenmei Su
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China.
- Department of Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
5
|
Liu J, Zhang Z, Xu W, Jia M, Zeng X, Wu C, Fu Z, Xu X, Ye C, Wu C, Xu H, Lei H, Wu Y, Yan H. Targeting the RBM39-MEK5 axis synergizes with bortezomib to inhibit the malignant growth of multiple myeloma. Blood Adv 2025; 9:1991-2005. [PMID: 40048740 PMCID: PMC12034074 DOI: 10.1182/bloodadvances.2025015815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/05/2025] [Indexed: 04/23/2025] Open
Abstract
ABSTRACT Aberrant alternative splicing is one of the hallmarks of cancer and is potentially based on upregulated expression-of-splicing factors in some types of cancer. Our previous study suggested that the splicing factor RBM39 is significantly upregulated in multiple myeloma (MM) and that its upregulation is positively associated with poor prognosis. Here, we further demonstrate that the survival and proliferation of MM cells rely on RBM39 and that RBM39 knockdown inhibits the malignant growth of MM. Indisulam, a "molecular glue" that mediates the proteasomal degradation of RBM39, has potent suppressive effects on MM both in vitro and in vivo. Deletion of RBM39 results in extensively altered splicing, with mis-splicing of MEK5 verified to inhibit the malignant growth of MM. Full-length MEK5 plays a vital role in maintaining MM cell survival, whereas aberrant MEK5 isoforms with exon loss exhibit loss of function and a propensity for proteasomal degradation. Targeting RBM39 or MEK5 synergistically increases the cytotoxicity of bortezomib in MM cells via the inhibition of p65. Our study validates the specific mechanism of RBM39 in MM, providing an approach for broader targeting and optimized therapeutic strategies for MM.
Collapse
Affiliation(s)
- Jia Liu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilu Zhang
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Xu
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingyuan Jia
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyi Zeng
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengyu Wu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ze Fu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoguang Xu
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenjing Ye
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Wu
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanzhang Xu
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hu Lei
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingli Wu
- Department of Pathophysiology, Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Yan
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of General Practice, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Pilaka-Akella P, Sadek NH, Fusca D, Cutter AD, Calarco JA. Neuron-specific repression of alternative splicing by the conserved CELF protein UNC-75 in Caenorhabditis elegans. Genetics 2025; 229:iyaf025. [PMID: 40059624 PMCID: PMC12005262 DOI: 10.1093/genetics/iyaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 01/29/2025] [Indexed: 04/18/2025] Open
Abstract
Tissue-regulated alternative exons are dictated by the interplay between cis-elements and trans-regulatory factors such as RNA-binding proteins (RBPs). Despite extensive research on splicing regulation, the full repertoire of these cis and trans features and their evolutionary dynamics across species are yet to be fully characterized. Members of the CUG-binding protein and ETR-like family (CELF) of RBPs are known to play a key role in the regulation of tissue-biased splicing patterns, and when mutated, these proteins have been implicated in a number of neurological and muscular disorders. In this study, we sought to characterize specific mechanisms that drive tissue-specific splicing in vivo of a model switch-like exon regulated by the neuronal-enriched CELF ortholog in Caenorhabditis elegans, UNC-75. Using sequence alignments, we identified deeply conserved intronic UNC-75 binding motifs overlapping the 5' splice site and upstream of the 3' splice site, flanking a strongly neural-repressed alternative exon in the Zonula Occludens gene zoo-1. We confirmed that loss of UNC-75 or mutations in either of these cis-elements lead to substantial de-repression of the alternative exon in neurons. Moreover, mis-expression of UNC-75 in muscle cells is sufficient to induce the neuron-like robust skipping of this alternative exon. Lastly, we demonstrate that overlapping an UNC-75 motif within a heterologous 5' splice site leads to increased skipping of the adjacent alternative exon in an unrelated splicing event. Together, we have demonstrated that a specific configuration and combination of cis elements bound by this important family of RBPs can achieve robust splicing outcomes in vivo.
Collapse
Affiliation(s)
- Pallavi Pilaka-Akella
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Nour H Sadek
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| | - Daniel Fusca
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - Asher D Cutter
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario, Canada M5S 3B2
| | - John A Calarco
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario, Canada M5S 3G5
| |
Collapse
|
7
|
Huang Y, Zhang Z, Yang T, Zhang Y, Cheng X, Kang Y, Guang Y, Zou Y, Zhang X, Luo Z, Chen J, Cheng W. Gemini Molecular Assembly Colocalization (GOAL): Accurate and Efficient Fusion Genotyping for Chronic Myeloid Leukemia Intelligent Diagnosis. SMALL METHODS 2025:e2500194. [PMID: 40226864 DOI: 10.1002/smtd.202500194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/02/2025] [Indexed: 04/15/2025]
Abstract
RNA small fragment aberrances are associated with diseases by mediating a range of pathogenesis and pathological processes. DNA assembly-based barcoding and amplification technologies are currently being actively explored for RNA in situ analysis. However, these modular integrated DNA assembly processes are inevitably accompanied with false positive signals caused by unexpected misassembly. Completely avoiding this phenomenon through simple and universal methods is challenging. Here, a novel dual-input to dual-output in situ analysis paradigm is proposed, aiming to improve target specificity through co-recognition (dual-input) and to eliminate false positive misassembly through fluorescent signal co-localization (dual-output). Based on this paradigm, Gemini molecular assembly co-localization (GOAL) in situ imaging system is launched to accurately distinguish the fusion gene subtypes associated with chronic myeloid leukemia (CML), and to precisely report the proportion of minimum residual cancer cells in clinical samples by intelligent co-localization counting and sorting. GOAL achieves highly sensitive and accurate genotyping recognition of 0.01% CML tumor cells and realizes fully automatic rapid diagnosis with a customized Intelligent Cell Image Sorter (iCis). iCis-assisted GOAL represents an innovative and versatile molecular toolkit for accurate, rapid, user-friendly, and professional-independent profiling of cancer cells with RNA small fragment aberrances, providing efficient clinical decision support for disease diagnosis.
Collapse
Affiliation(s)
- Yuanyuan Huang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zixin Zhang
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yangli Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaoxue Cheng
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang University, Hangzhou, 310000, P.R. China
| | - Yuexi Kang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yujie Guang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yuting Zou
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xiaoying Zhang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Junman Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
8
|
Jia Q, Sun X, Li H, Guo J, Niu K, Chan KM, Bernards R, Qin W, Jin H. Perturbation of mRNA splicing in liver cancer: insights, opportunities and challenges. Gut 2025; 74:840-852. [PMID: 39658264 DOI: 10.1136/gutjnl-2024-333127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
Perturbation of mRNA splicing is commonly observed in human cancers and plays a role in various aspects of cancer hallmarks. Understanding the mechanisms and functions of alternative splicing (AS) not only enables us to explore the complex regulatory network involved in tumour initiation and progression but also reveals potential for RNA-based cancer treatment strategies. This review provides a comprehensive summary of the significance of AS in liver cancer, covering the regulatory mechanisms, cancer-related AS events, abnormal splicing regulators, as well as the interplay between AS and post-transcriptional and post-translational regulations. We present the current bioinformatic approaches and databases to detect and analyse AS in cancer, and discuss the implications and perspectives of AS in the treatment of liver cancer.
Collapse
Affiliation(s)
- Qi Jia
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianglong Guo
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kongyan Niu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, Noord-Holland, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Zeeshan S, Dalal B, Arauz RF, Zingone A, Harris CC, Khiabanian H, Pine SR, Ryan BM. Global profiling of alternative splicing in non-small cell lung cancer reveals novel histological and population differences. Oncogene 2025; 44:958-967. [PMID: 39789165 PMCID: PMC11954671 DOI: 10.1038/s41388-024-03267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/19/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Lung cancer is one of the most frequently diagnosed cancers in the US. African-American (AA) men are more likely to develop lung cancer with higher incidence and mortality rates than European-American (EA) men. Herein, we report high-confidence alternative splicing (AS) events from high-throughput, high-depth total RNA sequencing of lung tumors and non-tumor adjacent tissues (NATs) in two independent cohorts of patients with adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). We identified novel AS biomarkers with notable differential percent spliced in (PSI) values between lung tumors and NATs enriched in the AA and EA populations, which were associated with oncogenic signaling pathways. We also uncovered tumor subtype- and population-specific AS events associated with cell surface proteins and cancer driver genes. We highlighted significant AS events in SYNE2 specific to LUAD in both populations, as well as those in CD44 from EAs and TMBIM6 from AAs specific to LUAD. Here, we also present the validation of cancer signatures based on direct high-throughput reverse transcription-PCR. Our large survey of lung tumors presents a rich data resource that may help to understand molecular subtypes of lung tumor between AAs and EAs and reveal new therapeutic vulnerabilities that potentially advance health equity.
Collapse
Affiliation(s)
- Saman Zeeshan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, USA
- Department of Biomedical and Health Informatics, School of Medicine, University of Missouri, Kansas City, USA
| | - Bhavik Dalal
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Rony F Arauz
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Adriana Zingone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, USA
- Department of Pathology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, USA
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, USA.
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, USA.
- Department of Medicine, University of Colorado School of Medicine, University of Colorado Cancer Center, Aurora, USA.
| | - Bríd M Ryan
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, USA.
| |
Collapse
|
10
|
Ni X, Wei Z, Peng Y, Zheng L, Shang J, Liu F, Li Y, Liu J. Triclosan exposure induces liver fibrosis in mice: The heterogeneous nuclear ribonucleoprotein A1/pyruvate kinase M2 axis drives hepatic stellate cell activation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118113. [PMID: 40157328 DOI: 10.1016/j.ecoenv.2025.118113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Triclosan (TCS) is an effective broad-spectrum antibacterial agent. TCS possesses a stable structure, can easily accumulate in the environment, and may have numerous negative impacts on human health. One organ particularly susceptible to TCS damage is the liver; however, the molecular mechanisms underlying TCS-induced liver damage remain unclear. A long-term TCS exposure model was established in C57BL/6 mice through maternal administration from gestation to postnatal 8-week-old. The offspring were randomly assigned to three groups (0, 50, and 100 mg/kg TCS) with six animals per group, ensuring an equal gender distribution (3 males and 3 females). The results showed that TCS-exposed mice exhibited serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase enzyme activities increased by 1.5-2 times when compared with vehicle-treated mice, along with features of liver fibrosis. In the LX-2 cell line, used as an in vitro model, TCS promoted proliferation and migration and induced the activation of hepatic stellate cells (HSCs). The level of pyruvate kinase M2 (PKM2) dimer increased by 200 % in LX-2 cells treated with TCS. PKM2 dimer overexpression stimulated HSC activation, whereas treatment with TEPP-46 (a PKM2 dimer inhibitor) significantly decreased the activation process. The expression of heterogeneous ribonucleoprotein particle A1 (hnRNPA1) was upregulated in the TCS treatment group and promoted the PKM2 expression. Moreover, disruption of the hnRNPA1/PKM2 axis reduced HSC proliferation and migration activated by TCS. Overall, our findings highlighted that TCS could cause liver fibrosis by stimulating the proliferation and migration of HSCs activated via the hnRNPA1/PKM2 axis, providing promising treatment options for TCS-related liver damage.
Collapse
Affiliation(s)
- Xiao Ni
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Ziyun Wei
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yuxuan Peng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Linlin Zheng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Jianing Shang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Fu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China
| | - Yunwei Li
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, PR China.
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, PR China.
| |
Collapse
|
11
|
Luo S, Peng H, Shi Y, Cai J, Zhang S, Shao N, Li J. Integration of proteomics profiling data to facilitate discovery of cancer neoantigens: a survey. Brief Bioinform 2025; 26:bbaf087. [PMID: 40052441 PMCID: PMC11886573 DOI: 10.1093/bib/bbaf087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/29/2024] [Accepted: 02/19/2025] [Indexed: 03/10/2025] Open
Abstract
Cancer neoantigens are peptides that originate from alterations in the genome, transcriptome, or proteome. These peptides can elicit cancer-specific T-cell recognition, making them potential candidates for cancer vaccines. The rapid advancement of proteomics technology holds tremendous potential for identifying these neoantigens. Here, we provided an up-to-date survey about database-based search methods and de novo peptide sequencing approaches in proteomics, and we also compared these methods to recommend reliable analytical tools for neoantigen identification. Unlike previous surveys on mass spectrometry-based neoantigen discovery, this survey summarizes the key advancements in de novo peptide sequencing approaches that utilize artificial intelligence. From a comparative study on a dataset of the HepG2 cell line and nine mixed hepatocellular carcinoma proteomics samples, we demonstrated the potential of proteomics for the identification of cancer neoantigens and conducted comparisons of the existing methods to illustrate their limits. Understanding these limits, we suggested a novel workflow for neoantigen discovery as perspectives.
Collapse
Affiliation(s)
- Shifu Luo
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Hui Peng
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | - Ying Shi
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
- School of Computer and Information Technology, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Jiaxin Cai
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
| | - Songming Zhang
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
| | - Ningyi Shao
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Jinyan Li
- Faculty of Computer Science and Control Engineering, Shenzhen University of Advanced Technology, Shenzhen, 518107, Guangdong, China
| |
Collapse
|
12
|
Lin DW, Carranza FG, Borrego S, Lauinger L, Dantas de Paula L, Pulipelli HR, Andronicos A, Hertel KJ, Kaiser P. Nutrient control of splice site selection contributes to methionine addiction of cancer. Mol Metab 2025; 93:102103. [PMID: 39862967 PMCID: PMC11834112 DOI: 10.1016/j.molmet.2025.102103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/09/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
OBJECTIVE Many cancer cells depend on exogenous methionine for proliferation, whereas non-tumorigenic cells can divide in media supplemented with the metabolic precursor homocysteine. This phenomenon is known as methionine dependence of cancer or methionine addiction. The underlying mechanisms driving this cancer-specific metabolic addiction are poorly understood. Here we find that methionine dependence is associated with severe dysregulation of pre-mRNA splicing. METHODS We used triple-negative breast cancer cells and their methionine-independent derivatives R8 to compare RNA expression profiles in methionine and homocysteine growth media. The data set was also analyzed for alternative splicing. RESULTS When tumorigenic cells were cultured in homocysteine medium, cancer cells failed to efficiently methylate the spliceosomal snRNP component SmD1, which resulted in reduced binding to the Survival-of-Motor-Neuron protein SMN leading to aberrant splicing. These effects were specific for cancer cells as neither Sm protein methylation nor splicing fidelity was affected when non-tumorigenic cells were cultured in homocysteine medium. Sm protein methylation is catalyzed by Protein Arginine Methyl Transferase 5 (Prmt5). Reducing methionine concentrations in the culture medium sensitized cancer cells to Prmt5 inhibition supporting a mechanistic link between methionine dependence of cancer and splicing. CONCLUSIONS Our results link nutritional demands to splicing changes and thereby provide a link between the cancer-specific metabolic phenomenon, described as methionine addiction over 40 years ago, with a defined cellular pathway that contributes to cancer cell proliferation.
Collapse
Affiliation(s)
- Da-Wei Lin
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Francisco G Carranza
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA
| | - Stacey Borrego
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Linda Lauinger
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Lucas Dantas de Paula
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Harika R Pulipelli
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA
| | - Anna Andronicos
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA
| | - Klemens J Hertel
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA.
| | - Peter Kaiser
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, USA.
| |
Collapse
|
13
|
Liu X, Song J, Zhou Z, He Y, Wu S, Yang J, Ren Z. Establishment of an alternative splicing prognostic risk model and identification of FN1 as a potential biomarker in glioblastoma multiforme. Sci Rep 2025; 15:6716. [PMID: 40000711 PMCID: PMC11862013 DOI: 10.1038/s41598-025-91038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 02/18/2025] [Indexed: 02/27/2025] Open
Abstract
Aberrant alternative splicing and abnormal alternative splicing events (ASEs) in glioblastoma multiforme (GBM) remain largely elusive. The prognostic-associated ASEs in GBM were identified and summarized into 123 genes using GBM and LGG datasets from ASCancer Atlas and TCGA. The eleven genes (C2, COL3A1, CTSL, EIF3L, FKBP9, FN1, HPCAL1, HSPB1, IGFBP4, MANBA, PRKAR1B) were screened to develop an alternative splicing prognostic risk score (ASRS) model through machine learning algorithms. The model was trained on the TCGA-GBM cohort and validated with four external datasets from CGGA and GEO, achieving AUC values of 0.808, 0.814, 0.763, 0.859, and 0.836 for 3-year survival rates, respectively. ASRS could be an independent prognostic factor for GBM patients (HR > 1.8 across three datasets) through multivariate Cox regression analysis. The high-risk group demonstrated poorer prognosis, elevated immune scores, increased levels of immune cell infiltration, and greater differences in drug sensitivity. We found that FN1, used for model construction, contained 4 abnormal ASEs resulting in high expression of non-canonical transcripts and the presence of premature termination codon. These abnormal ASEs may be regulated by tumour-related splicing factors according to the PPI network. Furthermore, both mRNA and protein levels of FN1 were highly expressed in GBM compared to LGG, correlating with poor prognosis in GBM. In conclusion, our findings highlight the role of ASEs in affecting the progression of GBM, and the model showed a potential application for prognostic risk of patients. FN1 may serve as a promising splicing biomarker for GBM, and mechanisms of processes of aberrant splicing need to be revealed in the future.
Collapse
Affiliation(s)
- Xi Liu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Jinming Song
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Zhiming Zhou
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Yuting He
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Shaochun Wu
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China
| | - Jin Yang
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China.
| | - Zhonglu Ren
- School of Medical Information and Engineering, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
- Guangdong Province Precise Medicine Big Data of Traditional Chinese Medicine Engineering Technology Research Center, Guangzhou, 51006, China.
| |
Collapse
|
14
|
Frezza V, Chellini L, Riccioni V, Bonvissuto D, Palombo R, Paronetto M. DHX9 helicase impacts on splicing decisions by modulating U2 snRNP recruitment in Ewing sarcoma cells. Nucleic Acids Res 2025; 53:gkaf068. [PMID: 39950342 PMCID: PMC11826090 DOI: 10.1093/nar/gkaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 12/17/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
Ewing sarcomas (ESs) are biologically aggressive tumours of bone and soft tissues caused by chromosomal translocations yielding in-frame fusion proteins driving the neoplastic transformation. The DNA/RNA helicase DHX9 is an important regulator of cellular processes often deregulated in cancer. Using transcriptome profiling, our study reveals cancer-relevant genes whose splicing is modulated by DHX9. Immunodepletion experiments demonstrate that DHX9 impacts on the recruitment of U2 small nuclear RNP (snRNP) onto the pre-mRNA. Analysis of structure and sequence features of DHX9 target exons reveal that DHX9-sensitive exons display shorter flanking introns and contain HNRNPC and TIA1 consensus motifs. A prominent target of DHX9 is exon 11 in the Cortactin (CTTN) gene, which is alternatively spliced to generate isoforms with different activities in cell migration and tumour invasion. Alternative inclusion of the exon 11 in CTTN gene is one of the most recurrent isoform switches in multiple cancer types, thus highlighting the pivotal role of DHX9 in defining the tumour phenotype. Biochemical analyses reveal that DHX9 binding promotes the recruitment of U2snRNP, SF3B1, and SF3A2 to the splice sites flanking exon 11. These findings uncover a new role of DHX9 in the control of co-transcriptional splicing in ES, which may represent a new druggable target to counteract ES malignancy.
Collapse
Affiliation(s)
- Valentina Frezza
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Lidia Chellini
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Veronica Riccioni
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Davide Bonvissuto
- Section of Human Anatomy, Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Ramona Palombo
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia IRCCS, Via del Fosso di Fiorano, 64, 00143 Rome, Italy
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro de Bosis 6, 00135, Rome, Italy
| |
Collapse
|
15
|
Laine E, Freiberger MI. Toward a comprehensive profiling of alternative splicing proteoform structures, interactions and functions. Curr Opin Struct Biol 2025; 90:102979. [PMID: 39778413 PMCID: PMC7617313 DOI: 10.1016/j.sbi.2024.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
The mRNA splicing machinery has been estimated to generate 100,000 known protein-coding transcripts for 20,000 human genes (Ensembl, Sept. 2024). However, this set is expanding with the massive and rapidly growing data coming from high-throughput technologies, particularly single-cell and long-read sequencing. Yet, the implications of splicing complexity at the protein level remain largely uncharted. In this review, we describe the current advances toward systematically assessing the contribution of alternative splicing to proteome function diversification. We discuss the potential and challenges of using artificial intelligence-based techniques in identifying alternative splicing proteoforms and characterising their structures, interactions, and functions.
Collapse
Affiliation(s)
- Elodie Laine
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, 75005 Paris, France; Institut universitaire de France (IUF), France.
| | - Maria Inés Freiberger
- Sorbonne Université, CNRS, IBPS, Laboratory of Computational and Quantitative Biology (LCQB), UMR 7238, 75005 Paris, France
| |
Collapse
|
16
|
Ouyang Q, He W, Guo Y, Li L, Mao Y, Li X, Xiang S, Hu X, He J. Downregulation of hnRNPA1 inhibits hepatocellular carcinoma cell progression by modulating alternative splicing of ZNF207 exon 9. Front Oncol 2025; 14:1517459. [PMID: 39834948 PMCID: PMC11743940 DOI: 10.3389/fonc.2024.1517459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is the most prevalent liver cancer and a leading cause of cancer-related deaths worldwide. Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) plays a critical role in RNA metabolism, including alternative splicing, which is linked to cancer progression. Our study investigated the role of hnRNPA1 in HCC and its potential as a therapeutic target. Methods We analyzed hnRNPA1 expression in HCC tissues compared to non-tumor tissues using RNA-seq and immunohistochemistry. hnRNPA1 was knocked down in Hep G2 cells to assess its impact on cell proliferation, migration, and apoptosis using scratch assays, flow cytometry, qPCR, and Western blot. We also explored the interaction between hnRNPA1 and ZNF207, as well as its splicing effects and downstream signaling pathways by RIP assay, bioinformatics, qPCR and Western blot. Results hnRNPA1 was significantly upregulated in HCC tissues compared to normal tissues, correlating with poor patient survival. hnRNPA1 knockdown reduced Hep G2 cell proliferation and migration while increasing apoptosis. We identified that hnRNPA1 bound to ZNF207 and regulated its exon 9 skipping, influencing ZNF207 splicing and the PI3K/Akt/mTOR pathway, key regulators of cell growth and survival. Conclusion Our findings demonstrate that hnRNPA1 promotes HCC progression by regulating ZNF207 splicing and the PI3K/Akt/mTOR pathway. hnRNPA1-ZNF207 interaction represents a potential therapeutic target for HCC, providing insights into the molecular mechanisms underlying HCC progression.
Collapse
Affiliation(s)
- Qi Ouyang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenhui He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiping Guo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Mao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiang Li
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun He
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China
| |
Collapse
|
17
|
Ouedraogo WYD, Ouangraoua A. TranscriptDB: a transcript-centric database to study eukaryotic transcript conservation and evolution. Nucleic Acids Res 2025; 53:D1235-D1242. [PMID: 39530236 PMCID: PMC11701637 DOI: 10.1093/nar/gkae995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Eukaryotic genes can encode multiple distinct transcripts through the alternative splicing (AS) of genes. Interest in the AS mechanism and its evolution across different species has stimulated numerous studies, leading to several databases that provide information on AS and transcriptome data across multiple eukaryotic species. However, existing resources do not offer information on transcript conservation and evolution between genes of multiple species. Similarly to genes, identifying conserved transcripts-those from homologous genes that have retained a similar exon composition-is useful for determining transcript homology relationships, studying transcript functions and reconstructing transcript phylogenies. To address this gap, we have developed TranscriptDB, a database dedicated to studying the conservation and evolution of transcripts within gene families. TranscriptDB offers an extensive catalog of conserved transcripts and phylogenies for 317 annotated eukaryotic species, sourced from Ensembl database version 111. It serves multiple purposes, including the exploration of gene and transcript evolution. Users can access TranscriptDB through various browsing and querying tools, including a user-friendly web interface. The incorporated web servers enable users to retrieve information on transcript evolution using their own data as input. Additionally, a REST application programming interface is available for programmatic data retrieval. A data directory is also available for bulk downloads. TranscriptDB and its resources are freely accessible at https://transcriptdb.cobius.usherbrooke.ca.
Collapse
Affiliation(s)
- Wend Yam D D Ouedraogo
- Department of Computer Science, Faculté des sciences, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Aida Ouangraoua
- Department of Computer Science, Faculté des sciences, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
18
|
Abdul Hafizz AMH, Mohd Mokthar N, Md Zin RR, P. Mongan N, Mamat @ Yusof MN, Kampan NC, Chew KT, Shafiee MN. Insulin-like Growth Factor 1 (IGF1) and Its Isoforms: Insights into the Mechanisms of Endometrial Cancer. Cancers (Basel) 2025; 17:129. [PMID: 39796756 PMCID: PMC11720045 DOI: 10.3390/cancers17010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/25/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025] Open
Abstract
Endometrial cancer (EC) is a common gynaecological malignancy associated with metabolic dysfunctions such as obesity, diabetes and insulin resistance, as well as hormonal imbalances, particularly involving oestrogen and progesterone. These factors disrupt normal cellular metabolism, heightening the risk of developing endometrioid EC (EEC), the most prevalent subtype of EC. The insulin-like growth factor-1 (IGF1) pathway, a key regulator of growth, metabolism, and organ function, is implicated in EC progression. Recent research highlights the distinct roles of IGF1 isoforms, including IGF1-Ea, IGF1-Eb, and IGF1-Ec, in promoting tumour growth, metastasis, and hormone signalling interactions, particularly with oestrogen. This review examines the function and clinical significance of IGF-1 isoforms, emphasising their mechanisms in gynaecological physiology and their contributions to EC pathogenesis. Evidence from other cancers further underscores the relevance of IGF1 isoforms in driving tumour behaviours, offering valuable insights into their potential as biomarkers and therapeutic targets. Understanding these mechanisms provides opportunities for novel approaches to the prevention, diagnosis, and treatment of EC, improving patient outcomes and advancing the broader field of hormone-driven cancers.
Collapse
Affiliation(s)
| | - Norfilza Mohd Mokthar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Reena Rahayu Md Zin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nigel P. Mongan
- Biodiscovery Institute, Faculty of Medicine and Health Sciences, The University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Mohd Nazzary Mamat @ Yusof
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nirmala Chandralega Kampan
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kah Teik Chew
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Mohamad Nasir Shafiee
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
19
|
Hu L, Shi X, Yuan X, Liu D, Zheng D, Li Y, Shi F, Zhang M, Su S, Zhang CZ. PPM1G-mediated TBL1X mRNA splicing promotes cell migration in hepatocellular carcinoma. Cancer Sci 2025; 116:67-80. [PMID: 39462759 PMCID: PMC11711060 DOI: 10.1111/cas.16372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/29/2024] Open
Abstract
The progression of hepatocellular carcinoma (HCC) is coincident with aberrant splicing of numerous tumor-related genes. Identification of the tumor-specific splice variants that facilitate HCC metastasis may provide a more comprehensive insight into the mechanisms of HCC metastasis. Through RNA sequencing and bioinformatic analyses, PPM1G was identified as a biomarker associated with HCC metastasis. Our data mapped a transcriptome-wide landscape of alternative splicing events modulated by PPM1G in HCC. Notably, we characterized the exon six-skipping transcript of TBL1X as an onco-splice variant regulated by PPM1G. Experimental validation revealed the enrichment of TBL1X-S in response to PPM1G overexpression. Moreover, mRNA stability analyses revealed that PPM1G prolonged the half-life of the TBL1X-S transcript. Both PPM1G and TBL1X-S exhibited metastasis-promoting phenotypes, with PPM1G-driven metastasis in HCC being partially dependent on TBL1X-S. Mechanistically, different TBL1X splice variants showed varying affinities for ZEB1, with TBL1X-S significantly enhancing ZEB1 activation and repressing CDH1 transcription, potentially accelerating the epithelial-mesenchymal transition (EMT) process. In conclusion, our study highlights the biological role of PPM1G and TBL1X-S in tumor metastasis. The PPM1G/TBL1X-S signaling axis presents a new view for investigating liver cancer metastasis mechanisms.
Collapse
Affiliation(s)
- Liling Hu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Xinyu Shi
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Xiaoyi Yuan
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Danya Liu
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Dandan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Yuying Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Fujin Shi
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| | - Meifang Zhang
- Department of PathologySun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shu‐Guang Su
- Department of PathologyThe Affiliated Hexian Memorial Hospital of Southern Medical UniversityGuangzhouChina
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and TechnologyJinan UniversityGuangzhouChina
| |
Collapse
|
20
|
Kersting J, Lazareva O, Louadi Z, Baumbach J, Blumenthal DB, List M. DysRegNet: Patient-specific and confounder-aware dysregulated network inference towards precision therapeutics. Br J Pharmacol 2024. [PMID: 39631757 DOI: 10.1111/bph.17395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/09/2024] [Accepted: 10/05/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND AND PURPOSE Gene regulation is frequently altered in diseases in unique and patient-specific ways. Hence, personalised strategies have been proposed to infer patient-specific gene-regulatory networks. However, existing methods do not scale well because they often require recomputing the entire network per sample. Moreover, they do not account for clinically important confounding factors such as age, sex or treatment history. Finally, a user-friendly implementation for the analysis and interpretation of such networks is missing. EXPERIMENTAL APPROACH We present DysRegNet, a method for inferring patient-specific regulatory alterations (dysregulations) from bulk gene expression profiles. We compared DysRegNet to the well-known SSN method, considering patient clustering, promoter methylation, mutations and cancer-stage data. KEY RESULTS We demonstrate that both SSN and DysRegNet produce interpretable and biologically meaningful networks across various cancer types. In contrast to SSN, DysRegNet can scale to arbitrary sample numbers and highlights the importance of confounders in network inference, revealing an age-specific bias in gene regulation in breast cancer. DysRegNet is available as a Python package (https://github.com/biomedbigdata/DysRegNet_package), and analysis results for 11 TCGA cancer types are available through an interactive web interface (https://exbio.wzw.tum.de/dysregnet). CONCLUSION AND IMPLICATIONS DysRegNet introduces a novel bioinformatics tool enabling confounder-aware and patient-specific network analysis to unravel regulatory alteration in complex diseases.
Collapse
Affiliation(s)
- Johannes Kersting
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Olga Lazareva
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Junior Clinical Cooperation Unit Multiparametric Methods for Early Detection of Prostate Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zakaria Louadi
- Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - David B Blumenthal
- Department Artificial Intelligence in Biomedical Engineering (AIBE), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Markus List
- Data Science in Systems Biology, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Munich Data Science Institute, Technical University of Munich, Garching, Germany
| |
Collapse
|
21
|
Wang JM, Liu N, Wei XJ, Zhao FY, Li C, Wang HQ, Liu C. Regulation of AUF1 alternative splicing by hnRNPA1 and SRSF2 modulate the sensitivity of ovarian cancer cells to cisplatin. Cell Oncol (Dordr) 2024; 47:2349-2366. [PMID: 39652302 DOI: 10.1007/s13402-024-01023-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
PURPOSE Clarification of cisplatin resistance may provide new targets for therapy in cisplatin resistant ovarian cancer. The current study aims to explore involvement of isoforms of AU-rich element RNA-binding protein 1 (AUF1) in cisplatin resistance in ovarian cancer. METHODS The cancer stem cell-like features were analyzed using colony formation assay, tumor sphere formation assay and nude mouse xenograft experiments. AUF1 isoforms expression was analyzed using immunoblotting, qRT-PCR, and immunohistochemistry. RIP and Biotin pulldown was used to analyze the interaction of SRSF2 and hnRNPA1 with AUF1 transcript. Transcriptome regulated by AUF1 isoforms was analyzed by RNA-seq. RESULTS The current study demonstrated differential expression of AUF1 isoforms in cisplatin sensitive and resistant ovarian cancer tissues and cells. P37 isoform promoted proliferation, while p45 isoform enhanced responsiveness of ovarian cancer cells to cisplatin. the clonal formation capacity of the cells, and the restoration of p45 expression reduced the capacity with cisplatin treatment. The competitive binding of phosphorylated hnRNPA1 and O-GlcNAc-modified SRSF2 on AUF1 exon 2 and exon 7 regulated the alternative splicing of AUF1. CONCLUSION The competitive binding of phosphorylated hnRNPA1 and O-GlcNAc modified SRSF2 on exon 2 and exon 7 regulated the alternative splicing of AUF1 and subsequent isoform expression. P37 isoform played a "cancer promoter" role, p42 and p45, especially p45 played a "cancer suppressor" role in ovarian cancer. This study provides a new target for exploring the drug resistance mechanism of ovarian cancer.
Collapse
Affiliation(s)
- Jia-Mei Wang
- National Clinical Research Center for Laboratory Medicine, Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xue-Jing Wei
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Fu-Ying Zhao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Chao Li
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Hua-Qin Wang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110026, China
| | - Chuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
22
|
Anczukow O, Allain FHT, Angarola BL, Black DL, Brooks AN, Cheng C, Conesa A, Crosse EI, Eyras E, Guccione E, Lu SX, Neugebauer KM, Sehgal P, Song X, Tothova Z, Valcárcel J, Weeks KM, Yeo GW, Thomas-Tikhonenko A. Steering research on mRNA splicing in cancer towards clinical translation. Nat Rev Cancer 2024; 24:887-905. [PMID: 39384951 DOI: 10.1038/s41568-024-00750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/11/2024]
Abstract
Splicing factors are affected by recurrent somatic mutations and copy number variations in several types of haematologic and solid malignancies, which is often seen as prima facie evidence that splicing aberrations can drive cancer initiation and progression. However, numerous spliceosome components also 'moonlight' in DNA repair and other cellular processes, making their precise role in cancer difficult to pinpoint. Still, few would deny that dysregulated mRNA splicing is a pervasive feature of most cancers. Correctly interpreting these molecular fingerprints can reveal novel tumour vulnerabilities and untapped therapeutic opportunities. Yet multiple technological challenges, lingering misconceptions, and outstanding questions hinder clinical translation. To start with, the general landscape of splicing aberrations in cancer is not well defined, due to limitations of short-read RNA sequencing not adept at resolving complete mRNA isoforms, as well as the shallow read depth inherent in long-read RNA-sequencing, especially at single-cell level. Although individual cancer-associated isoforms are known to contribute to cancer progression, widespread splicing alterations could be an equally important and, perhaps, more readily actionable feature of human cancers. This is to say that in addition to 'repairing' mis-spliced transcripts, possible therapeutic avenues include exacerbating splicing aberration with small-molecule spliceosome inhibitors, targeting recurrent splicing aberrations with synthetic lethal approaches, and training the immune system to recognize splicing-derived neoantigens.
Collapse
Affiliation(s)
- Olga Anczukow
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
| | - Frédéric H-T Allain
- Department of Biology, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, USA
| | - Angela N Brooks
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Chonghui Cheng
- Department of Molecular and Human Genetics, Lester & Sue Breast Center, Baylor College of Medicine, Houston, TX, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Paterna, Spain
| | - Edie I Crosse
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Eduardo Eyras
- Shine-Dalgarno Centre for RNA Innovation, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ernesto Guccione
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY, USA
| | - Sydney X Lu
- Department of Medicine, Stanford Medical School, Palo Alto, CA, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT, USA
| | - Priyanka Sehgal
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiao Song
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Zuzana Tothova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Juan Valcárcel
- Centre for Genomic Regulation, Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Kevin M Weeks
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrei Thomas-Tikhonenko
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
23
|
Karlebach G, Hansen P, Köhler K, Robinson P. IsopretGO-analysing and visualizing the functional consequences of differential splicing. NAR Genom Bioinform 2024; 6:lqae165. [PMID: 39660256 PMCID: PMC11630322 DOI: 10.1093/nargab/lqae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Gene Ontology overrepresentation analysis (GO-ORA) is a standard approach towards characterizing salient functional characteristics of sets of differentially expressed genes (DGE) in RNA sequencing (RNA-seq) experiments. GO-ORA compares the distribution of GO annotations of the DGE to that of all genes or all expressed genes. This approach has not been available to characterize differential alternative splicing (DAS). Here, we introduce a desktop application called isopretGO for visualizing the functional implications of DGE and DAS that leverages our previously published machine-learning predictions of GO annotations for individual isoforms. We show based on an analysis of 100 RNA-seq datasets that DAS and DGE frequently have starkly different functional profiles. We present an example that shows how isopretGO can be used to identify functional shifts in RNA-seq data that can be attributed to differential splicing.
Collapse
Affiliation(s)
- Guy Karlebach
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Peter Hansen
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
| | - Kristin Köhler
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06032, USA
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
24
|
Narayanan A, More AS, Talreja M, Mali AM, Vinay SB, Bapat SA. A novel ITGB8 transcript variant sustains ovarian cancer cell survival through genomic instability and altered ploidy on a mutant p53 background. J Ovarian Res 2024; 17:218. [PMID: 39506768 PMCID: PMC11539462 DOI: 10.1186/s13048-024-01538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Transcript variants and protein isoforms are central to unique tissue functions and maintenance of homeostasis, in addition to being associated with aberrant states such as cancer, where their crosstalk with the mutated tumor suppressor p53 may contribute to genomic instability and chromosomal rearrangements. We previously identified several novel splice variants in ovarian cancer RNA-sequencing datasets; herein, we aimed to elucidate the biological effects of the Integrin Subunit Beta 8 variant (termed pITGB8-205). METHODS Resolution of the full-length sequence of pITGB8-205 through rapid amplification of cDNA ends (RACE-PCR). Cell cycle analysis and karyotype studies were performed to further explore genomic instability. RNA-seq and proteomics analyses were used to identify the differential expression of the genes. RESULTS This full-length study revealed a unique 5' sequence in pITGB8-205 that differed from the reported ITGB8-205 sequence, suggesting differential regulation of this novel transcript. Under a p53 mutant background, overexpression of pITGB8-205 triggered genetic instability reminiscent of oncogene-induced replicative stress with extensive abnormal mitoses and chromosomal and nuclear aberrations indicative of chromosomal instability, leading to near whole-genome duplication that imposes energy stress on cellular resources. Micronuclei and aneuploidy are striking features of pITGB8-205-overexpressing p53-mutant cells but are not enhanced in p53 wild-type (WT) cells. RNA-seq and proteomics analyses further suggested that p53 inactivation in ovarian cancer provides a permissive intracellular molecular niche for pITGB8-205 to mediate its effects on genomic instability. This observation is pivotal considering that most high-grade serous ovarian carcinoma (HGSC) tumors express mutant p53. The resulting aneuploid clones with enhanced self-renewal and survival capabilities disrupt clonal dominance under stress yet maintain a balance between replicative stress and prosurvival advantages. CONCLUSION pITGB8-205-overexpressing clones sustain ovarian tumor cell survival, achieve homeostasis and are formidable opponents of therapy.
Collapse
Affiliation(s)
- Aravindan Narayanan
- National Centre for Cell Science, Pune, 411007, India
- Savitribai Phule Pune University, Pune, India
| | - Ankita S More
- National Centre for Cell Science, Pune, 411007, India
- Savitribai Phule Pune University, Pune, India
| | - Muskan Talreja
- National Centre for Cell Science, Pune, 411007, India
- Institute for Excellence in Higher Education (IEHE), Kaliyasot Dam, Kolar Road, Bhopal, 46202, India
| | | | | | - Sharmila A Bapat
- National Centre for Cell Science, Pune, 411007, India.
- Savitribai Phule Pune University, Pune, India.
| |
Collapse
|
25
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
26
|
Yadav B, Yadav P, Yadav S, Pandey AK. Role of long noncoding RNAs in the regulation of alternative splicing in glioblastoma. Drug Discov Today 2024; 29:104140. [PMID: 39168403 DOI: 10.1016/j.drudis.2024.104140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/26/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly severe primary brain tumor. Despite extensive research, effective treatments remain elusive. Long noncoding RNAs (lncRNAs) play a significant role in both cancer and normal biology. They influence alternative splicing (AS), which is crucial in cancer. Advances in lncRNA-specific microarrays and next-generation sequencing have enhanced understanding of AS. Abnormal AS contributes to cancer invasion, metastasis, apoptosis, therapeutic resistance, and tumor development, including glioma. lncRNA-mediated AS affects several cellular signaling pathways, promoting or suppressing cancer malignancy. This review discusses the lncRNAs regulating AS in glioblastoma and their mechanisms.
Collapse
Affiliation(s)
- Bhupender Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Pooja Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Sunita Yadav
- Amity Institute of Biotechnology, Amity University Haryana, Panchgaon, Manesar, Haryana 122413, India
| | - Amit Kumar Pandey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
27
|
Alors‐Pérez E, Blázquez‐Encinas R, Moreno‐Montilla MT, García‐Vioque V, Jiménez‐Vacas JM, Mafficini A, González‐Borja I, Luchini C, Sánchez‐Hidalgo JM, Sánchez‐Frías ME, Pedraza‐Arevalo S, Romero‐Ruiz A, Lawlor RT, Viúdez A, Gahete MD, Scarpa A, Arjona‐Sánchez Á, Luque RM, Ibáñez‐Costa A, Castaño JP. Spliceosomic dysregulation in pancreatic cancer uncovers splicing factors PRPF8 and RBMX as novel candidate actionable targets. Mol Oncol 2024; 18:2524-2540. [PMID: 38790138 PMCID: PMC11459039 DOI: 10.1002/1878-0261.13658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, characterized by late diagnosis and poor treatment response. Surgery is the only curative approach, only available to early-diagnosed patients. Current therapies have limited effects, cause severe toxicities, and minimally improve overall survival. Understanding of splicing machinery alterations in PDAC remains incomplete. Here, we comprehensively examined 59 splicing machinery components, uncovering dysregulation in pre-mRNA processing factor 8 (PRPF8) and RNA-binding motif protein X-linked (RBMX). Their downregulated expression was linked to poor prognosis and malignancy features, including tumor stage, invasion and metastasis, and associated with poorer survival and the mutation of key PDAC genes. Experimental modulation of these splicing factors in pancreatic cancer cell lines reverted their expression to non-tumor levels and resulted in decreased key tumor-related features. These results provide evidence that the splicing machinery is altered in PDAC, wherein PRPF8 and RBMX emerge as candidate actionable therapeutic targets.
Collapse
Affiliation(s)
- Emilia Alors‐Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Ricardo Blázquez‐Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - María Trinidad Moreno‐Montilla
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Víctor García‐Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Juan Manuel Jiménez‐Vacas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Andrea Mafficini
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Iranzu González‐Borja
- OncobionaTras Lab, Navarrabiomed, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra‐IDISNAUniversidad Pública de NavarraPamplonaSpain
| | - Claudio Luchini
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Juan M. Sánchez‐Hidalgo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
- Surgery ServiceReina Sofia University HospitalCórdobaSpain
| | - Marina E. Sánchez‐Frías
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Pathology ServiceReina Sofia University HospitalCórdobaSpain
| | - Sergio Pedraza‐Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | | | - Rita T. Lawlor
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Antonio Viúdez
- OncobionaTras Lab, Navarrabiomed, Hospital Universitario de Navarra, Instituto de Investigación Sanitaria de Navarra‐IDISNAUniversidad Pública de NavarraPamplonaSpain
- ICON plcPamplonaSpain
| | - Manuel D. Gahete
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| | - Aldo Scarpa
- ARC‐Net Research Centre and Section of Pathology of Department of Diagnostics and Public HealthUniversity and Hospital Trust of VeronaItaly
| | - Álvaro Arjona‐Sánchez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Surgery ServiceReina Sofia University HospitalCórdobaSpain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| | - Alejandro Ibáñez‐Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
| | - Justo P. Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC)Spain
- Department of Cell Biology, Physiology, and ImmunologyUniversity of CórdobaSpain
- Reina Sofia University HospitalCórdobaSpain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn)CórdobaSpain
| |
Collapse
|
28
|
Anderson GSF, Chapman MA. T cell-redirecting therapies in hematological malignancies: Current developments and novel strategies for improved targeting. Mol Ther 2024; 32:2856-2891. [PMID: 39095991 PMCID: PMC11403239 DOI: 10.1016/j.ymthe.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
T cell-redirecting therapies (TCRTs), such as chimeric antigen receptor (CAR) or T cell receptor (TCR) T cells and T cell engagers, have emerged as a highly effective treatment modality, particularly in the B and plasma cell-malignancy setting. However, many patients fail to achieve deep and durable responses; while the lack of truly unique tumor antigens, and concurrent on-target/off-tumor toxicities, have hindered the development of TCRTs for many other cancers. In this review, we discuss the recent developments in TCRT targets for hematological malignancies, as well as novel targeting strategies that aim to address these, and other, challenges.
Collapse
Affiliation(s)
| | - Michael A Chapman
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK; Department of Haematology, University of Cambridge, Cambridge CB2 0XY, UK; Addenbrooke's Hospital, Cambridge Universities Foundation Trust, Cambridge CB2 0QQ, UK.
| |
Collapse
|
29
|
Newaz K, Schaefers C, Weisel K, Baumbach J, Frishman D. Prognostic importance of splicing-triggered aberrations of protein complex interfaces in cancer. NAR Genom Bioinform 2024; 6:lqae133. [PMID: 39328266 PMCID: PMC11426328 DOI: 10.1093/nargab/lqae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024] Open
Abstract
Aberrant alternative splicing (AS) is a prominent hallmark of cancer. AS can perturb protein-protein interactions (PPIs) by adding or removing interface regions encoded by individual exons. Identifying prognostic exon-exon interactions (EEIs) from PPI interfaces can help discover AS-affected cancer-driving PPIs that can serve as potential drug targets. Here, we assessed the prognostic significance of EEIs across 15 cancer types by integrating RNA-seq data with three-dimensional (3D) structures of protein complexes. By analyzing the resulting EEI network we identified patient-specific perturbed EEIs (i.e., EEIs present in healthy samples but absent from the paired cancer samples or vice versa) that were significantly associated with survival. We provide the first evidence that EEIs can be used as prognostic biomarkers for cancer patient survival. Our findings provide mechanistic insights into AS-affected PPI interfaces. Given the ongoing expansion of available RNA-seq data and the number of 3D structurally-resolved (or confidently predicted) protein complexes, our computational framework will help accelerate the discovery of clinically important cancer-promoting AS events.
Collapse
Affiliation(s)
- Khalique Newaz
- Institute for Computational Systems Biology and Center for Data and Computing in Natural Sciences, Universität Hamburg, 22761 Hamburg, Germany
| | - Christoph Schaefers
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Katja Weisel
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, Universitätsklinikum Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology and Center for Data and Computing in Natural Sciences, Universität Hamburg, 22761 Hamburg, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Dmitrij Frishman
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
30
|
Li K, Cheng C, Piao Q, Zhao Q, Yi J, Bao Y, Liu L, Sun L. Genome-wide identification of pan-cancer common and cancer-specific alternative splicing events in 9 types of cancer. Genomics 2024; 116:110917. [PMID: 39147335 DOI: 10.1016/j.ygeno.2024.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/04/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
Alternative splicing (AS) has significant clinical relevance with cancers and is a potential source of neoepitopes. In this study, RNA-seq data of 94 solid tumor and matched adjacent normal tissues from 47 clinical patients covering nine cancer types were comprehensively analyzed using SUVA developed by ourselves. The results identified highly conserved pan-cancer differential alternative splicing (DAS) events and cancer-specific DAS events in a series of tumor samples, which in turn revealed the heterogeneity of AS post-transcriptional regulation across different cancers. The co-disturbed network between spliceosome factors (SFs) and common cancer-associated DAS was further constructed, suggesting the potential possibility of the regulation of differentially expressed SFs on DAS. Finally, the common cancer-associated DAS events were fully validated using the TCGA dataset, confirming the significant correlation between cancer-associated DAS and prognosis. Briefly, our study elucidates new insights into conservatived and specific DAS in cancer, providing valuable resources for cancer therapeutic targets.
Collapse
Affiliation(s)
- Kun Li
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Chao Cheng
- ABLife BioBigData Institute, Wuhan, China; Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wuhan, China
| | - Qianling Piao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Qi Zhao
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Jingwen Yi
- NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China.
| | - Luguo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China; NMPA Key Laboratory for Quality Control of Cell and Gene Therapy Medicine Products, Northeast Normal University, Changchun, China.
| |
Collapse
|
31
|
Besouro-Duarte A, Carrasqueiro B, Sousa S, Xavier JM, Maia AT. Colocalised Genetic Associations Reveal Alternative Splicing Variants as Candidate Causal Links for Breast Cancer Risk in 10 Loci. Cancers (Basel) 2024; 16:3020. [PMID: 39272878 PMCID: PMC11394352 DOI: 10.3390/cancers16173020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Genome-wide association studies (GWASs) have revealed numerous loci associated with breast cancer risk, yet the precise causal variants, their impact on molecular mechanisms, and the affected genes often remain elusive. We hypothesised that specific variants exert their influence by affecting cis-regulatory alternative splice elements. An analysis of splicing quantitative trait loci (sQTL) in healthy breast tissue from female individuals identified multiple variants linked to alterations in splicing ratios. Through colocalisation analysis, we pinpointed 43 variants within twelve genes that serve as candidate causal links between sQTL and GWAS findings. In silico splice analysis highlighted a potential mechanism for three genes-FDPS, SGCE, and MRPL11-where variants in proximity to or on the splice site modulate usage, resulting in alternative splice transcripts. Further in vitro/vivo studies are imperative to fully understand how these identified changes contribute to breast oncogenesis. Moreover, investigating their potential as biomarkers for breast cancer risk could enhance screening strategies and early detection methods for breast cancer.
Collapse
Affiliation(s)
- André Besouro-Duarte
- CINTESIS@RISE, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Gambelas Campus, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Beatriz Carrasqueiro
- Faculty of Medicine and Biomedical Sciences, Gambelas Campus, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Sofia Sousa
- Faculty of Medicine and Biomedical Sciences, Gambelas Campus, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Joana M Xavier
- CINTESIS@RISE, Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Ana-Teresa Maia
- CINTESIS@RISE, Universidade do Algarve, 8005-139 Faro, Portugal
- Faculty of Medicine and Biomedical Sciences, Gambelas Campus, Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
32
|
Anglada-Girotto M, Ciampi L, Bonnal S, Head SA, Miravet-Verde S, Serrano L. In silico RNA isoform screening to identify potential cancer driver exons with therapeutic applications. Nat Commun 2024; 15:7039. [PMID: 39147755 PMCID: PMC11327330 DOI: 10.1038/s41467-024-51380-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Alternative splicing is crucial for cancer progression and can be targeted pharmacologically, yet identifying driver exons genome-wide remains challenging. We propose identifying such exons by associating statistically gene-level cancer dependencies from knockdown viability screens with splicing profiles and gene expression. Our models predict the effects of splicing perturbations on cell proliferation from transcriptomic data, enabling in silico RNA screening and prioritizing targets for splicing-based therapies. We identified 1,073 exons impacting cell proliferation, many from genes not previously linked to cancer. Experimental validation confirms their influence on proliferation, especially in highly proliferative cancer cell lines. Integrating pharmacological screens with splicing dependencies highlights the potential driver exons affecting drug sensitivity. Our models also allow predicting treatment outcomes from tumor transcriptomes, suggesting applications in precision oncology. This study presents an approach to identifying cancer driver exon and their therapeutic potential, emphasizing alternative splicing as a cancer target.
Collapse
Affiliation(s)
- Miquel Anglada-Girotto
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
| | - Ludovica Ciampi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Sarah A Head
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Samuel Miravet-Verde
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zurich, Zurich, Switzerland.
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain.
| |
Collapse
|
33
|
Chen X, Wei H, Yue A, Zhang H, Zheng Y, Sun W, Zhou Y, Wang Y. KPNA2 promotes the progression of gastric cancer by regulating the alternative splicing of related genes. Sci Rep 2024; 14:17140. [PMID: 39060340 PMCID: PMC11282077 DOI: 10.1038/s41598-024-66678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
RNA-binding proteins (RBPs) play critical roles in genome regulation. In this study, we explored the latent function of KPNA2, which is an essential member of the RBP family, in the regulation of alternative splicing (AS) in gastric cancer (GC). We analyzed the role of KPNA2 in regulating differential expression and AS via RNA sequencing (RNA-seq) and improved RNA immunoprecipitation sequencing (iRIP-seq). Clinical specimens were used to analyze the associations between KPNA2 expression and clinicopathological characteristics. CCK8 assays, transwell assays and wound healing assays were performed to explore the effect of KPNA2/WDR62 on GC cell progression. KPNA2 was shown to be highly expressed in GC cells and tissues and associated with lymph node metastases. KPNA2 promoted the proliferation, migration and invasion of GC cells and primarily regulated exon skipping, alternative 3's splice sites (A3SSs), alternative 5' splice sites (A5SSs), and cassette exons. We further revealed that KPNA2 participated in biological processes related to cell proliferation, and the immune response in GC via the regulation of transcription. In addition, KPNA2 preferentially bound to intron regions. Notably, KPNA2 regulated the A3SS AS mode of WDR62, and upregulation of WDR62 reversed the KPNA2 downregulation-induced inhibition of GC cell proliferation, migration and invasion. Finally, we discovered that the AS of immune-related molecules could be regulated by KPNA2. Overall, our results demonstrated for the first time that KPNA2 functions as an oncogenic splicing factor in GC that regulated the AS and differential expression of GC-related genes, and KPNA2 may be a potential target for GC treatment.
Collapse
Affiliation(s)
- Xia Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Hui Wei
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Ailin Yue
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Huiyun Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000, China
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Ya Zheng
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Weiming Sun
- Department of Endocrinology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Yuping Wang
- Department of Gastroenterology, Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- Gansu Province Clinical Research Center for Digestive Diseases, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
34
|
Xiao MS, Damodaran AP, Kumari B, Dickson E, Xing K, On TA, Parab N, King HE, Perez AR, Guiblet WM, Duncan G, Che A, Chari R, Andresson T, Vidigal JA, Weatheritt RJ, Aregger M, Gonatopoulos-Pournatzis T. Genome-scale exon perturbation screens uncover exons critical for cell fitness. Mol Cell 2024; 84:2553-2572.e19. [PMID: 38917794 PMCID: PMC11246229 DOI: 10.1016/j.molcel.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 04/04/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
CRISPR-Cas technology has transformed functional genomics, yet understanding of how individual exons differentially shape cellular phenotypes remains limited. Here, we optimized and conducted massively parallel exon deletion and splice-site mutation screens in human cell lines to identify exons that regulate cellular fitness. Fitness-promoting exons are prevalent in essential and highly expressed genes and commonly overlap with protein domains and interaction interfaces. Conversely, fitness-suppressing exons are enriched in nonessential genes, exhibiting lower inclusion levels, and overlap with intrinsically disordered regions and disease-associated mutations. In-depth mechanistic investigation of the screen-hit TAF5 alternative exon-8 revealed that its inclusion is required for assembly of the TFIID general transcription initiation complex, thereby regulating global gene expression output. Collectively, our orthogonal exon perturbation screens established a comprehensive repository of phenotypically important exons and uncovered regulatory mechanisms governing cellular fitness and gene expression.
Collapse
Affiliation(s)
- Mei-Sheng Xiao
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Arun Prasath Damodaran
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA.
| | - Bandana Kumari
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Ethan Dickson
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Kun Xing
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Tyler A On
- Molecular Targets Program, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Nikhil Parab
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Helen E King
- EMBL Australia and Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Alexendar R Perez
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Wilfried M Guiblet
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA
| | - Gerard Duncan
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21701, USA
| | - Anney Che
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21701, USA
| | - Raj Chari
- Genome Modification Core, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21702, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD 21701, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Robert J Weatheritt
- EMBL Australia and Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2010, Australia
| | - Michael Aregger
- Molecular Targets Program, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA.
| | - Thomas Gonatopoulos-Pournatzis
- RNA Biology Laboratory, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Frederick, MD 21702, USA.
| |
Collapse
|
35
|
Peng T, Liu Z, Zhang Y, Liu X, Zhao L, Ma Y, Fan J, Song X, Wang L. The systematic identification of survival-related alternative splicing events and splicing factors in glioblastoma. Ann Hum Genet 2024; 88:320-335. [PMID: 38369937 DOI: 10.1111/ahg.12550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 12/30/2023] [Indexed: 02/20/2024]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor, making it one of the most life-threatening human cancers. Nevertheless, research on the mechanism of action between alternative splicing (AS) and splicing factor (SF) or biomarkers in GBM is limited. AS is a crucial post-transcriptional regulatory mechanism. More than 95% of human genes undergo AS events. AS can diversify the expression patterns of genes, thereby increasing the diversity of proteins and playing a significant role in the occurrence and development of tumors. In this study, we downloaded 599 clinical data and 169 transcriptome analysis data from The Cancer Genome Atlas (TCGA) database. Besides, we collected AS data about GBM from TCGA-SpliceSeq. The overall survival (OS) related AS events in GBM were determined through least absolute shrinkage and selection operator (Lasso) and Cox analysis. Subsequently, the association of these 1825 OS-related AS events with patient survival was validated using the Kaplan-Meier survival analysis, receiver operating characteristic curve, risk curve analysis, and independent prognostic analysis. Finally, we depicted the AS-SF regulatory network, illustrating the interactions between splicing factors and various AS events in GBM. Additionally, we identified three splicing factors (RNU4-1, SEC31B, and CLK1) associated with patient survival. In conclusion, based on AS occurrences, we developed a predictive risk model and constructed an interaction network between GBM-related AS events and SFs, aiming to shed light on the underlying mechanisms of GBM pathogenesis and progression.
Collapse
Affiliation(s)
- Tao Peng
- College of Medicine, Xinyang Normal University, Xinyang, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Zhe Liu
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Yu Zhang
- College of Medicine, Xinyang Normal University, Xinyang, China
- School of medical, Southeast University, Nanjing, China
| | - Xudong Liu
- School of Medicine, Chongqing University, Chongqing, China
| | - Lijun Zhao
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Ying Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Jinke Fan
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xinqiang Song
- College of Medicine, Xinyang Normal University, Xinyang, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Lei Wang
- College of Medicine, Xinyang Normal University, Xinyang, China
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
36
|
Zhang YE, Stuelten CH. Alternative splicing in EMT and TGF-β signaling during cancer progression. Semin Cancer Biol 2024; 101:1-11. [PMID: 38614376 PMCID: PMC11180579 DOI: 10.1016/j.semcancer.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/20/2023] [Accepted: 04/04/2024] [Indexed: 04/15/2024]
Abstract
Epithelial to mesenchymal transition (EMT) is a physiological process during development where epithelial cells transform to acquire mesenchymal characteristics, which allows them to migrate and colonize secondary tissues. Many cellular signaling pathways and master transcriptional factors exert a myriad of controls to fine tune this vital process to meet various developmental and physiological needs. Adding to the complexity of this network are post-transcriptional and post-translational regulations. Among them, alternative splicing has been shown to play important roles to drive EMT-associated phenotypic changes, including actin cytoskeleton remodeling, cell-cell junction changes, cell motility and invasiveness. In advanced cancers, transforming growth factor-β (TGF-β) is a major inducer of EMT and is associated with tumor cell metastasis, cancer stem cell self-renewal, and drug resistance. This review aims to provide an overview of recent discoveries regarding alternative splicing events and the involvement of splicing factors in the EMT and TGF-β signaling. It will emphasize the importance of various splicing factors involved in EMT and explore their regulatory mechanisms.
Collapse
Affiliation(s)
- Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | - Christina H Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
37
|
Lang F, Sorn P, Suchan M, Henrich A, Albrecht C, Köhl N, Beicht A, Riesgo-Ferreiro P, Holtsträter C, Schrörs B, Weber D, Löwer M, Sahin U, Ibn-Salem J. Prediction of tumor-specific splicing from somatic mutations as a source of neoantigen candidates. BIOINFORMATICS ADVANCES 2024; 4:vbae080. [PMID: 38863673 PMCID: PMC11165244 DOI: 10.1093/bioadv/vbae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Accepted: 05/28/2024] [Indexed: 06/13/2024]
Abstract
Motivation Neoantigens are promising targets for cancer immunotherapies and might arise from alternative splicing. However, detecting tumor-specific splicing is challenging because many non-canonical splice junctions identified in tumors also appear in healthy tissues. To increase tumor-specificity, we focused on splicing caused by somatic mutations as a source for neoantigen candidates in individual patients. Results We developed the tool splice2neo with multiple functionalities to integrate predicted splice effects from somatic mutations with splice junctions detected in tumor RNA-seq and to annotate the resulting transcript and peptide sequences. Additionally, we provide the tool EasyQuant for targeted RNA-seq read mapping to candidate splice junctions. Using a stringent detection rule, we predicted 1.7 splice junctions per patient as splice targets with a false discovery rate below 5% in a melanoma cohort. We confirmed tumor-specificity using independent, healthy tissue samples. Furthermore, using tumor-derived RNA, we confirmed individual exon-skipping events experimentally. Most target splice junctions encoded neoepitope candidates with predicted major histocompatibility complex (MHC)-I or MHC-II binding. Compared to neoepitope candidates from non-synonymous point mutations, the splicing-derived MHC-I neoepitope candidates had lower self-similarity to corresponding wild-type peptides. In conclusion, we demonstrate that identifying mutation-derived, tumor-specific splice junctions can lead to additional neoantigen candidates to expand the target repertoire for cancer immunotherapies. Availability and implementation The R package splice2neo and the python package EasyQuant are available at https://github.com/TRON-Bioinformatics/splice2neo and https://github.com/TRON-Bioinformatics/easyquant, respectively.
Collapse
Affiliation(s)
- Franziska Lang
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| | - Patrick Sorn
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Martin Suchan
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Alina Henrich
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Christian Albrecht
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Nina Köhl
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Aline Beicht
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Pablo Riesgo-Ferreiro
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Christoph Holtsträter
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Barbara Schrörs
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - David Weber
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Martin Löwer
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| | - Ugur Sahin
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
- BioNTech SE, Mainz 55131, Germany
- Institute of Immunology, University Medical Center of the Johannes-Gutenberg University, Mainz 55131, Germany
| | - Jonas Ibn-Salem
- TRON—Translational Oncology at the University Medical Center of Johannes Gutenberg University Mainz gGmbH, Mainz 55131, Germany
| |
Collapse
|
38
|
Szelest M, Giannopoulos K. Biological relevance of alternative splicing in hematologic malignancies. Mol Med 2024; 30:62. [PMID: 38760666 PMCID: PMC11100220 DOI: 10.1186/s10020-024-00839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024] Open
Abstract
Alternative splicing (AS) is a strictly regulated process that generates multiple mRNA variants from a single gene, thus contributing to proteome diversity. Transcriptome-wide sequencing studies revealed networks of functionally coordinated splicing events, which produce isoforms with distinct or even opposing functions. To date, several mechanisms of AS are deregulated in leukemic cells, mainly due to mutations in splicing and/or epigenetic regulators and altered expression of splicing factors (SFs). In this review, we discuss aberrant splicing events induced by mutations affecting SFs (SF3B1, U2AF1, SRSR2, and ZRSR2), spliceosome components (PRPF8, LUC7L2, DDX41, and HNRNPH1), and epigenetic modulators (IDH1 and IDH2). Finally, we provide an extensive overview of the biological relevance of aberrant isoforms of genes involved in the regulation of apoptosis (e. g. BCL-X, MCL-1, FAS, and c-FLIP), activation of key cellular signaling pathways (CASP8, MAP3K7, and NOTCH2), and cell metabolism (PKM).
Collapse
Affiliation(s)
- Monika Szelest
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| | - Krzysztof Giannopoulos
- Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| |
Collapse
|
39
|
Jin P, Wang X, Jin Q, Zhang Y, Shen J, Jiang G, Zhu H, Zhao M, Wang D, Li Z, Zhou Y, Li W, Zhang W, Liu Y, Wang S, Jin W, Cao Y, Sheng G, Dong F, Wu S, Li X, Jin Z, He M, Liu X, Chen L, Zhang Y, Wang K, Li J. Mutant U2AF1-Induced Mis-Splicing of mRNA Translation Genes Confers Resistance to Chemotherapy in Acute Myeloid Leukemia. Cancer Res 2024; 84:1583-1596. [PMID: 38417135 DOI: 10.1158/0008-5472.can-23-2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/07/2024] [Accepted: 02/21/2024] [Indexed: 03/01/2024]
Abstract
Patients with primary refractory acute myeloid leukemia (AML) have a dismal long-term prognosis. Elucidating the resistance mechanisms to induction chemotherapy could help identify strategies to improve AML patient outcomes. Herein, we retrospectively analyzed the multiomics data of more than 1,500 AML cases and found that patients with spliceosome mutations had a higher risk of developing refractory disease. RNA splicing analysis revealed that the mis-spliced genes in refractory patients converged on translation-associated pathways, promoted mainly by U2AF1 mutations. Integrative analyses of binding and splicing in AML cell lines substantiated that the splicing perturbations of mRNA translation genes originated from both the loss and gain of mutant U2AF1 binding. In particular, the U2AF1S34F and U2AF1Q157R mutants orchestrated the inclusion of exon 11 (encoding a premature termination codon) in the eukaryotic translation initiation factor 4A2 (EIF4A2). This aberrant inclusion led to reduced eIF4A2 protein expression via nonsense-mediated mRNA decay. Consequently, U2AF1 mutations caused a net decrease in global mRNA translation that induced the integrated stress response (ISR) in AML cells, which was confirmed by single-cell RNA sequencing. The induction of ISR enhanced the ability of AML cells to respond and adapt to stress, contributing to chemoresistance. A pharmacologic inhibitor of ISR, ISRIB, sensitized U2AF1 mutant cells to chemotherapy. These findings highlight a resistance mechanism by which U2AF1 mutations drive chemoresistance and provide a therapeutic approach for AML through targeting the ISR pathway. SIGNIFICANCE U2AF1 mutations induce the integrated stress response by disrupting splicing of mRNA translation genes that improves AML cell fitness to enable resistance to chemotherapy, which can be targeted to improve AML treatment.
Collapse
Affiliation(s)
- Peng Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoling Wang
- Department of Reproductive Medical Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiqi Jin
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ge Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zeyi Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhou
- Department of Reproductive Medical Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenzhu Li
- Department of Reproductive Medical Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yabin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Siyang Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuncan Cao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangying Sheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangyi Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengke He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaxin Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luonan Chen
- Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CNRS-LIA Hematology and Cancer, Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
40
|
Young AM, Van Buren S, Rashid NU. Differential transcript usage analysis incorporating quantification uncertainty via compositional measurement error regression modeling. Biostatistics 2024; 25:559-576. [PMID: 37040757 PMCID: PMC11017126 DOI: 10.1093/biostatistics/kxad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/22/2022] [Accepted: 02/06/2023] [Indexed: 04/13/2023] Open
Abstract
Differential transcript usage (DTU) occurs when the relative expression of multiple transcripts arising from the same gene changes between different conditions. Existing approaches to detect DTU often rely on computational procedures that can have speed and scalability issues as the number of samples increases. Here we propose a new method, CompDTU, that uses compositional regression to model the relative abundance proportions of each transcript that are of interest in DTU analyses. This procedure leverages fast matrix-based computations that make it ideally suited for DTU analysis with larger sample sizes. This method also allows for the testing of and adjustment for multiple categorical or continuous covariates. Additionally, many existing approaches for DTU ignore quantification uncertainty in the expression estimates for each transcript in RNA-seq data. We extend our CompDTU method to incorporate quantification uncertainty leveraging common output from RNA-seq expression quantification tool in a novel method CompDTUme. Through several power analyses, we show that CompDTU has excellent sensitivity and reduces false positive results relative to existing methods. Additionally, CompDTUme results in further improvements in performance over CompDTU with sufficient sample size for genes with high levels of quantification uncertainty, while also maintaining favorable speed and scalability. We motivate our methods using data from the Cancer Genome Atlas Breast Invasive Carcinoma data set, specifically using RNA-seq data from primary tumors for 740 patients with breast cancer. We show greatly reduced computation time from our new methods as well as the ability to detect several novel genes with significant DTU across different breast cancer subtypes.
Collapse
Affiliation(s)
- Amber M Young
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Scott Van Buren
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA
| | - Naim U Rashid
- Department of Biostatistics, University of North Carolina at Chapel Hill, 135 Dauer Drive, Chapel Hill, NC, 27599, USA and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, 450 West Drive, Chapel Hill, NC, 27599, USA
| |
Collapse
|
41
|
Zhang Z, Dong L, Tao H, Dong Y, Xiang W, Tao F, Zhao Y. RNA-binding proteins potentially regulate the alternative splicing of apoptotic genes during knee osteoarthritis progression. BMC Genomics 2024; 25:293. [PMID: 38504181 PMCID: PMC10949708 DOI: 10.1186/s12864-024-10181-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Alternative splicing (AS) is a principal mode of genetic regulation and one of the most widely used mechanisms to generate structurally and functionally distinct mRNA and protein variants. Dysregulation of AS may result in aberrant transcription and protein products, leading to the emergence of human diseases. Although considered important for regulating gene expression, genome-wide AS dysregulation, underlying mechanisms, and clinical relevance in knee osteoarthritis (OA) remain unelucidated. Therefore, in this study, we elucidated and validated AS events and their regulatory mechanisms during OA progression. RESULTS In this study, we identified differentially expressed genes between human OA and healthy meniscus samples. Among them, the OA-associated genes were primarily enriched in biological pathways such as extracellular matrix organization and ossification. The predominant OA-associated regulated AS (RAS) events were found to be involved in apoptosis during OA development. The expression of the apoptosis-related gene BCL2L13, XAF1, and NF2 were significantly different between OA and healthy meniscus samples. The construction of a covariation network of RNA-binding proteins (RBPs) and RAS genes revealed that differentially expressed RBP genes LAMA2 and CUL4B may regulate the apoptotic genes XAF1 and BCL2L13 to undergo AS events during OA progression. Finally, RT-qPCR revealed that CUL4B expression was significantly higher in OA meniscus samples than in normal controls and that the AS ratio of XAF1 was significantly different between control and OA samples; these findings were consistent with their expected expression and regulatory relationships. CONCLUSIONS Differentially expressed RBPs may regulate the AS of apoptotic genes during knee OA progression. XAF1 and its regulator, CUL4B, may serve as novel biomarkers and potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, 430060, Wuhan, Hubei, China.
| | - Limei Dong
- School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, Hubei, China
| | - Hai Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, 430060, Wuhan, Hubei, China
| | - Yusong Dong
- School of Basic Medical Sciences, Wuhan University, 430071, Wuhan, Hubei, China
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, 430060, Wuhan, Hubei, China
| | - Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, 430060, Wuhan, Hubei, China
| | - Yingchun Zhao
- Department of Orthopedics, Renmin Hospital of Wuhan University, 238, Jiefang Road, Wuchang District, 430060, Wuhan, Hubei, China
| |
Collapse
|
42
|
Alors-Pérez E, Pedraza-Arevalo S, Blázquez-Encinas R, García-Vioque V, Agraz-Doblas A, Yubero-Serrano EM, Sánchez-Frías ME, Serrano-Blanch R, Gálvez-Moreno MÁ, Gracia-Navarro F, Gahete MD, Arjona-Sánchez Á, Luque RM, Ibáñez-Costa A, Castaño JP. Altered CELF4 splicing factor enhances pancreatic neuroendocrine tumors aggressiveness influencing mTOR and everolimus response. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102090. [PMID: 38187140 PMCID: PMC10767201 DOI: 10.1016/j.omtn.2023.102090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024]
Abstract
Pancreatic neuroendocrine tumors (PanNETs) comprise a heterogeneous group of tumors with growing incidence. Recent molecular analyses provided a precise picture of their genomic and epigenomic landscape. Splicing dysregulation is increasingly regarded as a novel cancer hallmark influencing key tumor features. We have previously demonstrated that splicing machinery is markedly dysregulated in PanNETs. Here, we aimed to elucidate the molecular and functional implications of CUGBP ELAV-like family member 4 (CELF4), one of the most altered splicing factors in PanNETs. CELF4 expression was determined in 20 PanNETs, comparing tumor and non-tumoral adjacent tissue. An RNA sequencing (RNA-seq) dataset was analyzed to explore CELF4-linked interrelations among clinical features, gene expression, and splicing events. Two PanNET cell lines were employed to assess CELF4 function in vitro and in vivo. PanNETs display markedly upregulated CELF4 expression, which is closely associated with malignancy features, altered expression of key tumor players, and distinct splicing event profiles. Modulation of CELF4 influenced proliferation in vitro and reduced in vivo xenograft tumor growth. Interestingly, functional assays and RNA-seq analysis revealed that CELF4 silencing altered mTOR signaling pathway, enhancing the effect of everolimus. We demonstrate that CELF4 is dysregulated in PanNETs, where it influences tumor development and aggressiveness, likely by modulating the mTOR pathway, suggesting its potential as therapeutic target.
Collapse
Affiliation(s)
- Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Antonio Agraz-Doblas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Elena M. Yubero-Serrano
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Unidad de Gestión Clinica Medicina Interna, Lipids and Atherosclerosis Unit, Department of Internal Medicine, Reina Sofia University Hospital, Córdoba, Spain
| | - Marina E. Sánchez-Frías
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Pathology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raquel Serrano-Blanch
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Medical Oncology Service, Reina Sofia University Hospital, Córdoba, Spain
| | - María Ángeles Gálvez-Moreno
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Francisco Gracia-Navarro
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Manuel D. Gahete
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Álvaro Arjona-Sánchez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Surgery Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Raúl M. Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P. Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| |
Collapse
|
43
|
Shirai Y, Ueno T, Kojima S, Ikeuchi H, Kitada R, Koyama T, Takahashi F, Takahashi K, Ichimura K, Yoshida A, Sugino H, Mano H, Narita Y, Takahashi M, Kohsaka S. The development of a custom RNA-sequencing panel for the identification of predictive and diagnostic biomarkers in glioma. J Neurooncol 2024; 167:75-88. [PMID: 38363490 PMCID: PMC10978676 DOI: 10.1007/s11060-024-04563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE Various molecular profiles are needed to classify malignant brain tumors, including gliomas, based on the latest classification criteria of the World Health Organization, and their poor prognosis necessitates new therapeutic targets. The Todai OncoPanel 2 RNA Panel (TOP2-RNA) is a custom-target RNA-sequencing (RNA-seq) using the junction capture method to maximize the sensitivity of detecting 455 fusion gene transcripts and analyze the expression profiles of 1,390 genes. This study aimed to classify gliomas and identify their molecular targets using TOP2-RNA. METHODS A total of 124 frozen samples of malignant gliomas were subjected to TOP2-RNA for classification based on their molecular profiles and the identification of molecular targets. RESULTS Among 55 glioblastoma cases, gene fusions were detected in 11 cases (20%), including novel MET fusions. Seven tyrosine kinase genes were found to be overexpressed in 15 cases (27.3%). In contrast to isocitrate dehydrogenase (IDH) wild-type glioblastoma, IDH-mutant tumors, including astrocytomas and oligodendrogliomas, barely harbor fusion genes or gene overexpression. Of the 34 overexpressed tyrosine kinase genes, MDM2 and CDK4 in glioblastoma, 22 copy number amplifications (64.7%) were observed. When comparing astrocytomas and oligodendrogliomas in gene set enrichment analysis, the gene sets related to 1p36 and 19q were highly enriched in astrocytomas, suggesting that regional genomic DNA copy number alterations can be evaluated by gene expression analysis. CONCLUSIONS TOP2-RNA is a highly sensitive assay for detecting fusion genes, exon skipping, and aberrant gene expression. Alterations in targetable driver genes were identified in more than 50% of glioblastoma. Molecular profiling by TOP2-RNA provides ample predictive, prognostic, and diagnostic biomarkers that may not be identified by conventional assays and, therefore, is expected to increase treatment options for individual patients with glioma.
Collapse
Affiliation(s)
- Yukina Shirai
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Toshihide Ueno
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Shinya Kojima
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiroshi Ikeuchi
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
- Department of General Thoracic Surgery, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Rina Kitada
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Takafumi Koyama
- Department of Experimental Therapeutics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Koichi Ichimura
- Department of Brain Disease Translational Research, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-Ku, Tokyo, 113-8431, Japan
| | - Akihiko Yoshida
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hirokazu Sugino
- Department of Diagnostic Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Masamichi Takahashi
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
44
|
Sheridan R, Brennan K, Bazou D, O’Gorman P, Matallanas D, Mc Gee MM. Multiple Myeloma Derived Extracellular Vesicle Uptake by Monocyte Cells Stimulates IL-6 and MMP-9 Secretion and Promotes Cancer Cell Migration and Proliferation. Cancers (Basel) 2024; 16:1011. [PMID: 38473370 PMCID: PMC10930391 DOI: 10.3390/cancers16051011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Multiple Myeloma (MM) is an incurable haematological malignancy caused by uncontrolled growth of plasma cells. MM pathogenesis is attributed to crosstalk between plasma cells and the bone marrow microenvironment, where extracellular vesicles (EVs) play a role. In this study, EVs secreted from a panel of MM cell lines were isolated from conditioned media by ultracentrifugation and fluorescently stained EVs were co-cultured with THP-1 monocyte cells. MM EVs from three cell lines displayed a differential yet dose-dependent uptake by THP-1 cells, with H929 EVs displaying the greatest EV uptake compared to MM.1s and U266 EVs suggesting that uptake efficiency is dependent on the cell line of origin. Furthermore, MM EVs increased the secretion of MMP-9 and IL-6 from monocytes, with H929 EVs inducing the greatest effect, consistent with the greatest uptake efficiency. Moreover, monocyte-conditioned media collected following H929 EV uptake significantly increased the migration and proliferation of MM cells. Finally, EV proteome analysis revealed differential cargo enrichment that correlates with disease progression including a significant enrichment of spliceosome-related proteins in H929 EVs compared to the U266 and MM.1s EVs. Overall, this study demonstrates that MM-derived EVs modulate monocyte function to promote tumour growth and metastasis and reveals possible molecular mechanisms involved.
Collapse
Affiliation(s)
- Rebecca Sheridan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland (K.B.)
| | - Kieran Brennan
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland (K.B.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (D.B.)
- School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 R2WY Dublin, Ireland; (D.B.)
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland;
| | - Margaret M. Mc Gee
- School of Biomolecular and Biomedical Science, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland (K.B.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| |
Collapse
|
45
|
Yan Y, Luo A, Liu S, Cai M, Liu X, Zhang X, Zhang S, Liu Y, Zeng J, Xu X, Zhang N, Zhang Z, Xu Y, He J, Liu X. METTL3-Mediated LINC00475 Alternative Splicing Promotes Glioma Progression by Inducing Mitochondrial Fission. RESEARCH (WASHINGTON, D.C.) 2024; 7:0324. [PMID: 38405130 PMCID: PMC10886067 DOI: 10.34133/research.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Mitochondrial fission promotes glioma progression. The function and regulation mechanisms of lncRNAs in glioma mitochondrial fission are unclear. The expression of LINC00475 and its correlation with clinical parameters in glioma were analyzed using bioinformatics. Then, in vitro and in vivo assays were performed to explore the function of spliced variant LINC00475 (LINC00475-S) in gliomas. To explore the mechanisms, RNA-seq, MeRIP, RIP, pulldown-IP, dCas9-ALKBH5 editing system, LC/MS, and Western blotting were utilized. LINC00475 was confirmed to be overexpressed and with higher frequencies of AS events in gliomas compared to normal brain tissue and was associated with worse prognosis. In vitro and animal tumor formation experiments demonstrated that the effect of LINC00475-S on proliferation, metastasis, autophagy, and mitochondrial fission of glioma cells was significantly stronger than that of LINC00475. Mechanistically, METTL3 induced the generation of LINC00475-S by splicing LINC00475 through m6A modification and subsequently promotes mitochondrial fission in glioma cells by inhibiting the expression of MIF. Pull-down combined LC/MS and RIP assays identified that the m6A recognition protein HNRNPH1 bound to LINC00475 within GYR and GY domains and promoted LINC00475 splicing. METTL3 facilitated HNRNPH1 binding to LINC00475 in an m6A-dependent manner, thereby inducing generation of LINC00475-S. METTL3 facilitated HNRNPH1-mediated AS of LINC00475, which promoted glioma progression by inducing mitochondrial fission. Targeting AS of LINC00475 and m6A editing could serve as a therapeutic strategy against gliomas.
Collapse
Affiliation(s)
- Yaping Yan
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Ailing Luo
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Shanshan Liu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Mansi Cai
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Xiaodan Liu
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Xiaohong Zhang
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Siyi Zhang
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Yu Liu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Jiamin Zeng
- Department of Anesthesiology,
The Second Affiliated Hospital of University of South China, Hengyang, Hunan Province 421001, China
| | - Xinke Xu
- Department of Neurosurgery, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Na Zhang
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Zhuorong Zhang
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Yingyi Xu
- Department of Anesthesiology, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaoping Liu
- Department of Hematology and Oncology, Guangzhou Women and Children’s Medical Center,
Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou 510623, China
| |
Collapse
|
46
|
Xiong Z, Raphael I, Olin M, Okada H, Li X, Kohanbash G. Glioblastoma vaccines: past, present, and opportunities. EBioMedicine 2024; 100:104963. [PMID: 38183840 PMCID: PMC10808938 DOI: 10.1016/j.ebiom.2023.104963] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/08/2024] Open
Abstract
Glioblastoma (GBM) is one of the most lethal central nervous systems (CNS) tumours in adults. As supplements to standard of care (SOC), various immunotherapies improve the therapeutic effect in other cancers. Among them, tumour vaccines can serve as complementary monotherapy or boost the clinical efficacy with other immunotherapies, such as immune checkpoint blockade (ICB) and chimeric antigen receptor T cells (CAR-T) therapy. Previous studies in GBM therapeutic vaccines have suggested that few neoantigens could be targeted in GBM due to low mutation burden, and single-peptide therapeutic vaccination had limited efficacy in tumour control as monotherapy. Combining diverse antigens, including neoantigens, tumour-associated antigens (TAAs), and pathogen-derived antigens, and optimizing vaccine design or vaccination strategy may help with clinical efficacy improvement. In this review, we discussed current GBM therapeutic vaccine platforms, evaluated and potential antigenic targets, current challenges, and perspective opportunities for efficacy improvement.
Collapse
Affiliation(s)
- Zujian Xiong
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, PR China
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA
| | - Michael Olin
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA 94143, USA
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, Hunan 410008 PR China.
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15201, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
47
|
Yu S, Chen C, Chen M, Liang J, Jiang K, Lou B, Lu J, Zhu X, Zhou D. MAGOH promotes gastric cancer progression via hnRNPA1 expression inhibition-mediated RONΔ160/PI3K/AKT signaling pathway activation. J Exp Clin Cancer Res 2024; 43:32. [PMID: 38268030 PMCID: PMC10809607 DOI: 10.1186/s13046-024-02946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/05/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is associated with high mortality and heterogeneity and poses a great threat to humans. Gene therapies for the receptor tyrosine kinase RON and its spliceosomes are attracting increasing amounts of attention due to their unique characteristics. However, little is known about the mechanism involved in the formation of the RON mRNA alternative spliceosome RONΔ160. METHODS Fourteen human GC tissue samples and six normal gastric tissue samples were subjected to label-free relative quantitative proteomics analysis, and MAGOH was identified as a candidate protein for subsequent studies. The expression of MAGOH in clinical specimens was verified by quantitative real-time PCR and western blotting. We then determined the biological function of MAGOH in GC through in vitro and in vivo experiments. RNA pulldown, RNA sequencing and RNA immunoprecipitation (RIP) were subsequently conducted to uncover the underlying mechanism by which MAGOH regulated the formation of RONΔ160. RESULTS Proteomic analysis revealed that MAGOH, which is located at key nodes and participates in RNA processing and mRNA splicing, was upregulated in GC tissue and GC cell lines and was associated with poor prognosis. Functional analysis showed that MAGOH promoted the proliferation, migration and invasion of GC cells in vitro and in vivo. Mechanistically, MAGOH inhibited the expression of hnRNPA1 and reduced the binding of hnRNPA1 to RON mRNA, thereby promoting the formation of RONΔ160 to activate the PI3K/AKT signaling pathway and consequently facilitating GC progression. CONCLUSIONS Our study revealed that MAGOH could promote the formation of RONΔ160 and activate the PI3K/AKT signaling pathway through the inhibition of hnRNPA1 expression. We elucidate a novel mechanism and potential therapeutic targets for the growth and metastasis of GC based on the MAGOH-RONΔ160 axis, and these findings have important guiding significance and clinical value for the future development of effective therapeutic strategies for GC.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Chen
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxiao Liang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kecheng Jiang
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Lou
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohua Zhu
- Department of Oncology, Shaoxing People's Hospital, Shaoxing, China
| | - Donghui Zhou
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
48
|
Zhang J, Jiang H, Rao D, Jin X. Clear cell renal cell carcinoma: immunological significance of alternative splicing signatures. Front Oncol 2024; 13:1206882. [PMID: 38288096 PMCID: PMC10824562 DOI: 10.3389/fonc.2023.1206882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/27/2023] [Indexed: 01/31/2024] Open
Abstract
Background Renal cell carcinoma (RCC) accounts for 90% of renal cancers, of which clear cell carcinoma (ccRCC) is the most usual histological type. The process of alternative splicing (AS) contributes to protein diversity, and the dysregulation of protein diversity may have a great influence on tumorigenesis. We developed a prognostic signature and comprehensively analyzed the role of tumor immune microenvironment (TIME) and immune checkpoint blocking (ICB) treatment in ccRCC. Methods To identify prognosis-related AS events, univariate Cox regression was used and functional annotation was performed using gene set enrichment analysis (GSEA). In this study, prognostic signatures were developed based on multivariate Cox, univariate Cox, and LASSO regression models. Moreover, to assess the prognostic value, the proportional hazards model, Kruskal-Wallis analysis, and ROC curves were used. To obtain a better understanding of TIME in ccRCC, the ESTIMATE R package, single sample gene set enrichment analysis (ssGSEA) algorithm, CIBERSORT method, and the tumor immune estimation resource (TIMER) were applied. The database was searched to verify the expression of C4OF19 in tumor and normal samples. Regulatory networks for AS-splicing factors (SFs) were visualized using Cytoscape 3.9.1. Results There were 9,347 AS cases associated with the survival of ccRCC patients screened. A total of eight AS prognostic signatures were developed with stable prognostic predictive accuracy based on splicing subtypes. In addition, a qualitative prognostic nomogram was developed, and the prognostic prediction showed high effectiveness. In addition, we found that the combined signature was significantly associated with the diversity of TIME and ICB treatment-related genes. C4ORF19 might become an important prognostic factor for ccRCC. Finally, the AS-SF regulatory network was established to clearly reveal the potential function of SFs. Conclusion We found novel and robust indicators (i.e., risk signature, prognostic nomogram, etc.) for the prognostic prediction of ccRCC. A new and reliable prognostic nomogram was established to quantitatively predict the clinical outcome. The AS-SF networks could provide a new way for the study of potential regulatory mechanisms, and the important roles of AS events in the context of TIME and immunotherapy efficiency were exhibited. C4ORF19 was found to be a vital gene in TIME and ICB treatment.
Collapse
Affiliation(s)
| | | | - Dapang Rao
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xishi Jin
- Department of Urology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
49
|
Sheng Y, Lei K, Sun C, Liu J, Tu Z, Zhu X, Huang K. Aberrant RBMX expression is relevant for cancer prognosis and immunotherapy response. Aging (Albany NY) 2024; 16:226-245. [PMID: 38214653 PMCID: PMC10817375 DOI: 10.18632/aging.205363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/03/2023] [Indexed: 01/13/2024]
Abstract
Cancer accounts for the highest rates of morbidity and mortality worldwide. RNA binding motif protein X-linked (RBMX) is a nuclear RNA-binding protein, associated with certain types of cancer by participating in the integration of sister chromatids and a combination of ribonucleoprotein complexes. However, the specific role of RBMX in cancer immunity remains unknown. This study presents the aberrant expression levels, single-cell distributions, effective prognostic roles, immune cell infiltration associations, and immunotherapy responses of RBMX as a biomarker in various types of cancer. Moreover, it validates the aberrant expression of RBMX in clinical cancer samples. Furthermore, we also evaluated the relationships between RBMX expression and myeloid-derived suppressor cells in clinical samples by immunofluorescent staining. The results showed that knockdown of RBMX can impair the proliferation, migration, and invasion of liver cancer cells. Finally, we indicated that RBMX may play an immunoregulatory role in cancer progression, affecting the therapeutic effects of immune checkpoint inhibitors in patients with cancer.
Collapse
Affiliation(s)
- Yilei Sheng
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- The HuanKui Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Kunjian Lei
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Chengpeng Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- The HuanKui Medical College of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Jia Liu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06511, USA
| | - Zewei Tu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Xingen Zhu
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| | - Kai Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang 330006, Jiangxi, P.R. China
- Institute of Neuroscience, Nanchang University, Nanchang 330006, Jiangxi, P.R. China
- JXHC Key Laboratory of Neurological Medicine, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
50
|
Shi Q, Li X, Liu Y, Chen Z, He X. FLIBase: a comprehensive repository of full-length isoforms across human cancers and tissues. Nucleic Acids Res 2024; 52:D124-D133. [PMID: 37697439 PMCID: PMC10767943 DOI: 10.1093/nar/gkad745] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Regulatory processes at the RNA transcript level play a crucial role in generating transcriptome diversity and proteome composition in human cells, impacting both physiological and pathological states. This study introduces FLIBase (www.FLIBase.org), a specialized database that focuses on annotating full-length isoforms using long-read sequencing techniques. We collected and integrated long-read (351 samples) and short-read (12 469 samples) RNA sequencing data from diverse normal and cancerous human tissues and cells. The current version of FLIBase comprises a total of 983 789 full-length spliced isoforms, identified through long-read sequences and verified using short-read exon-exon splice junctions. Of these, 188 248 isoforms have been annotated, while 795 541 isoforms remain unannotated. By overcoming the limitations of short-read RNA sequencing methods, FLIBase provides an accurate and comprehensive representation of full-length transcripts. These comprehensive annotations empower researchers to undertake various downstream analyses and investigations. Importantly, FLIBase exhibits a significant advantage in identifying a substantial number of previously unannotated isoforms and tumor-specific RNA transcripts. These tumor-specific RNA transcripts have the potential to serve as a source of immunogenic recurrent neoantigens. This remarkable discovery holds tremendous promise for advancing the development of tailored RNA-based diagnostic and therapeutic strategies for various types of human cancer.
Collapse
Affiliation(s)
- Qili Shi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xinrong Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yizhe Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| |
Collapse
|