1
|
Park SJ, Kim KW, Lee EJ. Gut-brain axis and environmental factors in Parkinson's disease: bidirectional link between disease onset and progression. Neural Regen Res 2025; 20:3416-3429. [PMID: 39688568 PMCID: PMC11974660 DOI: 10.4103/nrr.nrr-d-24-00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease has long been considered a disorder that primarily affects the brain, as it is defined by the dopaminergic neurodegeneration in the substantia nigra and the brain accumulation of Lewy bodies containing α-synuclein protein. In recent decades, however, accumulating research has revealed that Parkinson's disease also involves the gut and uncovered an intimate and important bidirectional link between the brain and the gut, called the "gut-brain axis." Numerous clinical studies demonstrate that gut dysfunction frequently precedes motor symptoms in Parkinson's disease patients, with findings including impaired intestinal permeability, heightened inflammation, and distinct gut microbiome profiles and metabolites. Furthermore, α-synuclein deposition has been consistently observed in the gut of Parkinson's disease patients, suggesting a potential role in disease initiation. Importantly, individuals with vagotomy have a reduced Parkinson's disease risk. From these observations, researchers have hypothesized that α-synuclein accumulation may initiate in the gut and subsequently propagate to the central dopaminergic neurons through the gut-brain axis, leading to Parkinson's disease. This review comprehensively examines the gut's involvement in Parkinson's disease, focusing on the concept of a gut-origin for the disease. We also examine the interplay between altered gut-related factors and the accumulation of pathological α-synuclein in the gut of Parkinson's disease patients. Given the accessibility of the gut to both dietary and pharmacological interventions, targeting gut-localized α-synuclein represents a promising avenue for developing effective Parkinson's disease therapies.
Collapse
Affiliation(s)
- Soo Jung Park
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Kyung Won Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
2
|
Dai H, Yang H, Wang R, Wang X, Zhang X. Modulating Gut Microbiota with Dietary Components: A Novel Strategy for Cancer-Depression Comorbidity Management. Nutrients 2025; 17:1505. [PMID: 40362814 PMCID: PMC12073834 DOI: 10.3390/nu17091505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/26/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Gut microbiota play a critical role in mediating the bidirectional association between cancer and depression. Emerging evidence indicates that adjusting the dietary component intake can significantly alter gut microbiota composition, thereby influencing the host's metabolism and immune function. Changes in gut microbiota and their metabolites may represent key factors in preventing cancer-depression comorbidity. METHODS English publications were searched in databases including the Web of Science, Scopus, and PubMed using a series of keywords: "cancer", "depression", "gut microbiota", "dietary components", and related terms, individually or in combination. The search focused on preclinical and clinical studies describing the regulatory effects of dietary component interventions. RESULTS This narrative review summarizes the associations among gut microbiota, cancer, and depression, and synthesizes current evidence on the modulatory effects and mechanisms of specific dietary component interventions, including dietary patterns, probiotics, prebiotics, and diet-derived phytochemicals, on gut microbiota. On the one hand, these interventions inhibit abnormal proliferation signals in the tumor microenvironment and enhance anticancer immune responses; on the other hand, they modulate neurotransmitter homeostasis, suppress neuroinflammation, and improve mood behaviors through the gut-brain axis interactions mediated by microbial metabolites. CONCLUSIONS The complex associations among cancer, depression, and gut microbiota require further clarification. Modulating gut microbiota composition through dietary components represents a novel therapeutic strategy for improving cancer-depression comorbidity. Regulated gut microbiota enhance immune homeostasis and intestinal barrier function, while their metabolites bidirectionally modulate one another via systemic circulation and the gut-brain axis, thereby improving both the tumor microenvironment and depressive-like behaviors in cancer patients while reducing the adverse effects of cancer.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| | - Haiyi Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Rui Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuanpeng Wang
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Parthasarathy S, Giridharan B, Panigrahi J, Konyak LM, Jamir N, Tharumasivam SV. Abnormal microbiota due to prenatal antibiotic as a possible risk factor for Attention-Deficit / Hyperactivity Disorder (ADHD). INTERNATIONAL REVIEW OF NEUROBIOLOGY 2025; 180:299-328. [PMID: 40414636 DOI: 10.1016/bs.irn.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2025]
Abstract
One of the major issues modern medicine faces is the increasing use of antibiotics in reaction to the increased incidence of infectious agents. The current trend of antibiotic overuse contributes to microbial dysbiosis. Recent studies have hypothesized that antibiotic exposure during pregnancy, which alters the composition of the microbiome, might increase the likelihood of attention deficit hyperactivity disorder (ADHD). In addition to the ongoing discussion about the potential links between antibiotic usage, microbiome dysbiosis, and ADHD, there is a rising interest in integrating AI and ML into healthcare practices. Diagnosis, treatment plans, and prognoses are all enhanced by these technological advancements. Remote monitors or telemedicine monitoring are among the management techniques described in this chapter for effectively managing illnesses. Also discussed are ways to halt the progression of diseases by preventative measures that use biosensor technology and dietary approaches. Personalized treatment programs, disease progression stages, and prognosis evaluations are all made possible with the use of artificial intelligence and machine learning. By using these technologies to provide individualized therapy, healthcare practitioners may get a better understanding of ADHD and perhaps improve patient outcomes.
Collapse
Affiliation(s)
| | - Bupesh Giridharan
- Department of Forestry, Nagaland University (Hqrs.), Lumami, Nagaland, India; Department of Biotechnology, Berhampur University, Bhanja Bihar, Ganjam, Odisha, India.
| | - Jogeswar Panigrahi
- Department of Biotechnology, Berhampur University, Bhanja Bihar, Ganjam, Odisha, India
| | - Longnyu M Konyak
- Department of Forestry, Nagaland University (Hqrs.), Lumami, Nagaland, India
| | - Nokenketla Jamir
- Department of Forestry, Nagaland University (Hqrs.), Lumami, Nagaland, India
| | | |
Collapse
|
4
|
Tari AR, Walker TL, Huuha AM, Sando SB, Wisloff U. Neuroprotective mechanisms of exercise and the importance of fitness for healthy brain ageing. Lancet 2025; 405:1093-1118. [PMID: 40157803 DOI: 10.1016/s0140-6736(25)00184-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 04/01/2025]
Abstract
Ageing is a scientifically fascinating and complex biological occurrence characterised by morphological and functional changes due to accumulated molecular and cellular damage impairing tissue and organ function. Ageing is often accompanied by cognitive decline but is also the biggest known risk factor for Alzheimer's disease, the most common form of dementia. Emerging evidence suggests that sedentary and unhealthy lifestyles accelerate brain ageing, while regular physical activity, high cardiorespiratory fitness (CRF), or a combination of both, can mitigate cognitive impairment and reduce dementia risk. The purpose of this Review is to explore the neuroprotective mechanisms of endurance exercise and highlight the importance of CRF in promoting healthy brain ageing. Key findings show how CRF mediates the neuroprotective effects of exercise via mechanisms such as improved cerebral blood flow, reduced inflammation, and enhanced neuroplasticity. We summarise evidence supporting the integration of endurance exercise that enhances CRF into public health initiatives as a preventive measure against age-related cognitive decline. Additionally, we address important challenges such as lack of long-term studies with harmonised study designs across preclinical and clinical settings, employing carefully controlled and repeatable exercise protocols, and outline directions for future research.
Collapse
Affiliation(s)
- Atefe R Tari
- The Cardiac Exercise Research Group at the Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Trondheim, Norway
| | - Tara L Walker
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aleksi M Huuha
- The Cardiac Exercise Research Group at the Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Trondheim, Norway
| | - Sigrid B Sando
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Department of Neurology and Clinical Neurophysiology, St Olavs University Hospital, Trondheim, Norway
| | - Ulrik Wisloff
- The Cardiac Exercise Research Group at the Faculty of Medicine and Health Sciences, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
5
|
Zhu CY, Byun H, Do EA, Zhang Y, Tanchoco E, Beld J, Hsiao A, Zhu J. Music exposure enhances resistance to Salmonella infection by promoting healthy gut microbiota. Microbiol Spectr 2025; 13:e0237724. [PMID: 40130867 PMCID: PMC12054044 DOI: 10.1128/spectrum.02377-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/28/2025] [Indexed: 03/26/2025] Open
Abstract
Music intervention is gaining recognition as a cost-effective therapeutic for improving human health. Despite its growing application, the mechanisms through which music exerts beneficial health effects remain largely unexplored. Here, we show that music can exert beneficial effects in mice through modulating gut microbiome composition. Adult mice were exposed to ambient noise, Mozart's Flute Quartet in D Major, K. 285, or white noise over a three-week period. Afterward, we observed treatment-specific changes in the community of gut commensal bacteria in these animals. Upon subsequent challenge with the bacterial pathogen Salmonella typhimurium, control groups exhibited significant weight loss and increased Salmonella colonization, whereas the Mozart-treated group did not. 16S ribosomal RNA gene sequencing revealed that the Mozart group showed a significant increase in Lactobacillus salivarius, a probiotic known for its antibacterial properties. Further experiments confirmed that L. salivarius mitigated Salmonella infection in mice and that L. salivarius acidified local environments in in vitro culture, thus inhibiting Salmonella growth. Additionally, mice exposed to Mozart consumed more food but showed similar body weight compared to the control groups. Behavioral assessments, including open field and object location tests, revealed that Mozart-treated mice were more active, less anxious, and exhibited enhanced spatial memory. Finally, Mozart exposure was shown to significantly boost colonization of administered L. salivarius and alter gut metabolite profiles. These findings suggest that music exposure fosters healthier gut microbiota, enhancing resistance to bacterial infections and highlighting the potential of music therapy as a novel strategy to combat drug-resistant pathogen infections. IMPORTANCE Music therapy is increasingly recognized as a low-cost approach to improving health, but how it works remains unclear. Our study demonstrates that music can positively influence health by altering the gut microbiome. In a mouse model, exposure to Mozart's Flute Quartet in D Major enhanced the gut microbiota, specifically increasing levels of the beneficial bacterium Lactobacillus salivarius. This probiotic protected mice from Salmonella infection by creating an acidic environment that inhibited pathogen growth. Mozart-treated mice also showed reduced anxiety, better spatial memory, and higher food intake without weight gain, suggesting the benefits of music exposure. These findings reveal a novel link between music, gut health, and disease resistance, suggesting that music therapy could be a promising strategy for enhancing gut microbiota and combating infections, including those caused by drug-resistant bacteria.
Collapse
Affiliation(s)
- Clara Y. Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hyuntae Byun
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elyza A. Do
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Yue Zhang
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Ethan Tanchoco
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Joris Beld
- Department of Microbiology & Immunology, College of Medicine, Drexel University, Philadelphia, Pennsylvania, USA
| | - Ansel Hsiao
- Department of Microbiology & Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Jun Zhu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Lewis N, Villani A, Lagopoulos J. Gut dysbiosis as a driver of neuroinflammation in attention-deficit/hyperactivity disorder: A review of current evidence. Neuroscience 2025; 569:298-321. [PMID: 39848564 DOI: 10.1016/j.neuroscience.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/25/2025]
Abstract
There is mounting evidence for the involvement of the immune system, neuroinflammation and disturbed gut microbiota, or dysbiosis, in attention-deficit/hyperactivity disorder (ADHD). Gut dysbiosis is strongly implicated in many physical, autoimmune, neurological, and neuropsychiatric conditions, however knowledge of its particular pathogenic role in ADHD is sparse. As such, this narrative review examines and synthesizes the available evidence related to inflammation, dysbiosis, and neural processes in ADHD. Minimal differences in microbiota diversity measures between cases and controls were found, however many relative abundance differences were observed at all classification levels (phylum to strain). Compositional differences of taxa important to key gut-brain axis pathways, in particular Bacteroides species and Faecalibacterium, may contribute to inflammation, brain functioning differences, and symptoms, in ADHD. We have identified one possible model of ADHD etiopathogenesis involving systemic inflammation, an impaired blood-brain barrier, and neural disturbances as downstream consequences of gut dysbiosis. Nevertheless, studies conducted to date have varied degrees of methodological rigour and involve diverse participant characteristics and analytical techniques, highlighting a need for additional research.
Collapse
Affiliation(s)
- Naomi Lewis
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia; Thompson Institute, University of the Sunshine Coast, 12 Innovation Pkwy, Birtinya, QLD 4575, Australia.
| | - Anthony Villani
- School of Health, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, QLD 4556, Australia.
| | - Jim Lagopoulos
- Thompson Brain and Mind Healthcare, Eccles Blvd, Birtinya, QLD 4575, Australia.
| |
Collapse
|
7
|
Zhang S, Peng L, Goswami S, Li Y, Dang H, Xing S, Feng P, Nigro G, Liu Y, Ma Y, Liu T, Yang J, Jiang T, Yang Y, Barker N, Sansonetti P, Kundu P. Intestinal crypt microbiota modulates intestinal stem cell turnover and tumorigenesis via indole acetic acid. Nat Microbiol 2025; 10:765-783. [PMID: 39972061 DOI: 10.1038/s41564-025-01937-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 01/14/2025] [Indexed: 02/21/2025]
Abstract
Intestinal crypts harbour a specific microbiota but whether and how these bacteria regulate intestinal stem cells (ISCs) or influence colorectal cancer (CRC) development is unclear. Here we screened crypt-resident bacteria in organoids and found that indole acetic acid (IAA) secreted by Acinetobacter radioresistens inhibits ISC turnover. A. radioresistens inhibited cellular proliferation in tumour slices from CRC patients and inhibited intestinal tumorigenesis and spheroid initiation in APCMin/+ mice. Targeted clearance of A. radioresistens from colonic crypts using bacteriophage increased EphB2 expression and consequently promoted cellular proliferation, ISC turnover and tumorigenesis in mouse models of CRC. The protective effects of A. radioresistens were abrogated upon deletion of trpC to prevent IAA production, or upon intestine-specific aryl hydrocarbon receptor (AhR) knockout, identifying an IAA-AhR-Wnt-β-catenin signalling axis that promotes ISC homeostasis. Our findings reveal a protective role for an intestinal crypt-resident microbiota member in tumorigenesis.
Collapse
Affiliation(s)
- Shuning Zhang
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihua Peng
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
| | - Shyamal Goswami
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
| | - Yuchen Li
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
| | - Haiyue Dang
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuli Xing
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
| | - Panpan Feng
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China
| | - Giulia Nigro
- Microenvironment and Immunity Unit, INSERM U1224, Institut Pasteur, Paris, France
| | - Yingying Liu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yingfei Ma
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tianhao Liu
- Affiliated Hospital of Jiangnan University and Wuxi Medical College, Jiangnan University, Wuxi, China
| | - Jiahua Yang
- Department of General Surgery, Putuo Hospital, Shanghai, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
| | - Yingnan Yang
- Luodian Hospital in Baoshan District, Shanghai, China
| | - Nick Barker
- Institute of Molecular and Cell Biology, Singapore and Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Parag Kundu
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection-Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Wei R, Peng Y, Luo Y, Wang X, Pan Z, Zhou R, Yang H, Huang Z, Liu Y, Dai L, Wang Y, Zhang Y. Doxifluridine promotes host longevity through bacterial metabolism. PLoS Genet 2025; 21:e1011648. [PMID: 40163476 PMCID: PMC11977963 DOI: 10.1371/journal.pgen.1011648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/08/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025] Open
Abstract
Aging is associated with alternative splicing (AS) defects that have broad implications on aging-associated disorders. However, which drug(s) can rescue age-related AS defects and extend lifespan has not been systematically explored. We performed large-scale compound screening in C. elegans using a dual-fluorescent splicing reporter system. Among the top hits, doxifluridine, a fluoropyrimidine derivative, rescues age-associated AS defects and extends lifespan. Combining bacterial DNA sequencing, proteomics, metabolomics and the three-way screen system, we further revealed that bacterial ribonucleotide metabolism plays an essential role in doxifluridine conversion and efficacy. Furthermore, doxifluridine increases production of bacterial metabolites, such as linoleic acid and agmatine, to prolong host lifespan. Together, our results identify doxifluridine as a potent lead compound for rescuing aging-associated AS defects and extending lifespan, and elucidate drug's functions through complex interplay among drug, bacteria and host.
Collapse
Affiliation(s)
- Rui Wei
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuling Peng
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yamei Luo
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xinyuan Wang
- Proteomics-Metabolomics Platform of Core Facilities, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenzhong Pan
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ran Zhou
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, Sichuan, China
| | - Huan Yang
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zongyao Huang
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yaojia Liu
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Wang
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, Sichuan, China
| | - Yan Zhang
- State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Gomes P, Laroute V, Beaufrand C, Bézirard V, Aubry N, Liebgott C, Koper JEB, Parent E, Bosco N, Ballet N, Legrain‐Raspaud S, Daveran‐Mingot M, Theodorou V, Cocaign‐Bousquet M, Eutamene H, Mercier‐Bonin M. Postbiotic potential of Lactococcus lactis CNCM I-5388 in alleviating visceral pain in female rat through GABA production: The innovative concept of the "active-GAD bag". FASEB J 2025; 39:e70383. [PMID: 39985303 PMCID: PMC11846017 DOI: 10.1096/fj.202401125rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/24/2025]
Abstract
Irritable bowel syndrome (IBS) is a multifactorial disorder of the gut-brain axis, characterized by visceral hypersensitivity (VH). Psychobiotics, through GABA synthesis, are good candidates to alleviate gastrointestinal discomfort. Here, we analyzed the GABA-producer Lactococcus lactis CNCM I-5388 as an active-enzyme postbiotic to relieve VH mediated by psychological stress. L. lactis CNCM I-5388 was inactivated by ethanol while maintaining its glutamate decarboxylase (GAD) activity. This EtOH-treated nonviable form was given daily orally for 1, 5, or 10 days to female Wistar rats in comparison with viable L. lactis CNCM I-5388 or vehicle. Visceral sensitivity was measured by electromyography before and after partial restraint stress (PRS). GABA was quantified in the stomach collected from rats and in the gastric compartment of TIM-1 human gut model in fed state. A daily treatment for 5 and 10 days by L. lactis CNCM I-5388 both in its viable and nonviable forms counteracted VH promoted by PRS. However, only viable L. lactis CNCM I-5388 tended to reduce VH after a single administration. After 5-day treatment, only under PRS conditions, the production of GABA within the stomach was enhanced in rats treated with viable or nonviable L. lactis CNCM I-5388. This increase was confirmed by using the TIM-1 human gut model. We found that a postbiotic with an active-GAD enzyme of L. lactis CNCM I-5388, similarly to its viable psychobiotic form, exerts anti-VH properties in an IBS-like rat model. These effects are associated with GABA production in the stomach where the low pH promotes GAD activity.
Collapse
Affiliation(s)
- Pedro Gomes
- Toulouse Biotechnology Institute (TBI)Université de Toulouse, CNRS, INRAE, INSAToulouseFrance
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| | - Valérie Laroute
- Toulouse Biotechnology Institute (TBI)Université de Toulouse, CNRS, INRAE, INSAToulouseFrance
| | - Catherine Beaufrand
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| | - Valérie Bézirard
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| | - Nathalie Aubry
- Toulouse Biotechnology Institute (TBI)Université de Toulouse, CNRS, INRAE, INSAToulouseFrance
| | - Chloé Liebgott
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| | - Jonna E. B. Koper
- Lesaffre Institute of Science and TechnologyLesaffre InternationalMarcq‐en‐BarœulFrance
| | - Elyse Parent
- Lesaffre Institute of Science and TechnologyLesaffre InternationalMarcq‐en‐BarœulFrance
| | - Nabil Bosco
- Lesaffre Institute of Science and TechnologyLesaffre InternationalMarcq‐en‐BarœulFrance
| | - Nathalie Ballet
- Lesaffre Institute of Science and TechnologyLesaffre InternationalMarcq‐en‐BarœulFrance
| | | | | | - Vassilia Theodorou
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| | - Muriel Cocaign‐Bousquet
- Toulouse Biotechnology Institute (TBI)Université de Toulouse, CNRS, INRAE, INSAToulouseFrance
| | - Hélène Eutamene
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| | - Muriel Mercier‐Bonin
- Toxalim (Research Centre in Food Toxicology)Université de Toulouse, INRAE, ENVT, INP‐Purpan, UPSToulouseFrance
| |
Collapse
|
10
|
Li J, Huang L, Xiao W, Kong J, Hu M, Pan A, Yan X, Huang F, Wan L. Multimodal insights into adult neurogenesis: An integrative review of multi-omics approaches. Heliyon 2025; 11:e42668. [PMID: 40051854 PMCID: PMC11883395 DOI: 10.1016/j.heliyon.2025.e42668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Adult neural stem cells divide to produce neurons that migrate to preexisting neuronal circuits in a process named adult neurogenesis. Adult neurogenesis is one of the most exciting areas of current neuroscience, and it may be involved in a range of brain functions, including cognition, learning, memory, and social and behavior changes. While there is a growing number of multi-omics studies on adult neurogenesis, generalized analyses from a multi-omics perspective are lacking. In this review, we summarize studies related to genomics, metabolomics, proteomics, epigenomics, transcriptomics, and microbiomics of adult neurogenesis, and then discuss their future research priorities and potential neighborhoods. This will provide theoretical guidance and new directions for future research on adult neurogenesis.
Collapse
Affiliation(s)
- Jin Li
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
- Yiyang Medical College, Yiyang, Hunan Province, China
| | - Leyi Huang
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Minghua Hu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| | - Fulian Huang
- Yiyang Medical College, Yiyang, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Xiangya School of Basic Medicine, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
11
|
Dang H, Feng P, Zhang S, Peng L, Xing S, Li Y, Wen X, Zhou L, Goswami S, Xiao M, Barker N, Sansonetti P, Kundu P. Maternal gut microbiota influence stem cell function in offspring. Cell Stem Cell 2025; 32:246-262.e8. [PMID: 39667939 DOI: 10.1016/j.stem.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/29/2024] [Accepted: 10/03/2024] [Indexed: 12/14/2024]
Abstract
The maternal microbiome influences child health. However, its impact on a given offspring's stem cells, which regulate development, remains poorly understood. To investigate the role of the maternal microbiome in conditioning the offspring's stem cells, we manipulated maternal microbiota using Akkermansia muciniphila. Different maternal microbiomes had distinct effects on proliferation and differentiation of neuronal and intestinal stem cells in the offspring, influencing their developmental trajectory, physiology, and long-term health. Transplantation of altered maternal microbiota into germ-free mice transmitted these stem cell phenotypes to the recipients' offspring. The progeny of germ-free mice selectively colonized with Akkermansia did not display these stem cell traits, emphasizing the importance of microbiome diversity. Metabolically more active maternal microbiomes enriched the levels of circulating short-chain fatty acids (SCFAs) and amino acids, leaving distinct transcriptomic imprints on the mTOR pathway of offsprings' stem cells. Blocking mTOR signaling during pregnancy eliminated the maternal-microbiome-mediated effects on stem cells. These results suggest a fundamental role of the maternal microbiome in programming offsprings' stem cells and represent a promising target for interventions.
Collapse
Affiliation(s)
- Haiyue Dang
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Panpan Feng
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Shuning Zhang
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Lihua Peng
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shuli Xing
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuchen Li
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiang Wen
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liqiang Zhou
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Shyamal Goswami
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Nick Barker
- Institute of Molecular and Cell Biology, Singapore and Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Philippe Sansonetti
- The Center for Microbes, Development and Health, Institut Pasteur of Shanghai-Chinese Academy of Sciences, Shanghai 200031, China
| | - Parag Kundu
- Laboratory for Microbiota-Host Interactions, The Center for Microbes, Development and Health, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
12
|
Wang Y, Li R, Tong R, Chen T, Sun M, Luo L, Li Z, Chen Y, Zhao Y, Zhang C, Wei L, Lin W, Chen H, Qian K, Chen AF, Liu J, Chen L, Li B, Wang F, Wang L, Su B, Pu J. Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age. Nat Immunol 2025; 26:308-322. [PMID: 39881000 PMCID: PMC11785523 DOI: 10.1038/s41590-024-02059-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/09/2024] [Indexed: 01/31/2025]
Abstract
A comprehensive understanding of the evolution of the immune landscape in humans across the entire lifespan at single-cell transcriptional and protein levels, during development, maturation and senescence is currently lacking. We recruited a total of 220 healthy volunteers from the Shanghai Pudong Cohort (NCT05206643), spanning 13 age groups from 0 to over 90 years, and profiled their peripheral immune cells through single-cell RNA-sequencing coupled with single T cell and B cell receptor sequencing, high-throughput mass cytometry, bulk RNA-sequencing and flow cytometry validation experiments. We revealed that T cells were the most strongly affected by age and experienced the most intensive rewiring in cell-cell interactions during specific age. Different T cell subsets displayed different aging patterns in both transcriptomes and immune repertoires; examples included GNLY+CD8+ effector memory T cells, which exhibited the highest clonal expansion among all T cell subsets and displayed distinct functional signatures in children and the elderly; and CD8+ MAIT cells, which reached their peaks of relative abundance, clonal diversity and antibacterial capability in adolescents and then gradually tapered off. Interestingly, we identified and experimentally verified a previously unrecognized 'cytotoxic' B cell subset that was enriched in children. Finally, an immune age prediction model was developed based on lifecycle-wide single-cell data that can evaluate the immune status of healthy individuals and identify those with disturbed immune functions. Our work provides both valuable insights and resources for further understanding the aging of the immune system across the whole human lifespan.
Collapse
MESH Headings
- Humans
- Aged
- Single-Cell Analysis/methods
- Adult
- Aged, 80 and over
- Middle Aged
- Infant
- Child
- Child, Preschool
- Male
- Female
- Adolescent
- Aging/immunology
- Aging/genetics
- Infant, Newborn
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Flow Cytometry
- Young Adult
- Receptors, Antigen, T-Cell/genetics
- Sequence Analysis, RNA
- T-Lymphocyte Subsets/immunology
- B-Lymphocytes/immunology
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghong Li
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Renyang Tong
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Taiwei Chen
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Mingze Sun
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lingjie Luo
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Li
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yifan Chen
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yichao Zhao
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Chensheng Zhang
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Wei
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Lin
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- Department of Gastroenterology and Hepatology, State Key Laboratory of Systems Medicine for Cancer, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kun Qian
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering, Institute of Medical Robotics and Shanghai Academy of Experimental Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bing Su
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Shanghai Jiao Tong University, Shanghai, China.
- Aging Biomarker Consortium, Beijing, China.
| |
Collapse
|
13
|
Yu W, Xiao Y, Jayaraman A, Yen YC, Lee HU, Pettersson S, Je HS. Microbial metabolites tune amygdala neuronal hyperexcitability and anxiety-linked behaviors. EMBO Mol Med 2025; 17:249-264. [PMID: 39910348 PMCID: PMC11821874 DOI: 10.1038/s44321-024-00179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 02/07/2025] Open
Abstract
Changes in gut microbiota composition have been linked to anxiety behavior in rodents. However, the underlying neural circuitry linking microbiota and their metabolites to anxiety behavior remains unknown. Using male C57BL/6J germ-free (GF) mice, not exposed to live microbes, increased anxiety-related behavior was observed correlating with a significant increase in the immediate early c-Fos gene in the basolateral amygdala (BLA). This phenomenon coincided with increased intrinsic excitability and spontaneous synaptic activity of BLA pyramidal neurons associated with reduced small conductance calcium-activated potassium (SK) channel currents. Importantly, colonizing GF mice to live microbes or the microbial-derived metabolite indoles reverted SK channel activities in BLA pyramidal neurons and reduced the anxiety behavioral phenotype. These results are consistent with a molecular mechanism by which microbes and or microbial-derived indoles, regulate functional changes in the BLA neurons. Moreover, this microbe metabolite regulation of anxiety links these results to ancient evolutionarily conserved defense mechanisms associated with anxiety-related behaviors in mammals.
Collapse
Affiliation(s)
- Weonjin Yu
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Yixin Xiao
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Anusha Jayaraman
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Yi-Chun Yen
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Hae Ung Lee
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore.
- Karolinska Institutet, Department of Dental Medicine, Stockholm, Sweden.
- School of Medical and Life Sciences, Sunway University, Sunway City, 47500, Malaysia.
- Department of Microbiology and Immunology, National University, Singapore, Singapore.
| | - H Shawn Je
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| |
Collapse
|
14
|
Labarta-Bajo L, Allen NJ. Astrocytes in aging. Neuron 2025; 113:109-126. [PMID: 39788083 PMCID: PMC11735045 DOI: 10.1016/j.neuron.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 12/11/2024] [Indexed: 01/12/2025]
Abstract
The mammalian nervous system is impacted by aging. Aging alters brain architecture, is associated with molecular damage, and can manifest with cognitive and motor deficits that diminish the quality of life. Astrocytes are glial cells of the CNS that regulate the development, function, and repair of neural circuits during development and adulthood; however, their functions in aging are less understood. Astrocytes change their transcriptome during aging, with astrocytes in areas such as the cerebellum, the hypothalamus, and white matter-rich regions being the most affected. While numerous studies describe astrocyte transcriptional changes in aging, many questions still remain. For example, how is astrocyte function altered by transcriptional changes that occur during aging? What are the mechanisms promoting astrocyte aged states? How do aged astrocytes impact brain function? This review discusses features of aged astrocytes and their potential triggers and proposes ways in which they may impact brain function and health span.
Collapse
Affiliation(s)
- Lara Labarta-Bajo
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Nicola J Allen
- Salk Institute for Biological Studies, Molecular Neurobiology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Birmann PT, Sinott A, Zugno GP, Rodrigues RR, Conceição FR, Sousa FSS, Collares T, Seixas FK, Savegnago L. The antidepressant effect of Komagataella pastoris KM 71 H in maternal separation mice model mediated by the microbiota-gut-brain axis. Behav Brain Res 2025; 476:115287. [PMID: 39393682 DOI: 10.1016/j.bbr.2024.115287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND The intestinal microbiota plays a fundamental role in maintaining host health, especially during childhood, a critical period for its establishment. Early life stress can lead to shifts in gut microbiota composition, thus increasing the risk of major depressive disorder (MDD) in adulthood. The supplementation with probiotics restores intestinal permeability and the health of gut microbial communities, therefore being potential study targets for the treatment of MDD. In this sense, the yeast Komagataella pastoris was reported as a promising probiotic with antidepressant effect. METHODS Hence, the present study aims to investigate this effect in mice submitted to maternal separation (MS) 3 h per day from PND2 to PND14. Adult mice and mothers were treated with K. pastoris KM71H (8 log UFC.g-1/per animal, i.g.) or PBS (500 µl, i.g.) for 14 days. After behavioral tests, the animals were euthanized, followed by hippocampi and intestines removal for biochemical analysis. RESULTS On behavioral tests, K. pastoris KM71H treatment reduced the immobility time in TST of adult mice and increased the grooming activity in splash test of adult mice and mothers induced by MS. The probiotic treatment restored plasma corticosterone levels and glucocorticoid receptor expression in hippocampi, alongside nitrate/nitrite levels and superoxide dismutase activity in intestine, in addition to reducing reactive species levels in both structures. Moreover, it also normalized the fecal pH and water content of feces. CONCLUSION Thus, we conclude that K. pastoris KM71H is a promising therapeutic strategy for the treatment of MDD.
Collapse
Affiliation(s)
- Paloma T Birmann
- Neurobiotechnology Research Group, Postgraduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Airton Sinott
- Neurobiotechnology Research Group, Postgraduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Giuliana P Zugno
- Neurobiotechnology Research Group, Postgraduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Rafael R Rodrigues
- Applied Immunology Laboratory, Postgraduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabricio R Conceição
- Applied Immunology Laboratory, Postgraduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fernanda S S Sousa
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Postgraduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Postgraduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Fabiana K Seixas
- Molecular and Cellular Oncology Research Group and Functional Genomics Laboratory, Postgraduate Program in Biotechnology, Technological Development Center, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Neurobiotechnology Research Group, Postgraduate Program in Biotechnology, Technologic Development Center, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
16
|
Nisa K, Arisandi R, Ibrahim N, Hardian H. Harnessing the power of probiotics to enhance neuroplasticity for neurodevelopment and cognitive function in stunting: a comprehensive review. Int J Neurosci 2025; 135:41-51. [PMID: 37963096 DOI: 10.1080/00207454.2023.2283690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Stunting become a global concern because it's not only affecting physical stature, but also affecting on neurodevelopment and cognitive function. These impacts are resulting in long-term consequences especially for human resources, such as poor-quality labor, decreased productivity due to decreasing of health quality, including immunity and cognitive aspect. DISCUSSION This comprehensive review found that based on many studies, there is an altered gut microbiota, or dysbiosis, in stunted children, causing the impairment of brain development through Microbiota-Gut Brain Axis (MGB Axis) mechanism. The administration of probiotics has been known affect MGBA by improving the physical and chemical gut barrier integrity, producing antimicrobial substance to inhibit pathogen, and recovering the healthy gut microbiota. Probiotics, along with healthy gut microbiota, produce SCFAs which have various positive impact on CNS, such as increase neurogenesis, support the development and function of microglia, reduce inflammatory signaling, improve the Blood Brain Barrier's (BBB's) integrity, produce neurotropic factors (e.g. BDNF, GDNF), and promote the formation of new synapse. Probiotics also could induce the production of IGF-1 by intestinal epithelial cells, which functioned as growth factor of multiple body tissues and resulted in improvement of linear growth as well as brain development. CONCLUSION These properties of probiotics made it become the promising and feasible new treatment approach for stunting. But since most of the studies in this field are conducted in animal models, it is necessary to translate animal data into human models and do additional study to identify the numerous components in the MGB axis and the effect of probiotics on human.
Collapse
Affiliation(s)
- Khairun Nisa
- Department of Physiology, University of Lampung, Bandar Lampung, Indonesia
| | - Rizki Arisandi
- Department of Physiology, University of Lampung, Bandar Lampung, Indonesia
| | - Nurhadi Ibrahim
- Department of Medical Physiology and Biophysics, Universitas Indonesia, Depok, Indonesia
| | - Hardian Hardian
- Department of Physiology, University of Diponegoro, Semarang, Indonesia
| |
Collapse
|
17
|
Du Q, Liu X, Zhang R, Hu G, Liu Q, Wang R, Ma W, Hu Y, Fan Z, Li J. Placental and Fetal Microbiota in Rhesus Macaque: A Case Study Using Metagenomic Sequencing. Am J Primatol 2025; 87:e23718. [PMID: 39716039 DOI: 10.1002/ajp.23718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/04/2024] [Accepted: 11/30/2024] [Indexed: 12/25/2024]
Abstract
Recent evidence challenging the notion of a sterile intrauterine environment has sparked research into the origins and effects of fetal microbiota on immunity development during gestation. Rhesus macaques (RMs) serve as valuable nonhuman primate models due to their similarities to humans in development, placental structure, and immune response. In this study, metagenomic analysis was applied to the placenta, umbilical cord, spleen, gastrointestinal tissues of an unborn RM fetus, and the maternal intestine, revealing the diversity and functionality of microbes in these tissues. Additionally, gut metagenomic data of adult Rhesus macaques from our previous study, along with data from a human fetus obtained from public databases, were included for comparison. We observed substantial microbial sharing between the mother and fetus, with the microbial composition of the placenta and umbilical cord more closely resembling that of the fetal organs than the maternal intestine. Notably, compared with other adult RMs, there was a clear convergence between maternal and fetal microbiota, alongside distinct differences between the microbiota of adults and the fetus, which underscores the unique microbial profiles in fetal environments. Furthermore, the fetal microbiota displayed a less developed carbohydrate metabolism capacity than adult RMs. It also shared antibiotic resistance genes with both maternal and adult RM microbiomes, indicating potential vertical transmission. Comparative analysis of the metagenomes between the RM fetus and a human fetus revealed significant differences in microbial composition and genes, yet also showed similarities in certain abundant microbiota. Collectively, our results contribute to a more comprehensive understanding of the intrauterine microbial environment in macaques.
Collapse
Affiliation(s)
- Qiao Du
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Xu Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Rusong Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Gang Hu
- SCU-SGHB Joint Laboratory on Nonhuman Primates Research, Sichuan Green-house Biotech Co. Ltd., Meishan, China
| | - Qinghua Liu
- SCU-SGHB Joint Laboratory on Nonhuman Primates Research, Sichuan Green-house Biotech Co. Ltd., Meishan, China
| | - Rui Wang
- SCU-SGHB Joint Laboratory on Nonhuman Primates Research, Sichuan Green-house Biotech Co. Ltd., Meishan, China
| | - Wen Ma
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Ying Hu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhenxin Fan
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Kollaparampil Kishanchand D, K A AK, Chandrababu K, Philips CA, Sivan U, Pulikaparambil Sasidharan BC. The Intricate Interplay: Microbial Metabolites and the Gut-Liver-Brain Axis in Parkinson's Disease. J Neurosci Res 2025; 103:e70016. [PMID: 39754366 DOI: 10.1002/jnr.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 11/21/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder marked by the depletion of dopaminergic neurons. Recent studies highlight the gut-liver-brain (GLB) axis and its role in PD pathogenesis. The GLB axis forms a dynamic network facilitating bidirectional communication between the gastrointestinal tract, liver, and central nervous system. Dysregulation within this axis, encompassing gut dysbiosis and microbial metabolites, is emerging as a critical factor influencing PD progression. Our understanding of PD was traditionally centered on neurodegenerative processes within the brain. However, examining PD through the lens of the GLB axis provides new insights. This review provides a comprehensive analysis of microbial metabolites, such as short-chain fatty acids (SCFAs), trimethylamine-N-oxide (TMAO), kynurenine, serotonin, bile acids, indoles, and dopamine, which are integral to PD pathogenesis by modulation of the GLB axis. Our extensive research included a comprehensive literature review and database searches utilizing resources such as gutMGene and gutMDisorder. These databases have been instrumental in identifying specific microbes and their metabolites, shedding light on the intricate relationship between the GLB axis and PD. This review consolidates existing knowledge and underscores the potential for targeted therapeutic interventions based on the GLB axis and its components, which offer new avenues for future PD research and treatment strategies. While the GLB axis is not a novel concept, this review is the first to focus specifically on its role in PD, highlighting the importance of integrating the liver and microbial metabolites as central players in the PD puzzle.
Collapse
Affiliation(s)
| | - Athira Krishnan K A
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Krishnapriya Chandrababu
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
| | - Cyriac Abby Philips
- Clinical and Translational Hepatology, The Liver Institute, Centre of Excellence in Gastrointestinal Sciences, Rajagiri Hospital, Aluva, Kerala, India
| | - Unnikrishnan Sivan
- Department of FSQA, FFE, Kerala University of Fisheries and Ocean Studies, Kochi, Kerala, India
| | - Baby Chakrapani Pulikaparambil Sasidharan
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Kochi, Kerala, India
- Centre for Excellence in Neurodegeneration and Brain Health, Kochi, Kerala, India
| |
Collapse
|
19
|
Jiang Z, Tabuchi C, Gayer SG, Bapat SP. Immune Dysregulation in Obesity. ANNUAL REVIEW OF PATHOLOGY 2025; 20:483-509. [PMID: 39854190 DOI: 10.1146/annurev-pathmechdis-051222-015350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The immune system plays fundamental roles in maintaining physiological homeostasis. With the increasing prevalence of obesity-a state characterized by chronic inflammation and systemic dyshomeostasis-there is growing scientific and clinical interest in understanding how obesity reshapes immune function. In this review, we propose that obesity is not merely an altered metabolic state but also a fundamentally altered immunological state. We summarize key seminal and recent findings that elucidate how obesity influences immune function, spanning its classical role in microbial defense, its contribution to maladaptive inflammatory diseases such as asthma, and its impact on antitumor immunity. We also explore how obesity modulates immune function within tissue parenchyma, with a particular focus on the role of T cells in adipose tissue. Finally, we consider areas for future research, including investigation of the durable aspects of obesity on immunological function even after weight loss, such as those observed with glucagon-like peptide-1 (GLP-1) receptor agonist treatment. Altogether, this review emphasizes the critical role of systemic metabolism in shaping immune cell functions, with profound implications for tissue homeostasis across various physiological contexts.
Collapse
Affiliation(s)
- Zewen Jiang
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| | - Chihiro Tabuchi
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| | - Sarah G Gayer
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| | - Sagar P Bapat
- Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;
| |
Collapse
|
20
|
Zhang J, Tan S, Lyu B, Yu M, Lan Y, Tang R, Fan Z, Guo P, Shi L. Differences in Gut Microbial Composition and Characteristics Among Three Populations of the Bamboo Pitviper ( Viridovipera stejnegeri). Ecol Evol 2024; 14:e70742. [PMID: 39691431 PMCID: PMC11651729 DOI: 10.1002/ece3.70742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/13/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024] Open
Abstract
The gut microbiota contributes to host health by facilitating nutrient uptake, digestion, energy metabolism, intestinal development, vitamin synthesis, and immunomodulation, and plays an important role in the growth and reproduction of the animal itself. Considering the paucity of research on the gut microbiota of wild snakes, this study focused on bamboo pitviper (Viridovipera stejnegeri) populations from Anhui, Guizhou, and Hunan, with multiple fecal samples collected from each population (six, five, and three, respectively). Total microbial DNA was extracted from the fecal samples using metagenomic next-generation sequencing and differences in gut microbial composition, abundance, and carbohydrate-active enzymes (CAZymes) were analyzed and compared among the three populations. Results showed no significant variance in the α-diversity of the gut microbes across the three populations, while principal coordinate analysis revealed significant differences in gut microbe composition. The four most abundant phyla in the gut microbiota of V. stejnegeri were Pseudomonadota, Bacteroidota, Actinomycetota, and Bacillota, while the four most abundant genera were Salmonella, Citrobacter, Bacteroides, and Yokenella. Linear discriminant analysis effect size demonstrated notable differences in gut microbial abundance among the three populations. Marked differences in CAZyme abundance were also observed across the microbial communities. Future studies should incorporate diverse ecological factors to evaluate their influence on the composition and function of gut microbiota.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinChina
| | - Songwen Tan
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinChina
| | - Bing Lyu
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinChina
| | - Min Yu
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinChina
| | - Yue Lan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life SciencesSichuan UniversityChengduChina
| | - Ruixiang Tang
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life SciencesSichuan UniversityChengduChina
| | - Zhenxin Fan
- Key Laboratory of Bioresources and Ecoenvironment (Ministry of Education), College of Life SciencesSichuan UniversityChengduChina
| | - Peng Guo
- Faculty of Agriculture, Forestry and Food EngineeringYibin UniversityYibinChina
| | - Lei Shi
- Xinjiang Key Laboratory for Ecological Adaptation and Evolution of Extreme Environment Biology, College of Life SciencesXinjiang Agricultural UniversityUrumqiChina
| |
Collapse
|
21
|
Wang I, Buffington SA, Salas R. Microbiota-Gut-Brain Axis in Psychiatry: Focus on Depressive Disorders. CURR EPIDEMIOL REP 2024; 11:222-232. [PMID: 40130013 PMCID: PMC11932714 DOI: 10.1007/s40471-024-00349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 03/26/2025]
Abstract
Purpose of Review Gut microbiota contribute to several physiological processes in the host. The composition of the gut microbiome is associated with different neurological and neurodevelopmental diseases. In psychiatric disease, stress may be a major factor leading to gut microbiota alterations. Depressive disorders are the most prevalent mental health issues worldwide and patients often report gastrointestinal symptoms. Accordingly, evidence of gut microbial alterations in depressive disorders has been growing. Here we review current literature revealing links between the gut microbiome and brain function in the context of depression. Recent Findings The gut-brain axis could impact the behavioral manifestation of depression and the underlying neuropathology via multiple routes: the HPA axis, immune function, the enteric nervous system, and the vagus nerve. Furthermore, we explore possible therapeutic interventions including fecal microbiota transplant or probiotic supplementation in alleviating depressive symptoms. Summary Understanding the mechanisms by which bidirectional communication along the gut-brain axis can be dysregulated in patients with depression could lead to the development of personalized, microbiome-targeted therapies for the treatment of this disorder.
Collapse
Affiliation(s)
- I–Ching Wang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shelly A. Buffington
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Ramiro Salas
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
- Center for Translational Research On Inflammatory Diseases, Michael E DeBakey VA Medical, Houston, TX, USA
- The Menninger Clinic, Houston, TX, USA
| |
Collapse
|
22
|
Dubey I, K N, G V, Rohilla G, Lalruatmawii, Naxine P, P J, Rachamalla M, Kushwaha S. Exploring the hypothetical links between environmental pollutants, diet, and the gut-testis axis: The potential role of microbes in male reproductive health. Reprod Toxicol 2024; 130:108732. [PMID: 39395506 DOI: 10.1016/j.reprotox.2024.108732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
The gut system, commonly referred to as one of the principal organs of the human "superorganism," is a home to trillions of bacteria and serves an essential physiological function in male reproductive failures or infertility. The interaction of the endocrine-immune system and the microbiome facilitates reproduction as a multi-network system. Some recent studies that link gut microbiota to male infertility are questionable. Is the gut-testis axis (GTA) real, and does it affect male infertility? As a result, this review emphasizes the interconnected links between gut health and male reproductive function via changes in gut microbiota. However, a variety of harmful (endocrine disruptors, heavy metals, pollutants, and antibiotics) and favorable (a healthy diet, supplements, and phytoconstituents) elements promote microbiota by causing dysbiosis and symbiosis, respectively, which eventually modify the activities of male reproductive organs and their hormones. The findings of preclinical and clinical studies on the direct and indirect effects of microbiota changes on testicular functions have revealed a viable strategy for exploring the GTA-axis. Although the GTA axis is poorly understood, it may have potential ties to reproductive issues that can be used for therapeutic purposes in the future.
Collapse
Affiliation(s)
- Itishree Dubey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Nandheeswari K
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Vigneshwaran G
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Gourav Rohilla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Lalruatmawii
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Pratik Naxine
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Jayapradha P
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon SK S7N 5E2, Canada
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
23
|
Zhao Y, Cordero OX, Tikhonov M. Linear-regression-based algorithms can succeed at identifying microbial functional groups despite the nonlinearity of ecological function. PLoS Comput Biol 2024; 20:e1012590. [PMID: 39536049 PMCID: PMC11588209 DOI: 10.1371/journal.pcbi.1012590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 11/25/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Microbial communities play key roles across diverse environments. Predicting their function and dynamics is a key goal of microbial ecology, but detailed microscopic descriptions of these systems can be prohibitively complex. One approach to deal with this complexity is to resort to coarser representations. Several approaches have sought to identify useful groupings of microbial species in a data-driven way. Of these, recent work has claimed some empirical success at de novo discovery of coarse representations predictive of a given function using methods as simple as a linear regression, against multiple groups of species or even a single such group (the ensemble quotient optimization (EQO) approach). Modeling community function as a linear combination of individual species' contributions appears simplistic. However, the task of identifying a predictive coarsening of an ecosystem is distinct from the task of predicting the function well, and it is conceivable that the former could be accomplished by a simpler methodology than the latter. Here, we use the resource competition framework to design a model where the "correct" grouping to be discovered is well-defined, and use synthetic data to evaluate and compare three regression-based methods, namely, two proposed previously and one we introduce. We find that regression-based methods can recover the groupings even when the function is manifestly nonlinear; that multi-group methods offer an advantage over a single-group EQO; and crucially, that simpler (linear) methods can outperform more complex ones.
Collapse
Affiliation(s)
- Yuanchen Zhao
- School of Physics, Nanjing University, Nanjing, Jiangsu, the People’s Republic of China
| | - Otto X. Cordero
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
24
|
Feng L, Cai X, Zou Q, Peng Y, Xu L, Wang L, Liu Q, Lou T. Exploring the management and treatment of IBD from the perspective of psychological comorbidities. Therap Adv Gastroenterol 2024; 17:17562848241290685. [PMID: 39421001 PMCID: PMC11483836 DOI: 10.1177/17562848241290685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The prevalence of anxiety, depression, and other psychological comorbidities among patients with inflammatory bowel disease (IBD) significantly exceeds that of the general population. Moreover, a bidirectional relationship exists between psychological comorbidities and IBD. This intricate interplay has substantial clinical implications, impacting treatment adherence, therapeutic efficacy, and disease recurrence rates. In this review, we explore the multifaceted mechanisms through which psychological factors influence IBD progression, treatment response, and prognosis. Specifically, we delve into the involvement of the hypothalamic-pituitary-adrenal axis, autonomic nervous system, enteric nervous system, microbiota-gut-brain axis, systemic inflammatory cytokines, and immune cell function. Additionally, we discuss the potential benefits of antidepressant therapy in mitigating IBD risk and the role of psychotropic drugs in reducing peripheral inflammation. Recognizing and addressing psychological comorbidity is pivotal in comprehensive IBD management. We advocate for the integration of biopsychosocial approaches into IBD treatment strategies, emphasizing the need for innovative psychological interventions as adjuncts to conventional therapies. Rigorous research investigating the impact of antidepressants and behavioral interventions on IBD-specific outcomes may herald a paradigm shift in IBD management.
Collapse
Affiliation(s)
- Lijuan Feng
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Xunchao Cai
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Qian Zou
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Yao Peng
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Long Xu
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Linlin Wang
- Department of Gastroenterology and Hepatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Qing Liu
- Department of Gastroenterology, Futian District Second People’s Hospital, Shenzhen 518049, China
| | - Ting Lou
- Health Management Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen 518055, China
| |
Collapse
|
25
|
Kerstens R, Ng YZ, Pettersson S, Jayaraman A. Balancing the Oral-Gut-Brain Axis with Diet. Nutrients 2024; 16:3206. [PMID: 39339804 PMCID: PMC11435118 DOI: 10.3390/nu16183206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Background: The oral microbiota is the second largest microbial community in humans. It contributes considerably to microbial diversity and health effects, much like the gut microbiota. Despite physical and chemical barriers separating the oral cavity from the gastrointestinal tract, bidirectional microbial transmission occurs between the two regions, influencing overall host health. Method: This review explores the intricate interplay of the oral-gut-brain axis, highlighting the pivotal role of the oral microbiota in systemic health and ageing, and how it can be influenced by diet. Results: Recent research suggests a relationship between oral diseases, such as periodontitis, and gastrointestinal problems, highlighting the broader significance of the oral-gut axis in systemic diseases, as well as the oral-gut-brain axis in neurological disorders and mental health. Diet influences microbial diversity in the oral cavity and the gut. While certain diets/dietary components improve both gut and oral health, others, such as fermentable carbohydrates, can promote oral pathogens while boosting gut health. Conclusions: Understanding these dynamics is key for promoting a healthy oral-gut-brain axis through dietary interventions that support microbial diversity and mitigate age-related health risks.
Collapse
Affiliation(s)
- Rebecca Kerstens
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| | - Yong Zhi Ng
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Duke-NUS Medical School, 8 College Rd., Singapore 169857, Singapore
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
- Faculty of Medical Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
- Department of Microbiology and Immunology, National University Singapore, Singapore 117545, Singapore
| | - Anusha Jayaraman
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433, Singapore
| |
Collapse
|
26
|
Misera A, Marlicz W, Podkówka A, Łoniewski I, Skonieczna-Żydecka K. Possible application of Akkermansia muciniphila in stress management. MICROBIOME RESEARCH REPORTS 2024; 3:48. [PMID: 39741949 PMCID: PMC11684984 DOI: 10.20517/mrr.2023.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 01/03/2025]
Abstract
Akkermansia muciniphila (A. muciniphila) is a promising candidate bacterium for stress management due to its beneficial effects on the microbiota-gut-brain axis (MGBA). As a well-known mucin-degrading bacterium in the digestive tract, A. muciniphila has demonstrated significant benefits for host physiology. Recent research highlights its potential in treating several neuropsychiatric disorders. Proposed mechanisms of action include the bacterium's outer membrane protein Amuc_1100 and potentially its extracellular vesicles (EVs), which interact with host immune receptors and influence serotonin pathways, which are crucial for emotional regulation. Despite its potential, the administration of probiotics containing A. muciniphila faces technological challenges, prompting the development of pasteurized forms recognized as safe by the European Food Safety Authority (EFSA). This review systematically examines the existing literature on the role of A. muciniphila in stress management, emphasizing the need for further research to validate its efficacy. The review follows a structured methodology, including comprehensive database searches and thematic data analysis, to provide a detailed understanding of the relationship between stress, microbiota, and A. muciniphila therapeutic potential.
Collapse
Affiliation(s)
- Agata Misera
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Wojciech Marlicz
- Department of Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin 71-252, Poland
| | - Albert Podkówka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | - Igor Łoniewski
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Szczecin 71-460, Poland
| | | |
Collapse
|
27
|
Borrego-Ruiz A, Borrego JJ. Influence of human gut microbiome on the healthy and the neurodegenerative aging. Exp Gerontol 2024; 194:112497. [PMID: 38909763 DOI: 10.1016/j.exger.2024.112497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
The gut microbiome plays a crucial role in host health throughout the lifespan by influencing brain function during aging. The microbial diversity of the human gut microbiome decreases during the aging process and, as a consequence, several mechanisms increase, such as oxidative stress, mitochondrial dysfunction, inflammatory response, and microbial gut dysbiosis. Moreover, evidence indicates that aging and neurodegeneration are closely related; consequently, the gut microbiome may serve as a novel marker of lifespan in the elderly. In this narrative study, we investigated how the changes in the composition of the gut microbiome that occur in aging influence to various neuropathological disorders, such as mild cognitive impairment (MCI), dementia, Alzheimer's disease (AD), and Parkinson's disease (PD); and which are the possible mechanisms that govern the relationship between the gut microbiome and cognitive impairment. In addition, several studies suggest that the gut microbiome may be a potential novel target to improve hallmarks of brain aging and to promote healthy cognition; therefore, current and future therapeutic interventions have been also reviewed.
Collapse
Affiliation(s)
- Alejandro Borrego-Ruiz
- Departamento de Psicología Social y de las Organizaciones, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Juan J Borrego
- Departamento de Microbiología, Universidad de Málaga, Málaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA, Plataforma BIONAND, Málaga, Spain.
| |
Collapse
|
28
|
Monselise EBI, Vyazmensky M, Scherf T, Batushansky A, Fishov I. D-Glutamate production by stressed Escherichia coli gives a clue for the hypothetical induction mechanism of the ALS disease. Sci Rep 2024; 14:18247. [PMID: 39107374 PMCID: PMC11303787 DOI: 10.1038/s41598-024-68645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
In the search for the origin of Amyotrophic Lateral Sclerosis disease (ALS), we hypothesized earlier (Monselise, 2019) that D-amino acids produced by stressed microbiome may serve as inducers of the disease development. Many examples of D-amino acid accumulation under various stress conditions were demonstrated in prokaryotic and eukaryotic cells. In this work, wild-type Escherichia coli, members of the digestive system, were subjected to carbon and nitrogen starvation stress. Using NMR and LC-MS techniques, we found for the first time that D-glutamate accumulated in the stressed bacteria but not in control cells. These results together with the existing knowledge, allow us to suggest a new insight into the pathway of ALS development: D-glutamate, produced by the stressed microbiome, induces neurobiochemical miscommunication setting on C1q of the complement system. Proving this insight may have great importance in preventive medicine of such MND modern-age diseases as ALS, Alzheimer, and Parkinson.
Collapse
Affiliation(s)
- Edna Ben-Izhak Monselise
- Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel.
| | - Maria Vyazmensky
- Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel
| | - Tali Scherf
- Department of Chemical Research Support, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Albert Batushansky
- Ilse Katz Institute for Nanoscale Science & Technology, Marcus Campus, Ben-Gurion University of the Negev, 8410501, Beer-Sheva, Israel
| | - Itzhak Fishov
- Department of Life Science, Bergman Campus, Ben-Gurion University of the Negev, 8441901, Beer-Sheva, Israel.
| |
Collapse
|
29
|
Fernandes C, Miranda MCC, Roque CR, Paguada ALP, Mota CAR, Florêncio KGD, Pereira AF, Wong DVT, Oriá RB, Lima-Júnior RCP. Is There an Interplay between Environmental Factors, Microbiota Imbalance, and Cancer Chemotherapy-Associated Intestinal Mucositis? Pharmaceuticals (Basel) 2024; 17:1020. [PMID: 39204125 PMCID: PMC11357004 DOI: 10.3390/ph17081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Interindividual variation in drug efficacy and toxicity is a significant problem, potentially leading to adverse clinical and economic public health outcomes. While pharmacogenetics and pharmacogenomics have long been considered the primary causes of such heterogeneous responses, pharmacomicrobiomics has recently gained attention. The microbiome, a community of microorganisms living in or on the human body, is a critical determinant of drug response and toxicity. Factors such as diet, lifestyle, exposure to xenobiotics, antibiotics use, illness, and genetics can influence the composition of the microbiota. Changes in the intestinal microbiota are particularly influential in drug responsiveness, especially in cancer chemotherapy. The microbiota can modulate an individual's response to a drug, affecting its bioavailability, clinical effect, and toxicity, affecting treatment outcomes and patient quality of life. For instance, the microbiota can convert drugs into active or toxic metabolites, influencing their efficacy and side effects. Alternatively, chemotherapy can also alter the microbiota, creating a bidirectional interplay. Probiotics have shown promise in modulating the microbiome and ameliorating chemotherapy side effects, highlighting the potential for microbiota-targeted interventions in improving cancer treatment outcomes. This opinion paper addresses how environmental factors and chemotherapy-induced dysbiosis impact cancer chemotherapy gastrointestinal toxicity.
Collapse
Affiliation(s)
- Camila Fernandes
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | | | - Cássia Rodrigues Roque
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology, and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza 60430-170, Brazil; (C.R.R.); (R.B.O.)
| | - Ana Lizeth Padilla Paguada
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Carlos Adrian Rodrigues Mota
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Katharine Gurgel Dias Florêncio
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Deysi Viviana Tenazoa Wong
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Reinaldo Barreto Oriá
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology, and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza 60430-170, Brazil; (C.R.R.); (R.B.O.)
| | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| |
Collapse
|
30
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
31
|
Chen Y, Li C, Wang X, Zhang CL, Ren ZG, Wang ZQ. Oral microbiota distinguishes patients with osteosarcoma from healthy controls. Front Cell Infect Microbiol 2024; 14:1383878. [PMID: 39055977 PMCID: PMC11269967 DOI: 10.3389/fcimb.2024.1383878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE The human microbiota plays a key role in cancer diagnosis, pathogenesis, and treatment. However, osteosarcoma-associated oral microbiota alterations have not yet been unraveled. The aim of this study was to explore the characteristics of oral microbiota in osteosarcoma patients compared to healthy controls, and to identify potential microbiota as a diagnostic tool for osteosarcoma. METHODS The oral microbiota was analyzed in osteosarcoma patients (n = 45) and matched healthy controls (n = 90) using 16S rRNA MiSeq sequencing technology. RESULTS The microbial richness and diversity of the tongue coat were increased in osteosarcoma patients as estimated by the abundance-based coverage estimator indices, the Chao, and observed operational taxonomy units (OTUs). Principal component analysis delineated that the oral microbial community was significant differences between osteosarcoma patients and healthy controls. 14 genera including Rothia, Halomonas, Rhodococcus, and Granulicatella were remarkably reduced, whereas Alloprevotella, Prevotella, Selenomonas, and Campylobacter were enriched in osteosarcoma. Eventually, the optimal four OTUs were identified to construct a microbial classifier by the random forest model via a fivefold cross-validation, which achieved an area under the curve of 99.44% in the training group (30 osteosarcoma patients versus 60 healthy controls) and 87.33% in the test group (15 osteosarcoma patients versus 30 healthy controls), respectively. Notably, oral microbial markers validated strong diagnostic potential distinguishing osteosarcoma patients from healthy controls. CONCLUSION This study comprehensively characterizes the oral microbiota in osteosarcoma and reveals the potential efficacy of oral microbiota-targeted biomarkers as a noninvasive biological diagnostic tool for osteosarcoma.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pathogen Biology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Chao Li
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Orthopaedic Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Chun Lei Zhang
- Department of Orthopaedic Surgery, Henan Provincial Chest Hospital, Zhengzhou University, Zhengzhou, China
| | - Zhi Gang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Pathogen Biology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Di Paola FJ, Alquati C, Conti G, Calafato G, Turroni S, D'Amico F, Ceccarelli C, Buttitta F, Bernardi A, Cuicchi D, Poggioli G, Turchetti D, Ferrari S, Cannizzaro R, Realdon S, Brigidi P, Ricciardiello L. Interplay between WNT/PI3K-mTOR axis and the microbiota in APC-driven colorectal carcinogenesis: data from a pilot study and possible implications for CRC prevention. J Transl Med 2024; 22:631. [PMID: 38970018 PMCID: PMC11227240 DOI: 10.1186/s12967-024-05305-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/16/2024] [Indexed: 07/07/2024] Open
Abstract
BACKGROUND Wnt/β-catenin signalling impairment accounts for 85% of colorectal cancers (CRCs), including sporadic and familial adenomatous polyposis (FAP) settings. An altered PI3K/mTOR pathway and gut microbiota also contribute to CRC carcinogenesis. We studied the interplay between the two pathways and the microbiota composition within each step of CRC carcinogenesis. METHODS Proteins and target genes of both pathways were analysed by RT-qPCR and IHC in tissues from healthy faecal immunochemical test positive (FIT+, n = 17), FAP (n = 17) and CRC (n = 15) subjects. CRC-related mutations were analysed through NGS and Sanger. Oral, faecal and mucosal microbiota was profiled by 16 S rRNA-sequencing. RESULTS We found simultaneous hyperactivation of Wnt/β-catenin and PI3K/mTOR pathways in FAP-lesions compared to CRCs. Wnt/β-catenin molecular markers positively correlated with Clostridium_sensu_stricto_1 and negatively with Bacteroides in FAP faecal microbiota. Alistipes, Lachnospiraceae, and Ruminococcaceae were enriched in FAP stools and adenomas, the latter also showing an overabundance of Lachnoclostridium, which positively correlated with cMYC. In impaired-mTOR-mutated CRC tissues, p-S6R correlated with Fusobacterium and Dialister, the latter also confirmed in the faecal-ecosystem. CONCLUSIONS Our study reveals an interplay between Wnt/β-catenin and PI3K/mTOR, whose derangement correlates with specific microbiota signatures in FAP and CRC patients, and identifies new potential biomarkers and targets to improve CRC prevention, early adenoma detection and treatment.
Collapse
Affiliation(s)
| | - Chiara Alquati
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Gabriele Conti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Calafato
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Federica D'Amico
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Claudio Ceccarelli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Alice Bernardi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Dajana Cuicchi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Gilberto Poggioli
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniela Turchetti
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Simona Ferrari
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Stefano Realdon
- Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Luigi Ricciardiello
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
33
|
Li X, Xiao D, Li C, Wu T, Li L, Li T, Pan X, Liu Q, Chi M, Li R, Jiao Y, Li P. Lavender essential oil alleviates depressive-like behavior in alcohol-withdrawn rats: Insights from gut metabolites and hippocampal transcriptome analysis. Biomed Pharmacother 2024; 176:116835. [PMID: 38810402 DOI: 10.1016/j.biopha.2024.116835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024] Open
Abstract
Lavender, an aromatic plant with a history dating back to ancient Egypt and Greece, is consumed because of its diverse pharmacological properties, including sedation, sleep aid, and antidepressant effects. However, the mechanisms underlying these antidepressant properties remain unclear. In this study, we explored the impact of lavender essential oil (LEO) inhalation on the diversity of gut microbiota, metabolites, and differential gene expression in the hippocampus of alcohol-withdrawn depressive rats. Additionally, we examined alterations in the hippocampal transient receptor potential (TRP) channel-mediated inflammatory regulation within the brain-gut axis of depressive rats. The results demonstrated a significant decrease in sucrose preference, diminished activity in the central zone of the open field test, and prolonged immobility time in the forced swim test in alcohol-withdrawn depressive rats, indicating the amelioration of depressive states following lavender essential oil inhalation. 16 S rDNA sequencing analysis revealed a significant reduction in Bacteroidota and Muribaculaceae in the gut of alcohol-withdrawn depressive rats, whereas lavender essential oil significantly increased the relative abundance of Muribaculaceae and other bacterial species. Metabolomic analysis identified 646 distinct metabolites as highly correlated biomarkers between the model and lavender essential oil groups. Furthermore, lavender essential oil inhalation significantly attenuated hippocampal inflammatory factors IL-2, IL-6, IL-1β, and TNF-α. This study identified elevated expression of Trpv4 and Calml4 in the hippocampal region of alcohol-withdrawn depressed rats and showed that lavender essential oil inhalation regulated aberrantly expressed genes. Our research suggests that lavender essential oil downregulates Trpv4, modulates inflammatory factors, and alleviates depressive-like behavior in alcohol withdrawal rats.
Collapse
Affiliation(s)
- Xin Li
- Department of Psychiatry, The Fourth Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Dan Xiao
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang, China; Department of Medicine and Health, Zhengzhou Research Institute of Harbin Institute of Technology, Zheng Zhou, He Nan, China
| | - Chengchong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Tong Wu
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Libo Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Tong Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Xin Pan
- The Third Hospital of Heilongjiang Province, Bei An, Heilongjiang, China
| | - Qi Liu
- The Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Minghe Chi
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China
| | - Runze Li
- School of Medicine and Health, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Yu Jiao
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang, China.
| |
Collapse
|
34
|
Qi Q, Wang L, Zhu Y, Li S, Gebremedhin MA, Wang B, Zhu Z, Zeng L. Unraveling the Microbial Symphony: Impact of Antibiotics and Probiotics on Infant Gut Ecology and Antibiotic Resistance in the First Six Months of Life. Antibiotics (Basel) 2024; 13:602. [PMID: 39061284 PMCID: PMC11274100 DOI: 10.3390/antibiotics13070602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024] Open
Abstract
We aimed to examine the effects of antibiotic and probiotic usage on the gut microbiota structure and the presence of antibiotic-resistance genes (ARGs) in infants during the first six months of life. Questionnaires and fecal samples were collected within three days of birth, two months, and six months to assess antibiotic and probiotic exposure. Gut microbiotas were sequenced via 16S rRNA, and ARGs were conducted by qPCR, including beta-lactam (mecA, blaTEM), tetracycline (tetM), fluoroquinolone (qnrS), aminoglycoside (aac(6')-Ib), and macrolide (ermB). Infants were categorized by antibiotic and probiotic usage and stratified by delivery mode, microbial composition, and ARG abundances were compared, and potential correlations were explored. A total of 189 fecal samples were analyzed in this study. The gut microbiota diversity (Chao1 index) was significantly lower in the "only probiotics" (PRO) group compared to the "neither antibiotics nor probiotics" (CON) group at six months for the CS stratification (p = 0.029). Compositionally, the abundance of core genus Bifidobacterium_pseudocatenulatum was less abundant for the antibiotic during delivery (IAP) group than that in the CON group within the first three days (p = 0.009), while core genus Enterococcus_faecium was more abundant in the PRO than that in the CON group (p = 0.021) at two months. ARGs were highly detected, with Enterococcus hosting tetM and Escherichia associated with blaTEM within three days of birth, though no correlation was found between Bifidobacterium and ARGs. These findings emphasized the critical importance of carefully managing antibiotic and probiotic exposures in early life, with implications for promoting lifelong health through preserving a healthy infant gut ecosystem.
Collapse
Affiliation(s)
- Qi Qi
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Liang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Yingze Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Shaoru Li
- Experimental Teaching Center, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China;
| | - Mitslal Abrha Gebremedhin
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Baozhu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
- Department of Health, Northwest Women’s and Children’s Hospital, Xi’an 710003, China
| | - Zhonghai Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
| | - Lingxia Zeng
- Department of Epidemiology and Biostatistics, School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an 710061, China; (Q.Q.); (L.W.); (Y.Z.); (M.A.G.); (B.W.)
- Center for Chronic Disease Control and Prevention, Global Health Institution, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi’an 710061, China
| |
Collapse
|
35
|
Zou H, Chen W, Hu B, Liu H, Zhao J. Testis–Gut-Reproduction Axis: The Key to Reproductive Health. Andrologia 2024; 2024:1-13. [DOI: 10.1155/2024/5020917] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Reproductive health is an important issue for humanity. In the context of the increasing incidence rate of male infertility, it is essential to find the factors that affect male reproductive health. Gastrointestinal health is closely related to reproductive health. Gastrointestinal hormones (GIH) and gut microbiota (GM), as important material foundations for gastrointestinal function, can promote or inhibit testicular reproductive function, including spermatogenesis, sperm maturation, androgen synthesis, and even broader male diseases such as sexual function, prostate cancer, etc. On the contrary, the functional health of the testes is also of great significance for the stability of gastrointestinal function. This review mainly discusses the important regulatory effects of GIH and GM on male reproductive function.
Collapse
Affiliation(s)
- Hede Zou
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenkang Chen
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baofeng Hu
- Qian’an Hospital of Traditional Chinese Medicine, Tangshan, Hebei, China
| | - Hanfei Liu
- Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jiayou Zhao
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Ratiner K, Ciocan D, Abdeen SK, Elinav E. Utilization of the microbiome in personalized medicine. Nat Rev Microbiol 2024; 22:291-308. [PMID: 38110694 DOI: 10.1038/s41579-023-00998-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Inter-individual human variability, driven by various genetic and environmental factors, complicates the ability to develop effective population-based early disease detection, treatment and prognostic assessment. The microbiome, consisting of diverse microorganism communities including viruses, bacteria, fungi and eukaryotes colonizing human body surfaces, has recently been identified as a contributor to inter-individual variation, through its person-specific signatures. As such, the microbiome may modulate disease manifestations, even among individuals with similar genetic disease susceptibility risks. Information stored within microbiomes may therefore enable early detection and prognostic assessment of disease in at-risk populations, whereas microbiome modulation may constitute an effective and safe treatment tailored to the individual. In this Review, we explore recent advances in the application of microbiome data in precision medicine across a growing number of human diseases. We also discuss the challenges, limitations and prospects of analysing microbiome data for personalized patient care.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany.
| |
Collapse
|
37
|
Stallmach A, Quickert S, Puta C, Reuken PA. The gastrointestinal microbiota in the development of ME/CFS: a critical view and potential perspectives. Front Immunol 2024; 15:1352744. [PMID: 38605969 PMCID: PMC11007072 DOI: 10.3389/fimmu.2024.1352744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Like other infections, a SARS-CoV-2 infection can also trigger Post-Acute Infection Syndromes (PAIS), which often progress into myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). ME/CFS, characterized by post-exercise malaise (PEM), is a severe multisystemic disease for which specific diagnostic markers or therapeutic concepts have not been established. Despite numerous indications of post-infectious neurological, immunological, endocrinal, and metabolic deviations, the exact causes and pathophysiology remain unclear. To date, there is a paucity of data, that changes in the composition and function of the gastrointestinal microbiota have emerged as a potential influencing variable associated with immunological and inflammatory pathways, shifts in ME/CFS. It is postulated that this dysbiosis may lead to intestinal barrier dysfunction, translocation of microbial components with increased oxidative stress, and the development or progression of ME/CFS. In this review, we detailed discuss the findings regarding alterations in the gastrointestinal microbiota and its microbial mediators in ME/CFS. When viewed critically, there is currently no evidence indicating causality between changes in the microbiota and the development of ME/CFS. Most studies describe associations within poorly defined patient populations, often combining various clinical presentations, such as irritable bowel syndrome and fatigue associated with ME/CFS. Nevertheless, drawing on analogies with other gastrointestinal diseases, there is potential to develop strategies aimed at modulating the gut microbiota and/or its metabolites as potential treatments for ME/CFS and other PAIS. These strategies should be further investigated in clinical trials.
Collapse
Affiliation(s)
- Andreas Stallmach
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Stefanie Quickert
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Christian Puta
- Department of Sports Medicine and Health Promotion, Friedrich-Schiller-University Jena, Jena, Germany
- Center for Sepsis Control and Care (CSCC), Jena University Hospital/Friedrich-Schiller-University Jena, Jena, Germany
- Center for Interdisciplinary Prevention of Diseases Related to Professional Activities, Jena, Germany
| | - Philipp A. Reuken
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| |
Collapse
|
38
|
Kouba BR, de Araujo Borba L, Borges de Souza P, Gil-Mohapel J, Rodrigues ALS. Role of Inflammatory Mechanisms in Major Depressive Disorder: From Etiology to Potential Pharmacological Targets. Cells 2024; 13:423. [PMID: 38474387 PMCID: PMC10931285 DOI: 10.3390/cells13050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The involvement of central and peripheral inflammation in the pathogenesis and prognosis of major depressive disorder (MDD) has been demonstrated. The increase of pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, IL-18, and TNF-α) in individuals with depression may elicit neuroinflammatory processes and peripheral inflammation, mechanisms that, in turn, can contribute to gut microbiota dysbiosis. Together, neuroinflammation and gut dysbiosis induce alterations in tryptophan metabolism, culminating in decreased serotonin synthesis, impairments in neuroplasticity-related mechanisms, and glutamate-mediated excitotoxicity. This review aims to highlight the inflammatory mechanisms (neuroinflammation, peripheral inflammation, and gut dysbiosis) involved in the pathophysiology of MDD and to explore novel anti-inflammatory therapeutic approaches for this psychiatric disturbance. Several lines of evidence have indicated that in addition to antidepressants, physical exercise, probiotics, and nutraceuticals (agmatine, ascorbic acid, and vitamin D) possess anti-inflammatory effects that may contribute to their antidepressant properties. Further studies are necessary to explore the therapeutic benefits of these alternative therapies for MDD.
Collapse
Affiliation(s)
- Bruna R. Kouba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Laura de Araujo Borba
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Pedro Borges de Souza
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| | - Joana Gil-Mohapel
- Island Medical Program, Faculty of Medicine, University of British Columbia, Victoria, BC V8P 5C2, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Ana Lúcia S. Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis 88040-900, SC, Brazil; (B.R.K.); (L.d.A.B.); (P.B.d.S.)
| |
Collapse
|
39
|
Apalowo OE, Adegoye GA, Obuotor TM. Microbial-Based Bioactive Compounds to Alleviate Inflammation in Obesity. Curr Issues Mol Biol 2024; 46:1810-1831. [PMID: 38534735 DOI: 10.3390/cimb46030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The increased prevalence of obesity with several other metabolic disorders, including diabetes and non-alcoholic fatty liver disease, has reached global pandemic proportions. Lifestyle changes may result in a persistent positive energy balance, hastening the onset of these age-related disorders and consequently leading to a diminished lifespan. Although suggestions have been raised on the possible link between obesity and the gut microbiota, progress has been hampered due to the extensive diversity and complexities of the gut microbiota. Being recognized as a potential biomarker owing to its pivotal role in metabolic activities, the dysregulation of the gut microbiota can give rise to a persistent low-grade inflammatory state associated with chronic diseases during aging. This chronic inflammatory state, also known as inflammaging, induced by the chronic activation of the innate immune system via the macrophage, is controlled by the gut microbiota, which links nutrition, metabolism, and the innate immune response. Here, we present the functional roles of prebiotics, probiotics, synbiotics, and postbiotics as bioactive compounds by underscoring their putative contributions to (1) the reduction in gut hyperpermeability due to lipopolysaccharide (LPS) inactivation, (2) increased intestinal barrier function as a consequence of the upregulation of tight junction proteins, and (3) inhibition of proinflammatory pathways, overall leading to the alleviation of chronic inflammation in the management of obesity.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Grace Adeola Adegoye
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA
| | | |
Collapse
|
40
|
Zhang L, Agrawal M, Ng SC, Jess T. Early-life exposures and the microbiome: implications for IBD prevention. Gut 2024; 73:541-549. [PMID: 38123972 PMCID: PMC11150004 DOI: 10.1136/gutjnl-2023-330002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
The early-life period is one of microbiome establishment and immune maturation. Early-life exposures are increasingly being recognised to play an important role in IBD risk. The composition of functions of the gut microbiome in the prenatal, perinatal, and postnatal period may be crucial towards development of health or disease, including IBD, later in life. We herein present a comprehensive summary of the interplay between early-life factors and microbiome perturbations, and their association with risk of IBD. In addition, we provide an overview of host and external factors in early life that are known to impact gut microbiome maturation and exposures implicated in IBD risk. Considering the emerging concept of IBD prevention, we propose strategies to minimise maternal and offspring exposure to potentially harmful variables and recommend protective measures during pregnancy and the postpartum period. This holistic view of early-life factors and microbiome signatures among mothers and their offspring will help frame our current understanding of their importance towards IBD pathogenesis and frame the roadmap for preventive strategies.
Collapse
Affiliation(s)
- Lin Zhang
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Manasi Agrawal
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- The Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York NY, New York, USA
| | - Siew C Ng
- Microbiota I-Center (MagIC), Hong Kong SAR, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tine Jess
- Center for Molecular Prediction of Inflammatory Bowel Disease (PREDICT), Department of Clinical Medicine, Aalborg University, Copenhagen, Denmark
- Department of Gastroenterology & Hepatology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
41
|
Shang W, Zhang S, Qian H, Huang S, Li H, Liu J, Chen D. Gut microbiota and sepsis and sepsis-related death: a Mendelian randomization investigation. Front Immunol 2024; 15:1266230. [PMID: 38361921 PMCID: PMC10867964 DOI: 10.3389/fimmu.2024.1266230] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
Background It is unclear what the causal relationship is between the gut microbiota and sepsis. Therefore, we employed Mendelian randomization (MR) to determine whether a causal link exists between the two. Methods This study used publicly available genome-wide association studies (GWAS) summary data of gut microbiota, sepsis, sepsis (critical care), and sepsis (28-day death in critical care) to perform a two-sample MR analysis. To ensure the robustness of the results, we also conducted a sensitivity analysis. Results For sepsis susceptibility, inverse variance weighted (IVW) estimates revealed that Victivallales (OR = 0.86, 95% CI, 0.78-0.94, p = 0.0017) was protective against sepsis, while Lentisphaerae (OR = 0.89, 95% CI, 0.80-0.99), Gammaproteobacteria (OR = 1.37, 95% CI, 1.08-1.73), Clostridiaceae1 (OR = 1.21, 95% CI, 1.04-1.40), RuminococcaceaeUCG011 (OR = 1.10, 95% CI, 1.01-1.20), Dialister (OR = 0.85, 95% CI, 0.74-0.97), and Coprococcus2 (OR = 0.81, 95% CI, 0.69-0.94) presented a suggestive association with the development of sepsis (all p < 0.05). For sepsis (critical care), IVW estimates indicated that Lentisphaerae (OR = 0.70, 95% CI, 0.53-0.93), Victivallales (OR = 0.67, 95% CI, 0.50-0.91), Anaerostipes (OR = 0.49, 95% CI, 0.31-0.76), LachnospiraceaeUCG004 (OR = 0.51, 95% CI, 0.34-0.77), and Coprococcus1 (OR = 0.66, 95% CI, 0.44-0.99) showed a suggestive negative correlation with sepsis (critical care) (all p < 0.05). For sepsis (28-day death in critical care), IVW estimates suggested that four bacterial taxa had a normally significant negative correlation with the risk of sepsis-related death, including Victivallales (OR = 0.54, 95% CI, 0.30-0.95), Coprococcus2 (OR = 0.34, 95% CI, 0.14-0.83), Ruminiclostridium6 (OR = 0.43, 95% CI, 0.22-0.83), and Coprococcus1 (OR = 0.45, 95% CI, 0.21-0.97), while two bacterial taxa were normally significantly positively linked to the risk of sepsis-related death, namely, Mollicutes (OR = 2.03, 95% CI, 1.01-4.08) and Bacteroidales (OR = 2.65, 95% CI, 1.18-5.96) (all p < 0.05). The robustness of the above correlations was verified by additional sensitivity analyses. Conclusion This MR research found that several gut microbiota taxa were causally linked to the risk of sepsis, sepsis in critical care, and sepsis-related 28-day mortality in critical care.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiao Liu
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dechang Chen
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Ojeda J, Vergara M, Ávila A, Henríquez JP, Fehlings M, Vidal PM. Impaired communication at the neuromotor axis during Degenerative Cervical Myelopathy. Front Cell Neurosci 2024; 17:1316432. [PMID: 38269114 PMCID: PMC10806149 DOI: 10.3389/fncel.2023.1316432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Degenerative Cervical Myelopathy (DCM) is a progressive neurological condition characterized by structural alterations in the cervical spine, resulting in compression of the spinal cord. While clinical manifestations of DCM are well-documented, numerous unanswered questions persist at the molecular and cellular levels. In this study, we sought to investigate the neuromotor axis during DCM. We use a clinically relevant mouse model, where after 3 months of DCM induction, the sensorimotor tests revealed a significant reduction in both locomotor activity and muscle strength compared to the control group. Immunohistochemical analyses showed alterations in the gross anatomy of the cervical spinal cord segment after DCM. These changes were concomitant with the loss of motoneurons and a decrease in the number of excitatory synaptic inputs within the spinal cord. Additionally, the DCM group exhibited a reduction in the endplate surface, which correlated with diminished presynaptic axon endings in the supraspinous muscles. Furthermore, the biceps brachii (BB) muscle exhibited signs of atrophy and impaired regenerative capacity, which inversely correlated with the transversal area of remnants of muscle fibers. Additionally, metabolic assessments in BB muscle indicated an increased proportion of oxidative skeletal muscle fibers. In line with the link between neuromotor disorders and gut alterations, DCM mice displayed smaller mucin granules in the mucosa layer without damage to the epithelial barrier in the colon. Notably, a shift in the abundance of microbiota phylum profiles reveals an elevated Firmicutes-to-Bacteroidetes ratio-a consistent hallmark of dysbiosis that correlates with alterations in gut microbiota-derived metabolites. Additionally, treatment with short-chain fatty acids stimulated the differentiation of the motoneuron-like NSC34 cell line. These findings shed light on the multifaceted nature of DCM, resembling a synaptopathy that disrupts cellular communication within the neuromotor axis while concurrently exerting influence on other systems. Notably, the colon emerges as a focal point, experiencing substantial perturbations in both mucosal barrier integrity and the delicate balance of intestinal microbiota.
Collapse
Affiliation(s)
- Jorge Ojeda
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Mayra Vergara
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Ariel Ávila
- Developmental Neurobiology Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Juan Pablo Henríquez
- Neuromuscular Studies Lab (NeSt Lab), Instituto de Anatomía, Histología y Patología, Facultad de Medicina, Universidad Austral de Chile, Valdivia, Chile
| | - Michael Fehlings
- Department of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Spinal Program, University Health Network, Toronto Western Hospital, Toronto, ON, Canada
| | - Pia M. Vidal
- Neuroimmunology and Regeneration of the Central Nervous System Unit, Biomedical Science Research Laboratory, Basic Sciences Department, Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
43
|
Sarkar A, McInroy CJA, Harty S, Raulo A, Ibata NGO, Valles-Colomer M, Johnson KVA, Brito IL, Henrich J, Archie EA, Barreiro LB, Gazzaniga FS, Finlay BB, Koonin EV, Carmody RN, Moeller AH. Microbial transmission in the social microbiome and host health and disease. Cell 2024; 187:17-43. [PMID: 38181740 PMCID: PMC10958648 DOI: 10.1016/j.cell.2023.12.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/07/2024]
Abstract
Although social interactions are known to drive pathogen transmission, the contributions of socially transmissible host-associated mutualists and commensals to host health and disease remain poorly explored. We use the concept of the social microbiome-the microbial metacommunity of a social network of hosts-to analyze the implications of social microbial transmission for host health and disease. We investigate the contributions of socially transmissible microbes to both eco-evolutionary microbiome community processes (colonization resistance, the evolution of virulence, and reactions to ecological disturbance) and microbial transmission-based processes (transmission of microbes with metabolic and immune effects, inter-specific transmission, transmission of antibiotic-resistant microbes, and transmission of viruses). We consider the implications of social microbial transmission for communicable and non-communicable diseases and evaluate the importance of a socially transmissible component underlying canonically non-communicable diseases. The social transmission of mutualists and commensals may play a significant, under-appreciated role in the social determinants of health and may act as a hidden force in social evolution.
Collapse
Affiliation(s)
- Amar Sarkar
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
| | - Cameron J A McInroy
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Siobhán Harty
- Independent, Tandy Court, Spitalfields, Dublin, Ireland
| | - Aura Raulo
- Department of Biology, University of Oxford, Oxford, UK; Department of Computing, University of Turku, Turku, Finland
| | - Neil G O Ibata
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mireia Valles-Colomer
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Katerina V-A Johnson
- Institute of Psychology, Leiden University, Leiden, the Netherlands; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joseph Henrich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Elizabeth A Archie
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Luis B Barreiro
- Committee on Immunology, University of Chicago, Chicago, IL, USA; Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Genetics, Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Francesca S Gazzaniga
- Molecular Pathology Unit, Cancer Center, Massachusetts General Hospital Research Institute, Charlestown, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada; Department of Biochemistry, University of British Columbia, Vancouver, BC, Canada
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Rachel N Carmody
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Andrew H Moeller
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
44
|
Jitte S, Keluth S, Bisht P, Wal P, Singh S, Murti K, Kumar N. Obesity and Depression: Common Link and Possible Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1425-1449. [PMID: 38747226 DOI: 10.2174/0118715273291985240430074053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 10/22/2024]
Abstract
Depression is among the main causes of disability, and its protracted manifestations could make it even harder to treat metabolic diseases. Obesity is linked to episodes of depression, which is closely correlated to abdominal adiposity and impaired food quality. The present review is aimed at studying possible links between obesity and depression along with targets to disrupt it. Research output in Pubmed and Scopus were referred for writing this manuscript. Obesity and depression are related, with the greater propensity of depressed people to gain weight, resulting in poor dietary decisions and a sedentary lifestyle. Adipokines, which include adiponectin, resistin, and leptin are secretory products of the adipose tissue. These adipokines are now being studied to learn more about the connection underlying obesity and depression. Ghrelin, a gut hormone, controls both obesity and depression. Additionally, elevated ghrelin levels result in anxiolytic and antidepressant-like effects. The gut microbiota influences the metabolic functionalities of a person, like caloric processing from indigestible nutritional compounds and storage in fatty tissue, that exposes an individual to obesity, and gut microorganisms might connect to the CNS through interconnecting pathways, including neurological, endocrine, and immunological signalling systems. The alteration of brain activity caused by gut bacteria has been related to depressive episodes. Monoamines, including dopamine, serotonin, and norepinephrine, have been widely believed to have a function in emotions and appetite control. Emotional signals stimulate arcuate neurons in the hypothalamus that are directly implicated in mood regulation and eating. The peptide hormone GLP-1(glucagon-like peptide- 1) seems to have a beneficial role as a medical regulator of defective neuroinflammation, neurogenesis, synaptic dysfunction, and neurotransmitter secretion discrepancy in the depressive brain. The gut microbiota might have its action in mood and cognition regulation, in addition to its traditional involvement in GI function regulation. This review addressed the concept that obesity-related low-grade mild inflammation in the brain contributes to chronic depression and cognitive impairments.
Collapse
Affiliation(s)
- Srikanth Jitte
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Saritha Keluth
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy, Kanpur 209305, Uttar Pradesh, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| |
Collapse
|
45
|
Sah RK, Nandan A, Kv A, S P, S S, Jose A, Venkidasamy B, Nile SH. Decoding the role of the gut microbiome in gut-brain axis, stress-resilience, or stress-susceptibility: A review. Asian J Psychiatr 2024; 91:103861. [PMID: 38134565 DOI: 10.1016/j.ajp.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Increased exposure to stress is associated with stress-related disorders, including depression, anxiety, and neurodegenerative conditions. However, susceptibility to stress is not seen in every individual exposed to stress, and many of them exhibit resilience. Thus, developing resilience to stress could be a big breakthrough in stress-related disorders, with the potential to replace or act as an alternative to the available therapies. In this article, we have focused on the recent advancements in gut microbiome research and the potential role of the gut-brain axis (GBA) in developing resilience or susceptibility to stress. There might be a complex interaction between the autonomic nervous system (ANS), immune system, endocrine system, microbial metabolites, and bioactive lipids like short-chain fatty acids (SCFAs), neurotransmitters, and their metabolites that regulates the communication between the gut microbiota and the brain. High fiber intake, prebiotics, probiotics, plant supplements, and fecal microbiome transplant (FMT) could be beneficial against gut dysbiosis-associated brain disorders. These could promote the growth of SCFA-producing bacteria, thereby enhancing the gut barrier and reducing the gut inflammatory response, increase the expression of the claudin-2 protein associated with the gut barrier, and maintain the blood-brain barrier integrity by promoting the expression of tight junction proteins such as claudin-5. Their neuroprotective effects might also be related to enhancing the expression of brain-derived neurotrophic factor (BDNF) and glucagon-like peptide (GLP-1). Further investigations are needed in the field of the gut microbiome for the elucidation of the mechanisms by which gut dysbiosis contributes to the pathophysiology of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ranjay Kumar Sah
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Amritasree Nandan
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Athira Kv
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India.
| | - Prashant S
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi 682 041, Kerala, India
| | - Sathianarayanan S
- NITTE (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Mangalore, India
| | - Asha Jose
- JSS College of Pharmacy, JSS Academy of Higher Education and research, Ooty 643001, Tamil Nadu, India
| | - Baskar Venkidasamy
- Department of Oral & Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600 077, Tamil Nadu, India.
| | - Shivraj Hariram Nile
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
46
|
Bahmani M, Mehrtabar S, Jafarizadeh A, Zoghi S, Heravi FS, Abbasi A, Sanaie S, Rahnemayan S, Leylabadlo HE. The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies. Curr Pharm Biotechnol 2024; 25:2089-2107. [PMID: 38288791 DOI: 10.2174/0113892010281892240116081031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.
Collapse
Affiliation(s)
- Mohaddeseh Bahmani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Zoghi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amin Abbasi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
47
|
Sangermani M, Desiati I, Jørgensen SM, Li JV, Andreassen T, Bathen TF, Giskeødegård GF. Stability in fecal metabolites amid a diverse gut microbiome composition: a one-month longitudinal study of variability in healthy individuals. Gut Microbes 2024; 16:2427878. [PMID: 39533520 PMCID: PMC11562901 DOI: 10.1080/19490976.2024.2427878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 10/02/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
An extensive network of microbial-host interactions exists in the gut, making the gut microbiome a complex ecosystem to untangle. The microbial composition and the fecal metabolites are important readouts to investigate intricate microbiota-diet-host interplay. However, this ecosystem is dynamic, and it is of interest to understand the degree and timescale of changes occurring in the gut microbiota, during disease as well as in healthy individuals. Cross-sectional study design is often used to investigate the microbiome, but this design provides a static snapshot and cannot provide evidence on the dynamic nature of the gut microbiome. Longitudinal studies are better suited to extrapolate causation in a study or assess changes over time. This study investigates longitudinal change in the gut microbiome and fecal metabolites in 14 healthy individuals with weekly sampling over a period of one-month (four time points), to elucidate the temporal changes occurring in the gut microbiome composition and fecal metabolites. Utilizing 16S rRNA amplicon sequencing for microbiome analysis and NMR spectroscopy for fecal metabolite characterization, we assessed the stability of these two types of measurable parameters in fecal samples during the period of one month. Our results show that the gut microbiome display large variations between healthy individuals, but relatively lower within-individual variations, which makes it possible to uniquely identify individuals. The fecal metabolites showed higher stability over time compared to the microbiome and exhibited consistently smaller variations both within and between individuals. This relative higher stability of the fecal metabolites suggests a balanced, consistent output even amid individual's differences in microbial composition and they can provide a viable complementary readout to better understand the microbiome activity.
Collapse
Affiliation(s)
- Matteo Sangermani
- Department of Public Health and Nursing, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs University Hospital, Trondheim, Norway
| | - Indri Desiati
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | | | - Jia V. Li
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Trygve Andreassen
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
- Central Staff, St. Olavs Hospital HF, Trondheim, Norway
| | - Tone F. Bathen
- Department of Circulation and Medical Imaging, NTNU, Trondheim, Norway
| | - Guro F. Giskeødegård
- Department of Public Health and Nursing, NTNU, Trondheim, Norway
- Department of Surgery, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
48
|
Coutry N, Gasmi I, Herbert F, Jay P. Mechanisms of intestinal dysbiosis: new insights into tuft cell functions. Gut Microbes 2024; 16:2379624. [PMID: 39042424 PMCID: PMC11268228 DOI: 10.1080/19490976.2024.2379624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
Symbiosis between the host and intestinal microbial communities is essential for human health. Disruption in this symbiosis is linked to gastrointestinal diseases, including inflammatory bowel diseases, as well as extra-gastrointestinal diseases. Unbalanced gut microbiome or gut dysbiosis contributes in multiple ways to disease frequency, severity and progression. Microbiome taxonomic profiling and metabolomics approaches greatly improved our understanding of gut dysbiosis features; however, the precise mechanisms involved in gut dysbiosis establishment still need to be clarified. The aim of this review is to present new actors and mechanisms underlying gut dysbiosis formation following parasitic infection or in a context of altered Paneth cells, revealing the existence of a critical crosstalk between Paneth and tuft cells to control microbiome composition.
Collapse
Affiliation(s)
- Nathalie Coutry
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Imène Gasmi
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Fabien Herbert
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Philippe Jay
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| |
Collapse
|
49
|
Čížková D, Schmiedová L, Kváč M, Sak B, Macholán M, Piálek J, Kreisinger J. The effect of host admixture on wild house mouse gut microbiota is weak when accounting for spatial autocorrelation. Mol Ecol 2024; 33:e17192. [PMID: 37933543 DOI: 10.1111/mec.17192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
The question of how interactions between the gut microbiome and vertebrate hosts contribute to host adaptation and speciation is one of the major problems in current evolutionary research. Using bacteriome and mycobiome metabarcoding, we examined how these two components of the gut microbiota vary with the degree of host admixture in secondary contact between two house mouse subspecies (Mus musculus musculus and M. m. domesticus). We used a large data set collected at two replicates of the hybrid zone and model-based statistical analyses to ensure the robustness of our results. Assuming that the microbiota of wild hosts suffers from spatial autocorrelation, we directly compared the results of statistical models that were spatially naive with those that accounted for spatial autocorrelation. We showed that neglecting spatial autocorrelation can strongly affect the results and lead to misleading conclusions. The spatial analyses showed little difference between subspecies, both in microbiome composition and in individual bacterial lineages. Similarly, the degree of admixture had minimal effects on the gut bacteriome and mycobiome and was caused by changes in a few microbial lineages that correspond to the common symbionts of free-living house mice. In contrast to previous studies, these data do not support the hypothesis that the microbiota plays an important role in host reproductive isolation in this particular model system.
Collapse
Affiliation(s)
- Dagmar Čížková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Lucie Schmiedová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Kváč
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
- Faculty of Agriculture and Technology, South Bohemia University, České Budějovice, Czech Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Miloš Macholán
- Laboratory of Mammalian Evolutionary Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Jaroslav Piálek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
50
|
Li X, Brejnrod A, Thorsen J, Zachariasen T, Trivedi U, Russel J, Vestergaard GA, Stokholm J, Rasmussen MA, Sørensen SJ. Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults. Nat Commun 2023; 14:8526. [PMID: 38135681 PMCID: PMC10746713 DOI: 10.1038/s41467-023-44289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Despite their crucial importance for human health, there is still relatively limited knowledge on how the gut resistome changes or responds to antibiotic treatment across ages, especially in the latter case. Here, we use fecal metagenomic data from 662 Danish infants and 217 young adults to fill this gap. The gut resistomes are characterized by a bimodal distribution driven by E. coli composition. The typical profile of the gut resistome differs significantly between adults and infants, with the latter distinguished by higher gene and plasmid abundances. However, the predominant antibiotic resistance genes (ARGs) are the same. Antibiotic treatment reduces bacterial diversity and increased ARG and plasmid abundances in both cohorts, especially core ARGs. The effects of antibiotic treatments on the gut microbiome last longer in adults than in infants, and different antibiotics are associated with distinct impacts. Overall, this study broadens our current understanding of gut resistome dynamics and the impact of antibiotic treatment across age groups.
Collapse
Affiliation(s)
- Xuanji Li
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Asker Brejnrod
- Department of Health Technology, Technical University of Denmark, Section of Bioinformatics, 2800 Kgs, Lyngby, Denmark
| | - Jonathan Thorsen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Trine Zachariasen
- Department of Health Technology, Technical University of Denmark, Section of Bioinformatics, 2800 Kgs, Lyngby, Denmark
| | - Urvish Trivedi
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Jakob Russel
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Gisle Alberg Vestergaard
- Department of Health Technology, Technical University of Denmark, Section of Bioinformatics, 2800 Kgs, Lyngby, Denmark
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
- Department of Food Science, Section of Microbiology and Fermentation, University of Copenhagen, 1958, Frederiksberg C, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
- Department of Food Science, Section of Microbiology and Fermentation, University of Copenhagen, 1958, Frederiksberg C, Denmark.
| | - Søren Johannes Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, 2100, Copenhagen, Denmark.
| |
Collapse
|