1
|
Chikin D, Petrov M, Loktionov P, Pichugov R, Antipov A. Boosting the Performance of a Zero-gap Flow Microbial Fuel Cell by Immobilized Redox Mediators. Chempluschem 2025; 90:e202400586. [PMID: 39754451 DOI: 10.1002/cplu.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 01/06/2025]
Abstract
Although microbial fuel cells (MFC) could be a promising energy source, their implementation is largely limited by low performance. There are several approaches to overcome this issue. For example, MFC performance can be enhanced using redox mediators (RM) capable of transferring electrons between microorganisms and MFC electrodes. The other, quite novel approach is to use zero-gap electrochemical cells, which minimize the distance between MFC electrodes and, therefore, its internal resistance. This work aims to investigate the compatibility of these approaches. First, a template electropolymerization of polypyrrole (PPy) on carbon felt was carried out in the presence of 2,7-anthraquinone disulfonate (AQDS) acting as an RM. These materials were then used as the anode of a zero-gap double chamber MFC inoculated with sediment from a natural water body and continuously fed with artificial wastewater. On the scales of 45 and 64 days, such cells exhibited power density of up to 900 mW m-2, while unmodified cells demonstrated values tens of times lower, indicating that RM appears to extensively incorporate weak electricigens from the inoculant in the MFC operation. PPy/AQDS electrodes retain electroactive properties during long-term tests, resulting in a theoretical turnover rate of AQDS molecules up to 590.
Collapse
Affiliation(s)
- Dmitry Chikin
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047, Moscow, Russia
- Lomonosov Moscow State University, 119991, Leninskiye Gory 1, Moscow, Russia
| | | | | | - Roman Pichugov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047, Moscow, Russia
| | - Anatoly Antipov
- Mendeleev University of Chemical Technology of Russia, Miusskaya sq. 9, 125047, Moscow, Russia
| |
Collapse
|
2
|
Ma P, Yin B, Wu M, Han M, Lv L, Li W, Zhang G, Ren Z. Synergistic enhancement of microbes-to-pollutants and inter-microbes electron transfer by Fe, N modified ordered mesoporous biochar in anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135030. [PMID: 38944989 DOI: 10.1016/j.jhazmat.2024.135030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Extracellular electron transfer was essential for degrading recalcitrant pollutants by anaerobic digestion (AD). Therefore, existing studies improved AD efficiency by enhancing the electron transfer from microbes-to-pollutants or inter-microbes. This study synthesized a novel Fe, N co-doped biochar (Fe, N-BC), which could enhance both the microbes-to-pollutants and inter-microbes electron transfer in AD. Detailed characterization data indicated that Fe, N-BC has an ordered mesoporous structure, high specific surface area (463.46 m2/g), and abundant redox functional groups (Fe2+/Fe3+, pyrrolic-N), which translate into excellent biocompatibility and electrochemical properties of Fe, N-BC. By adding Fe, N-BC, the stability and efficiency of the medium-temperature AD system in the treatment of methyl orange (MO) wastewater were improved: obtained a high degradation efficiency of MO (96.8 %) and enhanced the methane (CH4) production by 65 % compared to the control group. Meanwhile, Fe, N-BC reduced the accumulation of volatile fatty acids in the AD system, and the activity of anaerobic granular sludge electron transport system and coenzyme F420 was enhanced. In addition, Fe, N-BC showed positive enrichment of azo dyes decolorization bacteria (Georgenia) and direct interspecies electron transfer (DIET) synergistic partners (Syntrophobacter, Methanosarcina). Overall, the rapid degradation of MO and enhanced CH4 production in AD systems by Fe, N-BC is associated with enhancing two electronic pathways, i.e., microbes to MO and DIET between syntrophic bacteria and methanogenic archaea. This study introduced an enhanced "two-pathways of electron transfer" theory, realized by Fe, N-BC. These findings provided new insights into the interactions within AD systems and offer strategies for enhancing their performance with recalcitrant pollutants.
Collapse
Affiliation(s)
- Peiyu Ma
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Bingbing Yin
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Minhao Wu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Muda Han
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Longyi Lv
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| | - Weiguang Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, PR China
| | - Guangming Zhang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, PR China.
| |
Collapse
|
3
|
Zhou T, Chen H, Guo X, Zhang J, Meng Y, Luan F. AQDS-functionalized biochar enhances the bioreduction of Cr(VI) by Shewanella putrefaciens CN32. CHEMOSPHERE 2024; 363:142866. [PMID: 39019176 DOI: 10.1016/j.chemosphere.2024.142866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
The bioreduction of toxic chromium(VI) to sparingly soluble chromium(III) represents an environmentally friendly and cost-effective method for remediating Cr contamination. Usually, this bioreduction process is slow and requires the addition of quinone compounds as electron shuttles to enhance the reaction rate. However, the dissolved quinone compounds are susceptible to loss with water flow, thereby limiting their effectiveness. To address this challenge, this study loaded anthraquinone-2,6-disulfonate (AQDS), a typical quinone compound, onto biochar (BC) to create a novel solid-phase electron mediator (BC-AQDS) that can sustainably promote Cr(VI) bioreduction. The experimental results demonstrated that BC-AQDS significantly promoted the bioreduction of Cr(VI), where the reaction rate constant increased by 4.81 times, and the reduction extent increased by 38.31%. X-ray photoelectron spectroscopy and Fourier-Transform Infrared Spectroscopy analysis revealed that AQDS replaced the -OH functional groups on the BC surface to form BC-AQDS. Upon receiving electrons from Shewanella putrefaciens CN32, BC-AQDS was reduced to BC-AH2DS, which subsequently facilitated the reduction of Cr(VI) to Cr(III). This redox cycle between BC-AQDS and BC-AH2DS effectively enhanced the bioreduction rate of Cr(VI). Our study also found that a lower carbonization temperature of BC resulted in a higher surface -OH functional group content, enabling a greater load of AQDS and a more pronounced enhancement effect on the bioreduction of Cr(VI). Additionally, a smaller particle size of BC and a higher dosage of BC-AQDS further contributed to the enhancement of Cr(VI) bioreduction. The preparation of BC-AQDS in this study effectively improve the utilization of quinone compounds and offer a promising approach for enhancing the bioreduction of Cr(VI). It provides a more comprehensive reference for understanding and solving the problem of Cr pollution in groundwater.
Collapse
Affiliation(s)
- Tianhong Zhou
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou, 730070, Gansu, PR China
| | - Hai Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, Gansu, PR China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Xiaonan Guo
- College of Resources and Environmental Science of Hebei Normal University, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang, 050024, PR China
| | - Jianda Zhang
- College of Resources and Environmental Science of Hebei Normal University, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang, 050024, PR China
| | - Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China.
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
4
|
Lamba R, Yukta Y, Mondal J, Kumar R, Pani B, Singh B. Carbon Dots: Synthesis, Characterizations, and Recent Advancements in Biomedical, Optoelectronics, Sensing, and Catalysis Applications. ACS APPLIED BIO MATERIALS 2024; 7:2086-2127. [PMID: 38512809 DOI: 10.1021/acsabm.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Carbon nanodots (CNDs), a fascinating carbon-based nanomaterial (typical size 2-10 nm) owing to their superior optical properties, high biocompatibility, and cell penetrability, have tremendous applications in different interdisciplinary fields. Here, in this Review, we first explore the superiority of CNDs over other nanomaterials in the biomedical, optoelectronics, analytical sensing, and photocatalysis domains. Beginning with synthesis, characterization, and purification techniques, we even address fundamental questions surrounding CNDs such as emission origin and excitation-dependent behavior. Then we explore recent advancements in their applications, focusing on biological/biomedical uses like specific organelle bioimaging, drug/gene delivery, biosensing, and photothermal therapy. In optoelectronics, we cover CND-based solar cells, perovskite solar cells, and their role in LEDs and WLEDs. Analytical sensing applications include the detection of metals, hazardous chemicals, and proteins. In catalysis, we examine roles in photocatalysis, CO2 reduction, water splitting, stereospecific synthesis, and pollutant degradation. With this Review, we intend to further spark interest in CNDs and CND-based composites by highlighting their many benefits across a wide range of applications.
Collapse
Affiliation(s)
- Rohan Lamba
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Yukta Yukta
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Jiban Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh 175075, India
| | - Ram Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi 110075, India
| | - Balaram Pani
- Department of Chemistry, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi 110075, India
| | - Bholey Singh
- Department of Chemistry, Swami Shraddhanand College, University of Delhi, Delhi 110036, India
| |
Collapse
|
5
|
Cui S, Cong Y, Zhao W, Guo R, Wang X, Lv B, Liu H, Liu Y, Zhang Q. A novel multifunctional magnetically recyclable BiOBr/ZnFe 2O 4-GO S-scheme ternary heterojunction: Photothermal synergistic catalysis under Vis/NIR light and NIR-driven photothermal detection of tetracycline. J Colloid Interface Sci 2024; 654:356-370. [PMID: 37847950 DOI: 10.1016/j.jcis.2023.10.051] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023]
Abstract
The threat of tetracycline (TC) to human health has become a significant issue that cannot be disregarded. Herein, in order to achieve effective degradation and high-sensitivity detection of TC, BiOBr/ZnFe2O4-GO (BOB/ZFO-GO) S-scheme heterojunction nanocomposites (NCs) have been prepared using hydrothermal method. GO with high light absorption capacity accelerated the electron transfer between BiOBr and ZnFe2O4 nanocrystals and extended the light absorption region of BOB/ZFO NCs. The optimal GO addition of BOB/ZFO-GO NCs could degrade TC solution of 10 mg/L in 80 min and have a high reaction rate constant (k) of 0.072 min-1 under visible/NIR light. According to calculations, the non-metal photocatalyst (BOB/ZFO-GO(2)) with the best degradation performance had a photothermal conversion efficiency of up to 23%. Meanwhile, BOB/ZFO-GO NCs could be recycled by magnetic field. The excellent photocatalytic and photothermal performance could be maintained even after several cycles. In addition, a photothermal detection sensor based on a photothermal material/specific recognition element/tetracycline sandwich-type structure was constructed for the trace detection of TC concentration with a detection limit as low as 10-4 ng/mL. This research provides a unique idea for the multi-functionalization of photocatalysts and has a wide range of potential applications for the identification and treatment of organic wastewater.
Collapse
Affiliation(s)
- Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yuan Cong
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Xiaohan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Bohui Lv
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Hongbo Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China.
| |
Collapse
|
6
|
Lin X, Zhou Q, Xu H, Chen H, Xue G. Advances from conventional to biochar enhanced biotreatment of dyeing wastewater: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167975. [PMID: 37866601 DOI: 10.1016/j.scitotenv.2023.167975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
DW (Dyeing wastewater) contains a large amount of dye organic compounds. A considerable proportion of dye itself or its intermediate products generated during wastewater treatment process exhibits CMR (Carcinogenic/Mutagenic/Toxic to Reproduction) toxicity. Compared with physicochemical methods, biological treatment is advantageous in terms of operating costs and greenhouse gas emissions, and has become the indispensable mainstream technology for DW treatment. This article reviews the adsorption and degradation mechanisms of dye organic compounds in wastewater and analyzed different biological processes, ranging from traditional methods to processes enhanced by biochar (BC). For traditional biological processes, microbial characteristics and communities were discussed, as well as the removal efficiency of different bioreactors. BC has adsorption and redox electron mediated effects, and coupling with biological treatment can further enhance the process of biosorption and degradation. Although BC coupled biological treatment shows promising dye removal, further research is still needed to optimize the treatment process, especially in terms of technical and economic competitiveness.
Collapse
Affiliation(s)
- Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qifan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huanghuan Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200000, China.
| |
Collapse
|
7
|
Song Z, Liao R, Su X, Zhang X, Zhao Z, Sun F. Development of a novel three-dimensional biofilm-electrode system (3D-BES) loaded with Fe-modified biochars for enhanced pollutants removal in landfill leachate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166980. [PMID: 37699484 DOI: 10.1016/j.scitotenv.2023.166980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
Different mass ratio iron (Fe)-loaded biochars (FeBCs) were prepared from food waste and used in the three-dimensional biofilm-electrode systems (3D-BES) as particular electrodes for landfill leachate treatment. Compared to the unmodified biochar (BC), specific surface area of Fe-loaded biochars (FeBC-3 with a Fe: biochar of 0.2:1) increased from 63.01 m2/g to 184.14 m2/g, and pore capacity increased from 0.038 cm3/g to 0.111 cm3/g. FeBCs provided more oxygen-containing functional groups and exhibited excellent redox properties. Installed with FeBC-3 as particular electrode, both NH4+-N and chemical oxygen demand COD removals in 3D-BESs were well fitted with the pseudo-first-order model, with the maximum removal efficiencies of 98.6 % and 95.5 %, respectively. The batch adsorption kinetics experiments confirmed that the maximum NH4+-N (7.5 mg/g) and COD (21.8 mg/g) adsorption capacities were associated closely with the FeBC-3 biochar. In contrast to the 3D-BES with the unmodified biochar, Fe-loaded biochars significantly increased the abundance of microorganisms being capable of removing organics and ammonia. Meanwhile, the increased content of dehydrogenase (DHA) and electron transport system activity (ETSA) evidenced that FeBCs could enhance microbial internal activities and regulate electron transfer process among functional microorganisms. Consequently, it is concluded that Fe-loaded biochar to 3D-BES is effective in enhancing pollutant removals in landfill leachate and provided a reliable and effective strategy for refractory wastewater treatment.
Collapse
Affiliation(s)
- Zi Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Runfeng Liao
- Joint Research Centre for Protective Infrastructure Technology and Environmental Green Bioprocess, Department of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Xiaoli Su
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xin Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zilong Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Feiyun Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
8
|
Ye Q, Wu H, Li J, Huang Y, Zhang M, Yi Q, Yan B. Preparation of 1,8-dichloroanthraquinone/graphene oxide/poly (vinylidene fluoride) (1,8-AQ/GO/PVDF) mediator membrane and its application to catalyzing biodegradation of azo dyes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115681. [PMID: 37976925 DOI: 10.1016/j.ecoenv.2023.115681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Anthraquinone is a redox mediator that can effectively catalyze the degradation of azo dyes by promoting the electron transfer. In this study, a mediator membrane with poly (vinylidene fluoride) (PVDF) as the membrane support and 1,8-dichloroanthraquinone (1,8-AQ) and graphene oxide (GO) as the additives was prepared and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), mercury intrusion porosimetry (MIP), atomic force microscopy (AFM) and water contact angle. The introduction of GO increases the pure water flux of the membrane to 258.56±12.93 L/(m2·h). Its catalytic performances for the biodegradation of azo dyes were evaluated. Under the optimized conditions, the 1,8-AQ/GO/PVDF composite membrane is able to improve the dye degradation efficiency 2.2 times for reactive red X-3B and 1.1 times for acid red B, as compared with PVDF membrane. In addition, the mediator membrane maintains stable and high catalytic efficiency in the cyclic test and over 90 % dye degradation efficiency is still obtained after 5 cycles of decolorization. These results suggest the great application potentials of the 1,8-AQ/GO/PVDF membrane in the dye wastewater treatment.
Collapse
Affiliation(s)
- Qian Ye
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen 361024, China.
| | - Hanbin Wu
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Jin Li
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yinyin Huang
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Mingliang Zhang
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Qianqian Yi
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Bin Yan
- Department of Environmental Engineering, Xiamen University of Technology, Xiamen 361024, China; Xiamen Key Laboratory of Membrane Research and Application, Xiamen 361024, China
| |
Collapse
|
9
|
Chen X, Lin H, Dong Y, Li B, Liu C, Zhang L, Lu Y, Jin Q. Enhanced simultaneous removal of sulfamethoxazole and zinc (II) in the biochar-immobilized bioreactor: Performance, microbial structures and gene functions. CHEMOSPHERE 2023; 338:139466. [PMID: 37442390 DOI: 10.1016/j.chemosphere.2023.139466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/20/2023] [Accepted: 07/09/2023] [Indexed: 07/15/2023]
Abstract
Biochar-immobilized functional bacteria Bacillus SDB4 was applied for sulfamethoxazole (SMX) and zinc (Zn2+) simultaneous removal in the bioreactor. Under the optimal operating conditions of HRT of 10 h, pH of 7.0, SMX concentration of 10 mg L-1 and Zn2+ concentration of 50 mg L-1, the removal efficiencies of SMX and Zn2+ by the immobilized reactor (IR) were 97.42% and 96.14%, respectively, 20.39% and 30.15% higher than those by free bioreactor (FR). SEM-EDS and FTIR results revealed that the functional groups and light metals on the carrier promoted the biosorption and biotransformation of SMX and Zn2+ in IR. Moreover, the improvement of SMX and Zn2+ removal might be related to the abundance enhancement of functional bacteria and genes. Bacillus SDB4 responsible for SMX and Zn2+ removal was the main strain in IR and FR. Biochar increased the relative abundance of Bacillus from 32.12% in FR to 38.73% in IR and improved the abundances of functional genes (such as carbohydrate metabolism, replication and repair and membrane transport) by 1.82%-11.04%. The correlations among the physicochemical properties, microbial communities, functional genes and SMX-Zn2+ co-contaminant removal proposed new insights into the mechanisms of biochar enhanced microbial removal of antibiotics and heavy metals in biochar-immobilized bioreactors.
Collapse
Affiliation(s)
- Xi Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Jin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Al-Tohamy R, Ali SS, Xie R, Schagerl M, Khalil MA, Sun J. Decolorization of reactive azo dye using novel halotolerant yeast consortium HYC and proposed degradation pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115258. [PMID: 37478569 DOI: 10.1016/j.ecoenv.2023.115258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/29/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
The presence of high salinity levels in textile wastewater poses a significant obstacle to the process of decolorizing azo dyes. The present study involved the construction of a yeast consortium HYC, which is halotolerant and was recently isolated from wood-feeding termites. The consortium HYC was mainly comprised of Sterigmatomyces halophilus SSA-1575 and Meyerozyma guilliermondii SSA-1547. The developed consortium demonstrated a decolourization efficiency of 96.1% when exposed to a concentration of 50 mg/l of Reactive Black 5 (RB5). The HYC consortium significantly decolorized RB5 up to concentrations of 400 mg/l and in the presence of NaCl up to 50 g/l. The effects of physicochemical factors and the degradation pathway were systematically investigated. The optimal pH, salinity, temperature, and initial dye concentration were 7.0, 3%, 35 °C and 50 mg/l, respectively. The co-carbon source was found to be essential, and the addition of glucose resulted in a 93% decolorization of 50 mg/l RB5. The enzymatic activity of various oxido-reductases was assessed, revealing that NADH-DCIP reductase and azo reductase exhibited greater activity in comparison to other enzymes. UV-Visible (UV-vis) spectrophotometry, Fourier-transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC), and gas chromatography-mass spectrometry (GC-MS) were utilized to identify the metabolites generated during the degradation of RB5. Subsequently, a metabolic pathway was proposed. The confirmation of degradation was established through alterations in the functional groups and modifications in molecular weight. The findings indicate that this halotolerant yeast consortium exhibits promising potential of degrading dye compounds. The results of this study offer significant theoretical basis and crucial perspectives for the implementation of halotolerant yeast consortia in the bioremediation of textile and hypersaline wastewater. This approach is particularly noteworthy as it does not produce aromatic amines.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Rongrong Xie
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria.
| | - Maha A Khalil
- Biology Department, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
11
|
Rabiço F, Pedrino M, Narcizo JP, de Andrade AR, Reginatto V, Guazzaroni ME. Synthetic Biology Toolkit for a New Species of Pseudomonas Promissory for Electricity Generation in Microbial Fuel Cells. Microorganisms 2023; 11:2044. [PMID: 37630604 PMCID: PMC10458277 DOI: 10.3390/microorganisms11082044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Microbial fuel cells (MFCs) offer sustainable solutions for various biotechnological applications and are a crucial area of research in biotechnology. MFCs can effectively treat various refuse, such as wastewater and biodiesel waste by decomposing organic matter and generating electricity. Certain Pseudomonas species possess extracellular electron transfer (EET) pathways, enabling them to transfer electrons from organic compounds to the MFC's anode. Moreover, Pseudomonas species can grow under low-oxygen conditions, which is advantageous considering that the electron transfer process in an MFC typically leads to reduced oxygen levels at the anode. This study focuses on evaluating MFCs inoculated with a new Pseudomonas species grown with 1 g.L-1 glycerol, a common byproduct of biodiesel production. Pseudomonas sp. BJa5 exhibited a maximum power density of 39 mW.m-2. Also, the observed voltammograms and genome analysis indicate the potential production of novel redox mediators by BJa5. Additionally, we investigated the bacterium's potential as a synthetic biology non-model chassis. Through testing various genetic parts, including constitutive promoters, replication origins and cargos using pSEVA vectors as a scaffold, we assessed the bacterium's suitability. Overall, our findings offer valuable insights into utilizing Pseudomonas spp. BJa5 as a novel chassis for MFCs. Synthetic biology approaches can further enhance the performance of this bacterium in MFCs, providing avenues for improvement.
Collapse
Affiliation(s)
- Franciene Rabiço
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (F.R.); (M.P.)
| | - Matheus Pedrino
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (F.R.); (M.P.)
| | - Julia Pereira Narcizo
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (J.P.N.); (A.R.d.A.); (V.R.)
| | - Adalgisa Rodrigues de Andrade
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (J.P.N.); (A.R.d.A.); (V.R.)
| | - Valeria Reginatto
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil; (J.P.N.); (A.R.d.A.); (V.R.)
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (F.R.); (M.P.)
| |
Collapse
|
12
|
Da Y, Xu M, Ma J, Gao P, Zhang X, Yang G, Wu J, Song C, Long L, Chen C. Remediation of cadmium contaminated soil using K 2FeO 4 modified vinasse biochar. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115171. [PMID: 37348221 DOI: 10.1016/j.ecoenv.2023.115171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/14/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
The remediation of cadmium (Cd) contaminated soil is challenging for agricultural practices. In this study, a novel vinasse biochar modified by potassium ferrate (K2FeO4) was synthesized to immobilize Cd in agricultural soil. Three biochars [i.e., vinasse biochar (BC), KMnO4 modified vinasse biochar (MnBC), and K2FeO4 modified vinasse biochar (FeBC)] were applied to compare their efficiencies of Cd immobilization. The results showed that the orders of pH, ash content, and functional groups in different biochar were the same following BC < MnBC < FeBC. Scanning electron microscope images showed that the FeBC has more micropores than MnBC and BC. X-ray diffraction identified manganese oxides and iron oxides within MnBC and FeBC, indicating that Mn and Fe were well loaded on the biochar. In the soil-based pot experiment, both MnBC and FeBC significantly reduced soil available Cd by 23-38% and 36-45% compared with the control, respectively (p < 0.05). In addition, the application of BC, MnBC, and FeBC significantly increased the yield, chlorophyll, and vitamin C of Chinese cabbage (p < 0.05), and decreased its Cd uptake compared with the control. Notably, shoot Cd significantly reduced when 2% FeBC was applied (p < 0.05). Overall, using K2FeO4 to modify vinasse biochar enriched the surface functional groups and minerals as well as reduced Cd availability in soil and its uptake by the plant. Our study showed that K2FeO4 modified vinasse biochar could be used as an ideal amendment for the remediation of Cd-contaminated soil.
Collapse
Affiliation(s)
- Yinchen Da
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Min Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Jing Ma
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh 15261, USA
| | - Xiaohong Zhang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Yang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Wu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Chun Song
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Lulu Long
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Chen
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
13
|
Wang GY, Ding J, He L, Wu T, Ding MQ, Pang JW, Liu LM, Gao XL, Zhang LY, Ren NQ, Yang SS. Enhanced anaerobic degradation of azo dyes by biofilms supported by novel functionalized carriers. BIORESOURCE TECHNOLOGY 2023; 378:129013. [PMID: 37019414 DOI: 10.1016/j.biortech.2023.129013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Azo dyes are significant organic pollutants known for their adverse effects on humans and aquatic life. In this study, anthraquinone-2-sulfonate (AQS) immobilized on biochar (BC) was employed as a novel carrier in up-flow anaerobic fixed-bed reactors to induce specific biofilm formation and promote the biotransformation efficiency of azo dyes. Novel carrier-packed reactor 1 (R1) and BC-packed reactor 2 (R2) were used to treat red reactive 2 (RR2) under continuous operation for 175 days. The decolorization rates of R1 and R2 were 96-83% and 91-73%, respectively. The physicochemical characteristics and extracellular polymeric substances (EPS) of the biofilm revealed a more stable structure in R1. Furthermore, the microbial community in R1 interacted more closely with each other and contained more keystone genera. Overall, this study provides a feasible method for improving the biotransformation of azo dyes, thus providing support for practical applications in wastewater treatment projects.
Collapse
Affiliation(s)
- Guang-Yuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, CECEP Talroad Technology Co., Ltd., Beijing 100096, China
| | - Lu-Ming Liu
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd., Harbin 150090, China
| | - Xin-Lei Gao
- Guangdong Yuehai Water Investment Co., Ltd., Shenzhen 518021, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd., Harbin 150090, China
| | - Lu-Yan Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
14
|
Liang K, Liu T, Quan X. Simultaneous removal of refractory organic pollutants and nitrogen using electron shuttle suspended biofilm carriers in an integrated hydrolysis/acidification-anoxic/aerobic process. CHEMOSPHERE 2023; 333:138946. [PMID: 37196792 DOI: 10.1016/j.chemosphere.2023.138946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/26/2023] [Accepted: 05/14/2023] [Indexed: 05/19/2023]
Abstract
Azo dyes wastewater contains refractory pollutant and nitrogen, which threatens human health and ecological environment when discharged into environment directly. Electron shuttle (ES) is able to participate in the extracellular electron transfer, and thus enhances the removal efficiency of refractory pollutant. However, the continuous dosing of soluble ES would rise operation cost and cause contamination inevitably. In this study, a type of insoluble ES (carbonylated graphene oxide (C-GO)) was developed and melt blended into polyethylene (PE) to prepare novel C-GO-modified suspended carriers. Compared to those of conventional carrier (31.60%), the surface active sites of novel C-GO-modified carrier increased to 52.95%. An integrated hydrolysis/acidification (HA, filled with C-GO-modified carrier) - anoxic/aerobic (AO, filled with clinoptilolite-modified carrier) process was applied to remove azo dye acid red B (ARB) and nitrogen simultaneously. ARB removal efficiency was significantly improved in the reactor filled with C-GO-modified carriers (HA2) compared to the reactor filled with conventional PE carriers (HA1) or activated sludge (HA0). Total nitrogen (TN) removal efficiency of the proposed process increased by 25.95-32.64% compared to the reactor filled with activated sludge. Moreover, the intermediates of ARB were identified by liquid chromatograph-mass spectrometer (LC-MS), and the degradation pathway of ARB through ES was proposed. C-GO-modified carriers induced ARB-removal-related bacterial enrichment (such as Chloroflexi, Lactivibrio, Longilinea, Bacteroidales and Anaerolineaceae). Besides, the relative abundance of denitrifiers and nitrifiers in the AO reactor filled with clinoptilolite-modified carrier was increased by 11.60% compared with activated sludge. Copy numbers of genes related to membrane transport, carbon/energy metabolism and nitrogen metabolism increased significantly on the surface-modified carriers. This study proposed an efficient approach for simultaneous azo dyes and nitrogen removal, showing potential in actual application.
Collapse
Affiliation(s)
- Kun Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Tao Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
15
|
Wang Y, Wang H, Chen H, Xie H. Zero-valent iron effectively enhances valuable products generated from wastewater containing 2-bromo-4,6-dinitroaniline during hydrolysis acidification process: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130515. [PMID: 36463748 DOI: 10.1016/j.jhazmat.2022.130515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/09/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Treatment to remove 2-bromo-4,6-dinitroaniline (BDNA) from wastewater is urgently needed owing to its carcinogenicity, mutagenicity, and teratogenicity. Hydrolysis acidification (HA) is widely used to treat wastewater to improve biodegradability and resource utilization. Thus, a zero-valent iron (ZVI)-coupled HA system was operated to treat BDNA-containing wastewater for the first time, with emphasis on the performance and enhanced mechanisms. The improved results for BDNA removal efficiency and B/C ratio and the decreased acute toxicity suggested that ZVI addition benefited the formation of advantageous products for subsequent biological treatment. The volatile fatty acids (VFAs) ratio (CHAc:CHPr:CHBu) was optimized from 21:5:4 to 29:5:6, which benefited the utilization of wastewater resources for lipid generation. ZVI characterization, density functional theory (DFT) calculations, extracellular polymeric substances (EPS) analysis, molecular ecological network analysis (MENA), and redundancy analysis (RDA) of the microbial community further revealed that the enhanced mechanisms were summarized as beneficial interactions between ZVI and microorganisms. The ZVI was protected from excessive corrosion and lowered the oxidation-reduction potential (ORP), a key environmental factor, resulting in differences in microbial communities. These differences were presented as the enrichment of keystone species (e.g., Lactococcus), which function in BDNA reduction and VFAs generation. Moreover, ZVI promoted electron transfer, as proven by the high electron transfer capacity (ETC) of 0.452 and 0.361 μmol e-/g VSS in the RZVI and blank systems, respectively.
Collapse
Affiliation(s)
- Yanqiong Wang
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Hongwu Wang
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Hongbin Chen
- National Engineering Research Center for Urban Pollution Control, State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Zhejiang 310003, China
| |
Collapse
|
16
|
Sun Y, Su J, Ali A, Huang T, Zhang S, Min Y. Enhanced nitrate and cadmium removal performance at low carbon to nitrogen ratio through immobilized redox mediator granules and functional strains in a bioreactor. CHEMOSPHERE 2023; 312:137255. [PMID: 36402354 DOI: 10.1016/j.chemosphere.2022.137255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/11/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
The coexistence of multiple pollutants and lack of carbon sources are challenges for the biological treatment of wastewater. To achieve simultaneous removal of nitrate (NO3--N) and cadmium (Cd2+) at low carbon to nitrogen (C/N) ratios, 2-hydroxy-1,4-naphthoquinone (HNQ) was selected from three redox mediators as an accelerator for denitrification of heterotrophic strain Pseudomonas stutzeri sp. GF2 and autotrophic strain Zoogloea sp. FY6. Then, halloysite nanotubes immobilized with 2-hydroxy-1,4-naphthoquinone (HNTs-HNQ) were prepared and a bioreactor was constructed with immobilized redox mediator granules (IRMG) as the carrier, which was immobilized with HNTs-HNQ and inoculated with the two strains. The immobilized HNQ and the inoculated strains jointly improved the removal ability of NO3--N and Cd2+ and the removal efficiency of NO3--N (25.0 mg L-1) and Cd2+ (5.0 mg L-1) were 92.81% and 93.94% at C/N = 1.5 and hydraulic retention time (HRT) = 4 h. The Cd2+ was removed by adsorption of iron oxides (FeO(OH) and Fe3O4) and IRMG. The electron transport system activity (ETSA) of bacteria was improved and the composition of dissolved organic matter in the effluent was not affected by HNQ. The HNQ promoted the production of FeO(OH) and up-regulated the proportion of Zoogloea (54.75% in the microbial community), indicating that Zoogloea sp. FY6 was dominant in the microbial community. In addition, HNQ influenced the metabolic pathways and improved the relative abundance of some genes involved in nitrogen metabolism and the iron redox cycle.
Collapse
Affiliation(s)
- Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
17
|
Zhang B, Jiao W. Biochar facilitated bacterial reduction of Cr(VI) by Shewanella Putrefaciens CN32: Pathways and surface characteristics. ENVIRONMENTAL RESEARCH 2022; 214:113971. [PMID: 35952752 DOI: 10.1016/j.envres.2022.113971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Biochar can facilitate the microbial reduction of various pollutants in soil and groundwater environments, but its impact on Cr(VI) reduction by dissimilatory metal reducing bacteria (DMRB) remains to be systematically investigated. In this study, we prepared biochars at 500 °C and 700 °C from wheat straw and grass, and investigated the impact of these biochars on Cr(VI) reduction by a model DMRB, Shewanella Putrefaciens CN32 (CN32). Pristine biochars abiotically reduced Cr(VI), which decreased the concentration and toxicity of chromium to CN32 cells, and brought about higher overall Cr(VI) removal extent after CN32 were added sequentially; on the other hand, no enhancement effect were observed when biochars and CN32 were added simultaneously. Further tests between biologically reduced biochars and Cr(VI) revealed that the reaction rates between bioreduced biochars and Cr(VI) are relatively sluggish compared to that of direct Cr(VI) reduction by CN32, which prohibited biochars from directly accelerating the Cr(VI) reduction by CN32 in simultaneous-addition scenario. The relative importance of biochars' surface functional groups and surface areas on their reactivities towards Cr(VI) reduction were also investigated. This study deepened our understanding towards the role of biochar played during bacterial Cr(VI) reduction and could potentially contribute to optimizing the biochar-based Cr(VI) bioremediation strategies.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
18
|
Deng Y, Zhang K, Zou J, Li X, Wang Z, Hu C. Electron shuttles enhanced the removal of antibiotics and antibiotic resistance genes in anaerobic systems: A review. Front Microbiol 2022; 13:1004589. [PMID: 36160234 PMCID: PMC9490129 DOI: 10.3389/fmicb.2022.1004589] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
The environmental and epidemiological problems caused by antibiotics and antibiotic resistance genes have attracted a lot of attention. The use of electron shuttles based on enhanced extracellular electron transfer for anaerobic biological treatment to remove widespread antibiotics and antibiotic resistance genes efficiently from wastewater or organic solid waste is a promising technology. This paper reviewed the development of electron shuttles, described the mechanism of action of different electron shuttles and the application of enhanced anaerobic biotreatment with electron shuttles for the removal of antibiotics and related genes. Finally, we discussed the current issues and possible future directions of electron shuttle technology.
Collapse
|
19
|
Wang R, Li H, Liu Y, Chen J, Peng F, Jiang Z, Liu J, Song H. Efficient removal of azo dyes by Enterococcus faecalis R1107 and its application in simulated textile effluent treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113577. [PMID: 35526458 DOI: 10.1016/j.ecoenv.2022.113577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to exploit the potential of Enterococcus faecalis R1107 in the bioremediation of azo dyes. The maximal decolorization of Congo Red (CR), Reactive Black 5 (RB5), and Direct Black 38 (DB38) were 90.17%, 96.82%, and 81.95%, respectively, with the bacterial treatment for 48 h. 65.57% of CR and 72.64% of RB5 could be decolorized by E. faecalis R1107 within 48 h when the concentration of azo dyes increased up to 1000 mg/L. FTIR analysis confirmed that E. faecalis R1107 could effectively break down the chemical structures of three azo dyes. E. faecalis R1107 alleviated the phytotoxicity of azo dyes and improved seed germination, which contributed to the increase in the lengths of roots, stems, and leaves of Vigna radiata seedlings. Transcriptomic analysis suggested that the gene regulatory networks in E. faecalis R1107 synergistically improved the degradation and detoxification of RB5, including the major metabolic pathways, the secondary metabolism, the transport system, the amino acid metabolic pathways, and the signal transduction systems. Simulated textile effluent (STE) was used to mimic real textile effluent to evaluate the bioremediation potential of E. faecalis R1107, and 72.79% STE can be decolorized after E. faecalis R1107 treatment for 48 h. In summary, our study demonstrated that E. faecalis R1107 might be well suitable for potential applications in the bioremediation of textile effluent.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Yanfang Liu
- Hubei Academy of Scientific and Technical Information, Wuhan 430071, PR China
| | - Jianhui Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Fang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Industrial Biotechnology, School of Life Science, Hubei University, Wuhan 430062, PR China.
| | - Huiting Song
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
20
|
Wei X, Deng S, Chen D, Wang L, Yang W. Limonene‐derived hollow polymer particles: Preparation and application for the removal of dyes and heavy metal ions. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Wei
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
- School of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Siyu Deng
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
- School of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Dong Chen
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
- School of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Li Wang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
- School of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering Beijing University of Chemical Technology Beijing China
- School of Materials Science and Engineering Beijing University of Chemical Technology Beijing China
- Beijing Advanced Innovation Centre for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing China
| |
Collapse
|
21
|
Rossi MM, Alfano S, Amanat N, Andreini F, Lorini L, Martinelli A, Petrangeli Papini M. A Polyhydroxybutyrate (PHB)-Biochar Reactor for the Adsorption and Biodegradation of Trichloroethylene: Design and Startup Phase. Bioengineering (Basel) 2022; 9:bioengineering9050192. [PMID: 35621470 PMCID: PMC9137886 DOI: 10.3390/bioengineering9050192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/26/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, polyhydroxy butyrate (PHB) and biochar from pine wood (PWB) are used in a mini-pilot scale biological reactor (11.3 L of geometric volume) for trichloroethylene (TCE) removal (80 mgTCE/day and 6 L/day of flow rate). The PHB-biochar reactor was realized with two sequential reactive areas to simulate a multi-reactive permeable barrier. The PHB acts as an electron donor source in the first “fermentative” area. First, the thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses were performed. The PHB-powder and pellets have different purity (96% and 93% w/w) and thermal properties. These characteristics may affect the biodegradability of the biopolymer. In the second reactive zone, the PWB works as a Dehalococcoides support and adsorption material since its affinity for chlorinated compounds and the positive effect of the “coupled adsorption and biodegradation” process has been already verified. A specific dechlorinating enriched culture has been inoculated in the PWB zone to realize a coupled adsorption and biodegradation process. Organic acids were revealed since the beginning of the test, and during the monitoring period the reductive dichlorination anaerobic pathway was observed in the first zone; no chlorinated compounds were detected in the effluent thanks to the PWB adsorption capacity.
Collapse
Affiliation(s)
- Marta M. Rossi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
- Correspondence:
| | - Sara Alfano
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | - Neda Amanat
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | | | - Laura Lorini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | - Andrea Martinelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| | - Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (S.A.); (N.A.); (L.L.); (A.M.); (M.P.P.)
| |
Collapse
|
22
|
Chang ZY, Wang ZY, Zhang R, Yu L. Acceleration of biotic decolorization and partial mineralization of methyl orange by a photo-assisted n-type semiconductor. CHEMOSPHERE 2022; 291:132846. [PMID: 34767853 DOI: 10.1016/j.chemosphere.2021.132846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
In this study, a n-type semiconductor perylene diimide (PDI) was coupled with biodegradation to accelerate the biotic decolorization and mineralization of methyl orange (MO) under light condition. The decolorization rates (k1) of MO in pure and mixed cultures with PDI were promoted by 1.35 and 1.79 folds, respectively, comparing to the cultures without PDI. The total mineralization efficiency of 4-aminobenzenesulfonic acid (4-ABA) was achieved to 22.10 ± 0.84% when in the presence of PDI. The quinone-like group and oxidation-reduction capacity of PDI were detected by Fourier transform infrared spectroscopy and cyclic voltammetry, respectively, but the enhancement on the biotic decolorization of MO was not promoted under dark condition indicating that microbial extracellular electron transfer was not promoted. The 4-ABA was confirmed to be partially mineralized when the PDI exposure to light. The generated free radicals i.e., h+, ⸱OH, was demonstrated as active species to accelerate the decolorization and mineralization of MO by ESR test and radical quenching experiments. The bond breaking of MO and 4-ABA molecules were successfully predicted by density functional theory calculations and were further proven by liquid-chromatography mass spectra. The synergistic mechanism of decolorization and mineralization of MO by microorganism and photocatalysis was proposed. Moreover, High-throughput sequencing and Live/dead cell results indicated that the presence of PDI has no obvious toxicity to the microorganisms and will not change the microbial communities during the short-term treatment period. The results of study provided a biological intimate photocatalytic material and suggested a feasible way for its combination with biodegradation of azo dyes.
Collapse
Affiliation(s)
- Zhong-Yue Chang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zi-Yang Wang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Rui Zhang
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|