1
|
Stetler-Stevenson WG. The Continuing Saga of Tissue Inhibitor of Metalloproteinase 2: Emerging Roles in Tissue Homeostasis and Cancer Progression. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1336-1352. [PMID: 37572947 PMCID: PMC10548276 DOI: 10.1016/j.ajpath.2023.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
Tissue inhibitors of metalloproteinases (TIMPs) are a conserved family of proteins that were originally identified as cytokine-like erythroid growth factors. Subsequently, TIMPs were characterized as endogenous inhibitors of matrixin proteinases. These proteinases are the primary mediators of extracellular matrix turnover in pathologic conditions, such as cancer invasion and metastasis. Thus, TIMPs were immediately recognized as important regulators of tissue homeostasis. However, TIMPs also demonstrate unique biological activities that are independent of metalloproteinase regulation. Although often overlooked, these non-protease-mediated TIMP functions demonstrate a variety of direct cellular effects of potential therapeutic value. TIMP2 is the most abundantly expressed TIMP family member, and ongoing studies show that its tumor suppressor activity extends beyond protease inhibition to include direct modulation of tumor, endothelial, and fibroblast cellular responses in the tumor microenvironment. Recent data suggest that TIMP2 can suppress both primary tumor growth and metastatic niche formation. TIMP2 directly interacts with cellular receptors and matrisome elements to modulate cell signaling pathways that result in reduced proliferation and migration of neoplastic, endothelial, and fibroblast cell populations. These effects result in enhanced cell adhesion and focal contact formation while reducing tumor and endothelial proliferation, migration, and epithelial-to-mesenchymal transitions. These findings are consistent with TIMP2 homeostatic functions beyond simple inhibition of metalloprotease activity. This review examines the ongoing evolution of TIMP2 function, future perspectives in TIMP research, and the therapeutic potential of TIMP2.
Collapse
Affiliation(s)
- William G Stetler-Stevenson
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
2
|
Santos GL, DeGrave AN, Rehman A, Al Disi S, Xhaxho K, Schröder H, Bao G, Meyer T, Tiburcy M, Dworatzek E, Zimmermann WH, Lutz S. Using different geometries to modulate the cardiac fibroblast phenotype and the biomechanical properties of engineered connective tissues. BIOMATERIALS ADVANCES 2022; 139:213041. [PMID: 35909053 DOI: 10.1016/j.bioadv.2022.213041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Tissue engineering with human cardiac fibroblasts (CF) allows identifying novel mechanisms and anti-fibrotic drugs in the context of cardiac fibrosis. However, substantial knowledge on the influences of the used materials and tissue geometries on tissue properties and cell phenotypes is necessary to be able to choose an appropriate model for a specific research question. As there is a clear lack of information on how CF react to the mold architecture in engineered connective tissues (ECT), we first compared the effect of two mold geometries and materials with different hardnesses on the biomechanical properties of ECT. We could show that ECT, which formed around two distant poles (non-uniform model) were less stiff and more strain-resistant than ECT, which formed around a central rod (uniform model), independent of the materials used for poles and rods. Next, we investigated the cell state and could demonstrate that in the uniform versus non-uniform model, the embedded cells have a higher cell cycle activity and display a more pronounced myofibroblast phenotype. Differential gene expression analysis revealed that uniform ECT displayed a fibrosis-associated gene signature similar to the diseased heart. Furthermore, we were able to identify important relationships between cell and tissue characteristics, as well as between biomechanical tissue parameters by implementing cells from normal heart and end-stage heart failure explants from patients with ischemic or dilated cardiomyopathy. Finally, we show that the application of pro- and anti-fibrotic factors in the non-uniform and uniform model, respectively, is not sufficient to mimic the effect of the other geometry. Taken together, we demonstrate that modifying the mold geometry in tissue engineering with CF offers the possibility to compare different cellular phenotypes and biomechanical tissue properties.
Collapse
Affiliation(s)
- Gabriela L Santos
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Alisa N DeGrave
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Abdul Rehman
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Sara Al Disi
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany
| | - Kristin Xhaxho
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany
| | - Helen Schröder
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany
| | - Guobin Bao
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Tim Meyer
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany
| | - Elke Dworatzek
- Charité - Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, and Berliner Institute of Health, Germany; DZHK (German Center for Cardiovascular Research) partner site, Berlin, Germany
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Germany; Center for Neurodegenerative Diseases (DZNE), Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Goettingen, Germany; DZHK (German Center for Cardiovascular Research) partner site, Goettingen, Germany.
| |
Collapse
|
3
|
Canadian Contributions in Fibroblast Biology. Cells 2022; 11:cells11152272. [PMID: 35892569 PMCID: PMC9331635 DOI: 10.3390/cells11152272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Fibroblasts are stromal cells found in virtually every tissue and organ of the body. For many years, these cells were often considered to be secondary in functional importance to parenchymal cells. Over the past 2 decades, focused research into the roles of fibroblasts has revealed important roles for these cells in the homeostasis of healthy tissue, and has demonstrated that activation of fibroblasts to myofibroblasts is a key step in disease initiation and progression in many tissues, with fibrosis now recognized as not only an outcome of disease, but also a central contributor to tissue dysfunction, particularly in the heart and lungs. With a growing understanding of both fibroblast and myofibroblast heterogeneity, and the deciphering of the humoral and mechanical cues that impact the phenotype of these cells, fibroblast biology is rapidly becoming a major focus in biomedical research. In this review, we provide an overview of fibroblast and myofibroblast biology, particularly in the heart, and including a discussion of pathophysiological processes such as fibrosis and scarring. We then discuss the central role of Canadian researchers in moving this field forwards, particularly in cardiac fibrosis, and highlight some of the major contributions of these individuals to our understanding of fibroblast and myofibroblast biology in health and disease.
Collapse
|
4
|
Handel AE, Cheuk S, Dhalla F, Maio S, Hübscher T, Rota I, Deadman ME, Ekwall O, Lütolf M, Weinberg K, Holländer G. Developmental dynamics of the neural crest-mesenchymal axis in creating the thymic microenvironment. SCIENCE ADVANCES 2022; 8:eabm9844. [PMID: 35559672 PMCID: PMC9106291 DOI: 10.1126/sciadv.abm9844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/28/2022] [Indexed: 06/15/2023]
Abstract
The thymic stroma is composed of epithelial and nonepithelial cells providing separate microenvironments controlling homing, differentiation, and selection of hematopoietic precursor cells to functional T cells. Here, we explore at single-cell resolution the complex composition and dynamic changes of the nonepithelial stromal compartment across different developmental stages in the human and mouse thymus, and in an experimental model of the DiGeorge syndrome, the most common form of human thymic hypoplasia. The detected gene expression signatures identify previously unknown stromal subtypes and relate their individual molecular profiles to separate differentiation trajectories and functions, revealing an unprecedented heterogeneity of different cell types that emerge at discrete developmental stages and vary in their expression of key regulatory signaling circuits and extracellular matrix components. Together, these findings highlight the dynamic complexity of the nonepithelial thymus stroma and link this to separate instructive roles essential for normal thymus organogenesis and tissue maintenance.
Collapse
Affiliation(s)
- Adam E. Handel
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Stanley Cheuk
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
| | - Fatima Dhalla
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stefano Maio
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tania Hübscher
- Laboratory of Stem Cell Bioengineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Ioanna Rota
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mary E. Deadman
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Olov Ekwall
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, University of Gothenburg, Gothenburg, Sweden
| | - Matthias Lütolf
- Laboratory of Stem Cell Bioengineering, Swiss Federal Institute of Technology in Lausanne, Lausanne, Switzerland
| | - Kenneth Weinberg
- Division of Stem Cell Transplantation and Regenerative Medicine Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Georg Holländer
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Paediatric Immunology, Department of Biomedicine, University of Basel and University Children’s Hospital Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| |
Collapse
|
5
|
Hillsley A, Santos JE, Rosales AM. A deep learning approach to identify and segment alpha-smooth muscle actin stress fiber positive cells. Sci Rep 2021; 11:21855. [PMID: 34750438 PMCID: PMC8575943 DOI: 10.1038/s41598-021-01304-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/26/2021] [Indexed: 01/04/2023] Open
Abstract
Cardiac fibrosis is a pathological process characterized by excessive tissue deposition, matrix remodeling, and tissue stiffening, which eventually leads to organ failure. On a cellular level, the development of fibrosis is associated with the activation of cardiac fibroblasts into myofibroblasts, a highly contractile and secretory phenotype. Myofibroblasts are commonly identified in vitro by the de novo assembly of alpha-smooth muscle actin stress fibers; however, there are few methods to automate stress fiber identification, which can lead to subjectivity and tedium in the process. To address this limitation, we present a computer vision model to classify and segment cells containing alpha-smooth muscle actin stress fibers into 2 classes (α-SMA SF+ and α-SMA SF-), with a high degree of accuracy (cell accuracy: 77%, F1 score 0.79). The model combines standard image processing methods with deep learning techniques to achieve semantic segmentation of the different cell phenotypes. We apply this model to cardiac fibroblasts cultured on hyaluronic acid-based hydrogels of various moduli to induce alpha-smooth muscle actin stress fiber formation. The model successfully predicts the same trends in stress fiber identification as obtained with a manual analysis. Taken together, this work demonstrates a process to automate stress fiber identification in in vitro fibrotic models, thereby increasing reproducibility in fibroblast phenotypic characterization.
Collapse
Affiliation(s)
- Alexander Hillsley
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Javier E Santos
- Hildebrand Department of Petroleum and Geosystems Engineering, University of Texas at Austin, Austin, TX, USA
| | - Adrianne M Rosales
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
6
|
Dye-Mediated Photo-Oxidation Biomaterial Fixation: Analysis of Bioinductivity and Mechanical Properties of Bovine Pericardium for Use in Cardiac Surgery. Int J Mol Sci 2021; 22:ijms221910768. [PMID: 34639108 PMCID: PMC8509588 DOI: 10.3390/ijms221910768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Extracellular matrix bioscaffolds can influence the cardiac microenvironment and modulate endogenous cellular mechanisms. These materials can optimize cardiac surgery for repair and reconstruction. We investigated the biocompatibility and bioinductivity of bovine pericardium fixed via dye-mediated photo-oxidation on human cardiac fibroblast activity. We compared a dye-mediated photo-oxidation fixed bioscaffold to glutaraldehyde-fixed and non-fixed bioscaffolds reported in contemporary literature in cardiac surgery. Human cardiac fibroblasts from consenting patients were seeded on to bioscaffold materials to assess the biocompatibility and bioinductivity. Human cardiac fibroblast gene expression, secretome, morphology and viability were studied. Dye-mediated photo-oxidation fixed acellular bovine pericardium preserves human cardiac fibroblast phenotype and viability; and potentiates a pro-vasculogenic paracrine response. Material tensile properties were compared with biomechanical testing. Dye-mediated photo-oxidation fixed acellular bovine pericardium had higher compliance compared to glutaraldehyde-fixed bioscaffold in response to tensile force. The biocompatibility, bioinductivity, and biomechanical properties of dye-mediated photo-oxidation fixed bovine pericardium demonstrate its feasibility as a bioscaffold for use in cardiac surgery. As a fixed yet bioinductive solution, this bioscaffold demonstrates enhanced compliance and retains bioinductive properties that may leverage endogenous reparative pathways. Dye-mediated photo-oxidation fixed bioscaffold warrants further investigation as a viable tool for cardiac repair and reconstruction.
Collapse
|
7
|
Forkhead domain inhibitory-6 attenuates subconjunctival fibrosis in rabbit model with trabeculectomy. Exp Eye Res 2021; 210:108725. [PMID: 34375589 DOI: 10.1016/j.exer.2021.108725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/27/2021] [Accepted: 08/06/2021] [Indexed: 02/05/2023]
Abstract
Antiproliferative therapies are crucially important for improving the success rate of the glaucoma filtration surgeries. In this study, we investigated the potential efficacy of Forkhead Domain Inhibitory-6 (FDI-6) in inhibiting post-trabeculectomy subconjunctival fibrosis. In vitro, the effect of FDI-6 (10 μM) on fibrotic response and its underlying mechanism were investigated in rabbit tenon's fibroblasts (RTFs) treated with or without transforming growth factor-β1 (TGF-β1, 20 ng/mL). In vivo, FDI-6 (40 μM) was injected subconjunctivally to a rabbit trabeculectomy model. Intraocular pressure (IOP) changes were monitored within the 14-day period post-surgery. Bleb morphology and subepithelial fibrosis at the operating area were evaluated with slit lamp and confocal microscopic examinations and with histologic examinations. The results showed that, in cell culture studies, FDI-6 suppressed the proliferation, migration, collagen gel contraction and the expression levels of fibronectin (FN) and α-smooth muscle actin (α-SMA) in RTFs with TGF-β treatment by down-regulating the TGF-β1/Smad2/3 signaling pathway. In animal studies, the IOPs of the FDI-6-treated group were significantly lower than those of the saline-treated group after trabeculectomy. The FDI-6-treated eyes showed a better bleb appearance with fewer blood vessels compared to the saline-treated eyes. The analysis of confocal microscopy in vivo and histopathology revealed that subconjunctival fibrosis after trabeculectomy was significantly attenuated in the FDI-6-treated group compared to the controls. In conclusion, our studies indicate that FDI-6 exerts an inhibitory effect on subconjunctival fibrosis caused by trabeculectomy, holding potentials as a new antiproliferative agent used in anti-glaucoma filtration surgeries in the future.
Collapse
|
8
|
Myocardial transcription of inflammatory and remodeling markers in cats with hypertrophic cardiomyopathy and systemic diseases associated with an inflammatory phenotype. Res Vet Sci 2021; 136:484-494. [PMID: 33848803 DOI: 10.1016/j.rvsc.2021.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 03/25/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
Feline hypertrophic cardiomyopathy (HCM) is characterized by macrophage-driven myocardial remodeling processes in a pro-inflammatory environment. To further investigate the mechanisms behind these processes, the myocardial transcription of cytokines and remodeling enzymes was comparatively assessed in cats with HCM and cats without cardiac diseases. Sixty-seven cats were included, 17 cats with HCM (including 5 with atrial thrombus; AT), and 50 cats without cardiac diseases. The latter comprised 10 control cats (no cardiac or relevant systemic disease), 34 cats with diseases suspected to be associated with a systemic inflammatory state of which 18 suffered from feline infectious peritonitis (FIP), and 6 cats with multicentric lymphoma. Samples from atria, ventricular free walls and interventricular septum were examined using quantitative reverse transcriptase PCR. The overall highest myocardial marker transcriptions were observed in cats with multicentric lymphoma, FIP and HCM, followed by diseases likely associated with a systemic inflammatory state, and control cats. Inflammatory marker transcription predominated in the myocardium of cats with systemic inflammatory diseases, whereas in HCM the transcription of remodeling enzymes prevailed. Sex significantly influenced the myocardial transcription of several remodeling enzymes. These results suggest a versatile myocardial response depending on the disease and illustrates the relevance of sex for the cardiac response to cardiac and systemic disease in cats. A systemic inflammatory state appears to elicit an inflammatory phenotype in the myocardium, whereas in HCM, the myocardium mediates its own remodeling. In HCM, the identified markers might be involved in the ongoing remodeling processes causing structural and functional changes.
Collapse
|
9
|
Kittana N, Assali M, Zimmermann WH, Liaw N, Santos GL, Rehman A, Lutz S. Modulating the Biomechanical Properties of Engineered Connective Tissues by Chitosan-Coated Multiwall Carbon Nanotubes. Int J Nanomedicine 2021; 16:989-1000. [PMID: 33633447 PMCID: PMC7901244 DOI: 10.2147/ijn.s289107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Background Under certain conditions, the physiological repair of connective tissues might fail to restore the original structure and function. Optimized engineered connective tissues (ECTs) with biophysical properties adapted to the target tissue could be used as a substitution therapy. This study aimed to investigate the effect of ECT enforcement by a complex of multiwall carbon nanotubes with chitosan (C-MWCNT) to meet in vivo demands. Materials and Methods ECTs were constructed from human foreskin fibroblasts (HFF-1) in collagen type I and enriched with the three different percentages 0.025, 0.05 and 0.1% of C-MWCNT. Characterization of the physical properties was performed by biomechanical studies using unidirectional strain. Results Supplementation with 0.025% C-MWCNT moderately increased the tissue stiffness, reflected by Young’s modulus, compared to tissues without C-MWCNT. Supplementation of ECTs with 0.1% C-MWCNT reduced tissue contraction and increased the elasticity and the extensibility, reflected by the yield point and ultimate strain, respectively. Consequently, the ECTs with 0.1% C-MWCNT showed a higher resilience and toughness as control tissues. Fluorescence tissue imaging demonstrated the longitudinal alignment of all cells independent of the condition. Conclusion Supplementation with C-MWCNT can enhance the biophysical properties of ECTs, which could be advantageous for applications in connective tissue repair.
Collapse
Affiliation(s)
- Naim Kittana
- Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| | - Norman Liaw
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| | - Gabriela Leao Santos
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| | - Abdul Rehman
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Junga A, Pilmane M, Ābola Z, Volrāts O. Tumor necrosis factor α, protein gene product 9.5, matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 presence in congenital intra-abdominal adhesions in children under one year of age. Arch Med Sci 2021; 17:92-99. [PMID: 33488860 PMCID: PMC7811308 DOI: 10.5114/aoms.2020.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/19/2018] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The regulatory role of cytokines and extracellular matrix remodeling factors in congenital intra-abdominal adhesions has not yet been defined. The aim of this study was to assess the presence and relative distribution of tumor necrosis factor α (TNF-α), protein gene product 9.5 (PGP 9.5), matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) in adhesions. MATERIAL AND METHODS TNF-α, PGP 9.5, MMP-2 and TIMP-2 were detected using immunohistochemical methods and their relative distribution was evaluated by means of the semiquantitative counting method. The results were analyzed using non-parametric statistical methods. RESULTS A moderate number of TNF-α positive macrophages and fibroblasts was found. A positive correlation was observed between the immunoreactive structures for TNF-α and PGP 9.5. A positive reaction for PGP 9.5 was observed in nerve fibers and shape modified fibroblasts. In control group tissues, positive structures were seen in significantly higher counts for PGP 9.5. Few to moderate numbers of MMP-2 positive macrophages, epithelioid cells, fibroblasts and endotheliocytes were detected. There was no significant difference between the groups. A positive reaction for TIMP-2 was seen in fibroblasts, macrophages and endotheliocytes. In control group tissues, positive structures were found in significantly higher counts for TIMP-2. CONCLUSIONS The positive correlation between the immunoreactive structures for TNF-α and PGP 9.5 suggests that nerve in-growth into intraabdominal adhesions might be induced by TNF-α and PGP 9.5 could have a role in maintaining inflammation. The down-regulation of PGP 9.5 suggests that pathogenesis of congenital intraabdominal adhesions may be related to hypoxia induced damage. The imbalance between MMP-2 and TIMP-2 may prove tissue fibrosis as a response to congenital peritoneal adhesions.
Collapse
Affiliation(s)
- Anna Junga
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| | - Māra Pilmane
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Riga, Latvia
| | - Zane Ābola
- Department of Children Surgery, Rīga Stradiņš University, Riga, Latvia
| | - Olafs Volrāts
- Department of Children Surgery, Rīga Stradiņš University, Riga, Latvia
| |
Collapse
|
11
|
Krebber MM, van Dijk CGM, Vernooij RWM, Brandt MM, Emter CA, Rau CD, Fledderus JO, Duncker DJ, Verhaar MC, Cheng C, Joles JA. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Extracellular Matrix Remodeling during Left Ventricular Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction: A Systematic Review and Meta-Analysis. Int J Mol Sci 2020; 21:ijms21186742. [PMID: 32937927 PMCID: PMC7555240 DOI: 10.3390/ijms21186742] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are pivotal regulators of extracellular matrix (ECM) composition and could, due to their dynamic activity, function as prognostic tools for fibrosis and cardiac function in left ventricular diastolic dysfunction (LVDD) and heart failure with preserved ejection fraction (HFpEF). We conducted a systematic review on experimental animal models of LVDD and HFpEF published in MEDLINE or Embase. Twenty-three studies were included with a total of 36 comparisons that reported established LVDD, quantification of cardiac fibrosis and cardiac MMP or TIMP expression or activity. LVDD/HFpEF models were divided based on underlying pathology: hemodynamic overload (17 comparisons), metabolic alteration (16 comparisons) or ageing (3 comparisons). Meta-analysis showed that echocardiographic parameters were not consistently altered in LVDD/HFpEF with invasive hemodynamic measurements better representing LVDD. Increased myocardial fibrotic area indicated comparable characteristics between hemodynamic and metabolic models. Regarding MMPs and TIMPs; MMP2 and MMP9 activity and protein and TIMP1 protein levels were mainly enhanced in hemodynamic models. In most cases only mRNA was assessed and there were no correlations between cardiac tissue and plasma levels. Female gender, a known risk factor for LVDD and HFpEF, was underrepresented. Novel studies should detail relevant model characteristics and focus on MMP and TIMP protein expression and activity to identify predictive circulating markers in cardiac ECM remodeling.
Collapse
Affiliation(s)
- Merle M. Krebber
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Christian G. M. van Dijk
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Robin W. M. Vernooij
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Maarten M. Brandt
- Experimental Cardiology, Department of Cardiology, Thorax center, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.M.B.); (D.J.D.)
| | - Craig A. Emter
- Department of Biomedical Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA;
| | - Christoph D. Rau
- Computational Medicine Program, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA;
| | - Joost O. Fledderus
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Dirk J. Duncker
- Experimental Cardiology, Department of Cardiology, Thorax center, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (M.M.B.); (D.J.D.)
| | - Marianne C. Verhaar
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Caroline Cheng
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
| | - Jaap A. Joles
- Department Nephrology and Hypertension, University Medical Center Utrecht, P.O. Box 8599, 3508 GA Utrecht, The Netherlands; (M.M.K.); (C.G.M.v.D.); (R.W.M.V.); (J.O.F.); (M.C.V.); (C.C.)
- Correspondence:
| |
Collapse
|
12
|
Shrestha S, McFadden MJ, Gramolini AO, Santerre JP. Proteome analysis of secretions from human monocyte-derived macrophages post-exposure to biomaterials and the effect of secretions on cardiac fibroblast fibrotic character. Acta Biomater 2020; 111:80-90. [PMID: 32428683 DOI: 10.1016/j.actbio.2020.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022]
Abstract
The use of exogenous biomolecules (BM) for the purpose of repairing and regenerating damaged cardiac tissue can yield serious side effects if used for prolonged periods. As well, such strategies can be cost prohibitive depending on the regiment and period of time applied. Alternatively, autologous monocytes/monocyte-derived macrophages (MDM) can provide a viable path towards generating an endogenous source of stimulatory BM. Biomaterials are often considered as delivery vehicles to generate unique profiles of such BM in tissues or to deliver autologous cells, that can influence the nature of BM produced by the cells. MDM cultured on a degradable polar hydrophobic ionic (D-PHI) polyurethane has previously demonstrated a propensity to increase select anti-inflammatory cytokines, and therefore there is good rationale to further investigate a broader spectrum of the cells' BM in order to provide a more complete proteomic analysis of human MDM secretions induced by D-PHI. Further, it is of interest to assess the potential of such BM to influence cells involved in the reparative state of vital tissues such as those that affect cardiac cell function. Hence, this current study examines the proteomic profile of MDM secretions using mass spectrometry for the first time, along with ELISA, following their culture on D-PHI, and compares them to two important reference materials, poly(lactic-co-glycolic acid) (PLGA) and tissue culture polystyrene (TCPS). Secretions collected from D-PHI cultured MDM led to higher levels of regenerative BM, AGRN, TGFBI and ANXA5, but lower levels of pro-fibrotic BM, MMP7, IL-1β, IL-6 and TNFα, when compared to MDM secretions collected from PLGA and TCPS. In the application to cardiac cell function, the secretion collected from D-PHI cultured MDM led to more human cardiac fibroblast (HCFs) migration. A lower collagen gel contraction induced by MDM secretions collected from D-PHI was supported by gene array analysis for human fibrosis-related genes. The implication of these findings is that more tailored biomaterials such as D-PHI, may lead to a lower pro-inflammatory phenotype of macrophages when used in cardiac tissue constructs, thereby enabling the development of vehicles for the delivery of interventional therapies, or be applied as coatings for sensor implants in cardiac tissue that minimize fibrosis. The general approach of using synthetic biomaterials in order to induce MDM secretions in a manner that will guide favorable regeneration will be critical in making the choice of biomaterials for tissue regeneration work in the future. STATEMENT OF SIGNIFICANCE: Immune modulation strategies currently applied in cardiac tissue repair are mainly based on the delivery of defined exogenous biomolecules. However, the use of such biomolecules may pose wide ranging systemic effects, thereby rendering them clinically less practical. The chemistry of biomaterials (used as a potential targeted delivery modality to circumvent the broad systemic effects of biomolecules) can not only affect acute and chronic toxicity but also alters the timeframe of the wound healing cascade. In this context, monocytes/monocyte-derive macrophages (MDM) can be harnessed as an immune modulating strategy to promote wound healing by an appropriate choice of the biomaterial. However, there are limited reports on the complete proteome analysis of MDM and their reaction of biomaterial related interventions on cardiac tissues and cells. No studies to date have demonstrated the complete proteome of MDM secretions when these cells were cultured on a non-traditional immune modulatory ionomeric polyurethane D-PHI film. This study demonstrated that MDM cultured on D-PHI expressed significantly higher levels of AGRN, TGFBI and ANXA5 but lower levels of MMP7, IL-1β, IL-6 and TNFα when compared to MDM cultured on a well-established degradable biomaterials in the medical field, e.g. PLGA and TCPS, which are often used as the relative standards for cell culture work in the biomaterials field. The implications of these findings have relevance to the repair of cardiac tissues. In another aspect of the work, human cardiac fibroblasts showed significantly lower contractility (low collagen gel contraction and low levels of ACTA2) when cultured in the presence of MDM secretions collected after culturing them on D-PHI compared to PLGA and TCPS. The findings place emphasis on the importance of making the choice of biomaterials for tissue engineering and regenerative medicine applied to their use in cardiac tissue repair.
Collapse
Affiliation(s)
- Suja Shrestha
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada; Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada
| | - Meghan J McFadden
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Anthony O Gramolini
- Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1M8, Canada
| | - J Paul Santerre
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada; Translational Biology and Engineering Program and Ted Rogers Centre for Heart Research, Toronto, Ontario M5G 1M1, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.
| |
Collapse
|
13
|
Rogers RG, Ciullo A, Marbán E, Ibrahim AG. Extracellular Vesicles as Therapeutic Agents for Cardiac Fibrosis. Front Physiol 2020; 11:479. [PMID: 32528309 PMCID: PMC7255103 DOI: 10.3389/fphys.2020.00479] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Heart disease remains an increasing major public health challenge in the United States and worldwide. A common end-organ feature in diseased hearts is myocardial fibrosis, which stiffens the heart and interferes with normal pump function, leading to pump failure. The development of cells for regenerative therapy has been met with many pitfalls on its path to clinical translation. Recognizing that regenerative cells secrete therapeutically bioactive vesicles has paved the way to circumvent many failures of cell therapy. In this review, we provide an overview of extracellular vesicles (EVs), with a focus on their utility as therapeutic agents for cardiac regeneration. We also highlight the engineering potential of EVs to enhance their therapeutic application.
Collapse
Affiliation(s)
| | | | - Eduardo Marbán
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | | |
Collapse
|
14
|
Kang S, Verma S, Hassanabad AF, Teng G, Belke DD, Dundas JA, Guzzardi DG, Svystonyuk DA, Pattar SS, Park DSJ, Turnbull JD, Duff HJ, Tibbles LA, Cunnington RH, Dyck JRB, Fedak PWM. Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Can J Cardiol 2019; 36:543-553. [PMID: 31837891 DOI: 10.1016/j.cjca.2019.08.033] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Empagliflozin, an SGLT2 inhibitor, has shown remarkable reductions in cardiovascular mortality and heart failure admissions (EMPA-REG OUTCOME). However, the mechanism underlying the heart failure protective effects of empagliflozin remains largely unknown. Cardiac fibroblasts play an integral role in the progression of structural cardiac remodelling and heart failure, in part, by regulating extracellular matrix (ECM) homeostasis. The objective of this study was to determine if empagliflozin has a direct effect on human cardiac myofibroblast-mediated ECM remodelling. METHODS Cardiac fibroblasts were isolated via explant culture from human atrial tissue obtained at open heart surgery. Collagen gel contraction assay was used to assess myofibroblast activity. Cell morphology and cell-mediated ECM remodelling was examined with the use of confocal microscopy. Gene expression of profibrotic markers was assessed with the use of reverse-transcription quantitative polymerase chain reaction. RESULTS Empagliflozin significantly attenuated transforming growth factor β1-induced fibroblast activation via collagen gel contraction after 72-hour exposure, with escalating concentrations (0.5 μmol/L, 1 μmol/L, and 5 μmol/L) resulting in greater attenuation. Morphologic assessment showed that myofibroblasts exposed to empagliflozin were smaller in size with shorter and fewer number of extensions, indicative of a more quiescent phenotype. Moreover, empagliflozin significantly attenuated cell-mediated ECM remodelling as measured by collagen fibre alignment index. Gene expression profiling revealed significant suppression of critical profibrotic markers by empagliflozin, including COL1A1, ACTA2, CTGF, FN1, and MMP-2. CONCLUSIONS We provide novel data showing a direct effect of empagliflozin on human cardiac myofibroblast phenotype and function by attenuation of myofibroblast activity and cell-mediated collagen remodelling. These data provide critical insights into the profound effects of empagliflozin as noted in the EMPA-REG OUTCOME study.
Collapse
Affiliation(s)
- Sean Kang
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Subodh Verma
- Division of Cardiac Surgery, St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Darrell D Belke
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Jameson A Dundas
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - David G Guzzardi
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Daniyil A Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Simranjit S Pattar
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Daniel S J Park
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Jeannine D Turnbull
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Henry J Duff
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Lee Anne Tibbles
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Ryan H Cunnington
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Mazankowski Alberta Health Institute, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
15
|
MiR-32-5p influences high glucose-induced cardiac fibroblast proliferation and phenotypic alteration by inhibiting DUSP1. BMC Mol Biol 2019; 20:21. [PMID: 31438862 PMCID: PMC6704591 DOI: 10.1186/s12867-019-0135-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Background The current study aimed to investigate the effects of miR-32-5p on cardiac fibroblasts (CFs) that were induced with high levels of glucose; we also aimed to identify the potential mechanisms involved in the regulation of DUSP1 expression. Methods Human CFs were transfected with a miR-32-5p inhibitor or mimic and were treated with a normal concentration or a high concentration of glucose. Flow cytometry analysis was performed to identify cardiac fibroblasts by examining vimentin, fibronectin (FN) and α-actin expression in human CFs. qRT-PCR and western blot assays were performed to confirm the expression of miR-32-5p, DUSP1 and cardiac fibrosis relevant proteins. The proliferation of CFs was assessed by using MTT assay. An immunocytofluorescent staining assay was performed to determine the protein level of α-SMA and to investigate the degree of phenotypic changes in human CFs. The specific relationship between miR-32-5p and DUSP1 was investigated by a dual luciferase reporter assay. Cell apoptosis rates were measured with flow cytometry and the annexin V-FITC and propidine iodide (PI) staining method. Results A luciferase reporter assay indicated that miR-32-5p could directly target DUSP1. High glucose levels resulted in the overexpression of miR-32-5p, which downregulated DUSP1 expression. Both the upregulation of miR-32-5p and the downregulation of DUSP1 promoted cell apoptosis, proliferation and phenotypic changes in human CFs. Conclusions All findings in this study provide further evidence for the positive effects of miR-32-5p on cell proliferation and the phenotypic changes in CFs by inhibiting DUSP1 expression, and reveal that miR-32-5p could serve as prognostic diagnostic target for cardiac fibrosis. Electronic supplementary material The online version of this article (10.1186/s12867-019-0135-x) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Altieri P, Bertolotto M, Fabbi P, Sportelli E, Balbi M, Santini F, Brunelli C, Canepa M, Montecucco F, Ameri P. Thrombin induces protease-activated receptor 1 signaling and activation of human atrial fibroblasts and dabigatran prevents these effects. Int J Cardiol 2018; 271:219-227. [PMID: 29801760 DOI: 10.1016/j.ijcard.2018.05.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/24/2018] [Accepted: 05/10/2018] [Indexed: 11/28/2022]
Abstract
BACKGROUND Data with animal cells and models suggest that thrombin activates cardiac fibroblasts (Fib) to myofibroblasts (myoFib) via protease-activated receptor 1 (PAR1) cleavage, and in this way promotes adverse atrial remodeling and, thereby, atrial fibrillation (AF). OBJECTIVE Here, we explored the effects of thrombin on human atrial Fib and whether they are antagonized by the clinically available direct thrombin inhibitor, dabigatran. METHODS Fib isolated from atrial appendages of patients without AF undergoing elective cardiac surgery were evaluated for PAR expression and treated with thrombin with or without dabigatran. PAR1 cleavage, downstream signaling and myoFib markers were investigated by immunofluorescence and Western blot. Collagen synthesis, activity of matrix metalloprotease (MMP)-2 and proliferation were assessed by Picro-Sirius red staining, gelatinolytic zymography and BrdU incorporation, respectively. Fib function was studied as capability to contract a collagen gel and stimulate the chemotaxis of peripheral blood monocytes from healthy volunteers. RESULTS Primary human atrial Fib expressed PAR1, while levels of the other PARs were very low. Thrombin triggered PAR1 cleavage and phosphorylation of ERK1/2, p38 and Akt, elicited a switch to myoFib enriched for αSMA, fibronectin and type I collagen, and induced paracrine/autocrine transforming growth factor beta-1, cyclooxygenase-2, endothelin-1 and chemokine (C-C motif) ligand 2 (CCL2); conversely, MMP-2 activity decreased. Thrombin-primed cells displayed enhanced proliferation, formed discrete collagen-containing cellular nodules, and stimulated the contraction of a collagen gel. Furthermore, their conditioned medium caused monocytes to migrate. All these effects were prevented by dabigatran. CONCLUSION These results with human cells complete the knowledge about thrombin actions on cardiac Fib and strengthen the translational potential of the emerging paradigm that pharmacological blockade of thrombin may counteract molecular and cellular events underlying AF.
Collapse
Affiliation(s)
- Paola Altieri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Maria Bertolotto
- Department of Internal Medicine, University of Genova, Genova, Italy; First Clinic of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Patrizia Fabbi
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Elena Sportelli
- Department of Diagnostic and Surgical Sciences, University of Genova, Genova, Italy; Cardiovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Manrico Balbi
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesco Santini
- Department of Diagnostic and Surgical Sciences, University of Genova, Genova, Italy; Cardiovascular Surgery Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Claudio Brunelli
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy; Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Marco Canepa
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Fabrizio Montecucco
- Department of Internal Medicine, University of Genova, Genova, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genova, Genova, Italy; First Clinic of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Pietro Ameri
- Laboratory of Cardiovascular Biology, Department of Internal Medicine, University of Genova, Genova, Italy; Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
17
|
Shimodaira T, Matsuda K, Uchibori T, Sugano M, Uehara T, Honda T. Upregulation of osteopontin expression via the interaction of macrophages and fibroblasts under IL-1b stimulation. Cytokine 2018; 110:63-69. [PMID: 29704820 DOI: 10.1016/j.cyto.2018.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/30/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Fibrosis is attributed to dysregulation of tissue-remodeling. In remodeling areas, fibroblasts and macrophages actively make contact with each other. Osteopontin (OPN) is a pro-fibrotic molecule, whose expression is upregulated by interleukin (IL)-1β via secretion of its downstream cytokines, such as IL-6. Here, we investigated the effect of interaction between fibroblasts and macrophages under IL-1β stimulation on the expression of OPN. METHODS We used human lung fibroblasts and THP-1 macrophages differentiated from THP-1 cells using phorbol 12-myristate 13-acetate. These cells were either cultured alone or co-cultured under IL-1β stimulation. Secretion of OPN and IL-6 were examined by enzyme-linked immunosorbent assay, and mRNA expression was assessed by quantitative real-time PCR. The effects of siRNA against IL-6 or OPN on OPN expression were evaluated. RESULTS OPN expression increased when fibroblasts and THP-1 macrophages were co-cultured under IL-1β stimulation. The siRNA against IL-6 in fibroblasts suppressed the upregulation of OPN expression during co-culture, whereas siRNA against IL-6 in THP-1 macrophages did not. The upregulation of expression of OPN mRNA in fibroblasts or THP-1 macrophages when co-cultured under IL-1β stimulation was mediated by IL-6 from fibroblasts. OPN from THP-1 macrophages was involved in the increase of OPN expression in fibroblasts. CONCLUSIONS The present study revealed the crosstalk between fibroblasts and THP-1 macrophages under IL-1β stimulation, where IL-6 from fibroblasts, stimulated by IL-1β, upregulated OPN expression in fibroblasts themselves via increase in OPN from THP-1 macrophages. The fibroblasts/macrophages network may induce activation or qualitative changes in both cells, which contributes to inflammation-associated fibrosis.
Collapse
Affiliation(s)
- Takahiro Shimodaira
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Kazuyuki Matsuda
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan.
| | - Takaaki Uchibori
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Mitsutoshi Sugano
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| | - Takayuki Honda
- Department of Laboratory Medicine, Shinshu University Hospital, Matsumoto, Japan
| |
Collapse
|
18
|
Park DS, Mewhort HE, Teng G, Belke D, Turnbull J, Svystonyuk D, Guzzardi D, Kang S, Fedak PW. Heparin Augmentation Enhances Bioactive Properties of Acellular Extracellular Matrix Scaffold. Tissue Eng Part A 2018; 24:128-134. [DOI: 10.1089/ten.tea.2017.0004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Daniel S.J. Park
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Holly E.M. Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Darrell Belke
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Jeannine Turnbull
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Daniyil Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - David Guzzardi
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Sean Kang
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Paul W.M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Health Research Innovation Centre, Cumming School of Medicine, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Xie SR, An JY, Zheng LB, Huo XX, Guo J, Shih D, Zhang XL. Effects and mechanism of adenovirus-mediated phosphatase and tension homologue deleted on chromosome ten gene on collagen deposition in rat liver fibrosis. World J Gastroenterol 2017; 23:5904-5912. [PMID: 28932082 PMCID: PMC5583575 DOI: 10.3748/wjg.v23.i32.5904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/19/2017] [Accepted: 07/22/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate the effects of phosphatase and tension homologue deleted on chromosome ten (PTEN) gene on collagen metabolism in hepatic fibrosis and the underlying mechanisms. METHODS Rat primary hepatic stellate cells (HSCs) and human LX-2 cells were transfected with adenovirus containing cDNA constructs encoding wild-type PTEN (Ad-PTEN), PTEN mutant G129E gene (Ad-G129E), and RNA interference constructs targeting the PTEN sequence PTEN short hairpin RNA to up-regulate and down-regulate the expression of PTEN. HSCs were assayed using fluorescent microscopy, real-time polymerase chain reaction, and western blotting. Moreover, a CCl4-induced rat hepatic fibrosis model was established to investigate the in vivo effects. Hematoxylin and eosin, and Masson's trichrome were used to assess the histological changes. The expression of collagen I and III was assessed using immunohistochemistry and western blot analysis. RESULTS Elevated expression of PTEN gene reduced serum levels of alanine transaminase and aspartate transaminase, decreased collagen deposition in the liver, and reduced hepatocyte necrosis. In contrast, knockdown of PTEN expression had an opposite effect, such as increased collagen deposition in the liver, and was molecularly characterized by the increased expression of matrix metalloproteinase (MMP)-13 (P < 0.01) and MMP-2 (P < 0.01), as well as decreased expression of the tissue inhibitor of metalloproteinase (TIMP)-1 (P < 0.01) and TIMP-2 (P < 0.01). CONCLUSION These data indicated that gene therapy using recombinant adenovirus encoding PTEN might be a novel way of treating hepatic fibrosis.
Collapse
Affiliation(s)
- Shu-Rui Xie
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang 050000, Hebei Province, China
- Department of Gastroenterology, Xingtai People's Hospital, Xingtai 054031, Hebei Province, China
| | - Jun-Yan An
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang 050000, Hebei Province, China
| | - Li-Bo Zheng
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Xia Huo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang 050000, Hebei Province, China
| | - Jian Guo
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang 050000, Hebei Province, China
| | - David Shih
- Inflammatory Bowel and Immunobiology Research Institute, F. Widjaja Foundation, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States
| | - Xiao-Lan Zhang
- Department of Gastroenterology, The Second Hospital of Hebei Medical University, Hebei Key Laboratory of Gastroenterology, Hebei Institute of Gastroenterology, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
20
|
Fan Z, Fu M, Xu Z, Zhang B, Li Z, Li H, Zhou X, Liu X, Duan Y, Lin PH, Duann P, Xie X, Ma J, Liu Z, Guan J. Sustained Release of a Peptide-Based Matrix Metalloproteinase-2 Inhibitor to Attenuate Adverse Cardiac Remodeling and Improve Cardiac Function Following Myocardial Infarction. Biomacromolecules 2017; 18:2820-2829. [PMID: 28731675 DOI: 10.1021/acs.biomac.7b00760] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Following myocardial infarction (MI), degradation of extracellular matrix (ECM) by upregulated matrix metalloproteinases (MMPs) especially MMP-2 decreases tissue mechanical properties, leading to cardiac function deterioration. Attenuation of cardiac ECM degradation at the early stage of MI has the potential to preserve tissue mechanical properties, resulting in cardiac function increase. Yet the strategy for efficiently preventing cardiac ECM degradation remains to be established. Current preclinical approaches have shown limited efficacy because of low drug dosage allocated to the heart tissue, dose-limiting side effects, and cardiac fibrosis. To address these limitations, we have developed a MMP-2 inhibitor delivery system that can be specifically delivered into infarcted hearts at early stage of MI to efficiently prevent MMP-2-mediated ECM degradation. The system was based on an injectable, degradable, fast gelation, and thermosensitive hydrogel, and a MMP-2 specific inhibitor, peptide CTTHWGFTLC (CTT). The use of fast gelation hydrogel allowed to completely retain CTT in the heart tissue. The system was able to release low molecular weight CTT over 4 weeks possibly due to the strong hydrogen bonding between the hydrogel and CTT. The release kinetics was modulated by amount of CTT loaded into the hydrogel, and using chondroitin sulfate and heparin that can interact with CTT and the hydrogel. Both glycosaminoglycans augmented CTT release, while heparin more greatly accelerated the release. After it was injected into the infarcted hearts for 4 weeks, the released CTT efficiently prevented cardiac ECM degradation as it not only increased tissue thickness but also preserved collagen composition similar to that in the normal heart tissue. In addition, the delivery system significantly improved cardiac function. Importantly, the delivery system did not induce cardiac fibrosis. These results demonstrate that the developed MMP-2 inhibitor delivery system has potential to efficiently reduce adverse myocardial remodeling and improve cardiac function.
Collapse
Affiliation(s)
- Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University , 2041 College Road, Columbus, Ohio 43210, United States
| | - Minghuan Fu
- Department of Materials Science and Engineering, The Ohio State University , 2041 College Road, Columbus, Ohio 43210, United States.,Division of Cardiovascular Disease, Department of Gerontology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital , Chengdu, Sichuan, 610072, China
| | - Zhaobin Xu
- Department of Materials Science and Engineering, The Ohio State University , 2041 College Road, Columbus, Ohio 43210, United States
| | - Bo Zhang
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States.,Department of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, 430030, China
| | - Zhihong Li
- Department of Materials Science and Engineering, The Ohio State University , 2041 College Road, Columbus, Ohio 43210, United States.,Division of General Surgery, Shanghai Pudong New District Zhoupu Hospital , Shanghai, 201200, China
| | - Haichang Li
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Xinyu Zhou
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Xuanyou Liu
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Yunyan Duan
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Pei-Hui Lin
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Pu Duann
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Xiaoyun Xie
- Department of Gerontology, Tongji Hospital, Tongji University , Shanghai, China
| | - Jianjie Ma
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zhenguo Liu
- Davis Heart and Lung Research Institute, The Ohio State University , Columbus, Ohio 43210, United States
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University , 2041 College Road, Columbus, Ohio 43210, United States
| |
Collapse
|
21
|
Zhang Y, Fan F, Zeng G, Zhou L, Zhang Y, Zhang J, Jiao H, Zhang T, Su D, Yang C, Wang X, Xiao K, Li H, Zhong Z. Temporal analysis of blood-brain barrier disruption and cerebrospinal fluid matrix metalloproteinases in rhesus monkeys subjected to transient ischemic stroke. J Cereb Blood Flow Metab 2017; 37:2963-2974. [PMID: 27885100 PMCID: PMC5536803 DOI: 10.1177/0271678x16680221] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Blood-brain barrier (BBB) disruption plays an important role in pathophysiological progress of ischemic stroke. However, our knowledge of the dynamic change of BBB permeability and its mechanism remains limited. In the current study, we used a non-human primate (NHP) MCAO model and a serial CSF sampling method that allowed us to determine the dynamic change of BBB permeability by calculating the CSF/serum albumin ratio (AR). We showed that AR increased rapidly and significantly after ischemia, and the fold increase of AR is highly correlated with the infarction size during the subacute phase. Moreover, we determined the temporal change of MMP-1, MMP-2, MMP-3, MMP-9, MMP-10, MMP-13, TIMP-1, and TIMP-2 in CSF and serum. Each MMP and TIMP showed different change patterns when comparing their values in CSF and serum. Based on the longitudinal dataset, we showed that the fold increase of MMP-9 in serum and CSF are both correlated to infarction size. Among the measured MMPs and TIMPs, only MMP-2, MMP-13, and TIMP-2 in CSF correlated with AR to some extent. Our data suggest there is no single MMP or TIMP fully responsible for BBB breakdown, which is regulated by a much more complicated signal network and further investigations of the mechanisms are needed.
Collapse
Affiliation(s)
- Yingqian Zhang
- 1 Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Feng Fan
- 2 Department of Neurointervention, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guojun Zeng
- 3 Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linlin Zhou
- 4 Department of Medical Microbiology, West China School of Preclinical and Forensic Medicine, Sichuan University, China
| | - Yinbing Zhang
- 5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| | - Jie Zhang
- 5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| | - He Jiao
- 6 Department of Interventional therapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- 1 Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Dan Su
- 1 Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Yang
- 7 Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, China
| | - Xin Wang
- 5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| | - Kai Xiao
- 5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| | - Hongxia Li
- 8 National Chengdu Center for Safety Evaluation of Drugs, State Key Lab of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zhihui Zhong
- 1 Laboratory of Nonhuman Primate Disease Modeling Research, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,5 Sichuan Kangcheng Biotech Co., Inc., Chengdu, China
| |
Collapse
|
22
|
Shi H, Chu H, Lv Z, Qi G, Guo J, Fu W, Wang X, Guo X, Ge J, Yin C. Association of white blood cell counts with left ventricular mass index in hypertensive patients undergoing anti-hypertensive drug therapy. Exp Ther Med 2017; 13:1566-1571. [PMID: 28413510 DOI: 10.3892/etm.2017.4119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/20/2016] [Indexed: 11/06/2022] Open
Abstract
Although studies using animal models have demonstrated that nonhemodynamic factors, including inflammatory cells and cytokines, contribute to left ventricular hypertrophy (LVH), there is little clinical data to confirm this association. Therefore in the present study, levels of circulating specific types of leukocyte were measured to determine the association between white blood cells and left ventricular mass index (LVMI) in hypertensive patients undergoing anti-hypertensive drug therapy. A total of 144 consecutive hypertensive patients taking anti-hypertensive drug therapy were enrolled in the current study. Subjects were divided into two groups: Those with normal geometry and those with left LVH. Total white blood cells and differentiated subtypes (neutrophils, lymphocytes, monocytes) were counted, and left ventricular end-diastolic diameter, left ventricular posterior wall thickness in diastole and inter-ventricular septal wall thickness in diastole were all measured. Analysis revealed a significant correlation between LVMI and total white blood cell levels (P=0.013). The percentage of LVH in the highest tertile of WBC was increased compared with the middle tertile (P=0.008). Furthermore, a significant correlation between the highest tertile of neutrophil counts and LVH was observed (P=0.039). However, no significant associations between LVMI and monocyte or lymphocyte counts were detected. Therefore, the current study determined that increased total white blood cell and neutrophil subtype counts were associated with LVMI in hypertensive patients undergoing anti-hypertensive drug therapy. They may provide convenient and useful markers for further risk appraisal of LVH caused by nonhemodynamic factors of hypertension.
Collapse
Affiliation(s)
- Hongtao Shi
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China.,Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Hongxia Chu
- Department of Cardiology, Yuhuangding Hospital, Qingdao Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Zhiyang Lv
- Department of Cardiology, Yichang Central People's Hospital, Institute of Cardiovascular Diseases, Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Guanming Qi
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Junjie Guo
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China.,Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wei Fu
- Department of Cardiology, Gaoan People's Hospital, Gaoan, Jiangxi 330800, P.R. China
| | - Xiaojing Wang
- Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiangyu Guo
- Department of Pharmacy, Capital Medical University, Beijing 100054, P.R. China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Chengqian Yin
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| |
Collapse
|
23
|
Abstract
Matrix metalloproteinases (MMPs) are zinc- and calcium-dependent endoproteinases that have the ability to break down extracellular matrix. The large range of MMPs’ functions widens their spectrum of potential role as activators or inhibitors in tissue remodeling, cardiovascular diseases, and obesity. In particular, MMP-1, -2, and -9 may be associated with exercise and obesity. Thus, the current study reviewed the effects of different types of exercise (resistance and aerobic) on MMP-1, -2, and -9. Previous studies report that the response of MMP-2 and -9 to resistance exercise is dependent upon the length of exercise training, since long-term resistance exercise training increased both MMP-2 and -9, whereas acute bout of resistance exercise decreased these MMPs. Aerobic exercise produces an inconsistent result on MMPs, although some studies showed a decrease in MMP-1. Obesity is related to a relatively lower level of MMP-9, indicating that an exercise-induced increase in MMP-9 may positively influence obesity. A comprehensive understanding of the relationship between exercise, obesity, and MMPs does not exist yet. Future studies examining the acute and chronic responses of these MMPs using different subject models may provide a better understanding of the molecular mechanisms that are associated with exercise, obesity, and cardiovascular disease.
Collapse
Affiliation(s)
| | - Yunsuk Koh
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, USA
| |
Collapse
|
24
|
Mewhort HEM, Lipon BD, Svystonyuk DA, Teng G, Guzzardi DG, Silva C, Yong VW, Fedak PWM. Monocytes increase human cardiac myofibroblast-mediated extracellular matrix remodeling through TGF-β1. Am J Physiol Heart Circ Physiol 2016; 310:H716-24. [PMID: 26801303 DOI: 10.1152/ajpheart.00309.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 01/18/2016] [Indexed: 01/12/2023]
Abstract
Following myocardial infarction (MI), cardiac myofibroblasts remodel the extracellular matrix (ECM), preventing mechanical complications. However, prolonged myofibroblast activity leads to dysregulation of the ECM, maladaptive remodeling, fibrosis, and heart failure (HF). Chronic inflammation is believed to drive persistent myofibroblast activity; however, the mechanisms are unclear. We assessed the influence of peripheral blood monocytes on human cardiac myofibroblast activity in a three-dimensional (3D) ECM microenvironment. Human cardiac myofibroblasts isolated from surgical biopsies of the right atrium and left ventricle were seeded into 3D collagen matrices. Peripheral blood monocytes were isolated from healthy human donors and cocultured with myofibroblasts. Monocytes increased myofibroblast activity measured by collagen gel contraction (baseline: 57.6 ± 5.9% vs. coculture: 65.2 ± 7.1% contraction; P < 0.01) and increased local ECM remodeling quantified by confocal microscopy. Under coculture conditions that allow indirect cellular interaction via paracrine factors but prevent direct cell-cell contact, monocytes had minimal effects on myofibroblast activity (17.9 ± 11.1% vs. 6.4 ± 7.0% increase, respectively; P < 0.01). When cells were cultured under direct contact conditions, multiplex analysis of the coculture media revealed an increase in the paracrine factors TGF-β1 and matrix metalloproteinase 9 compared with baseline (122.9 ± 10.1 pg/ml and 3,496.0 ± 190.4 pg/ml, respectively, vs. 21.5 ± 16.3 pg/ml and 183.3 ± 43.9 pg/ml; P < 0.001). TGF-β blockade abolished the monocyte-induced increase in cardiac myofibroblast activity. These data suggest that direct cell-cell interaction between monocytes and cardiac myofibroblasts stimulates TGF-β-mediated myofibroblast activity and increases remodeling of local matrix. Peripheral blood monocyte interaction with human cardiac myofibroblasts stimulates myofibroblast activity through release of TGF-β1. These data implicate inflammation as a potential driver of cardiac fibrosis.
Collapse
Affiliation(s)
- Holly E M Mewhort
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada; and
| | - Brodie D Lipon
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada; and
| | - Daniyil A Svystonyuk
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada; and
| | - Guoqi Teng
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada; and
| | - David G Guzzardi
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada; and
| | - Claudia Silva
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada; and
| |
Collapse
|
25
|
Matrix metalloproteinases and their tissue inhibitor after reperfused ST-elevation myocardial infarction treated with doxycycline. Insights from the TIPTOP trial. Int J Cardiol 2015; 197:147-53. [PMID: 26134371 DOI: 10.1016/j.ijcard.2015.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/24/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022]
Abstract
BACKGROUND The TIPTOP (Early Short-term Doxycycline Therapy In Patients with Acute Myocardial Infarction and Left Ventricular Dysfunction to Prevent The Ominous Progression to Adverse Remodelling) trial demonstrated that a timely, short-term therapy with doxycycline is able to reduce LV dilation, and both infarct size and severity in patients treated with primary percutaneous intervention (pPCI) for a first ST-elevation myocardial infarction (STEMI) and left ventricular (LV) dysfunction. In this secondary, pre-defined analysis of the TIPTOP trial we evaluated the relationship between doxycycline and plasma levels of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs). METHODS In 106 of the 110 (96%) patients enrolled in the TIPTOP trial, plasma MMPs and TIMPs were measured at baseline, and at post-STEMI days 1, 7, 30 and 180. To evaluate the remodeling process, 2D-Echo studies were performed at baseline and at 6months. A (99m)Tc-SPECT was performed to evaluate the 6-month infarct size and severity. RESULTS Doxycycline therapy was independently related to higher plasma TIMP-2 levels at day 7 (p<0.05). Plasma TIMP-2 levels above the median value at day 7 were correlated with the 6-month smaller infarct size (3% [0%-16%] vs. 12% [0%-30%], p=0.002) and severity (0.55 [0.44-0.64] vs. 0.45 [0.29-0.60], p=0.002), and LV dilation (-1ml/m(2) [from -7ml/m(2) to 9ml/m(2)] vs. 3ml/m(2) [from -2ml/m(2) to 19ml/m(2)], p=0.04), compared to their counterpart. CONCLUSIONS In this clinical setting, doxycycline therapy results in higher plasma levels of TIMP-2 which, in turn, inversely correlate with 6month infarct size and severity as well as LV dilation.
Collapse
|
26
|
Svystonyuk DA, Ngu JMC, Mewhort HEM, Lipon BD, Teng G, Guzzardi DG, Malik G, Belke DD, Fedak PWM. Fibroblast growth factor-2 regulates human cardiac myofibroblast-mediated extracellular matrix remodeling. J Transl Med 2015; 13:147. [PMID: 25948488 PMCID: PMC4438633 DOI: 10.1186/s12967-015-0510-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/28/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Tissue fibrosis and chamber remodeling is a hallmark of the failing heart and the final common pathway for heart failure of diverse etiologies. Sustained elevation of pro-fibrotic cytokine transforming growth factor-beta1 (TGFβ1) induces cardiac myofibroblast-mediated fibrosis and progressive structural tissue remodeling. OBJECTIVES We examined the effects of low molecular weight fibroblast growth factor (LMW-FGF-2) on human cardiac myofibroblast-mediated extracellular matrix (ECM) dysregulation and remodeling. METHODS Human cardiac biopsies were obtained during open-heart surgery and myofibroblasts were isolated, passaged, and seeded within type I collagen matrices. To induce myofibroblast activation and ECM remodeling, myofibroblast-seeded collagen gels were exposed to TGFβ1. The extent of ECM contraction, myofibroblast activation, ECM dysregulation, and cell apoptosis was determined in the presence of LMW-FGF-2 and compared to its absence. Using a novel floating nylon-grid supported thin collagen gel culture platform system, myofibroblast activation and local ECM remodeling around isolated single cells was imaged using confocal microscopy and quantified by image analysis. RESULTS TGFβ1 induced significant myofibroblast activation and ECM dysregulation as evidenced by collagen gel contraction, structural ECM remodeling, collagen synthesis, ECM degradation, and altered TIMP expression. LMW-FGF-2 significantly attenuated TGFβ1 induced myofibroblast-mediated ECM remodeling. These observations were similar using either ventricular or atrial-derived cardiac myofibroblasts. In addition, for the first time using individual cells, LMW-FGF-2 was observed to attenuate cardiac myofibroblast activation and prevent local cell-mediated ECM perturbations. CONCLUSIONS LMW-FGF-2 attenuates human cardiac myofibroblast-mediated ECM remodeling and may prevent progressive maladaptive chamber remodeling and tissue fibrosis for patients with diverse structural heart diseases.
Collapse
Affiliation(s)
- Daniyil A Svystonyuk
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Janet M C Ngu
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Holly E M Mewhort
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Brodie D Lipon
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Guoqi Teng
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - David G Guzzardi
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Getanshu Malik
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Darrell D Belke
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| | - Paul W M Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, C880, 1403 29 Street NW, Calgary, Alberta, T2N 2T9, Canada.
| |
Collapse
|
27
|
Teng G, Svystonyuk D, Mewhort HEM, Turnbull JD, Belke DD, Duff HJ, Fedak PWM. Tetrandrine reverses human cardiac myofibroblast activation and myocardial fibrosis. Am J Physiol Heart Circ Physiol 2015; 308:H1564-74. [PMID: 25862829 DOI: 10.1152/ajpheart.00126.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/03/2015] [Indexed: 11/22/2022]
Abstract
Tetrandrine (TTD) is a calcium channel blocker with documented antifibrotic actions. In this study, for the first time, we identified that TTD can directly prevent in vitro human cardiac myofibroblast activation and limit in vivo myocardial fibrosis. In vitro, cardiac myofibroblasts from human atrial biopsies (N = 10) were seeded in three-dimensional collagen matrices. Cell-collagen constructs were exposed to transforming growth factor-β1 (10 ng/ml), with or without TTD (1 and 5 μM) for 48 h. Collagen gel contraction, myofibroblast activation (α-smooth muscle actin expression), expression of profibrotic mRNAs, and rate of collagen protein synthesis were compared. TTD decreased collagen gel contraction (79.7 ± 1.3 vs 60.1 ± 8.9%, P < 0.01), α-smooth muscle actin expression (flow cytometry), collagen synthesis ([(3)H]proline incorporation), and collagen mRNA expression. Cell viability was similar between groups (annexin positive cells: 1.7 vs. 1.4%). TTD inhibited collagen gel contraction in the presence of T-type and L-type calcium channel blockers, and the intracellular calcium chelator BAPTA-AM (15 μM), suggesting that the observed effects are not mediated by calcium homeostasis. In vivo, Dahl salt-sensitive hypertensive rats were treated with variable doses of TTD (by intraperitoneal injection over 4 wk) and compared with untreated controls (N = 12). Systemic blood pressure was monitored by tail cuff. Myocardial fibrosis and left ventricular compliance were assessed by histology and passive pressure-volume analysis. Myocardial fibrosis was attenuated compared with untreated controls (%collagen area: 9.4 ± 7.3 vs 2.1 ± 1.0%, P < 0.01). Left ventricular compliance was preserved. In conclusion, TTD reverses human cardiac myofibroblast activation and myocardial fibrosis, independent of calcium channel blockade.
Collapse
Affiliation(s)
- Guoqi Teng
- Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Daniyil Svystonyuk
- Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Holly E M Mewhort
- Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Jeannine D Turnbull
- Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Darrell D Belke
- Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Henry J Duff
- Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| | - Paul W M Fedak
- Department of Cardiac Sciences, University of Calgary, Libin Cardiovascular Institute of Alberta, Calgary, Alberta, Canada
| |
Collapse
|