1
|
Zhang Z, Zhang Y, Xu B, Li T, Zhang R, Wei T, Wen W. Identification of Novel Laccase from Ganoderma lucidum and Application in Biotransformation to Bio-based Fragrances Using Alkaline Lignin as Raw Material. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05251-y. [PMID: 40358909 DOI: 10.1007/s12010-025-05251-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2025] [Indexed: 05/15/2025]
Abstract
A novel laccase, Lac3, was purified from Ganoderma lucidum fermentation broth by salting out, gel filtration chromatography, and Native-PAGE protein recovery. The molecular mass of Lac3 was 58.4 kDa as estimated by SDS-PAGE and exhibited catalytic properties with 2,2'-Biazobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as substrate. The specific enzyme activity of Lac3 was determined to be 313.69 U/mg. The laccase was stable at temperatures < 65 °C and at pH of 2.5-4.5. The pH, temperature optima, Km and Vmax of the enzyme for ABTS oxidation were 3.0, 55 °C, 0.077 mM, and 2.98 mM/min, respectively. The metal ions and anions showed inhibitory effects on Lac3 activity except Cu2+ (1 mM). GC-MS analysis showed that various aroma products were generated by Lac3 treatment of alkaline lignin. The Lac3 and lignin model compounds had negative binding energy and hydrogen bonding. The analysis of docking suggested that Asp207, Asn256, and His459 play a key role in substrate binding and catalysis.
Collapse
Affiliation(s)
- Zhiping Zhang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Yue Zhang
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Boli Xu
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Tianxiao Li
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan Province, People's Republic of China
| | - Rongya Zhang
- Technology Center, China Tobacco Sichuan Industrial Co., Ltd,, Chengdu, 610066, Sichuan Province, People's Republic of China
| | - Tao Wei
- School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, Henan Province, People's Republic of China.
| | - Wu Wen
- Technology Center, China Tobacco Sichuan Industrial Co., Ltd,, Chengdu, 610066, Sichuan Province, People's Republic of China.
| |
Collapse
|
2
|
Lenka J, González-Tortuero E, Kuba S, Ferry N. Bacterial community profiling and identification of bacteria with lignin-degrading potential in different gut segments of African palm weevil larvae ( Rhynchophorus phoenicis). Front Microbiol 2025; 15:1401965. [PMID: 39831119 PMCID: PMC11739302 DOI: 10.3389/fmicb.2024.1401965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025] Open
Abstract
The microbiota within the guts of insects plays beneficial roles for their hosts, such as facilitating digestion and extracting energy from their diet. The African palm weevil (APW) lives within and feeds on the high lignin-containing trunk of palm trees; therefore, their guts could harbour a large community of lignin-degrading microbes. In this study, we aimed to explore the bacterial community within the gut of the APW larvae, specifically with respect to the potential for lignin degradation in various gut segments as a first step to determining the viability of mining bacterial lignin-degrading enzymes for the bioconversion of lignocellulosic biomass to biofuels and biomaterials. Bacterial metagenomic DNA was extracted from the foregut, midgut, and hindgut of larvae of the APW, and the V3-V4 hypervariable region of the 16S rRNA gene was sequenced using the Illumina MiSeq platform. The generated data were analysed and taxonomically classified to identify the different bacterial phylotypes within the gut community cumulatively and per gut segment. We then determined the presence, diversity, and abundance of bacteria associated with lignin degradation within each larval gut compartment as a basis for suggesting the gut segment(s) where lignin degradation occurs the most. All sequences were classified and belonged to the bacterial kingdom. Firmicutes (54.3%) and Proteobacteria (42.5%) were the most dominant phyla within the gut, followed distantly by Bacteroidota (1.7%) and Actinobacteriota (1.4%). Enterococcus, Levilactobacillus, Lactococcus, Shimwellia, Megasphaera, Klebsiella, Pectinatus, Salmonella, Lelliotia, and Enterobacter constituted the most abundant genera found across all gut segments. The foregut and midgut had many similar genera, whilst the hindgut appeared unique. Overall, 29.5% of total gut bacteria comprising 21 genera were lignin degraders found predominantly in the Firmicutes and Proteobacteria phyla (56.8 and 39.5%, respectively), then moderately in Actinobacteriota (2.5%) and Bacteroidota (1.1%). The most abundant ligninolytic genera were Levilactobacillus (46.4%), Klebsiella (22.9%), Enterobacter (10.7%), Lactiplantibacillus (5.9%), Citrobacter (2.2%), Corynebacterium (1.8%), Paucilactobacillus (1.8%), Serratia (1.5%), Bacteroides (1.1%), and Leucobacter (1.0%) found in different amounts in different gut compartments. The foregut had the most diverse and highest abundance of lignin-degrading phylotypes, and we present reasons that point to the foregut as the main location for the depolymerization of lignin in the APW larval gut.
Collapse
Affiliation(s)
- Jessica Lenka
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Staffordshire, United Kingdom
| | - Enrique González-Tortuero
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Shweta Kuba
- School of Health and Life Sciences, Teesside University, Middlesborough, United Kingdom
| | - Natalie Ferry
- School of Science, Engineering and Environment, University of Salford, Salford, United Kingdom
| |
Collapse
|
3
|
Nawaz MZ, Khalid HR, Mirza MU, Xu L, Haider SZ, Al-Ghanim KA, Barceló D, Zhu D. Elucidating the bioremediation potential of laccase and peroxidase enzymes from Bacillus ligniniphilus L1 in antibiotic degradation: A computationally guided study. BIORESOURCE TECHNOLOGY 2024; 413:131520. [PMID: 39321942 DOI: 10.1016/j.biortech.2024.131520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
This study showcased the antibiotic degradation abilities of laccase and catalase-peroxidase from Bacillus ligniniphilus L1, an extremophile, against 18 common antibiotics using computationally guided approach. Molecular docking and simulation identified six enzyme-antibiotic complexes for laccase and four for catalase-peroxidase, demonstrating significant binding affinity and stability. Enzyme activity assays corroborated computational results, indicating both enzymes could degrade all tested antibiotics with varying efficiencies. L1 laccase outperformed commercial laccase against five antibiotics, notably vancomycin, levofloxacin, tobramycin, linezolid, and rifamycin, with enhanced degradation potential upon ABTS addition. Catalase-peroxidase from L1 exhibited superior degradation efficiency over commercial peroxidase against vancomycin, linezolid, tobramycin, and clindamycin. Overall, this study underscores the computational approach's utility in understanding enzyme-mediated antibiotic degradation, offering insights into environmental contaminant remediation.
Collapse
Affiliation(s)
- Muhammad Zohaib Nawaz
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hafiz Rameez Khalid
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou 215009, China
| | | | - Lingxia Xu
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Syed Zeeshan Haider
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou 215009, China
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120, Almería, Spain
| | - Daochen Zhu
- International Joint Laboratory On Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment. Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Zhang Y, Zhang T, Cai W, Owens G, Chen Z. Recovery of Y(III) from wastewater by Pseudomonas psychrotolerans isolated from a mine soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134973. [PMID: 38905975 DOI: 10.1016/j.jhazmat.2024.134973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/06/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
While microbial technologies, which are considered to be environmentally friendly, have great potential for the recovery of rare earth elements (REEs) from mining wastewater, their applications have been restricted due to a lack of efficient biosorbents. In this study, a strain of Pseudomonas psychrotolerans isolated from yttrium-enriched mine soil was used to recover yttrium (Y(III)) from rare-earth mining wastewater. At an initial Y(III) dose of 50 mg L-1, the amount of Y(III) adsorbed by P. psychrotolerans reached 99.9 % after 24 h. Various characterization techniques revealed that P. psychrotolerans adsorbed Y(III) mainly through complexation of oxygen-containing functional groups and electrostatic interactions. A high level of adsorption efficiency (>99.9 %) was maintained after five consecutive adsorption/desorption cycles, indicating that P. psychrotolerans was highly reusable. While the efficiency of adsorbing Y(III) by P. psychrotolerans decreased (34.4 %) in actual rare earth mining wastewater, selectivity toward other REEs (≤ 18.4 %) was still observed. Consequently, this study provides a promising green, environmentally friendly and sustainable microbial approach for the selective recovery of REEs from rare earth wastewater.
Collapse
Affiliation(s)
- Yuyu Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Tao Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Wanling Cai
- School of Mechanical and Intelligent Manufacturing, Fujan Chuanzheng Communications College, Fuzhou 350007, Fujian, China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian, China.
| |
Collapse
|
5
|
Qiu Q, Li H, Sun X, Tian K, Gu J, Zhang F, Zhou D, Zhang X, Huo H. Integrating genomics, molecular docking, and protein expression to explore new perspectives on polystyrene biodegradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135031. [PMID: 38943889 DOI: 10.1016/j.jhazmat.2024.135031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/01/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Faced with the escalating challenge of global plastic pollution, this study specifically addresses the research gap in the biodegradation of polystyrene (PS). A PS-degrading bacterial strain was isolated from the gut of Tenebrio molitor, and genomics, molecular docking, and proteomics were employed to thoroughly investigate the biodegradation mechanisms of Pseudomonas putida H-01 against PS. Using scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (ATR-FTIR), and contact angle analysis, significant morphological and structural changes in the PS films under the influence of the H-01 strain were observed. The study revealed several potential degradation genes and ten enzymes that were specifically upregulated in the PS degradation environment. Additionally, a novel protein with laccase-like activity, LacQ1, was purified from this strain for the first time, and its crucial role in the PS degradation process was confirmed. Through molecular docking and molecular dynamics (MD) simulations, the interactions between the enzymes and PS were detailed, elucidating the binding and catalytic mechanisms of the degradative enzymes with the substrate. These findings have deepened our understanding of PS degradation.
Collapse
Affiliation(s)
- Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Jinming Gu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Fenglin Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China
| | - Dandan Zhou
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China
| | - Xinwen Zhang
- College of Pharmacy, Hainan Vocational University of Science and Technology, Haikou 571126, China.
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
6
|
Wang C, Jia Y, Luo J, Chen B, Pan C. Characterization of thermostable recombinant laccase F from Trametes hirsuta and its application in delignification of rice straw. BIORESOURCE TECHNOLOGY 2024; 395:130382. [PMID: 38281550 DOI: 10.1016/j.biortech.2024.130382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Affiliation(s)
- Chengpeng Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yitong Jia
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingyi Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; Jiande Forestry Bureau, Hangzhou 311699, China
| | - Bosheng Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengyuan Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
7
|
Hao WB, Gu X, Yu X, Zhao Y, Li C, Jia M, Du XD. Laccase Lac-W detoxifies aflatoxin B 1 and degrades five other major mycotoxins in the absence of redox mediators. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122581. [PMID: 37748638 DOI: 10.1016/j.envpol.2023.122581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/24/2023] [Accepted: 09/16/2023] [Indexed: 09/27/2023]
Abstract
A multicopper oxidase Lac-W from Weizmannia coagulans 36D1 was identified and characterized as a laccase (Lac-W) with a robust enzymatic activity, which was used in various mycotoxins degradation. We demonstrated that Lac-W could directly degrade six major mycotoxins in the absence of redox mediators in pH 9.0, 24h static incubation at room temperature, including aflatoxin B1 (AFB1, 88%), zearalenone (60%), deoxynivalenol (34%), T-2 toxin (19%), fumonisin B1 (18%), and ochratoxin A (12%). The optimal condition for Lac-W to degrade AFB1 was 30 °C, pH 9.0, enzyme-substrate ratio 3U/μg in 24h static condition. Furthermore, we characterized aflatoxin Q1 as a Lac-W-mediated degradation product of AFB1 using UHPLC-MS/MS. Interestingly, degradation products of AFB1 failed to generate cell death and apoptosis of intestinal porcine epithelial cells. Finally, our molecular docking simulation results revealed that the substrate-binding pocket of Lac-W was large enough to allow the entry of six mycotoxins with different structures, and their degradation rates were positively correlated to their interacting affinity with Lac-W. In summary, the unique properties of the Lac-W make it a great candidate for detoxifying multiple mycotoxins contaminated food and feed cost-effectively and eco-friendly. Our study provides new insights into development of versatile enzymes which could simultaneously degrade multiple mycotoxins.
Collapse
Affiliation(s)
- Wen-Bo Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaodan Gu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaohu Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Youbao Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenglong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengshuang Jia
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiang-Dang Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
8
|
Cai X, Xue C, Owens G, Chen Z. Removal of As(III) using a microorganism sustained secrete laccase-straw oxidation system. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130967. [PMID: 36764251 DOI: 10.1016/j.jhazmat.2023.130967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
While laccase oxidation is a novel and promising method for treating arsenite-containing wastewater, the high cost and unsustainability of commercially available enzymes indicate a need to investigate more cost-effective viable alternatives. Here, a microorganism sustained secrete laccase-straw oxidation system (MLOS) was established and subsequently evaluated for the removal of As(III). MLOS showed efficient biological As(III) oxidation, with an As(III) removal efficiency reaching 99.9% at an initial As(III) concentration of 1.0 mg·L-1. IC-AFS and XPS analysis showed that As(III) was partially oxidized to As(V), and partially As(III) adsorbed on the surface of rice straw. FTIR analysis revealed that hydroxyl, amine and amide groups were all involved in the As(III) removal process. SEM-EDS demonstrated that the surface structure of rice straw was destroyed following Comamonas testosteroni FJ17 (C. testosteroni FJ17) treatment, and the metal ions binding sites of rice straw were increased resulting in elemental arsenic being detected on the material surface. Molecular docking revealed the interaction between key residues of laccase and As(III). Laccase activity was negatively correlated with Cu(II) concentration in the As(III) oxidation. EEM showed that humic-like acids were also involved in the interaction with As(III). Overall, a MLOS derived from biomass waste has a significant potential to be developed as a green and sustainable technology for the treatment of wastewater containing As(III).
Collapse
Affiliation(s)
- Xiaonan Cai
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350007, Fujian Province, PR China
| | - Chao Xue
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350007, Fujian Province, PR China.
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australian, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350007, Fujian Province, PR China.
| |
Collapse
|
9
|
Rovaletti A, De Gioia L, Fantucci P, Greco C, Vertemara J, Zampella G, Arrigoni F, Bertini L. Recent Theoretical Insights into the Oxidative Degradation of Biopolymers and Plastics by Metalloenzymes. Int J Mol Sci 2023; 24:6368. [PMID: 37047341 PMCID: PMC10094197 DOI: 10.3390/ijms24076368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Molecular modeling techniques have become indispensable in many fields of molecular sciences in which the details related to mechanisms and reactivity need to be studied at an atomistic level. This review article provides a collection of computational modeling works on a topic of enormous interest and urgent relevance: the properties of metalloenzymes involved in the degradation and valorization of natural biopolymers and synthetic plastics on the basis of both circular biofuel production and bioremediation strategies. In particular, we will focus on lytic polysaccharide monooxygenase, laccases, and various heme peroxidases involved in the processing of polysaccharides, lignins, rubbers, and some synthetic polymers. Special attention will be dedicated to the interaction between these enzymes and their substrate studied at different levels of theory, starting from classical molecular docking and molecular dynamics techniques up to techniques based on quantum chemistry.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Luca De Gioia
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Piercarlo Fantucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jacopo Vertemara
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Giuseppe Zampella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Federica Arrigoni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Luca Bertini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
10
|
Dixit R, Khambhati K, Supraja KV, Singh V, Lederer F, Show PL, Awasthi MK, Sharma A, Jain R. Application of machine learning on understanding biomolecule interactions in cellular machinery. BIORESOURCE TECHNOLOGY 2023; 370:128522. [PMID: 36565819 DOI: 10.1016/j.biortech.2022.128522] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Machine learning (ML) applications have become ubiquitous in all fields of research including protein science and engineering. Apart from protein structure and mutation prediction, scientists are focusing on knowledge gaps with respect to the molecular mechanisms involved in protein binding and interactions with other components in the experimental setups or the human body. Researchers are working on several wet-lab techniques and generating data for a better understanding of concepts and mechanics involved. The information like biomolecular structure, binding affinities, structure fluctuations and movements are enormous which can be handled and analyzed by ML. Therefore, this review highlights the significance of ML in understanding the biomolecular interactions while assisting in various fields of research such as drug discovery, nanomedicine, nanotoxicity and material science. Hence, the way ahead would be to force hand-in hand of laboratory work and computational techniques.
Collapse
Affiliation(s)
- Rewati Dixit
- Waste Treatment Laboratory, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Haus-khas, New Delhi 110016, India
| | - Khushal Khambhati
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Kolli Venkata Supraja
- Waste Treatment Laboratory, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Haus-khas, New Delhi 110016, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Franziska Lederer
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Bautzner landstrasse 400, 01328 Dresden, Germany
| | - Pau-Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, University of Nottingham, Malaysia, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Abhinav Sharma
- Institute Theory of Polymers, Leibniz Institute for Polymer Research, Hohe Strasse 6, 01069 Dresden, Germany
| | - Rohan Jain
- Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Bautzner landstrasse 400, 01328 Dresden, Germany.
| |
Collapse
|
11
|
Shang C, Li Y, Zhang J, Gan S. Analysis of Bacterial Diversity in Different Types of Daqu and Fermented Grains From Danquan Distillery. Front Microbiol 2022; 13:883122. [PMID: 35865918 PMCID: PMC9295720 DOI: 10.3389/fmicb.2022.883122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial communities in high-temperature Daqu and fermented grains are important for brewing Jiang-flavor Baijiu such as Danquan Baijiu. Daqu is a saccharifying and fermenting agent, which has a significant impact on the flavor of Baijiu. However, bacterial communities in three different types of samples from the Danquan distillery (dqjq_ck, dqjqcp, and dqjp3) were still unclear, which limited further development of Danquan Baijiu. “dqjq_ck” and “dqjqcp” indicate high-temperature Daqu at days 45 and 135, respectively. “dqjp3” indicates fermented grains. In this study, the bacterial communities of three samples were analyzed by Illumina Miseq high-throughput sequencing. The bacterial communities of three samples primarily composed of thermophilic bacteria and bacteria with stress resistance. The most abundant species in dqjq_ck, dqjqcp, and dqjp3 were Comamonas, Bacillus, and unclassified Lactobacillales, respectively. The main bacteria included Bacillus, Comamonas, Myroides, Paenibacillus, Acetobacter, Kroppenstedtia, Staphylococcus, Saccharopolyspora, Planifilum, Lactobacillus, Acinetobacter, Oceanobacillus, Enterococcus, Thermoactinomyces, Lactococcus, Streptomyces, Saccharomonospora, Tepidimicrobium, Anaerosalibacter, unclassified_Lactobacillales, unclassified_Thermoactinomycetaceae_1, unclassified_Bacillaceae_2, unclassified_Bacillales, unclassified_Microbacteriaceae, unclassified_Rhodobacteraceae, unclassified_Actinopolysporineae, and unclassified_Flavobacteriaceae in three samples (percentage was more than 1% in one of three samples). In our study, the succession of microbiota in three samples representing three important stages of Danquan Baijiu brewing was revealed. This article lays a good foundation for understanding the fermentation mechanism and screening some excellent indigenous bacteria to improve the quality of Danquan Baijiu in future.
Collapse
Affiliation(s)
- Changhua Shang
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Changhua Shang
| | - Yujia Li
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| | - Jin Zhang
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| | - Shanling Gan
- College of Life Sciences, Guangxi Normal University, Guilin, China
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, China
| |
Collapse
|