1
|
Zhang M, Liu C, Tu J, Tang M, Ashrafizadeh M, Nabavi N, Sethi G, Zhao P, Liu S. Advances in cancer immunotherapy: historical perspectives, current developments, and future directions. Mol Cancer 2025; 24:136. [PMID: 40336045 PMCID: PMC12057291 DOI: 10.1186/s12943-025-02305-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 03/15/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer immunotherapy, encompassing both experimental and standard-of-care therapies, has emerged as a promising approach to harnessing the immune system for tumor suppression. Experimental strategies, including novel immunotherapies and preclinical models, are actively being explored, while established treatments, such as immune checkpoint inhibitors (ICIs), are widely implemented in clinical settings. This comprehensive review examines the historical evolution, underlying mechanisms, and diverse strategies of cancer immunotherapy, highlighting both its clinical applications and ongoing preclinical advancements. The review delves into the essential components of anticancer immunity, including dendritic cell activation, T cell priming, and immune surveillance, while addressing the challenges posed by immune evasion mechanisms. Key immunotherapeutic strategies, such as cancer vaccines, oncolytic viruses, adoptive cell transfer, and ICIs, are discussed in detail. Additionally, the role of nanotechnology, cytokines, chemokines, and adjuvants in enhancing the precision and efficacy of immunotherapies were explored. Combination therapies, particularly those integrating immunotherapy with radiotherapy or chemotherapy, exhibit synergistic potential but necessitate careful management to reduce side effects. Emerging factors influencing immunotherapy outcomes, including tumor heterogeneity, gut microbiota composition, and genomic and epigenetic modifications, are also examined. Furthermore, the molecular mechanisms underlying immune evasion and therapeutic resistance are analyzed, with a focus on the contributions of noncoding RNAs and epigenetic alterations, along with innovative intervention strategies. This review emphasizes recent preclinical and clinical advancements, with particular attention to biomarker-driven approaches aimed at optimizing patient prognosis. Challenges such as immunotherapy-related toxicity, limited efficacy in solid tumors, and production constraints are highlighted as critical areas for future research. Advancements in personalized therapies and novel delivery systems are proposed as avenues to enhance treatment effectiveness and accessibility. By incorporating insights from multiple disciplines, this review aims to deepen the understanding and application of cancer immunotherapy, ultimately fostering more effective and widely accessible therapeutic solutions.
Collapse
Affiliation(s)
- Meiyin Zhang
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Chaojun Liu
- Department of Breast Surgery, Henan Provincial People's Hospital; People's Hospital of Zhengzhou University; People's Hospital of Henan University, Zhengzhou, Henan, 450003, China
| | - Jing Tu
- Department of Pulmonary and Critical Care Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
| | - Min Tang
- Department of Oncology, Chongqing General Hospital, Chongqing University, Chongqing, 401147, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia, V8 V 1P7, Canada
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR) Yong Loo Lin, School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Peiqing Zhao
- Translational Medicine Center, Zibo Central Hospital Affiliated to Binzhou Medical University, No. 54 Communist Youth League Road, Zibo, China.
| | - Shijian Liu
- Department of General Medicine, The 2nd Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Harbin, 150081, China.
| |
Collapse
|
2
|
Li YR, Wang G, He WT, Liu T. Application of aggregation-induced emission materials in gastrointestinal diseases. World J Gastroenterol 2025; 31:105378. [PMID: 40308804 PMCID: PMC12038521 DOI: 10.3748/wjg.v31.i16.105378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 04/11/2025] [Indexed: 04/27/2025] Open
Abstract
Aggregation-induced emission (AIE) is a phenomenon characterized by certain fluorescent molecules that exhibit weak or no luminescence in solution but demonstrate significantly enhanced luminescence upon aggregation. Accordingly, AIE materials have successfully addressed the limitations associated with aggregation-caused quenching effects and have made significant progress in the application of various fields of medicine in recent years. At present, the application of AIE materials in gastrointestinal (GI) diseases is mainly in GI imaging, diagnosis and treatment. In this review, we summarize the applications of AIE materials in GI pathogens and GI diseases, including inflammatory bowel disease and GI tumors, and outline combined treatment methods of AIE materials in GI tumor therapy.
Collapse
Affiliation(s)
- Yi-Rong Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Gang Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Wen-Ting He
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University, Lanzhou 730000, Gansu Province, China
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu Province, China
| | - Tao Liu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Prevention and Treatment and Translational Medicine Engineering Innovation Center of Lanzhou University, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Digestive System Tumor Translational Medicine Engineering Research Center of Gansu Province, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Gansu Provincial Key Laboratory of Environmental Oncology, Lanzhou University, Lanzhou 730000, Gansu Province, China
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, Gansu Province, China
| |
Collapse
|
3
|
Zhou S, Sun X, Liang G. Activatable peptide-AIEgen conjugates for cancer imaging. Chem Sci 2025; 16:5369-5382. [PMID: 40060104 PMCID: PMC11887570 DOI: 10.1039/d4sc08633c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Aggregation-induced emission luminogens (AIEgens) have undergone significant development over the past decade, making substantial and profound contributions to a diverse range of research fields, prominently including cancer/disease diagnosis and therapy. Through the covalent conjugation of AIEgens with functional peptides, the resultant peptide-AIEgen conjugates possess not only the excellent biocompatibility characteristics, along with low systemic toxicity and negligible immunogenicity of peptides, but also the remarkable fluorescence properties of AIEgens. This "win-win" integration has significantly propelled the applications of peptide-AIEgen conjugates, particularly within the domain of cancer imaging. Three principal types of peptide-AIEgen conjugates, namely, tumor-targeting, tumor biomarker-responsive, and biomarker-responsive self-assembling peptide-AIEgen conjugates, are commonly devised. These conjugates confer enhanced targeting capabilities and selectivity towards tumors, thereby facilitating "smart" and precise tumor imaging with high signal-to-background ratios. In light of the crucial significance of peptide-AIEgen conjugates in tumor imaging and the recent inspiring breakthroughs that have not been encompassed in previous reviews, we present this review. We highlight the activatable peptide-AIEgen conjugates developed for tumor imaging over the past three years (from 2022 to the present). Particular attention is directed towards their design rationales, operational mechanisms, and imaging performance. Finally, prospective opportunities within this field are also reasonably deliberated.
Collapse
Affiliation(s)
- Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, School of Chemistry and Chemical Engineering, Southeast University Nanjing 211189 China
| | - Xianbao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University Nanjing 211189 China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University Nanjing 211189 China
| |
Collapse
|
4
|
Hu JJ, Lin N, Yuan L, Lou X, Xia F. Detection of Analytes with the Outer Surface of Solid-State Nanochannels: From pm to μm. Acc Chem Res 2025; 58:834-846. [PMID: 40053894 DOI: 10.1021/acs.accounts.4c00793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Accurately simulating or sensitively monitoring specific substances, such as ions, molecules, and proteins in the life process, is essential for gaining a fundamental comprehension of the underlying biological mechanism, which has been a trending topic for many years. Solid-state nanochannels, inspired by biological ion channels, have been developed for decades and have achieved significant success, representing the forefront of the interdisciplinary fields of bioanalytical chemistry and nanotechnology. Typically, solid-state nanochannels with a pore size of less than 100 nm are selected to construct nanochannel-based biosensors, which can be an excellent platform to analyze small analytes, such as ions and small molecules, in a restricted space and simulate the intricate process of ion transport in living organisms. Furthermore, by integrating functional components that are termed probes into artificial devices, the nanochannel system has emerged as a remarkable tool for label-free and highly sensitive detection in practical applications. Nonetheless, the detection of large substances (more than nanoscale in size) has consistently posed a significant challenge, since previous research on solid-state nanochannels has mainly concentrated on the contribution of probes at the inner wall, which requires the biotargets to enter the nanochannel for successful detection. Moreover, the lack of testing techniques for the chemical and physical properties of probes anchored deep inside confined nanochannels results in an unclear working mechanism, which is another issue that cannot be ignored. The requirement for a more efficient and extensive detection platform has spurred an in-depth study of nanochannels, which provides innovative insight concentrating on the less restricted space on the outer surface (OS) of nanochannels and the probes at the OS (POS).In this Account, several approaches to constructing the OS and modifying POS are briefly summarized. Subsequently, ultrasensitive detection of analytes across a range of sizes, encompassing not only the ions and small molecules from ∼100 pm to ∼2 nm but also the large substances from ∼2 nm to ∼20 μm through the use of POS in the last five years, is introduced. Through the characterization of OS and the precise control of POS, the sensing mechanism, including surface charge and wettability, with POS is discussed unambiguously. Additionally, an intelligent model using dual-signal responses such as electrical and optical to enhance the responsiveness and accuracy of quantitative analysis is discussed, which can distinguish the conformation of an analyte by the exposed single cysteine thiol group. We expect that this timely Account will offer instructive insights into the development of a nanochannel-based platform to facilitate the analysis of biomolecules of varying sizes.
Collapse
Affiliation(s)
- Jing-Jing Hu
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Niya Lin
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Lizhen Yuan
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Geomicrobiology and Environmental Changes, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
5
|
Li Y, Xu Y, Su W, Xu J, Ye Z, Wang Z, Liu Q, Chen F. Exploring the immuno-nano nexus: A paradigm shift in tumor vaccines. Biomed Pharmacother 2025; 184:117897. [PMID: 39921945 DOI: 10.1016/j.biopha.2025.117897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Tumor vaccines have become a crucial strategy in cancer immunotherapy. Challenges of traditional tumor vaccines include inadequate immune activation and low efficacy of antigen delivery. Nanoparticles, with their tunable properties and versatile functionalities, have redefined the landscape of tumor vaccine design. In this review, we outline the multifaceted roles of nanoparticles in tumor vaccines, ranging from their capacity as delivery vehicles to their function as immunomodulatory adjuvants capable of stimulating anti-tumor immunity. We discuss how this innovative approach significantly boosts antigen presentation by leveraging tailored nanoparticles that facilitate efficient uptake by antigen-presenting cells. These nanoparticles have been meticulously designed to overcome biological barriers, ensuring optimal delivery to lymph nodes and effective interaction with the immune system. Overall, this review highlights the transformative power of nanotechnology in redefining the principles of tumor vaccines. The intent is to inform more efficacious and precise cancer immunotherapies. The integration of these advanced nanotechnological strategies should unlock new frontiers in tumor vaccine development, enhancing their potential to elicit robust and durable anti-tumor immunity.
Collapse
Affiliation(s)
- Yuanyuan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yike Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenwen Su
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jia Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zifei Ye
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Zhuoyi Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Qihui Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Fangfang Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| |
Collapse
|
6
|
Du S, Liu J, Zhang Y, Ge X, Gao S, Song J. PD-L1 peptides in cancer immunoimaging and immunotherapy. J Control Release 2025; 378:1061-1079. [PMID: 39742920 DOI: 10.1016/j.jconrel.2024.12.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025]
Abstract
The interaction between programmed death protein 1 (PD-1) and programmed death ligand 1 (PD-L1) constitutes a critical immune checkpoint pathway that leads to immune tolerance in cancer cells and impacts antitumor treatment. Monoclonal antibody blockade of the PD-L1 immunoinhibitory pathway has demonstrated significant and lasting clinical antitumor responses. Furthermore, PD-L1 serves as an important biomarker for predicting the effectiveness of immune checkpoint inhibitors (ICIs). To date, numerous studies based on monoclonal antibodies have been carried out to detect the expression levels of PD-L1 and predict the antitumor effectiveness of PD-L1 ICIs. However, due to the deficiencies of monoclonal antibodies, researches of PD-L1 peptides have received increasing attention. PD-L1 peptides present promising candidates due to their advantages, including reduced manufacturing costs, enhanced stability, decreased immunogenicity, faster clearance and improved tumor or organ penetration, thereby offering broad application prospects in cancer immunoimaging and immunotherapy. In this review, we analyze the existing evidence on PD-L1 peptides in cancer immunoimaging and immunotherapy. First, the design techniques of different types of PD-L1 targeting peptides and their strengths and weaknesses are briefly introduced. Second, the recent advancements in immunoimaging and the development trends in immunotherapy are summarized. Finally, the existing challenges and future directions in this field are comprehensively deliberated.
Collapse
Affiliation(s)
- Shiye Du
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Junzhi Liu
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Youjia Zhang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiaoguang Ge
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun 130033, China.
| | - Jibin Song
- College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Lei Y, Liu J, Bai Y, Zheng C, Wang D. Peptides as Versatile Regulators in Cancer Immunotherapy: Recent Advances, Challenges, and Future Prospects. Pharmaceutics 2025; 17:46. [PMID: 39861694 PMCID: PMC11768547 DOI: 10.3390/pharmaceutics17010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/25/2024] [Accepted: 12/29/2024] [Indexed: 01/27/2025] Open
Abstract
The emergence of effective immunotherapies has revolutionized therapies for many types of cancer. However, current immunotherapy has limited efficacy in certain patient populations and displays therapeutic resistance after a period of treatment. To address these challenges, a growing number of immunotherapy drugs have been investigated in clinical and preclinical applications. The diverse functionality of peptides has made them attractive as a therapeutic modality, and the global market for peptide-based therapeutics is witnessing significant growth. Peptides can act as immunotherapeutic agents for the treatment of many malignant cancers. However, a systematic understanding of the interactions between different peptides and the host's immune system remains unclear. This review describes in detail the roles of peptides in regulating the function of the immune system for cancer immunotherapy. Initially, we systematically elaborate on the relevant mechanisms of cancer immunotherapy. Subsequently, we categorize peptide-based nanomaterials into the following three categories: peptide-based vaccines, anti-cancer peptides, and peptide-based delivery systems. We carefully analyzed the roles of these peptides in overcoming the current barriers in immunotherapy, including multiple strategies to enhance the immunogenicity of peptide vaccines, the synergistic effect of anti-cancer peptides in combination with other immune agents, and peptide assemblies functioning as immune stimulators or vehicles to deliver immune agents. Furthermore, we introduce the current status of peptide-based immunotherapy in clinical applications and discuss the weaknesses and future prospects of peptide-based materials for cancer immunotherapy. Overall, this review aims to enhance comprehension of the potential applications of peptide-based materials in cancer immunotherapy and lay the groundwork for future research and clinical applications.
Collapse
Affiliation(s)
- Yu Lei
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Jiacheng Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Yaowei Bai
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Y.L.); (J.L.); (Y.B.)
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dongyuan Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
8
|
Hu JJ, Yang J, Liu Y, Lu G, Zhao Z, Xia F, Lou X. Tuning the affinity of probes with transmembrane proteins by constructing peptide-conjugated cis/ trans isomers based on molecular scaffolds. J Mater Chem B 2024; 12:12523-12529. [PMID: 39494739 DOI: 10.1039/d4tb01801j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
For protein analysis, the current peptide-based probes rely almost on the specific recognition of the protein while neglecting the potential influence of the environment near the protein. Herein, we propose that to achieve high recognition of transmembrane protein integrin αvβ3, the interactions from the membrane substrate could be helpful. Moreover, to guarantee the additive effect of different interactions, the cis and trans isomers of peptide-based probes are distinguished. In detail, we synthesized the peptide-conjugated cis/trans isomers (cis-RTP and trans-RTP) by modifying the Arg-Gly-Asp (RGD)-targeting peptide and palmitic acid-conjugated Arg-Arg-Arg-Arg (Pal-RRRR) peptide to the two ends of the molecular scaffold-tetraphenylethene derivative. Due to the difference in spatial structure, isothermal titration calorimetry and simulation experiments demonstrated that cis-RTP can bind more stably to integrin αvβ3 than trans-RTP. As a result, cis-RTP has shown more excellent properties in inhibiting cell migration and killing cells by regulating actin and extracellular signal-regulated kinase. Unlike the existing probe design for protein, this study provides a concept of microenvironment-helpful recognition and a promising strategy of cis/trans isomers to modulate the interaction between proteins and probes.
Collapse
Affiliation(s)
- Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Juliang Yang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Yiheng Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Guangwen Lu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Zujin Zhao
- Department State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.
| |
Collapse
|
9
|
Fang H, Wang T, Dai J, Hu JJ, Chen Z, Yuan L, Hong Y, Xia F, Lou X. Spatiotemporally Controllable Covalent Bonding of RNA for Multi-Protein Interference. Adv Healthc Mater 2024; 13:e2304108. [PMID: 38979870 DOI: 10.1002/adhm.202304108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/29/2024] [Indexed: 07/10/2024]
Abstract
Many diseases are associated with genetic mutation and expression of mutated proteins, such as cancers. Therapeutic approaches that selectively target the synthesis process of multiple proteins show greater potential compared to single-protein approaches in oncological diseases. However, conventional agents to regulate the synthesis of multiple protein still suffer from poor spatiotemporal selectivity and stability. Here, a new method using a dye-peptide conjugate, PRFK, for multi-protein interference with spatiotemporal selectivity and reliable stability, is reported. By using the peptide sequence that targets tumor cells, PRFK can be efficiently taken up, followed by specific binding to the KDELR (KDEL receptor) protein located in the endoplasmic reticulum (ER). The dye generates 1O2 under light irradiation, enabling photodynamic therapy. This process converts the furan group into a cytidine-reactive intermediate, which covalently binds to mRNA, thereby blocking protein synthesis. Upon treating 4T1 cells, the proteomics data show alterations in apoptosis, ferroptosis, proliferation, migration, invasion, and immune infiltration, suggesting that multi-protein interference leads to the disruption of cellular physiological activities, ultimately achieving tumor treatment. This study presents a multi-protein interference probe with the potential for protein interference within various subcellular organelles in the future.
Collapse
Affiliation(s)
- Hao Fang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhaojun Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne Victoria, 3086, Australia
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
10
|
Oroojalian F, Azizollahi F, Kesharwani P, Sahebkar A. Stimuli-responsive nanotheranostic systems conjugated with AIEgens for advanced cancer bio-imaging and treatment. J Control Release 2024; 373:766-802. [PMID: 39047871 DOI: 10.1016/j.jconrel.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Aggregation-induced emission (AIE) is a unique phenomenon observed in various materials such as organic luminophores, carbon dots (CDs), organic-inorganic nanocomposites, fluorescent dye molecules, and nanoparticles (NPs). These AIE-active materials, or AIEgens, are ideal for balancing multifunctional phototheranostics and energy dissipation. AIE properties can manifest in organic fluorescent probes, rendering them effective for cancer treatment due to their ability to penetrate deeply and provide high therapeutic efficacy. This efficacy is attributed to their high photobleaching thresholds, ability to induce Stokes shifts, and capacity to activate fluorophores. Therefore, the development of innovative AIE-based materials for disease diagnosis and treatment, particularly for cancer, is both important and promising. Recent years have seen successful demonstrations of nanoparticles with AIE properties being used for photodynamic therapy (PDT) and multimodal imaging of tumor cells. These fluorophores have been shown to impact mitochondria and lysosomes, generate reactive oxygen species (ROS), activate the immune system, load and release drugs, and ultimately induce apoptosis in tumor cells. In this review, we examine previous studies on the manufacturing methods and effects of AIEgens on cancer cells, with a theranostic strategy of simultaneous treatment and imaging. We also investigate the factors affecting drug delivery on different cancer cells, including internal stimuli such as pH, ROS, enzymes, and external stimuli like near-infrared (NIR) light and ultrasound waves.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Fatemeh Azizollahi
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Xiao Q, Huang J, Wang X, Chen Z, Zhang W, Liu F, Li J, Yang Z, Zhan J, Cai Y. Supramolecular Peptide Amphiphile Nanospheres Reprogram Tumor-associated Macrophage to Reshape the Immune Microenvironment for Enhanced Breast Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307390. [PMID: 38100300 DOI: 10.1002/smll.202307390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/22/2023] [Indexed: 12/17/2023]
Abstract
Tumor immunotherapy has become a research hotspot in cancer treatment, with macrophages playing a crucial role in tumor development. However, the tumor microenvironment restricts macrophage functionality, limiting their therapeutic potential. Therefore, modulating macrophage function and polarization is essential for enhancing tumor immunotherapy outcomes. Here, a supramolecular peptide amphiphile drug-delivery system (SPADS) is utilized to reprogram macrophages and reshape the tumor immune microenvironment (TIM) for immune-based therapies. The approach involved designing highly specific SPADS that selectively targets surface receptors of M2-type macrophages (M2-Mφ). These targeted peptides induced M2-Mφ repolarization into M1-type macrophages by dual inhibition of endoplasmic reticulum and oxidative stresses, resulting in improved macrophagic antitumor activity and immunoregulatory function. Additionally, TIM reshaping disrupted the immune evasion mechanisms employed by tumor cells, leading to increased infiltration, and activation of immune cells. Furthermore, the synergistic effect of macrophage reshaping and anti-PD-1 antibody (aPD-1) therapy significantly improved the immune system's ability to recognize and eliminate tumor cells, thereby enhancing tumor immunotherapy efficacy. SPADS utilization also induced lung metastasis suppression. Overall, this study demonstrates the potential of SPADS to drive macrophage reprogramming and reshape TIM, providing new insights, and directions for developing more effective immunotherapeutic approaches in cancer treatment.
Collapse
Affiliation(s)
- Qiuqun Xiao
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jinyan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xing Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zehong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Weiqi Zhang
- Department of General Surgery, Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, 510080, P. R. China
| | - Fengjiao Liu
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jiejing Li
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Zhimou Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Zhan
- Department of Laboratory Medicine, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanbin Cai
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Department of Cardiology and Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Cardiovascular Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
12
|
Yu Q, Li X, Wang J, Guo L, Huang L, Gao W. Recent Advances in Reprogramming Strategy of Tumor Microenvironment for Rejuvenating Photosensitizers-Mediated Photodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305708. [PMID: 38018311 DOI: 10.1002/smll.202305708] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Indexed: 11/30/2023]
Abstract
Photodynamic therapy (PDT) has recently been considered a potential tumor therapy due to its time-space specificity and non-invasive advantages. PDT can not only directly kill tumor cells by using cytotoxic reactive oxygen species but also induce an anti-tumor immune response by causing immunogenic cell death of tumor cells. Although it exhibits a promising prospect in treating tumors, there are still many problems to be solved in its practical application. Tumor hypoxia and immunosuppressive microenvironment seriously affect the efficacy of PDT. The hypoxic and immunosuppressive microenvironment is mainly due to the abnormal vascular matrix around the tumor, its abnormal metabolism, and the influence of various immunosuppressive-related cells and their expressed molecules. Thus, reprogramming the tumor microenvironment (TME) is of great significance for rejuvenating PDT. This article reviews the latest strategies for rejuvenating PDT, from regulating tumor vascular matrix, interfering with tumor cell metabolism, and reprogramming immunosuppressive related cells and factors to reverse tumor hypoxia and immunosuppressive microenvironment. These strategies provide valuable information for a better understanding of the significance of TME in PDT and also guide the development of the next-generation multifunctional nanoplatforms for PDT.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
13
|
Bao J, Tong C, He M, Zhang H. Luminescent polypeptides. LUMINESCENCE 2024; 39:e4594. [PMID: 37712500 DOI: 10.1002/bio.4594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/16/2023]
Abstract
Polypeptides, as biomacromolecules, hold immense potential in various biological applications such as tissue engineering, immunomodulating agents, and target binding. Among these applications, the attention towards luminescent polypeptides has grown significantly, due to their ability to visualize biological processes effectively. In this perspective, we have compiled information on three distinct types of luminescent polypeptides: natural fluorescent proteins, luminophores-bioconjugated polypeptides, and synthesized polypeptides with clusteroluminescence. Last, we shed light on the significance and prospects of clusteroluminescent polypeptides, which are expected to emerge as crucial new-generation bioluminophores, offering high emission efficiency and tunable emission wavelengths.
Collapse
Affiliation(s)
- Jieyu Bao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Chuanye Tong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Mengxuan He
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, China
| |
Collapse
|
14
|
Liu X, Lu Y, Li X, Luo L, You J. Nanoplatform-enhanced photodynamic therapy for the induction of immunogenic cell death. J Control Release 2024; 365:1058-1073. [PMID: 38056695 DOI: 10.1016/j.jconrel.2023.11.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
As an efficient, non-invasive, low-side-effect, and highly selective cancer therapy, photodynamic therapy (PDT) is used to treat various malignant tumors. However, the inefficiency of dealing with deep tumors and metastatic lesions highly limits the use of PDT. Immunogenic cell death (ICD) is a particular form of tumor cell death that could elicit a tumor-special immune response, leading to a systemic anti-tumor effect and providing therapeutic benefits for metastatic lesions. In this regard, it is crucial to enhance the ability of PDT to induce ICD. Luckily, advanced nanotechnology created many promising ways to improve the immunogenicity of PDT and achieve photoimmunotherapy. This review summarizes the emerging strategies for triggering immunogenic cell death via nanoplatform-enhanced PDT, with particular emphasis on their advantages in photoimmunotherapy. We highlight the nanoplatforms classified according to the basic principles of photodynamic therapy and immunogenic cell death, which provides a valuable reference for the design of nanoplatform for photoimmunotherapy. In addition, we also discuss the current situation and prospect of nano-based photoimmunotherapy in clinical studies.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Xiang Li
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China
| | - Lihua Luo
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, P. R. China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310006, P. R. China; The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, P. R. China; Jinhua Institute of Zhejiang University, 498 Yiwu Street, Jinhua, Zhejiang 321299, P. R. China.
| |
Collapse
|
15
|
Cao Y, Li J, Liang Q, Yang J, Zhang X, Zhang J, An M, Bi J, Liu Y. Tumor Microenvironment Sequential Drug/Gene Delivery Nanosystem for Realizing Multistage Boosting of Cancer-Immunity Cycle on Cancer Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54898-54914. [PMID: 37963093 DOI: 10.1021/acsami.3c11394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The antitumor immune response of cancer immunotherapy is a cascade of cancer-immunity cycles (CIC). The immunosuppression of the tumor microenvironment and low immunogenicity of tumor cells, insufficient T lymphocyte activation, trafficking, and infiltration caused the failure to initiate and run the continuous multistage CIC, leading to unsatisfactory cancer immunotherapy outcomes. A doxorubicin/interleukin-12 plasmid DNA/celecoxib (DOX/pIL-12/CXB) combination strategy was designed by targeting the cascade CIC. Then, an intratumoral CXB-detachable nanosystem, or DOX/PAC/pIL-12 micelleplexes, was developed for sequential drug/gene delivery to facilitate the multistage boosting of CIC on synergistic cancer immunotherapy. The DOX/PAC/pIL-12 micelleplexes could program intratumorally sequential release of CXB to remodulate the tumor microenvironment immunosuppression by suppressing the cyclooxygenase-2/prostaglandin E2 (COX-2/PGE2) pathway. The smaller sizes and surface charge-switched micelleplexes facilitated the codelivery and corelease of DOX and pIL-12 inside 4T1 tumor cells. These micelleplexes exerted a synergistic antitumor immune response using CIC cascade activation and amplification, providing therapeutic antitumor and antimetastasis efficacy. The drug/gene sequential delivery nanosystem provides a complete CIC-boosted combinatory strategy for developing immunotherapy against cancer.
Collapse
Affiliation(s)
- Yongjing Cao
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Juan Li
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Qiangwei Liang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Jiayu Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Xiaojie Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Juntao Zhang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Min An
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Jiawei Bi
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| | - Yanhua Liu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan 750004, China
| |
Collapse
|
16
|
Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, Cao M, Chen C, Chen S, Chen X, Chen Y, Chen Z, Dang D, Ding D, Ding S, Duo Y, Gao M, He W, He X, Hong X, Hong Y, Hu JJ, Hu R, Huang X, James TD, Jiang X, Konishi GI, Kwok RTK, Lam JWY, Li C, Li H, Li K, Li N, Li WJ, Li Y, Liang XJ, Liang Y, Liu B, Liu G, Liu X, Lou X, Lou XY, Luo L, McGonigal PR, Mao ZW, Niu G, Owyong TC, Pucci A, Qian J, Qin A, Qiu Z, Rogach AL, Situ B, Tanaka K, Tang Y, Wang B, Wang D, Wang J, Wang W, Wang WX, Wang WJ, Wang X, Wang YF, Wu S, Wu Y, Xiong Y, Xu R, Yan C, Yan S, Yang HB, Yang LL, Yang M, Yang YW, Yoon J, Zang SQ, Zhang J, Zhang P, Zhang T, Zhang X, Zhang X, Zhao N, Zhao Z, Zheng J, Zheng L, Zheng Z, Zhu MQ, Zhu WH, Zou H, Tang BZ. Aggregation-Induced Emission (AIE), Life and Health. ACS NANO 2023; 17:14347-14405. [PMID: 37486125 PMCID: PMC10416578 DOI: 10.1021/acsnano.3c03925] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health.
Collapse
Affiliation(s)
- Haoran Wang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Qiyao Li
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Parvej Alam
- Clinical
Translational Research Center of Aggregation-Induced Emission, School
of Medicine, The Second Affiliated Hospital, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Haotian Bai
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Organic
Solids, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Vandana Bhalla
- Department
of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Mingyue Cao
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Chao Chen
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Sijie Chen
- Ming
Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong Kong SAR 999077, China
| | - Xirui Chen
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Chemistry and Biomedicine Innovation Center
(ChemBIC), Department of Cardiothoracic Surgery, Nanjing Drum Tower
Hospital, Medical School, Nanjing University, Nanjing 210023, China
| | - Zhijun Chen
- Engineering
Research Center of Advanced Wooden Materials and Key Laboratory of
Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dongfeng Dang
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Dan Ding
- State
Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive
Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Siyang Ding
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Yanhong Duo
- Department
of Radiation Oncology, Shenzhen People’s Hospital (The Second
Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Meng Gao
- National
Engineering Research Center for Tissue Restoration and Reconstruction,
Key Laboratory of Biomedical Engineering of Guangdong Province, Key
Laboratory of Biomedical Materials and Engineering of the Ministry
of Education, Innovation Center for Tissue Restoration and Reconstruction,
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei He
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Xuewen He
- The
Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College
of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren’ai Road, Suzhou 215123, China
| | - Xuechuan Hong
- State
Key Laboratory of Virology, Department of Cardiology, Zhongnan Hospital
of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yuning Hong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jing-Jing Hu
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Rong Hu
- School
of Chemistry and Chemical Engineering, University
of South China, Hengyang 421001, China
| | - Xiaolin Huang
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Xingyu Jiang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
| | - Gen-ichi Konishi
- Department
of Chemical Science and Engineering, Tokyo
Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
| | - Ryan T. K. Kwok
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Chunbin Li
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Haidong Li
- State
Key Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Kai Li
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Nan Li
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei-Jian Li
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Ying Li
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Xing-Jie Liang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Yongye Liang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Bin Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Guozhen Liu
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Xingang Liu
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xiaoding Lou
- State
Key Laboratory of Biogeology and Environmental Geology, Engineering
Research Center of Nano-Geomaterials of Ministry of Education, Faculty
of Materials Science and Chemistry, China
University of Geosciences, Wuhan 430074, China
| | - Xin-Yue Lou
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Liang Luo
- National
Engineering Research Center for Nanomedicine, College of Life Science
and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China
| | - Paul R. McGonigal
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Zong-Wan Mao
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Guangle Niu
- State
Key Laboratory of Crystal Materials, Shandong
University, Jinan 250100, China
| | - Tze Cin Owyong
- Department
of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrea Pucci
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via Moruzzi 13, Pisa 56124, Italy
| | - Jun Qian
- State
Key Laboratory of Modern Optical Instrumentations, Centre for Optical
and Electromagnetic Research, College of Optical Science and Engineering,
International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zijie Qiu
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Andrey L. Rogach
- Department
of Materials Science and Engineering, City
University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Bo Situ
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Kazuo Tanaka
- Department
of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan
| | - Youhong Tang
- Institute
for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Bingnan Wang
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dong Wang
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianguo Wang
- College
of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory
of Fine Organic Synthesis, Inner Mongolia
University, Hohhot 010021, China
| | - Wei Wang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Wen-Xiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wen-Jin Wang
- MOE
Key Laboratory of Bioinorganic and Synthetic Chemistry, School of
Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
- Central
Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK-
Shenzhen), & Longgang District People’s Hospital of Shenzhen, Guangdong 518172, China
| | - Xinyuan Wang
- Department
of Materials Science and Engineering, Shenzhen Key Laboratory of Printed
Organic Electronics, Southern University
of Science and Technology, Shenzhen 518055, China
| | - Yi-Feng Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety,
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Shuizhu Wu
- State
Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial
Key Laboratory of Luminescence from Molecular Aggregates, College
of Materials Science and Engineering, South
China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Yifan Wu
- Innovation
Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal
and Guangdong Provincial Key Laboratory of Molecular Target &
Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory
Disease, School of Pharmaceutical Sciences and the Fifth Affiliated
Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yonghua Xiong
- State Key
Laboratory of Food Science and Resources, School of Food Science and
Technology, Nanchang University, Nanchang 330047, China
| | - Ruohan Xu
- School
of Chemistry, Xi’an Jiaotong University, Xi’an 710049 China
| | - Chenxu Yan
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Saisai Yan
- Center
for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hai-Bo Yang
- Shanghai
Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung
Chuang Institute, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Lin-Lin Yang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Mingwang Yang
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Ying-Wei Yang
- International
Joint Research Laboratory of Nano-Micro Architecture Chemistry, College
of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Juyoung Yoon
- Department
of Chemistry and Nanoscience, Ewha Womans
University, Seoul 03760, Korea
| | - Shuang-Quan Zang
- College
of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, China
| | - Jiangjiang Zhang
- Guangdong
Provincial Key Laboratory of Advanced Biomaterials, Shenzhen Key Laboratory
of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, China
- Key
Laboratory of Molecular Medicine and Biotherapy, the Ministry of Industry
and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Pengfei Zhang
- Guangdong
Key Laboratory of Nanomedicine, Shenzhen, Engineering Laboratory of
Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics,
Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, University Town of Shenzhen, 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Tianfu Zhang
- School
of Biomedical Engineering, Guangzhou Medical
University, Guangzhou 511436, China
| | - Xin Zhang
- Department
of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Westlake
Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou, Zhejiang Province 310024, China
| | - Xin Zhang
- Ciechanover
Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen (CUHK- Shenzhen), Guangdong 518172, China
| | - Na Zhao
- Key
Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory
of Applied Surface and Colloid Chemistry of Ministry of Education,
School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Zheng Zhao
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Jie Zheng
- Department
of Chemical, Biomolecular, and Corrosion Engineering The University of Akron, Akron, Ohio 44325, United States
| | - Lei Zheng
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Zheng
- School of
Chemistry and Chemical Engineering, Hefei
University of Technology, Hefei 230009, China
| | - Ming-Qiang Zhu
- Wuhan
National
Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei-Hong Zhu
- Key
Laboratory for Advanced Materials and Joint International Research,
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals,
Frontiers Science Center for Materiobiology and Dynamic Chemistry,
School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hang Zou
- Department
of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ben Zhong Tang
- School
of Science and Engineering, Shenzhen Institute of Aggregate Science
and Technology, The Chinese University of
Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department
of Chemistry, Hong Kong Branch of Chinese National Engineering Research
Center for Tissue Restoration and Reconstruction, Division of Life
Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong
Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional
Materials, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
17
|
Kong X, He Z, Zhang Y, Fang Y, Liu D, Wu H, Ji J, Xi Y, Ye L, Yang X, Zhai G. Intelligent Self-amplifying Ferroptosis-inducible nanoplatform for enhanced tumor microenvironment reconstruction and combination therapy. CHEMICAL ENGINEERING JOURNAL 2023; 468:143729. [DOI: 10.1016/j.cej.2023.143729] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
18
|
Dai J, Wei S, Xu J, Xue H, Chen Z, Wu M, Chen W, Lou X, Xia F, Wang S. Microneedle Device Delivering Aggregation-Induced Emission Photosensitizers for Enhanced Metronomic Photodynamic Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16526-16538. [PMID: 36966512 DOI: 10.1021/acsami.3c01682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Metronomic photodynamic therapy (mPDT), which induces cancer cell death by prolonged intermittent continuous irradiation at lower light power, has profoundly promising applications. However, the photobleaching sensitivity of the photosensitizer (PS) and the difficulty of delivery pose barriers to the clinical application of mPDT. Here, we constructed a microneedle-based device (Microneedles@AIE PSs) that combined with aggregation-induced emission (AIE) PSs to achieve enhanced mPDT for cancer. Due to the strong anti-photobleaching property of the AIE PS, it can maintain superior photosensitivity even after long-time light exposure. The delivery of the AIE PS to the tumor through a microneedle device allows for greater uniformity and depth. This Microneedles@AIE PSs-based mPDT (M-mPDT) offers better treatment outcomes and easier access, and combining M-mPDT with surgery or immunotherapy can also significantly improve the effectiveness of these clinical therapies. In conclusion, M-mPDT offers a promising strategy for the clinical application of PDT due to its better efficacy and convenience.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Huiying Xue
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhaojun Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| |
Collapse
|
19
|
Dai J, Wu M, Xu Y, Yao H, Lou X, Hong Y, Zhou J, Xia F, Wang S. Platelet membrane camouflaged AIEgen-mediated photodynamic therapy improves the effectiveness of anti-PD-L1 immunotherapy in large-burden tumors. Bioeng Transl Med 2023; 8:e10417. [PMID: 36925700 PMCID: PMC10013814 DOI: 10.1002/btm2.10417] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/11/2022] Open
Abstract
Although immunotherapy has achieved recent clinical success in antitumor therapy, it is less effective for solid tumors with large burdens. To overcome this challenge, herein, we report a new strategy based on platelet membrane-camouflaged aggregation-induced emission (AIE) luminogen (Plt-M@P) combined with the anti-programmed death ligand 1 (anti-PD-L1) for tumoral photodynamic-immunotherapy. Plt-M@P is prepared by using poly lactic-co-glycolic acid (PLGA)/PF3-PPh3 complex as a nanocore, and then by co-extrusion with platelet membranes. PF3-PPh3 is an AIE-active conjugated polyelectrolyte with photosensitizing capability for photodynamic therapy (PDT). Plt-M@P exhibits superior tumor targeting capacity in vivo. When applied in small tumor-bearing (~40 mm3) mice, Plt-M@P-mediated PDT significantly inhibits tumor growth. In tumor models with large burdens (~200 mm3), using Plt-M@P-mediated PDT or anti-PD-L1 alone is less effective, but the combination of both is effective in inhibiting tumor growth. Importantly, this combination therapy has good biocompatibility, as demonstrated by the absence of damage to the major organs, especially the reproductive system. In conclusion, we show that Plt-M@P-mediated PDT can improve anti-PD-L1 immunotherapy by enhancing antitumor effects, providing a promising strategy for the treatment of tumors with large burdens.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yating Xu
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityHangzhouChina
| | - Hongming Yao
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityHangzhouChina
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVictoriaAustralia
| | - Jian Zhou
- College of Material, Chemistry and Chemical EngineeringHangzhou Normal UniversityHangzhouChina
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano‐Geomaterials of Ministry of Education, Faculty of Materials Science and ChemistryChina University of GeosciencesWuhanChina
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
20
|
Zheng Z, Yuan L, Hu JJ, Xia F, Lou X. Modular Peptide Probe for Protein Analysis. Chemistry 2023; 29:e202203225. [PMID: 36333271 DOI: 10.1002/chem.202203225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/07/2022]
Abstract
The analysis and regulation of proteins are of great significance for the development of disease diagnosis and treatment. However, complicated analytical environment and complex protein structure severely limit the accuracy of their analysis results. Nowadays, ascribing to the editability and bioactivity of peptides, peptide-based probes could meet the requirements of good selectivity and high affinity to overcome the challenges. In this review, we summarize the advances in the use of modular peptide probes for proteins analysis. It focuses on how to design and optimize the structure of probes, as well as their performance. Then, the strategies and application to improve the analysis result of modular peptide probes are introduced. Finally, we also discuss current challenge and provide some ideas for the future direction for modular peptide probes, hoping to accelerate their clinical transformation.
Collapse
Affiliation(s)
- Zhi Zheng
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Lizhen Yuan
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
21
|
Dai J, Chen Z, Chen B, Dong X, Wu M, Lou X, Xia F, Wang S. Erythrocyte Membrane-Camouflaged Aggregation-Induced Emission Nanoparticles for Fetal Intestinal Maturation Assessment. Anal Chem 2022; 94:17504-17513. [PMID: 36473081 DOI: 10.1021/acs.analchem.2c03772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Assessment of fetal maturity is essential for timely termination of pregnancy, especially in pregnant women with pregnancy complications. However, there is a lack of methods to assess the maturity of fetal intestinal function. Here, we constructed erythrocyte membrane-camouflaged aggregation-induced emission (AIE) nanoparticles. Nanocore is formed using a hollow mesoporous silicon nanobox (HMSN) of different particle sizes loaded with AIE luminogens -PyTPA (P), which are then co-extruded with erythrocyte membranes (M) to construct M@HMSN@P. The 100 nm M@HMSN@P has a more effective cellular uptake efficiency in vitro and in vivo. Swallowing and intestinal function in fetal mice mature with the increase in gestational age. After intrauterine injection of M@HMSN@P, they were swallowed and absorbed by fetal mice, and their swallowed and absorbed amount was positively correlated with the gestational age with a correlation coefficient of 0.9625. Using the M@HMSN@P (fluorescence intensity) in fetal mice, the gestational age can be imputed, and the difference between this imputed gestational age and the actual gestational age is less than 1 day. Importantly, M@HMSN@P has no side effect on the health status of pregnant and fetal mice, showing good biocompatibility. In conclusion, we constructed M@HMSN@P nanoparticles with different particle sizes and confirmed that the smaller size M@HMSN@P has more efficient absorption efficiency and it can assess fetal intestinal maturity by the intensity of the fluorescence signal.
Collapse
Affiliation(s)
- Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Zhaojun Chen
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430034, China
| |
Collapse
|
22
|
Li J, Dai J, Zhuang Z, Meng Z, Hu JJ, Lou X, Xia F, Zhao Z, Tang BZ. Combining PD-L1 blockade with immunogenic cell death induced by AIE photosensitizer to improve antitumor immunity. Biomaterials 2022; 291:121899. [PMID: 36343606 DOI: 10.1016/j.biomaterials.2022.121899] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/16/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Immunogenic cell death (ICD) is considered an effective death mode to trigger immune response. However, the currently available efficient ICD inducers are quite limited. Endoplasmic reticulum (ER) stress is known as the precursor of ICD, which can be directly triggered by reactive oxygen species in situ. Herein, a novel photosensitizer (α-Th-TPA-PIO) based on phosphindole oxide, featuring aggregation-induced emission (AIE) is designed and prepared, which possesses good ability of hydroxyl radicals (HO•) generation. Besides, α-Th-TPA-PIO can selectively accumulate in ER and trigger ER stress under white light irradiation, further leading to effective ICD. Combining with anti-programmed death-ligand 1 (anti-PD-L1), the synergistic effect of photodynamic therapy (PDT) and immune checkpoint blockade can achieve a significantly enhanced inhibition effect on the growth of tumors and simultaneously provoke a systemic antitumor immune response. Notably, by adopting this therapeutic strategy to bilateral and metastatic tumor models, the growth of both primary and distant subcutaneous tumors can be successfully suppressed, and metastatic tumor can also be inhibited to some degree. Taken together, this work not only provides a novel ICD photoinducer based on PDT, but also brings about a useful immunomodulatory strategy to realize superior antitumor effect.
Collapse
Affiliation(s)
- Jianqing Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Zeyan Zhuang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Zijuan Meng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
23
|
Zhang NY, Hu XJ, An HW, Liang JX, Wang H. Programmable design and self assembly of peptide conjugated AIEgens for biomedical applications. Biomaterials 2022; 287:121655. [PMID: 35810541 DOI: 10.1016/j.biomaterials.2022.121655] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/28/2022]
Abstract
Aggregation-induced emission luminogens (AIEgens) possess enhanced fluorescence in highly aggregated states, thus enabling AIEgens as a promising module for highly emissive fluorescence biomaterials. So far, AIEgens-based nanomaterials and their hybrids have been reported for biomedical applications. Benefiting from the intrinsic biocompatibility and biofunction-editing properties of peptides, peptide-AIEgens hybrid biomaterials reveal unlimited possibilities including target capacity, specificity, stimuli-responsiveness, self-assembly, controllable structural transformation, etc.. In the last two decades, peptide-AIEgens hybrid nanomaterials with a unique design concept in aggregated states have achieved various biomedical applications such as biosensing, bioimaging, imaging-guided surgery, drug delivery and therapy. More recently, programmable design of peptide-AIEgens for in situ self-assembly provides a unique strategy for constructing intelligent entities with defined biological functions. In this review, we summarize the basic design principle of programmable peptide-AIEgens, structure-effect relationship and their unusual biomedical effects. Finally, an outlook and perspective toward future challenges and developments of peptide-AIEgens nanomaterials are concluded.
Collapse
Affiliation(s)
- Ni-Yuan Zhang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Xing-Jie Hu
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Hong-Wei An
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Jian-Xiao Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No. 11 Beiyitiao, Zhongguancun, 100190, Beijing, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
24
|
Meng Z, Xue H, Wang T, Chen B, Dong X, Yang L, Dai J, Lou X, Xia F. Aggregation-induced emission photosensitizer-based photodynamic therapy in cancer: from chemical to clinical. J Nanobiotechnology 2022; 20:344. [PMID: 35883086 PMCID: PMC9327335 DOI: 10.1186/s12951-022-01553-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer remains a serious threat to human health owing to the lack of effective treatments. Photodynamic therapy (PDT) has emerged as a promising non-invasive cancer treatment that consists of three main elements: photosensitizers (PSs), light and oxygen. However, some traditional PSs are prone to aggregation-caused quenching (ACQ), leading to reduced reactive oxygen species (ROS) generation capacity. Aggregation-induced emission (AIE)-PSs, due to their distorted structure, suppress the strong molecular interactions, making them more photosensitive in the aggregated state instead. Activated by light, they can efficiently produce ROS and induce cell death. PS is one of the core factors of efficient PDT, so proceeding from the design and preparation of AIE-PSs, including how to manipulate the electron donor (D) and receptor (A) in the PSs configuration, introduce heavy atoms or metal complexes, design of Type I AIE-PSs, polymerization-enhanced photosensitization and nano-engineering approaches. Then, the preclinical experiments of AIE-PSs in treating different types of tumors, such as ovarian cancer, cervical cancer, lung cancer, breast cancer, and its great potential clinical applications are discussed. In addition, some perspectives on the further development of AIE-PSs are presented. This review hopes to stimulate the interest of researchers in different fields such as chemistry, materials science, biology, and medicine, and promote the clinical translation of AIE-PSs.
Collapse
Affiliation(s)
- Zijuan Meng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Huiying Xue
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Tingting Wang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Lili Yang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|