1
|
Aru N, Yang C, Chen Y, Liu J. Causal association of cathepsins and endometriosis: A Mendelian randomization study. Medicine (Baltimore) 2025; 104:e42579. [PMID: 40419906 DOI: 10.1097/md.0000000000042579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/28/2025] Open
Abstract
Endometriosis is a prevalent reproductive disorder that affects a significant number of women globally. Cathepsins, which are lysosomal cysteine proteases, contribute to several physiological and pathological processes, including the attachment and invasion of endometrial tissue. Nevertheless, the causal relationship between cathepsins and endometriosis remains undetermined. The aim of this study was to explore the potential relationship between cathepsins and endometriosis using genetic polymorphisms. We employed a 2-sample Mendelian randomization (MR) analysis (including inverse-variance weighted [IVW] method and reverse MR analysis) to investigate the causal association between 9 cathepsins and endometriosis. The IVW method provides efficient and robust causal estimates when genetic instruments are valid, making it the standard approach in MR analysis. And the reverse MR analysis ensures the robustness and directionality of causal inference. The univariable MR analysis results indicate that Cathepsin H increases the risk of overall endometriosis (IVW: OR [95%] = 1.037 [1.007 to 1.067], P = .013), endometriosis of ovary (IVW: OR [95%] = 1.022 [1.001 to 1.042], P = .046), endometriosis of pelvic peritoneum OR [95%] = 1.046 [1.002 to 1.089], P = .047), and deep endometriosis (IVW: OR [95%] = 1.050 [1.002 to 1.099], P = .048). The multivariable MR analysis retained stable after adjusting for other types of cathepsins. And reverse MR analyses suggest that overall endometriosis may lead to increased Cathepsin H levels (IVW: OR [95%] = 1.017 [1.003, 1.073], P = .041). The results of the sensitivity analyses were consistent with the main findings. Our MR analysis yields robust evidence supporting a causal relationship between Cathepsin H and the susceptibility to endometriosis, potentially inspiring directions in endometriosis diagnosis and treatment.
Collapse
Affiliation(s)
- Na Aru
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Congyu Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaming Liu
- Department of Urology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Mizrachi A, Sadeh M, Ben-Dor S, Dym O, Ku C, Feldmesser E, Zarfin A, Brunson JK, Allen AE, Jinkerson RE, Schatz D, Vardi A. Cathepsin X is a conserved cell death protein involved in algal response to environmental stress. Curr Biol 2025; 35:2240-2255.e6. [PMID: 40233752 DOI: 10.1016/j.cub.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
Phytoplankton are responsible for half of the global photosynthesis and form vast blooms in aquatic ecosystems. Bloom demise fuels marine microbial life and is suggested to be mediated by programmed cell death (PCD) induced by diverse environmental stressors. Despite its importance, the molecular basis for algal PCD remains elusive. Here, we reveal novel PCD genes conserved across distant algal lineages using cell-to-cell heterogeneity in the response of the diatom Phaeodactylum tricornutum to oxidative stress. Comparative transcriptomics of sorted sensitive and resilient subpopulations following oxidative stress revealed genes directly linked to their contrasting fates of cell death and survival. Comparing these genes with those found in a large-scale mutant screen in the green alga Chlamydomonas reinhardtii identified functionally relevant conserved PCD gene candidates, including the cysteine protease cathepsin X/Z (CPX). CPX mutants in P. tricornutum CPX1 and C. reinhardtii CYSTEINE ENDOPEPTIDASE 12 (CEP12) exhibited resilience to oxidative stress and infochemicals that induce PCD, supporting a conserved function of these genes in algal PCD. Phylogenetic and predictive structural analyses show that CPX is highly conserved in eukaryotes, and algae exhibit strong structural similarity to human Cathepsin X/Z (CTSZ), a protein linked to various diseases. CPX is expressed by diverse algae across the oceans and correlates with upcoming demise events during toxic Pseudo-nitzschia blooms, providing support for its ecological significance. Elucidating PCD components in algae sheds light on the evolutionary origin of PCD in unicellular organisms and on the cellular strategies employed by the population to cope with stressful conditions.
Collapse
Affiliation(s)
- Avia Mizrachi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mai Sadeh
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shifra Ben-Dor
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orly Dym
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Chuan Ku
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amichai Zarfin
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - John K Brunson
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, San Diego, CA 92037, USA
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, San Diego, CA 92093, USA; Department of Environment and Sustainability, J. Craig Venter Institute, La Jolla, San Diego, CA 92037, USA
| | - Robert E Jinkerson
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | - Daniella Schatz
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
3
|
Geetha D, Skaria T. Cathepsin S: A key drug target and signalling hub in immune system diseases. Int Immunopharmacol 2025; 155:114622. [PMID: 40220622 DOI: 10.1016/j.intimp.2025.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
The lysosomal cysteine protease cathepsin S supports host defence by promoting the maturation of MHC class-II proteins. In contrast, increased cathepsin S activity mediates tissue destructive immune responses in autoimmune and inflammatory diseases. Therefore, cathepsin S is a key target in drug discovery programs. Here, we critically reviewed the specific mechanisms by which cathepsin S mediates autoimmune and hyperinflammatory responses to identify new targets for therapeutic immunomodulation. To this end, we performed literature review utilizing PubMed, drug database of US FDA, European Medicines Agency and the Drug-Gene Interaction Database. Cathepsin S destroys T cell epitopes and reduces endogenous antigen diversity, impairing negative selection of autoreactive T cells that could recognize these epitopes. Moreover, cathepsin S critically regulates inflammatory disease severity by generating proinflammatory molecules (PAR-1, PAR-2, IL-36γ, Fractalkine, Endostatin, Ephrin-B2), inactivating anti-inflammatory mediators (SLPI) and degrading molecules involved in antimicrobial and immunomodulatory responses (surfactant protein-A, LL-37, beta-defensins), inter-endothelial/-epithelial barrier function, gene repair and energy homeostasis. These pathways could be targeted by repositioning of existing drugs. These findings suggest that inhibiting cathepsin S or a specific downstream target of cathepsin S by repositioning of existing drugs could be a promising strategy for treating autoimmune and inflammatory diseases. Current cathepsin S inhibitors in clinical trials face challenges, highlighting the need for innovative inhibitors that function effectively in various cellular compartments with differing pH levels, without targeting the shared catalytic site of cysteine cathepsins.
Collapse
Affiliation(s)
- Durga Geetha
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
4
|
Pineda-Suazo D, Guillén-Chable F, Escobedo-Hinojosa WI, Galindo-Sánchez CE, Rosas C. Insights into Octopus maya cathepsins from metatranscriptome and genome: structure evolutionary relationships and functional role prediction in digestive processes. Biol Open 2025; 14:bio061778. [PMID: 40106538 PMCID: PMC12032550 DOI: 10.1242/bio.061778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
Physiological response to feeding is crucial for various production factors such as feed catabolism and growth. Despite growing significance in red Octopus maya aquaculture, large-scale commercial production is limited by not sufficiently knowing their nutritional needs, especially their digestive physiology. Since this species is carnivorous, one of the main feeding aspects is directed to protein digestion, but its enzymatic digestive repertoire has not been studied yet at genomic and transcriptomic levels. This study searched for protease enzymes encoded in O. maya genome and expressed in the transcriptome, allowing an initial annotation of genes involved in protein catabolism; 117 amino acid sequences related to 'octopus digestive enzymes' were retrieved from 66 available-species' genomes in the NCBI database, coding for cathepsins, papilins, and metalloproteases. Homology analysis identified 36 homologous sequences from O. maya transcriptome and three from its genome. Phylogenetic analysis grouped 37 of 39 sequences into 11 of 14 main clades, offering new insights into the evolutionary relationships and functional roles of these proteases. Phylogenetic and motif analyses resulted in selecting 19 amino acid O. maya sequences using multiple sequence alignment that were used to generate three-dimensional protein models. The obtained models revealed a diverse structural architecture among 16 modelled cathepsins; however, their catalytic potential to fully clarify their role in protein hydrolysis and cellular processes remains to be determined. Foundational data provides insights into biochemistry and physiology behind O. maya protein digestion. Further complementation of these results with enzymatic characterization of the identified proteases should allow for improved diet formulation in order to foster this species aquaculture.
Collapse
Affiliation(s)
- Daisy Pineda-Suazo
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucmá, Yucatán 97356, México
| | - Francisco Guillén-Chable
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucmá, Yucatán 97356, México
| | - Wendy Itzel Escobedo-Hinojosa
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán 97356, México
| | - Clara E. Galindo-Sánchez
- Departamento de Biotecnología Marina, Laboratorio de Genómica Funcional, CICESE, Ensenada, Baja California 22860, México
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias UNAM, Puerto de abrigo s/n Sisal, Mpio, Hunucmá, Yucatán 97356, México
| |
Collapse
|
5
|
Hang Y, Sun H, Tang A, Fan X, Tian Y, Wang X, Jiang C, Mao J, Hao Z, Ding J, Chang Y. Identification, molecular characterization and expression patterns of Cathepsin L in Yesso scallop (Patinopecten yessoensis) shell-infested by Polydora. Comp Biochem Physiol B Biochem Mol Biol 2025; 277:111075. [PMID: 39884424 DOI: 10.1016/j.cbpb.2025.111075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Patinopecten yessoensis (Yesso scallop), one of the most important aquaculture molluscs in China, has recently suffered severe Polydora disease, causing economic losses. Cathepsin L (CatL), a cysteine protease, has important functions in immune responses in vertebrates and invertebrates. However, little is known regarding the structure and function of CatL in scallops. In this study, a CatL gene named PyCatL was first identified in the genome of P. yessoensis. Gene structure analysis of PyCatL revealed it had 8 exons and 7 introns and a full length of 7916 bp. The gene sequence was analysed, and typically conserved functional domains (signal peptide, inhibitor I29 domain, and peptidase C1 domain) and motifs (ERWNIN, GNYD and GCXGG) of CatL were all predicted in PyCatL, confirming the sequence as belonging to a CatL gene. Phylogenetic analysis showed the evolutionary status of CatL was consistent with the species taxonomy. PyCatL was expressed ubiquitously in all the tested tissues in this study, suggesting its involvement in a wide range of physiological processes. After Polydora infestation, PyCatL exhibited significant upregulation in various mantle regions at both mRNA and protein levels, contrasting with a notable decrease in gene expression in hemocytes. Additionally, the enzyme activity of PyCatL showed a significant increase in the mantle of diseased P. yessoensis. The results suggested a role for mantle tissue in response to Polydora infestation by upregulating expression of PyCatL. The study offers novel insights into the function of CatL in innate immunity in scallops.
Collapse
Affiliation(s)
- Yunna Hang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hongyan Sun
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Anqi Tang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xinxin Fan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Ying Tian
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Xubo Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Chen Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Junxia Mao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Zhenlin Hao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| | - Jun Ding
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
6
|
Zhang JS, Meng JY, Yang L, Zhang CY. Identification and expression analysis of cathepsin B genes in Myzus persicae (Hemiptera: Aphididae) and their response to environmental stresses. BULLETIN OF ENTOMOLOGICAL RESEARCH 2025:1-11. [PMID: 40162632 DOI: 10.1017/s0007485325000136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Cathepsin B (CTSB) is a cysteine protease that is widely found in eukaryotes and plays a role in insect growth, development, digestion, metamorphosis, and immunity. In the present study, we examined the role of CTSB in response to environmental stresses in Myzus persicae Sulzer (Hemiptera: Aphididae). Six MpCTSB genes, namely MpCTSB-N, MpCTSB-16D1, MpCTSB-3098, MpCTSB-10270, MpCTSB-mp2, and MpCTSB-16, were identified and cloned from M. persicae. The putative proteins encoded by these genes contained three conserved active site residues, i.e. Cys, His, and Asn. A phylogenetic tree analysis revealed that the six MpCTSB proteins of M. persicae were highly homologous to other Hemipteran insects. Real-time polymerase chain reaction revealed that the MpCTSB genes were expressed at different stages of M. persicae and highly expressed in winged adults or first-instar nymphs. The expression of nearly all MpCTSB genes was significantly upregulated under different environmental stresses (38°C, 4°C, and ultraviolet-B). This study shows that MpCTSB plays an important role in the growth and development of M. persicae and its resistance to environmental stress.
Collapse
Affiliation(s)
- Jin-Shan Zhang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang550025, China
| | - Jian-Yu Meng
- Guizhou Tobacco Science Research Institute, Guiyang550081, China
| | - Lei Yang
- China Tobacco Hunan Industrial Co., Ltd., Changsha410007, China
| | - Chang-Yu Zhang
- Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Institute of Entomology, Guizhou University, Guiyang550025, China
| |
Collapse
|
7
|
Tang G, Song S, Shang J, Luo Y, Li S, Wei D, Wang C. Fungal evasion of Drosophila immunity involves blocking the cathepsin-mediated cleavage maturation of the danger-sensing protease. Proc Natl Acad Sci U S A 2025; 122:e2419343122. [PMID: 39819219 PMCID: PMC11760918 DOI: 10.1073/pnas.2419343122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025] Open
Abstract
Entomopathogenic fungi play a critical role in regulating insect populations, and representative species from the Metarhizium and Beauveria genera have been developed as eco-friendly biocontrol agents for managing agricultural insect pests. Relative to the advances in understanding antifungal immune responses in Drosophila, knowledge of how fungi evade insect immune defenses remains limited. In this study, we report the identification and characterization of a virulence-required effector Fkp1 in Metarhizium robertsii. Library screening and protein pull-down analysis unveiled that Fkp1 targets the cathepsin protease CtsK1 to inhibit its cleavage maturation of the danger-sensing serine protease Persephone (Psh), thereby facilitating fungal evasion of the Drosophila immune defenses. The Fkp1-like gene is also required in Beauveria bassiana for insect infection. Transgenic expression of Fkp1 in Drosophila suppressed hemolymph cysteine protease activity and down-regulated the expression of antifungal genes. Fkp1 can also mask the Psh cleavage site without interfering with its ability to bait fungal subtilisin proteases. Given the evident compensatory relationship, our data indicate that the protease cascade is more crucial than the molecular pattern pathway in defending flies against fungal infections. This work reveals that Metarhizium fungi have evolved distinct effectors to block the dual recognition pathways of flies for immune evasion and sheds lights on the effector mechanisms mediating microbe-animal interactions.
Collapse
Affiliation(s)
- Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai201106, China
| | - Shuangxiu Song
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Yujuan Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Shiqin Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Dongxiang Wei
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
8
|
Dai Q, Yao X, Zhang Y, Chai Q, Feng X, Zhu H, Zhao L. CTSG is a prognostic marker involved in immune infiltration and inhibits tumor progression though the MAPK signaling pathway in non-small cell lung cancer. J Cancer Res Clin Oncol 2024; 151:21. [PMID: 39724501 PMCID: PMC11671429 DOI: 10.1007/s00432-024-06051-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
PURPOSE This study aims to investigate the biological roles and molecular mechanisms of Cathepsin G (CTSG) in the progression of non-small cell lung cancer (NSCLC). METHODS Western blotting and immunohistochemistry analyses of clinical samples were performed to determine the expression levels of CTSG in patients with NSCLC. Bioinformatic analysis of clinical datasets was conducted to evaluate the correlation between CTSG and lymph node metastasis, tumor stage, and immune cell infiltration. Gain-of-function assays and tumor implantation experiments were employed to determine the effects of CTSG on malignant behaviors of NSCLC cells. Transcriptome sequencing and subsequent bioinformatic analysis were performed to explore the signaling pathways regulated by CTSG. Western blotting and qPCR were utilized to assess the influence of CTSG on the MAPK and EMT signaling pathways. RESULTS CTSG is expressed at low levels and serves as a prognostic marker in NSCLC. The downregulation of CTSG expression was associated with lymph node metastasis, tumor stage, and immune cell infiltration. CTSG inhibits NSCLC cell proliferation, migration, and invasion as well as tumor growth in nude mice. There exists a significant correlation between CTSG expression and endoplasmic reticulum function, cell cycling, and the IL-17 signaling pathway. CTSG suppresses the MAPK and EMT signaling pathways in NSCLC cells. Moreover, DNA methylation and histone deacetylation have been identified as crucial mechanisms contributing to the decreased expression of CTSG. CONCLUSION CTSG inhibits NSCLC development by suppressing the MAPK signaling pathway and is also associated with tumor immunity.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Animals
- Prognosis
- Mice
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- MAP Kinase Signaling System/physiology
- Disease Progression
- Female
- Male
- Mice, Nude
- Cell Proliferation
- Middle Aged
- Gene Expression Regulation, Neoplastic
- Mice, Inbred BALB C
- Cell Line, Tumor
Collapse
Affiliation(s)
- Qian Dai
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xufeng Yao
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yanke Zhang
- Department of Respiratory Medicine, The Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Qian Chai
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, Anhui, China
- Department of Respiratory Medicine, Anhui Public Health Clinical Center, Hefei, 230012, Anhui, China
| | - Xueyi Feng
- School of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hongbin Zhu
- Department of Respiratory Medicine, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, Anhui, China.
| | - Lei Zhao
- Department of Respiratory Medicine, The Fuyang Affiliated Hospital of Anhui Medical University, Fuyang, 236000, Anhui, China.
- Department of Respiratory Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, 230012, Anhui, China.
- Department of Respiratory Medicine, Anhui Public Health Clinical Center, Hefei, 230012, Anhui, China.
| |
Collapse
|
9
|
Möller C, Rimkus N, Skala FFO, Merouze M, Böttcher D, Dörr M, Bornscheuer UT. Improved recombinant expression of soluble cathepsin B and L in Escherichia coli. Appl Microbiol Biotechnol 2024; 108:536. [PMID: 39680170 PMCID: PMC11649755 DOI: 10.1007/s00253-024-13374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
Cysteine cathepsins such as cathepsin B and L play an important role in numerous diseases like acute pancreatitis or SARS-CoV-2 and therefore have high potential for the development of new therapeutics. To be able to screen for potent and selective inhibitors sufficient amounts of protein are required. Here, we present an easy and efficient protocol for the recombinant expression of soluble and active murine cathepsin B and L. For this, we used the strain E. coli SHuffle® T7 Express which is capable of forming disulfide bridges in the cytoplasm. The enzymes were purified by immobilized nickel ion-affinity chromatography. Using different constructs and media, expression levels were significantly improved and expression yields of 80 ± 2 mg L-1 for procathepsin B, which is 16-fold better than previously reported expression yields for procathepsin B, and 37 ± 2 mg L-1 for procathepsin L, were achieved. After activation with dithiothreitol at slightly acidic pH, in vitro kinetic parameters of both cathepsins were determined using the commonly used synthetic substrates Arg-Arg-AMC or Phe-Arg-AMC. Moreover, to investigate the impact of the short C-terminal propeptide of procathepsin B, it was deleted by site-directed mutagenesis, the shortened target protein was expressed and purified, activated in vitro, and its activity was similar to the variant bearing this C-terminal propeptide. KEY POINTS: • Recombinant gene expression of cathepsin B and L in E. coli SHuffle® T7 Express • Soluble cathepsin expression with high expression yields • Investigation of the short C-terminal propeptide of cathepsin B.
Collapse
Affiliation(s)
- Christina Möller
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Greifswald, Germany
| | - Niklas Rimkus
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Greifswald, Germany
| | - Ferdinand F O Skala
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Greifswald, Germany
| | - Maëlle Merouze
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Greifswald, Germany
| | - Dominique Böttcher
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Greifswald, Germany
| | - Mark Dörr
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Greifswald, Germany
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Department of Biotechnology and Enzyme Catalysis, University of Greifswald, Greifswald, Germany.
| |
Collapse
|
10
|
Western D, Timsina J, Wang L, Wang C, Yang C, Phillips B, Wang Y, Liu M, Ali M, Beric A, Gorijala P, Kohlfeld P, Budde J, Levey AI, Morris JC, Perrin RJ, Ruiz A, Marquié M, Boada M, de Rojas I, Rutledge J, Oh H, Wilson EN, Le Guen Y, Reus LM, Tijms B, Visser PJ, van der Lee SJ, Pijnenburg YAL, Teunissen CE, Del Campo Milan M, Alvarez I, Aguilar M, Greicius MD, Pastor P, Pulford DJ, Ibanez L, Wyss-Coray T, Sung YJ, Cruchaga C. Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and implicates causal proteins for Alzheimer's disease. Nat Genet 2024; 56:2672-2684. [PMID: 39528825 PMCID: PMC11831731 DOI: 10.1038/s41588-024-01972-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The integration of quantitative trait loci (QTLs) with disease genome-wide association studies (GWASs) has proven successful in prioritizing candidate genes at disease-associated loci. QTL mapping has been focused on multi-tissue expression QTLs or plasma protein QTLs (pQTLs). We generated a cerebrospinal fluid (CSF) pQTL atlas by measuring 6,361 proteins in 3,506 samples. We identified 3,885 associations for 1,883 proteins, including 2,885 new pQTLs, demonstrating unique genetic regulation in CSF. We identified CSF-enriched pleiotropic regions on chromosome (chr)3q28 near OSTN and chr19q13.32 near APOE that were enriched for neuron specificity and neurological development. We integrated our associations with Alzheimer's disease (AD) through proteome-wide association study (PWAS), colocalization and Mendelian randomization and identified 38 putative causal proteins, 15 of which have drugs available. Finally, we developed a proteomics-based AD prediction model that outperforms genetics-based models. These findings will be instrumental to further understand the biology and identify causal and druggable proteins for brain and neurological traits.
Collapse
Affiliation(s)
- Daniel Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Ciyang Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Chengran Yang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Bridget Phillips
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Yueyao Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Menghan Liu
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Priyanka Gorijala
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Pat Kohlfeld
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - John Budde
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard J Perrin
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University, St. Louis, MO, USA
| | - Agustin Ruiz
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| | - Marta Marquié
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mercè Boada
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Itziar de Rojas
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jarod Rutledge
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Hamilton Oh
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Edward N Wilson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Lianne M Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Betty Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Department of Psychiatry, Maastricht University, Maastricht, the Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Genomics of Neurodegenerative Diseases and Aging, Department of Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Location VUmc, Amsterdam, the Netherlands
| | - Marta Del Campo Milan
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo CEU, CEU Universities, Madrid, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Ignacio Alvarez
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Miquel Aguilar
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Michael D Greicius
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol and the Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | | | - Laura Ibanez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Yun Ju Sung
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
11
|
Ying J, Chen X, Lv T, Jie F, Tian H. Mendelian randomization analysis to explore the relationship between cathepsins and malignant ovarian tumors. Medicine (Baltimore) 2024; 103:e40219. [PMID: 39560510 PMCID: PMC11575957 DOI: 10.1097/md.0000000000040219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/04/2024] [Indexed: 11/20/2024] Open
Abstract
Cysteine cathepsins are a family of lysosomal proteases that are often overexpressed in several human malignancies and haves been linked to cellular genomic alterations, disturbances in genomic stability, and the onset and spread of cancer. Recent studies have shown alterations in cysteine cathepsins in malignant ovarian tumors. However, it remains unclear whether there is a causal relationship between ovarian cancer, and its subtypes, and the cathepsin family. This study utilized two-sample Mendelian randomization (MR) analysis to examine this potential causal relationship. Genetic instruments derived from publicly available genetic summary data were used for the analyses. For MR analysis, the inverse-variance weighted method, weighted median method, and MR-Egger regression were employed. Multivariate MR analysis was performed concurrently. Univariate MR analysis indicated a strong correlation between decreased incidence of low-grade serous ovarian cancer and elevated levels of cathepsin L2 (odds ratio = 0.803, 95% confidence interval = 0.685-0.942, P = .007), whereas clear cell ovarian cancer showed a strong correlation with elevated levels of cathepsin H (odds ratio = 1.149, 95% confidence interval = 1.036-1.274, P = .008). Multivariate analysis, adjusted for 9 different cathepsins as covariates, confirmed the genetic relationships between cathepsin L2 and low-grade serous ovarian cancer and between cathepsin H and clear cell ovarian cancer. Our results suggest a causal relationship between cathepsins and ovarian malignancy and its subtypes. Cathepsin L2 has a protective effect on low-grade serous ovarian cancer, whereas cathepsin H is an adverse risk factor for clear cell ovarian cancer.
Collapse
Affiliation(s)
- Jiaqi Ying
- Gynaecology and Obstetrics, Women and Children’s Hospital of Zhoushan, Zhoushan, China
| | - Xia Chen
- Outpatient Department, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| | - Tian Lv
- Department of Neurology, Zhuji Affiliated Hospital of Wenzhou Medical, University, Zhuji, China
| | - Fang Jie
- Gynaecology and Obstetrics, Women and Children’s Hospital of Shaoxing, Shaoxing, China
| | - Huanyong Tian
- Department of Radiotherapy, Zhuji Affiliated Hospital of Wenzhou Medical University, Zhuji, China
| |
Collapse
|
12
|
Gukovskaya AS, Lerch MM, Mayerle J, Sendler M, Ji B, Saluja AK, Gorelick FS, Gukovsky I. Trypsin in pancreatitis: The culprit, a mediator, or epiphenomenon? World J Gastroenterol 2024; 30:4417-4438. [PMID: 39534420 PMCID: PMC11551668 DOI: 10.3748/wjg.v30.i41.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatitis is a common, life-threatening inflammatory disease of the exocrine pancreas. Its pathogenesis remains obscure, and no specific or effective treatment is available. Gallstones and alcohol excess are major etiologies of pancreatitis; in a small portion of patients the disease is hereditary. Pancreatitis is believed to be initiated by injured acinar cells (the main exocrine pancreas cell type), leading to parenchymal necrosis and local and systemic inflammation. The primary function of these cells is to produce, store, and secrete a variety of enzymes that break down all categories of nutrients. Most digestive enzymes, including all proteases, are secreted by acinar cells as inactive proforms (zymogens) and in physiological conditions are only activated when reaching the intestine. The generation of trypsin from inactive trypsinogen in the intestine plays a critical role in physiological activation of other zymogens. It was proposed that pancreatitis results from proteolytic autodigestion of the gland, mediated by premature/inappropriate trypsinogen activation within acinar cells. The intra-acinar trypsinogen activation is observed in experimental models of acute and chronic pancreatitis, and in human disease. On the basis of these observations, it has been considered the central pathogenic mechanism of pancreatitis - a concept with a century-old history. This review summarizes the data on trypsinogen activation in experimental and genetic rodent models of pancreatitis, particularly the more recent genetically engineered mouse models that mimic mutations associated with hereditary pancreatitis; analyzes the mechanisms mediating trypsinogen activation and protecting the pancreas against its' damaging effects; discusses the gaps in our knowledge, potential therapeutic approaches, and directions for future research. We conclude that trypsin is not the culprit in the disease pathogenesis but, at most, a mediator of some pancreatitis responses. Therefore, the search for effective therapies should focus on approaches to prevent or normalize other intra-acinar pathologic processes, such as defective autophagy leading to parenchymal cell death and unrelenting inflammation.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Markus M Lerch
- Department of Medicine, Ludwig Maximilian University Hospital, Munich 81377, Germany
| | - Julia Mayerle
- Department of Medicine II, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Matthias Sendler
- Department of Medicine A, University of Greifswald, Greifswald 17475, Germany
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Ashok K Saluja
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Fred S Gorelick
- Departments of Cell Biology and Internal Medicine, Yale University School of Medicine and VA West Haven, New Haven, CT 06519, United States
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| |
Collapse
|
13
|
Oliveira BR, Nehlmeier I, Kempf AM, Venugopalan V, Rehders M, Ceniza MEP, Cavalcanti PADTPV, Hoffmann M, Pöhlmann S, Brix K. Cytoskeletal β-tubulin and cysteine cathepsin L deregulation by SARS-CoV-2 spike protein interaction with the neuronal model cell line SH-SY5Y. Biochimie 2024; 226:49-61. [PMID: 38432290 DOI: 10.1016/j.biochi.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
SARS-CoV-2 mainly infects the respiratory tract but can also target other organs, including the central nervous system. While it was recently shown that cells of the blood-brain-barrier are permissive to SARS-CoV-2 infection in vitro, it remains debated whether neurons can be infected. In this study, we demonstrate that vesicular stomatitis virus particles pseudotyped with the spike protein of SARS-CoV-2 variants WT, Alpha, Delta and Omicron enter the neuronal model cell line SH-SY5Y. Cell biological analyses of the pseudo-virus treated cultures showed marked alterations in microtubules of SH-SY5Y cells. Because the changes in β-tubulin occurred in most cells, but only few were infected, we further asked whether interaction of the cells with spike protein might be sufficient to cause molecular and structural changes. For this, SH-SY5Y cells were incubated with trimeric spike proteins for time intervals of up to 24 h. CellProfiler™-based image analyses revealed changes in the intensities of microtubule staining in spike protein-incubated cells. Furthermore, expression of the spike protein-processing protease cathepsin L was found to be up-regulated by wild type, Alpha and Delta spike protein pseudotypes and cathepsin L was found to be secreted from spike protein-treated cells. We conclude that the mere interaction of the SARS-CoV-2 with neuronal cells can affect cellular architecture and proteolytic capacities. The molecular mechanisms underlying SARS-CoV-2 spike protein induced cytoskeletal changes in neuronal cells remain elusive and require future studies.
Collapse
Affiliation(s)
- Bernardo R Oliveira
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany
| | - Inga Nehlmeier
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany.
| | - Amy Madeleine Kempf
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August University Göttingen, Wilhelmsplatz 1, D-37073, Göttingen, Germany.
| | | | - Maren Rehders
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany.
| | - Marianne E P Ceniza
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany.
| | | | - Markus Hoffmann
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August University Göttingen, Wilhelmsplatz 1, D-37073, Göttingen, Germany.
| | - Stefan Pöhlmann
- Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Abteilung Infektionsbiologie, Kellnerweg 4, D-37077, Göttingen, Germany; Faculty of Biology and Psychology, Georg-August University Göttingen, Wilhelmsplatz 1, D-37073, Göttingen, Germany.
| | - Klaudia Brix
- Constructor University, School of Science, Campus Ring 1, D-28759, Bremen, Germany.
| |
Collapse
|
14
|
Pečar Fonović U, Kos J, Mitrović A. Compensational role between cathepsins. Biochimie 2024; 226:62-76. [PMID: 38663456 DOI: 10.1016/j.biochi.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Cathepsins, a family of lysosomal peptidases, play a crucial role in maintaining cellular homeostasis by regulating protein turnover and degradation as well as many specific regulatory actions that are important for proper cell function and human health. Alterations in the activity and expression of cathepsins have been observed in many diseases such as cancer, inflammation, neurodegenerative disorders, bone remodelling-related conditions and others. These changes are not exclusively harmful, but rather appear to be a compensatory response on the lack of one cathepsin in order to maintain tissue integrity. The upregulation of specific cathepsins in response to the inhibition or dysfunction of other cathepsins suggests a fine-tuned system of proteolytic balance and understanding the compensatory role of cathepsins may improve therapeutic potential of cathepsin's inhibitors. Selectively targeting one cathepsin or modulating their activity could offer new treatment strategies for a number of diseases. This review emphasises the need for comprehensive research into cathepsin biology in the context of disease. The identification of the specific cathepsins involved in compensatory responses, the elucidation of the underlying molecular mechanisms and the development of targeted interventions could lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Urša Pečar Fonović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Ana Mitrović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Li S, Liu X, Shen F, Lin T, Zhang D. First insight of the genome-wide association study and genomic prediction into enteritis disease ( Vibrio harveyi) resistance trait in the lined seahorse ( Hippocampus erectus). Front Immunol 2024; 15:1474746. [PMID: 39421751 PMCID: PMC11484275 DOI: 10.3389/fimmu.2024.1474746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024] Open
Abstract
Enteritis caused by Vibrio is a highly die-off disease that severely impeded substantial production in seahorse aquaculture. In the present study, challenged with LD50 of concentration of Vibrio harveyi, a total of 161 of susceptible and 166 of resistant individuals were allocated into binary survival phenotypes, thus, to firstly investigate the genetic architecture by genome-wide association study (GWAS) analysis, as well as to evaluate the feasibility of genomic selection (GS) in enteritis disease resistance trait of the lined seahorse Hippocampus erectus. Results indicated that the heritability for resistance to Vibrio harveyi was estimated to be 0.10. And a set of 10 significant/suggestive SNPs in a multiple chromosomes localization were identified, explaining 7.76% to 13.28% of genetic variance. Associated 82 of candidate genes were clustered into signal transduction, cell proliferation, response of external stress, bacteria defence, and anti-inflammatory processes. Moreover, the potential performance of genomic selection (GS) in application in selective breeding for enteritis disease resistance seahorses was assessed by genomic prediction (GP). In general, the predictive accuracy of the genomic estimated breeding value (GEBV) of BayesC exceeded the rrBLUP, BayesA, RKHS, and SVM models while with no significant difference. And the GWAS-informative SNPs was significantly superior in efficience than random selected markers by comparison of predictive performance on different selection strategies of SNPs. Overall, the genetic basis of enteritis disease resistance trait in the lined seahorse is a polygenic genetic architecture. SNPs associated with the important genes of cathepsin L1-like previously reported with respect to disease resistance are consider as potential molecular markers of genetic breeding. Furthermore, GS approach is an appropriate, effective, and less-cost application in breeding enteritis disease-resistant seahorses.
Collapse
Affiliation(s)
- Siping Li
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Xin Liu
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Fengyuan Shen
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Tingting Lin
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| | - Dong Zhang
- Key Laboratory of Inland Saline-alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, China
| |
Collapse
|
16
|
Zeng R, Zhou Z, Liao W, Guo B. Genetic insights into the role of cathepsins in cardiovascular diseases: a Mendelian randomization study. ESC Heart Fail 2024; 11:2707-2718. [PMID: 38714485 PMCID: PMC11424349 DOI: 10.1002/ehf2.14826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/10/2024] Open
Abstract
AIMS This study aimed to explore the causal relationships between cathepsins and cardiovascular diseases (CVDs) by Mendelian randomization (MR) analysis. METHODS AND RESULTS Single nucleotide polymorphisms (SNPs) associated with nine cathepsin types (cathepsins B, E, F, G, H, O, S, L2, and Z) were obtained from the INTERVAL study (3301 individuals). CVDs data were acquired from the UK Biobank (coronary atherosclerosis: 14 334 cases, 346 860 controls) and a genome-wide association study (GWAS) (myocardial infarction: 20 917 cases, 440 906 controls; myocarditis: 633 cases, 427 278 controls; chronic heart failure: 14 262 cases, 471 898 controls; angina pectoris: 30 025 cases, 440 906 controls; stable angina pectoris: 17 894 cases, 325 132 controls; unstable angina pectoris: 9481 cases, 446 987 controls; pericarditis: 1795 cases, 453 370 controls). Inverse variance weighted (IVW), MR-Egger, weighted median methods were adopted to conduct univariable MR (UVMR), reverse MR, multivariable MR (MVMR) analyses to estimate causality. The UVMR analyses demonstrated significant causal relationships between higher cathepsin E levels and increased risk of coronary atherosclerosis [IVW: P = 0.0051, odds ratio (OR) = 1.0033, 95% confidence interval (CI) = 1.0010-1.0056] and myocardial infarction (IVW: P = 0.0097, OR = 1.0553, 95% CI = 1.0131-1.0993), while elevated cathepsin L2 levels were causally related to reduced risk of myocarditis (IVW: P = 0.0120, OR = 0.6895, 95% CI = 0.5158-0.9216) and chronic heart failure (IVW: P = 0.0134, OR = 0.9316, 95% CI = 0.8807-0.9854). Reverse MR analyses revealed that myocardial infarction increased cathepsin O levels (IVW: P = 0.0400, OR = 1.0708, 95% CI = 1.0031-1.1431). MVMR analyses treating nine cathepsins together revealed that the positive causality between cathepsin E levels and coronary atherosclerosis risk (IVW: P = 0.0390, OR = 1.0030, 95% CI = 1.0000-1.0060), and the protective effect of cathepsin L2 levels on myocarditis (IVW: P = 0.0030, OR = 0.6610, 95% CI = 0.5031-0.8676) and chronic heart failure (IVW: P = 0.0090, OR = 0.9259, 95% CI = 0.8737-0.9812) remained, as higher cathepsin O levels were found to be causally related to increased risks of myocarditis (IVW: P = 0.0030, OR = 1.6145, 95% CI = 1.1829-2.2034) and chronic heart failure (IVW: P = 0.0300, OR = 1.0779, 95% CI = 1.0070-1.1537). CONCLUSIONS The study highlights the causalities of cathepsin E, L2, and O on CVDs, offering insights into their roles in cardiovascular biomarkers and therapeutic targets development. Further research is required to apply these genetic findings clinically.
Collapse
Affiliation(s)
- Ruiqi Zeng
- Guangzhou Medical UniversityGuangzhou511436China
- Department of Clinical Medicine, Nanshan CollegeGuangzhou Medical UniversityGuangzhouChina
| | - Zhiyi Zhou
- Guangzhou Medical UniversityGuangzhou511436China
- Department of Clinical Medicine, Third Clinical SchoolGuangzhou Medical UniversityGuangzhouChina
| | - Wanzhe Liao
- Guangzhou Medical UniversityGuangzhou511436China
- Department of Clinical Medicine, Nanshan CollegeGuangzhou Medical UniversityGuangzhouChina
| | - Beian Guo
- Guangzhou Medical UniversityGuangzhou511436China
- Department of Clinical Medicine, Nanshan CollegeGuangzhou Medical UniversityGuangzhouChina
| |
Collapse
|
17
|
Siwach K, Arya P, Vats L, Sharma V, Giovannuzzi S, Raghav N, Supuran CT, Sharma PK. Benzenesulfonamides functionalized with triazolyl-linked pyrazoles possess dual cathepsin B and carbonic anhydrase inhibitory action. Arch Pharm (Weinheim) 2024; 357:e2400114. [PMID: 38900588 DOI: 10.1002/ardp.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024]
Abstract
The design and synthesis of a library of 21 novel benzenesulfonamide-bearing 3-functionalized pyrazole-linked 1,2,3-triazole derivatives as dual inhibitors of cathepsin B and carbonic anhydrase enzymes are reported. The target 1,2,3-triazole-linked pyrazolic esters (16) were synthesized by the condensation of 1,2,3-triazolic diketo esters with 4-hydrazinobenzenesulfonamide hydrochloride, and these were further converted into the corresponding carboxylic acid (17) and carboxamide (18) analogs. The synthesized compounds were assayed in vitro for their inhibition potential against human carbonic anhydrase (hCA) isoforms I, II, IX, and XII. They were found to be potent inhibitors at the low nanomolar level against the cancer-related hCA IX and XII and to be selective towards the cytosolic isoform hCA I. The physiologically important isoform hCA II was potently inhibited by all the newly synthesized compounds showing KI values ranging between 0.8 and 561.5 nM. The ester derivative 16c having 4-fluorophenyl (KI = 5.2 nM) was the most potent inhibitor of hCA IX, and carboxamide derivative 18b (KI = 2.2 nM) having 4-methyl substituted phenyl was the most potent inhibitor of hCA XII. The newly synthesized compounds exhibited potent cathepsin B inhibition at 10-7 M concentration. In general, the carboxamide derivatives (18) showed higher % inhibition as compared with the corresponding ester derivatives (16) and carboxylic acid derivatives (17) for cathepsin B. The interactions of the target compounds with the active sites of cathepsin B and CA were studied through molecular docking studies. Further, the in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of the target compounds were also studied.
Collapse
Affiliation(s)
- Kiran Siwach
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Priyanka Arya
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Lalit Vats
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Government College Bherian, Pehowa, Kurukshetra, Haryana, India
| | - Vikas Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Pt. Chiranji Lal Sharma Government College, Karnal, Haryana, India
| | - Simone Giovannuzzi
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Claudiu T Supuran
- Neurofarba Department, Pharmaceutical and Nutraceutical Section, University of Florence, Florence, Italy
| | - Pawan K Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
- Department of Chemistry, Central University of Haryana, Mahendergarh, India
| |
Collapse
|
18
|
Gubbiveeranna V, Megha GT, Kusuma CG, Ravikumar H, Thoyajakshi RS, Vijayakumar S, Mathad SN, Nagaraju S, Wazzan H, Khan A, Alzahrani KA, Malash AM. Effect of 'Procumbenase' a serine protease from Tridax procumbens aqueous extract on wound healing: A scar free healing of full thickness wounds. Int J Biol Macromol 2024; 273:133147. [PMID: 38878934 DOI: 10.1016/j.ijbiomac.2024.133147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Wound healing involves several cellular and molecular pathways. Tridax procumbens activates genetic pathways with antibacterial, antioxidant, anticancer, and anti-inflammatory properties, aiding wound healing. This study purified Procumbenase, a serine protease from T. procumbens extract, using gel filtration (Sephadex G-75) and ion exchange (CM-Sephadex C-50) chromatography. Characterization involved analyses of protease activity, RP-HPLC, SDS-PAGE, gelatin zymogram, PAS staining, mass spectrometry, and circular dichroism. Optimal pH and temperature were determined. Protease type was identified using inhibitors. Wound-healing potential was evaluated through tensile strength, wound models, hydroxyproline estimation, and NIH 3T3 cell scratch analysis. In incision wound rat models, Procumbenase increased tensile strength on day 14 more than saline and Povidone‑iodine. It increased wound contraction by 89 % after 10 days in excision wound models, attaining full contraction by day 15 and closure by day 21. Scarless wound healing was enhanced by 18 days of epithelialization against 22 and 21 days for saline and povidone‑iodine. Procumbenase increased hydroxyproline concentration 2.53-fold (59.93 ± 2.89 mg/g) compared to saline (23.67 ± 1.86 mg/g). In NIH 3 T3 cell scratch assay, Procumbenase increased migration by 60.93 % (50 μg) and 60.57 % (150 μg) after 48 h. Thus, Procumbenase is the primary bioactive molecule in T. procumbens, demonstrates scar-free wound healing properties.
Collapse
Affiliation(s)
- Vinod Gubbiveeranna
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru-572103, Karnataka, India; Department of Biochemistry, Sri Siddhartha Institute of Medical Sciences and Research Centre, T. Begur, Nelamangala, Bengaluru Rural - 562123, Karnataka, India
| | - G T Megha
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru-572103, Karnataka, India; Department of Biochemistry, Jnana Sahyadri, Kuvempu University, Shivamogga-577451, Karnataka, India
| | - C G Kusuma
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru-572103, Karnataka, India
| | - H Ravikumar
- Department of Life Sciences, Jnana Bharathi Campus, Bangalore University, Bengaluru-560056, Karnataka, India
| | - R S Thoyajakshi
- Department of Studies and Research in Biotechnology, Tumkur University, Tumakuru-572103, Karnataka, India
| | - S Vijayakumar
- Sree Siddaganga College of Pharmacy, B H Road, Tumakuru-572102, Karnataka, India
| | - S N Mathad
- Department of Physics, KLE Institute of Technology, Hubbali-580 027, Karnataka, India
| | - S Nagaraju
- Department of Studies and Research in Biochemistry, Tumkur University, Tumakuru-572103, Karnataka, India.
| | - Huda Wazzan
- School of Human Science and Design, Food and Nutrition Department, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Anish Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah-21589, Saudi Arabia.
| | - Khalid A Alzahrani
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah-21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Asmaa M Malash
- Department of Basic Medical Sciences, Vision College in Riyadh, Saudi Arabia.
| |
Collapse
|
19
|
Parra M, Coppola M, Hellmann H. PDX proteins from Arabidopsis thaliana as novel substrates of cathepsin B: implications for vitamin B 6 biosynthesis regulation. FEBS J 2024; 291:2372-2387. [PMID: 38431778 DOI: 10.1111/febs.17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Vitamin B6 is a critical molecule for metabolism, development, and stress sensitivity in plants. It is a cofactor for numerous biochemical reactions, can serve as an antioxidant, and has the potential to increase tolerance against both biotic and abiotic stressors. Due to the importance of vitamin B6, its biosynthesis is likely tightly regulated. Plants can synthesize vitamin B6 de novo via the concerted activity of Pyridoxine Biosynthesis Protein 1 (PDX1) and PDX2. Previously, PDX proteins have been identified as targets for ubiquitination, indicating they could be marked for degradation by two highly conserved pathways: the Ubiquitin Proteasome Pathway (UPP) and the autophagy pathway. Initial experiments show that PDXs are in fact degraded, but surprisingly, in a ubiquitin-independent manner. Inhibitor studies pointed toward cathepsin B, a conserved lysosomal cysteine protease, which is implicated in both programed cell death and autophagy in humans and plants. In plants, cathepsin Bs are poorly described, and no confirmed substrates have been identified. Here, we present PDX proteins from Arabidopsis thaliana as interactors and substrates of a plant Cathepsin B. These findings not only describe a novel cathepsin B substrate in plants, but also provide new insights into how plants regulate de novo biosynthesis of vitamin B6.
Collapse
Affiliation(s)
- Marcelina Parra
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | | | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
20
|
Tiraboschi G, Isaac P, Breser ML, Angiolini V, Rodriguez-Berdini L, Porporatto C, Bohl LP. 1,25 dihydroxyvitamin D 3-mediated effects on bovine innate immunity and on biofilm-forming Staphylococcus spp. isolated from cattle with mastitis. J Steroid Biochem Mol Biol 2024; 240:106508. [PMID: 38521361 DOI: 10.1016/j.jsbmb.2024.106508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/22/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Mastitis is one the most widespread and serious diseases in dairy cattle. Recurrent and chronic infections are often attributable to certain pathogenicity mechanisms in mastitis-causing pathogens such as Staphylococcus spp. These include growing in biofilm and invading cells, both of which make it possible to resist or evade antimicrobial therapies and the host's immune system. This study tested the effects of active vitamin D3 (i.e., calcitriol or 1,25-dihydroxyvitamin D3) on the internalization and phagocytosis of biofilm-forming Staphylococcus spp. isolated from animals with mastitis. Two established bovine cell lines were used: MAC-T (mammary epithelial cells) and BoMac (macrophages). Calcitriol (0-200 nM) did not affect the viability of MAC-T cells nor that of BoMac cells after 24 and 72 h. Concentrations of 0-100 mM for 24 h upregulated the expression of 24-hydroxylase in MAC-T cells, but did not alter that of VDR. Pre-treatment of the cells with calcitriol for 24 h decreased the internalization of S. aureus V329 into MAC-T cells (0-100 nM), and stimulated the phagocytosis of the same strain and of S. xylosus 4913 (0-10 nM). Calcitriol and two conditioned media, obtained by treating the cells with 25-200 nM of the metabolite for 24 h, were also assessed in terms of their antimicrobial and antibiofilm activity. Neither calcitriol by itself nor the conditioned media affected staphylococcal growth or biofilm formation (0-200 nM for 12 and 24 h, respectively). In contrast, the conditioned media (0-100 nM for 24 h) decreased the biomass of preformed non-aureus staphylococcal biofilms and killed the bacteria within them, without affecting metabolic activity. These effects may be mediated by reactive oxygen species and proteins with antimicrobial and/or antibiofilm activity. In short, calcitriol could make pathogens more accessible to antimicrobial therapies and enhance bacterial clearance by professional phagocytes. Moreover, it may modulate the host's endogenous defenses in the bovine udder and help combat preformed non-aureus staphylococcal biofilms (S. chromogenes 40, S. xylosus 4913, and/or S. haemolyticus 6). The findings confirm calcitriol's potential as an adjuvant to prevent and/or treat intramammary infections caused by Staphylococcus spp., which would in turn contribute to reducing antibiotic use on dairy farms.
Collapse
Affiliation(s)
- Georgina Tiraboschi
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina
| | - Paula Isaac
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional Villa María (UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina
| | - María Laura Breser
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional Villa María (UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina
| | - Virginia Angiolini
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina
| | - Lucía Rodriguez-Berdini
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional Villa María (UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina
| | - Carina Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional Villa María (UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina.
| | - Luciana Paola Bohl
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB CONICET-UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Básicas y Aplicadas, Universidad Nacional Villa María (UNVM), Campus Universitario, Av. Arturo Jauretche 1555. Villa María (C.P. 5900), Córdoba, Argentina.
| |
Collapse
|
21
|
Gallwitz L, Bleibaum F, Voss M, Schweizer M, Spengler K, Winter D, Zöphel F, Müller S, Lichtenthaler S, Damme M, Saftig P. Cellular depletion of major cathepsin proteases reveals their concerted activities for lysosomal proteolysis. Cell Mol Life Sci 2024; 81:227. [PMID: 38775843 PMCID: PMC11111660 DOI: 10.1007/s00018-024-05274-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/30/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Proteins delivered by endocytosis or autophagy to lysosomes are degraded by exo- and endoproteases. In humans 15 lysosomal cathepsins (CTS) act as important physiological regulators. The cysteine proteases CTSB and CTSL and the aspartic protease CTSD are the most abundant and functional important lysosomal proteinases. Whereas their general functions in proteolysis in the lysosome, their individual substrate, cleavage specificity, and their possible sequential action on substrate proteins have been previously studied, their functional redundancy is still poorly understood. To address a possible common role of highly expressed and functional important CTS proteases, we generated CTSB-, CTSD-, CTSL-, and CTSBDL-triple deficient (KO) human neuroblastoma-derived SH-SY5Y cells and CTSB-, CTSD-, CTSL-, CTSZ and CTSBDLZ-quadruple deficient (KO) HeLa cells. These cells with a combined cathepsin deficiency exhibited enlarged lysosomes and accumulated lipofuscin-like storage material. The lack of the three (SH-SY5Y) or four (HeLa) major CTSs caused an impaired autophagic flux and reduced degradation of endocytosed albumin. Proteome analyses of parental and CTS-depleted cells revealed an enrichment of cleaved peptides, lysosome/autophagy-associated proteins, and potentially endocytosed membrane proteins like the amyloid precursor protein (APP), which can be subject to endocytic degradation. Amino- and carboxyterminal APP fragments accumulated in the multiple CTS-deficient cells, suggesting that multiple CTS-mediated cleavage events regularly process APP. In summary, our analyses support the idea that different lysosomal cathepsins act in concert, have at least partially and functionally redundant substrates, regulate protein degradation in autophagy, and control cellular proteostasis, as exemplified by their involvement in the degradation of APP fragments.
Collapse
Affiliation(s)
- Lisa Gallwitz
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Florian Bleibaum
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Matthias Voss
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology (ZMNH), UKE, Falkenried 94, 20251, Hamburg, Germany
| | - Katharina Spengler
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Frederic Zöphel
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Stephan Müller
- German Center for Neurodegenerative Diseases (DZNE), München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
| | - Stefan Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), München, Feodor-Lynen-Str. 17, 81377, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
22
|
Denison M, Garcia SP, Ullrich A, Podgorski I, Gibson H, Turro C, Kodanko JJ. Ruthenium-Cathepsin Inhibitor Conjugates for Green Light-Activated Photodynamic Therapy and Photochemotherapy. Inorg Chem 2024; 63:7973-7983. [PMID: 38616353 PMCID: PMC11066580 DOI: 10.1021/acs.inorgchem.4c01008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Dysregulated cathepsin activity is linked to various human diseases including metabolic disorders, autoimmune conditions, and cancer. Given the overexpression of cathepsin in the tumor microenvironment, cathepsin inhibitors are promising pharmacological agents and drug delivery vehicles for cancer treatment. In this study, we describe the synthesis and photochemical and biological assessment of a dual-action agent based on ruthenium that is conjugated with a cathepsin inhibitor, designed for both photodynamic therapy (PDT) and photochemotherapy (PCT). The ruthenium-cathepsin inhibitor conjugate was synthesized through an oxime click reaction, combining a pan-cathepsin inhibitor based on E64d with the Ru(II) PCT/PDT fragment [Ru(dqpy)(dppn)], where dqpy = 2,6-di(quinoline-2-yl)pyridine and dppn = benzo[i]dipyrido[3,2-a:2',3'-c]phenazine. Photochemical investigations validated the conjugate's ability to release a triazole-containing cathepsin inhibitor for PCT and to generate singlet oxygen for PDT upon exposure to green light. Inhibition studies demonstrated the conjugate's potent and irreversible inactivation of purified and intracellular cysteine cathepsins. Two Ru(II) PCT/PDT agents based on the [Ru(dqpy)(dppn)] moiety were evaluated for photoinduced cytotoxicity in 4T1 murine triple-negative breast cancer cells, L929 fibroblasts, and M0, M1, and M2 macrophages. The cathepsin inhibitor conjugate displayed notable selectivity for inducing cell death under irradiation compared to dark conditions, mitigating toxicity in the dark observed with the triazole control complex [Ru(dqpy)(dppn)(MeTz)]2+ (MeTz = 1-methyl-1H-1,2,4-triazole). Notably, our lead complex is among a limited number of dual PCT/PDT agents activated with green light.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Santana P Garcia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alexander Ullrich
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
| | - Izabela Podgorski
- Department of Pharmacology, School of Medicine, Wayne State University, Detroit, Michigan 48201, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Heather Gibson
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
- Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
23
|
Maheshwari S, Patel BM. Unravelling the role of cathepsins in cardiovascular diseases. Mol Biol Rep 2024; 51:579. [PMID: 38668953 DOI: 10.1007/s11033-024-09518-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Lysosomal cathepsins as a regulatory medium have been assessed as potential therapeutic targets for the treatment of various cardiac diseases such as abdominal aortic aneurysm, hypertension, cardiomyopathy, coronary heart disease, atherosclerosis, etc. They are ubiquitous lysosomal proteases with papain-like folded protein structures that are involved in a variety of physiological processes, such as the digestion of proteins, activation of pro-inflammatory molecules, degradation of extracellular matrix components, and maturation of peptide hormones. Cathepsins are classified into three major groups: cysteine cathepsins, aspartic cathepsins, and serine-threonine cathepsins. Each of these groups is further divided into subgroups based on their substrate specificity, structural characteristics, and biochemical properties. Several studies suggest that cathepsins control the degradation of ECM components such as collagen and elastin fibres. These enzymes are highly expressed in macrophages and inflammatory cells, and their upregulation has been demonstrated to be critical in the progression of atherosclerotic lesions. Additionally, increased cathepsin activity has been linked to increased vascular inflammation and oxidative stress, both of which are associated with CVDs. Specifically, the inhibition of cathepsins may reduce the release of pro-apoptotic mediators such as caspase-3 and PARP-1, which are thought to contribute to plaque instability. The potential of cathepsins as biomarkers and therapeutic targets has also been supported by the identification of potential cathepsin inhibitors, which could be used to modulate the activities of cathepsins in a range of diseases. This review shall familiarise the readers with the role of cysteinyl cathepsins and their inhibitors in the pathogenesis of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Bhoomika M Patel
- School of Medico-Legal Studies, National Forensic Sciences University, Sector 9, Gandhinagar, 382007, India.
| |
Collapse
|
24
|
Eriksson I, Öllinger K. Lysosomes in Cancer-At the Crossroad of Good and Evil. Cells 2024; 13:459. [PMID: 38474423 PMCID: PMC10930463 DOI: 10.3390/cells13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Although it has been known for decades that lysosomes are central for degradation and recycling in the cell, their pivotal role as nutrient sensing signaling hubs has recently become of central interest. Since lysosomes are highly dynamic and in constant change regarding content and intracellular position, fusion/fission events allow communication between organelles in the cell, as well as cell-to-cell communication via exocytosis of lysosomal content and release of extracellular vesicles. Lysosomes also mediate different forms of regulated cell death by permeabilization of the lysosomal membrane and release of their content to the cytosol. In cancer cells, lysosomal biogenesis and autophagy are increased to support the increased metabolism and allow growth even under nutrient- and oxygen-poor conditions. Tumor cells also induce exocytosis of lysosomal content to the extracellular space to promote invasion and metastasis. However, due to the enhanced lysosomal function, cancer cells are often more susceptible to lysosomal membrane permeabilization, providing an alternative strategy to induce cell death. This review summarizes the current knowledge of cancer-associated alterations in lysosomal structure and function and illustrates how lysosomal exocytosis and release of extracellular vesicles affect disease progression. We focus on functional differences depending on lysosomal localization and the regulation of intracellular transport, and lastly provide insight how new therapeutic strategies can exploit the power of the lysosome and improve cancer treatment.
Collapse
Affiliation(s)
- Ida Eriksson
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden;
| | | |
Collapse
|
25
|
Kim MJ, Kim S, Reinheckel T, Krainc D. Inhibition of cysteine protease cathepsin L increases the level and activity of lysosomal glucocerebrosidase. JCI Insight 2024; 9:e169594. [PMID: 38329128 PMCID: PMC10967467 DOI: 10.1172/jci.insight.169594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2024] Open
Abstract
The glucocerebrosidase (GCase) encoded by the GBA1 gene hydrolyzes glucosylceramide (GluCer) to ceramide and glucose in lysosomes. Homozygous or compound heterozygous GBA1 mutations cause the lysosomal storage disease Gaucher disease (GD) due to severe loss of GCase activity. Loss-of-function variants in the GBA1 gene are also the most common genetic risk factor for Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Restoring lysosomal GCase activity represents an important therapeutic approach for GBA1-associated diseases. We hypothesized that increasing the stability of lysosomal GCase protein could correct deficient GCase activity in these conditions. However, it remains unknown how GCase stability is regulated in the lysosome. We found that cathepsin L, a lysosomal cysteine protease, cleaves GCase and regulates its stability. In support of these data, GCase protein was elevated in the brain of cathepsin L-KO mice. Chemical inhibition of cathepsin L increased both GCase levels and activity in fibroblasts from patients with GD. Importantly, inhibition of cathepsin L in dopaminergic neurons from a patient GBA1-PD led to increased GCase levels and activity as well as reduced phosphorylated α-synuclein. These results suggest that targeting cathepsin L-mediated GCase degradation represents a potential therapeutic strategy for GCase deficiency in PD and related disorders that exhibit decreased GCase activity.
Collapse
Affiliation(s)
- Myung Jong Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, Medical Faculty and BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
26
|
Xie Q, Yao T, Sun X, Liu X, Wang X. Whole genome identification of olive flounder (Paralichthys olivaceus) cathepsin genes: Provides insights into its regulation on biotic and abiotic stresses response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 266:106783. [PMID: 38064891 DOI: 10.1016/j.aquatox.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 01/02/2024]
Abstract
Cathepsins are major lysosomal enzymes involved in essential physiological processes, including protein degradation, tissue differentiation, and innate or adaptive responses. Several kinds of cathepsins have been reported in teleost fishes, but no characterization have been performed for the inflammatory response of cathepsin family in olive flounder until now. In our current study, a total of 17 cathepsins in olive flounder were systematically identified and characterized. Phylogenetic analysis clearly indicated that the cathepsin genes was highly conserved. Analysis of structure and motifs exhibited high sequence similarity of cathepsin genes in olive flounder. Expression profiles of cathepsin genes in different tissues and developmental stages showed that cathepsins were temporally and spatially specific. RNA-seq analysis of bacteria and temperature stresses revealed that members of cathepsin were involved in inflammatory responses. Collectively, our findings would provide a further reference for understanding the molecular mechanisms of cathepsins in olive flounder.
Collapse
Affiliation(s)
- Qingping Xie
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China
| | - Tingyan Yao
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China
| | - Xuanyang Sun
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University; Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University; Key Laboratory of Marine Biotechnology of Zhejiang Province, Ningbo University, Ningbo, China.
| |
Collapse
|
27
|
Charvet S, Bock NA, Kim E, Duhamel S. Transcriptomics reveal a unique phago-mixotrophic response to low nutrient concentrations in the prasinophyte Pterosperma cristatum. ISME COMMUNICATIONS 2024; 4:ycae083. [PMID: 38957873 PMCID: PMC11217555 DOI: 10.1093/ismeco/ycae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Constitutive mixoplankton-plastid-bearing microbial eukaryotes capable of both phototrophy and phagotrophy-are ubiquitous in marine ecosystems and facilitate carbon transfer to higher trophic levels within aquatic food webs, which supports enhanced sinking carbon flux. However, the regulation of the relative contribution of photosynthesis and prey consumption remains poorly characterized. We investigated the transcriptional dynamics behind this phenotypic plasticity in the prasinophyte green alga Pterosperma cristatum. Based on what is known of other mixoplankton species that cannot grow without photosynthesis (obligate phototrophs), we hypothesized that P. cristatum uses phagotrophy to circumvent the restrictions imposed on photosynthesis by nutrient depletion, to obtain nutrients from ingested prey, and to maintain photosynthetic carbon fixation. We observed an increase in feeding as a response to nutrient depletion, coinciding with an upregulation of expression for genes involved in essential steps of phagocytosis including prey recognition, adhesion and engulfment, transport and maturation of food vacuoles, and digestion. Unexpectedly, genes involved in the photosynthetic electron transfer chain, pigment biosynthesis, and carbon fixation were downregulated as feeding increased, implying an abatement of photosynthesis. Contrary to our original hypothesis, our results therefore suggest that depletion of inorganic nutrients triggered an alteration of trophic behavior from photosynthesis to phagotrophy in P. cristatum. While this behavior distinguishes P. cristatum from other groups of constitutive mixoplankton, its physiological response aligns with recent discoveries from natural microbial communities. These findings indicate that mixoplankton communities in nutrient-limited oceans can regulate photosynthesis against bacterivory based on nutrient availability.
Collapse
Affiliation(s)
- Sophie Charvet
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, United States
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, NY 10024, United States
- Department of Biology, School of Natural and Social Sciences, Susquehanna University, Selinsgrove, PA 17870, United States
| | - Nicholas A Bock
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, United States
- Laboratoire d’Océanographie de Villefranche, CNRS and Sorbonne Université, 06230 Villefranche-sur-Mer, France
| | - Eunsoo Kim
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, NY 10024, United States
- Division of EcoScience, Ewha Womans University, Seoul 03760, South Korea
| | - Solange Duhamel
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, United States
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, NY 10024, United States
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, United States
| |
Collapse
|
28
|
Ezz MA, Takahashi M, Rivera RM, Balboula AZ. Cathepsin L regulates oocyte meiosis and preimplantation embryo development. Cell Prolif 2024; 57:e13526. [PMID: 37417221 PMCID: PMC10771118 DOI: 10.1111/cpr.13526] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/28/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Early embryonic loss, caused by reduced embryo developmental competence, is the major cause of subfertility in humans and animals. This embryo developmental competence is determined during oocyte maturation and the first embryo divisions. Therefore, it is essential to identify the underlying molecules regulating these critical developmental stages. Cathepsin L (CTSL), a lysosomal cysteine protease, is involved in regulating cell cycle progression, proliferation and invasion of different cell types. However, CTSL role in mammalian embryo development is unknown. Using bovine in vitro maturation and culture systems, we show that CTSL is a key regulator for embryo developmental competence. We employed a specific CTSL detection assay in live cells to show that CTSL activity correlates with meiotic progression and early embryo development. Inhibiting CTSL activity during oocyte maturation or early embryo development significantly impaired oocyte and embryo developmental competence as evidenced by lower cleavage, blastocyst and hatched blastocyst rates. Moreover, enhancing CTSL activity, using recombinant CTSL (rCTSL), during oocyte maturation or early embryo development significantly improved oocyte and embryo developmental competence. Importantly, rCTSL supplementation during oocyte maturation and early embryo development significantly improved the developmental competence of heat-shocked oocytes/embryos which are notoriously known for reduced quality. Altogether, these results provide novel evidence that CTSL plays a pivotal role in regulating oocyte meiosis and early embryonic development.
Collapse
Affiliation(s)
- Mohamed Aboul Ezz
- Department of Theriogenology, Faculty of Veterinary MedicineMansoura UniversityMansouraEgypt
- Division of Animal SciencesUniversity of MissouriColumbiaMissouriUSA
| | | | | | | |
Collapse
|
29
|
Zhu L, Zeng Q, Wang J, Deng F, Jin S. Cathepsin V drives lung cancer progression by shaping the immunosuppressive environment and adhesion molecules cleavage. Aging (Albany NY) 2023; 15:13961-13979. [PMID: 38078882 PMCID: PMC10756122 DOI: 10.18632/aging.205278] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/16/2023] [Indexed: 12/21/2023]
Abstract
Cathepsin V (CTSV) is a cysteine cathepsin protease that plays a crucial role in extracellular matrix degradation. CTSV is correlated with poor prognosis in various cancers, but the underlying mechanism remains elusive. Here, we observed that CSTV is upregulated in lung cancer and is a poor prognosis factor for lung cancer. CTSV acts as a driver in the metastasis of lung cancer both in vitro and in vivo. CTSV promotes lung cancer metastasis by downregulating adhesion molecules, including fibronectin, E-cadherin, and N-cadherin. Our data revealed that CTSV functions by mediating the fragmentation of fibronectin, E-cadherin, and N-cadherin in cleavage, remodeling the extracellular matrix (ECM). The rationally designed antibody targeting CTSV blocks its cleaving ability towards fibronectin, E-cadherin, and N-cadherin, suppressing migration and invasion. Furthermore, we found that CTSV expression is negatively correlated with immune cell infiltration and immune scores and inhibits T cell activity. Targeting CTSV with specific antibodies effectively suppressed lung cancer metastasis in a mouse model. Our study demonstrates the critical role of CTSV in the immunity and metastasis of lung cancer, suggesting that the CTSV-targeting approach is a promising strategy for lung cancer.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Dermatology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Qi Zeng
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jinxiang Wang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Digestive Diseases Center, Precision Medicine Center, Sun Yat-Sen University, Shenzhen 518107, China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shi Jin
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| |
Collapse
|
30
|
Kalinin RE, Konopleva MG, Suchkov IA, Korotkova NV, Mzhavanadze ND. Interleukin-13: association with inflammation and cysteine proteolysis in varicose transformation of the vascular wall. KAZAN MEDICAL JOURNAL 2023; 104:896-906. [DOI: 10.17816/kmj430382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The present review considers current data on the structure, functions and role of interleukin-13 in the pathogenesis of vascular wall varicose transformation in terms of proteolysis and inflammatory response. It is known that interleukin-13 is able to interact with transforming growth factor-1 in diseases associated with fibrosis. The latter activates fibroblasts and excessive formation of the extracellular matrix, thereby inducing fibrosis of the vascular wall, which is one of the links in the pathogenesis of varicose veins. Also, to date, there is evidence of the interleukin-13 participation in the induction of certain proteolytic enzymes synthesis, such as matrix metalloproteinases. For the latter, participation in the transformation of the venous wall has been proven to date. The remodeling of the venous wall itself can lead to an increase in the expression of proteinases, providing a proteolytic mechanism for changing the structural organization of the venous wall in varicose veins of the lower extremities. At the same time, the involvement of lysosomal cysteine proteinases remains poorly understood. The expression and production of individual cathepsins are regulated by biologically active molecules: interleukin-1, interleukin-6, tumor necrosis factor , which are directly involved in inflammatory reactions in the wall of varicose veins. In particular, venous pathology develops in a vicious circle of inflammation with the formation of abnormal venous blood flow, chronic venous hypertension and dilation, and the recruitment of leukocytes. This leads to a further, deeper, remodeling of the walls and valves of the veins, an increase in blood pressure and the release of pro-inflammatory mediators chemokines and cytokines. In connection with the above, in order to understand the mechanisms of proteolysis in the vascular wall in varicose veins of the lower extremities, it is important to have an idea about the possible interactions of interleukin-13 with transforming growth factor-1, inflammatory cytokines, and cathepsins.
Collapse
|
31
|
Pasandideh M, Harkinezhad T, Mohammadi L. A SNP in the ovine cathepsin K ( CTSK) gene is associated with yearling growth performance in a crossbred sheep population. Anim Biotechnol 2023; 34:5155-5159. [PMID: 36752216 DOI: 10.1080/10495398.2023.2174873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cathepsin K (CTSK) is a lysosomal protease existent in the skeletal muscles which is involved in biochemical processes related to obesity. Several studies have reported the effects of CTSK gene on body weight and fat deposition in human, mice and pigs. However, information about its structure and functions in sheep is very limited. Thus, this study was performed to evaluate the association between CTSK gene variants and yearling growth performance in Afshari × Booroola-Merino crossbred sheep. A fragment of 500 bp in exon 6 and partial of intron 5 of CTSK gene was amplified with polymerase chain reaction (PCR). All animals were genotyped by single-stranded conformation polymorphism (SSCP) and further confirmed by sequencing. Association analysis using a fixed linear model indicated that g.106510225G > A SNP was significantly related to average daily weight gain (ADWG) per year, fat-tail weight to carcass weight ratio (FW/CW), muscle thickness (MT) and muscle cross-sectional area (MCSA) of animals (p < 0.05). Due to the low polymorphic information content (PIC <0.25) for targeted locus in studied population, more association studies are needed to confirm the CTSK gene effects on growth traits in sheep.
Collapse
Affiliation(s)
- Majid Pasandideh
- Department of Animal Science, Faculty of Animal and Aquatic Science, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Taher Harkinezhad
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - Leila Mohammadi
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| |
Collapse
|
32
|
Stoka V, Vasiljeva O, Nakanishi H, Turk V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int J Mol Sci 2023; 24:15613. [PMID: 37958596 PMCID: PMC10650516 DOI: 10.3390/ijms242115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- CytomX Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
33
|
Dolmatov IY, Nizhnichenko VA. Extracellular Matrix of Echinoderms. Mar Drugs 2023; 21:417. [PMID: 37504948 PMCID: PMC10381214 DOI: 10.3390/md21070417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
This review considers available data on the composition of the extracellular matrix (ECM) in echinoderms. The connective tissue in these animals has a rather complex organization. It includes a wide range of structural ECM proteins, as well as various proteases and their inhibitors. Members of almost all major groups of collagens, various glycoproteins, and proteoglycans have been found in echinoderms. There are enzymes for the synthesis of structural proteins and their modification by polysaccharides. However, the ECM of echinoderms substantially differs from that of vertebrates by the lack of elastin, fibronectins, tenascins, and some other glycoproteins and proteoglycans. Echinoderms have a wide variety of proteinases, with serine, cysteine, aspartic, and metal peptidases identified among them. Their active centers have a typical structure and can break down various ECM molecules. Echinoderms are also distinguished by a wide range of proteinase inhibitors. The complex ECM structure and the variety of intermolecular interactions evidently explain the complexity of the mechanisms responsible for variations in the mechanical properties of connective tissue in echinoderms. These mechanisms probably depend not only on the number of cross-links between the molecules, but also on the composition of ECM and the properties of its proteins.
Collapse
Affiliation(s)
- Igor Yu Dolmatov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| | - Vladimir A Nizhnichenko
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevsky 17, 690041 Vladivostok, Russia
| |
Collapse
|
34
|
Kordiš D, Turk V. Origin and Early Diversification of the Papain Family of Cysteine Peptidases. Int J Mol Sci 2023; 24:11761. [PMID: 37511529 PMCID: PMC10380794 DOI: 10.3390/ijms241411761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Peptidases of the papain family play a key role in protein degradation, regulated proteolysis, and the host-pathogen arms race. Although the papain family has been the subject of many studies, knowledge about its diversity, origin, and evolution in Eukaryota, Bacteria, and Archaea is limited; thus, we aimed to address these long-standing knowledge gaps. We traced the origin and expansion of the papain family with a phylogenomic analysis, using sequence data from numerous prokaryotic and eukaryotic proteomes, transcriptomes, and genomes. We identified the full complement of the papain family in all prokaryotic and eukaryotic lineages. Analysis of the papain family provided strong evidence for its early diversification in the ancestor of eukaryotes. We found that the papain family has undergone complex and dynamic evolution through numerous gene duplications, which produced eight eukaryotic ancestral paralogous C1A lineages during eukaryogenesis. Different evolutionary forces operated on C1A peptidases, including gene duplication, horizontal gene transfer, and gene loss. This study challenges the current understanding of the origin and evolution of the papain family and provides valuable insights into their early diversification. The findings of this comprehensive study provide guidelines for future structural and functional studies of the papain family.
Collapse
Affiliation(s)
- Dušan Kordiš
- Department of Molecular and Biomedical Sciences, J. Stefan Institute, 1000 Ljubljana, Slovenia
| | - Vito Turk
- Department of Biochemistry, Molecular and Structural Biology, J. Stefan Institute, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Cruchaga C, Western D, Timsina J, Wang L, Wang C, Yang C, Ali M, Beric A, Gorijala P, Kohlfeld P, Budde J, Levey A, Morris J, Perrin R, Ruiz A, Marquié M, Boada M, de Rojas I, Rutledge J, Oh H, Wilson E, Guen YL, Alvarez I, Aguilar M, Greicius M, Pastor P, Pulford D, Ibanez L, Wyss-Coray T, Sung YJ, Phillips B. Proteogenomic analysis of human cerebrospinal fluid identifies neurologically relevant regulation and informs causal proteins for Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2814616. [PMID: 37333337 PMCID: PMC10275048 DOI: 10.21203/rs.3.rs-2814616/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The integration of quantitative trait loci (QTL) with disease genome-wide association studies (GWAS) has proven successful at prioritizing candidate genes at disease-associated loci. QTL mapping has mainly been focused on multi-tissue expression QTL or plasma protein QTL (pQTL). Here we generated the largest-to-date cerebrospinal fluid (CSF) pQTL atlas by analyzing 7,028 proteins in 3,107 samples. We identified 3,373 independent study-wide associations for 1,961 proteins, including 2,448 novel pQTLs of which 1,585 are unique to CSF, demonstrating unique genetic regulation of the CSF proteome. In addition to the established chr6p22.2-21.32 HLA region, we identified pleiotropic regions on chr3q28 near OSTN and chr19q13.32 near APOE that were enriched for neuron-specificity and neurological development. We also integrated this pQTL atlas with the latest Alzheimer's disease (AD) GWAS through PWAS, colocalization and Mendelian Randomization and identified 42 putative causal proteins for AD, 15 of which have drugs available. Finally, we developed a proteomics-based risk score for AD that outperforms genetics-based polygenic risk scores. These findings will be instrumental to further understand the biology and identify causal and druggable proteins for brain and neurological traits.
Collapse
Affiliation(s)
| | - Dan Western
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- Washington University School of Medicine
| | | | | | | | | | | | - Patsy Kohlfeld
- Washington University School of Medicine, St Louis, MO, USA
| | | | | | | | | | | | | | - Mercè Boada
- Memory Clinic of Fundaciò ACE, Catalan Institute of Applied Neurosciences
| | | | | | | | | | | | - Ignacio Alvarez
- Fundació Docència i Recerca Mútua Terrassa, Terrassa, Barcelona, Spain
| | | | | | - Pau Pastor
- University Hospital Germans Trias i Pujol
| | | | | | | | | | | |
Collapse
|
36
|
Gul I, Abbas MN, Kausar S, Luo J, Gao X, Mu Y, Fan W, Cui H. Insight into crustacean cathepsins: Structure-evolutionary relationships and functional roles in physiological processes. FISH & SHELLFISH IMMUNOLOGY 2023:108852. [PMID: 37295735 DOI: 10.1016/j.fsi.2023.108852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Cathepsins belong to a group of proteins that are present in both prokaryotic and eukaryotic organisms and have an extremely high degree of evolutionary conservation. These proteins are functionally active in extracellular environments as soluble enzymatic proteins or attached to plasma membrane receptors. In addition, they occur in cellular secretory vesicles, mitochondria, the cytosol, and within the nuclei of eukaryotic cells. Cathepsins are classified into various groups based on their sequence variations, leading to their structural and functional diversification. The molecular understanding of the physiology of crustaceans has shown that proteases, including cathepsins, are expressed ubiquitously. They also contain one of the central regulatory systems for crustacean reproduction, growth, and immune responses. This review focuses on various aspects of the crustaceans cathepsins and emphasizes their biological roles in different physiological processes such as reproduction, growth, development, and immune responses. We also describe the bioactivity of crustaceans cathepsins. Because of the vital biological roles that cathepsins play as cellular proteases in physiological processes, they have been proposed as potential novel targets for the development of management strategies for the aquaculture industries.
Collapse
Affiliation(s)
- Isma Gul
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Muhammad Nadeem Abbas
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Saima Kausar
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Jili Luo
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Xinyue Gao
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Yuhang Mu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Wenhui Fan
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Department of Neurology, Chongqing Ninth People's Hospital, Chongqing, 400700, China.
| | - Honghuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
37
|
Jiang H, Dong Z, Xia X, Li X. Cathepsins in oral diseases: mechanisms and therapeutic implications. Front Immunol 2023; 14:1203071. [PMID: 37334378 PMCID: PMC10272612 DOI: 10.3389/fimmu.2023.1203071] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cathepsins are a type of lysosomal globulin hydrolase and are crucial for many physiological processes, including the resorption of bone matrix, innate immunity, apoptosis, proliferation, metastasis, autophagy, and angiogenesis. Findings regarding their functions in human physiological processes and disorders have drawn extensive attention. In this review, we will focus on the relationship between cathepsins and oral diseases. We highlight the structural and functional properties of cathepsins related to oral diseases, as well as the regulatory mechanisms in tissue and cells and their therapeutic uses. Elucidating the associated mechanism between cathepsins and oral diseases is thought to be a promising strategy for the treatment of oral diseases and may be a starting point for further studies at the molecular level.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zuoxiang Dong
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| |
Collapse
|
38
|
Doğru AG, Rehders M, Brix K. Investigations on Primary Cilia of Nthy-ori 3-1 Cells upon Cysteine Cathepsin Inhibition or Thyrotropin Stimulation. Int J Mol Sci 2023; 24:ijms24119292. [PMID: 37298246 DOI: 10.3390/ijms24119292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
In the thyroid gland, cysteine cathepsins are secreted upon thyrotropin stimulation for thyroglobulin processing, and they are present at the primary cilia of thyroid epithelial cells. Treatment with protease inhibitors resulted in the loss of cilia from rodent thyrocytes and caused redistribution of the thyroid co-regulating G protein-coupled receptor Taar1 to the endoplasmic reticulum. These findings suggest that ciliary cysteine cathepsins are important to maintain sensory and signaling properties for the proper regulation and homeostasis of thyroid follicles. Therefore, it is important to better understand how cilia structure and frequencies are maintained in human thyroid epithelial cells. Hence, we aimed to investigate the potential role of cysteine cathepsins for the maintenance of primary cilia in the normal human Nthy-ori 3-1 thyroid cell line. This was approached by determining cilia lengths and frequencies in cysteine peptidase inhibition conditions in Nthy-ori 3-1 cell cultures. Cilia lengths were shortened upon 5 h of cysteine peptidase inhibition with cell-impermeable E64. Likewise, cilia lengths and frequencies were decreased upon additional overnight treatment with the cysteine peptidase-targeting, activity-based probe DCG-04. The results suggest that cysteine cathepsin activity is required for the maintenance of the cellular protrusions not only in rodents, but also in human thyrocytes. Hence, thyrotropin stimulation was used to simulate physiological conditions that eventually lead to cathepsin-mediated thyroglobulin proteolysis, which is initiated in the thyroid follicle lumen. Immunoblotting revealed that thyrotropin stimulation conditions result in the secretion of little procathepsin L and some pro- and mature cathepsin S but no cathepsin B from the human Nthy-ori 3-1 cells. Unexpectedly, however, 24 h incubation periods with thyrotropin shortened the cilia although higher amounts of cysteine cathepsins were present in the conditioned media. These data point to the necessity of further studies to delineate which of the cysteine cathepsins plays the most prominent role in cilia shortening and/or elongation. Collectively, the results of our study provide corroboration for the hypothesis of thyroid autoregulation by local mechanisms that our group previously proposed.
Collapse
Affiliation(s)
- Alara Gaye Doğru
- School of Science, Constructor University, Campus Ring 1, D-28759 Bremen, Germany
| | - Maren Rehders
- School of Science, Constructor University, Campus Ring 1, D-28759 Bremen, Germany
| | - Klaudia Brix
- School of Science, Constructor University, Campus Ring 1, D-28759 Bremen, Germany
| |
Collapse
|
39
|
Ozhelvaci F, Steczkiewicz K. Identification and Classification of Papain-like Cysteine Proteinases. J Biol Chem 2023:104801. [PMID: 37164157 DOI: 10.1016/j.jbc.2023.104801] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/11/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Papain-like cysteine peptidases form a big and highly diverse superfamily of proteins involved in many important biological functions, such as protein turnover, deubiquitination, tissue remodeling, blood clotting, virulence, defense, and cell wall remodeling. High sequence and structure diversity observed within these proteins hinders their comprehensive classification as well as the identification of new representatives. Moreover, in general protein databases, many families already classified as papain-like lack details regarding their mechanism of action or biological function. Here, we use transitive remote homology searches and 3D modeling to newly classify 21 families to the papain-like cysteine peptidase superfamily. We attempt to predict their biological function, and provide structural chacterization of 89 protein clusters defined based on sequence similarity altogether spanning 106 papain-like families. Moreover, we systematically discuss observed diversity in sequences, structures, and catalytic sites. Eventually, we expand the list of human papain-related proteins by seven representatives, including dopamine receptor-interacting protein (DRIP1) as potential deubiquitinase, and centriole duplication regulating CEP76 as retaining catalytically active peptidase-like domain. The presented results not only provide structure-based rationales to already existing peptidase databases but also may inspire further experimental research focused on peptidase-related biological processes.
Collapse
Affiliation(s)
- Fatih Ozhelvaci
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kamil Steczkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
40
|
Wang Y, Xu H, Sun B. Cathepsin H and cathepsin B of Cynoglossus semilaevis are involved in anti-bacterial immunity against Edwardsiella tarda. FISH & SHELLFISH IMMUNOLOGY 2023; 134:108594. [PMID: 36754156 DOI: 10.1016/j.fsi.2023.108594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Cathepsin H and Cathepsin B are two lysosomal cysteine proteases participating in various physiological processes including immune responses. In fish, the functional roles of Cathepsin H and Cathepsin B during bacterial infection are less understood. In a previous work, we characterized a Cathepsin B homologue (CsCatB) of half-smooth tongue sole (Cynoglossus semilaevis), an economically valuable fish species in China. In this report, we identified a Cathepsin H homologue (CsCatH) from C. semilaevis. In healthy tongue sole, the transcriptional expression of CsCatH was detected in nine different tissues. Laser scanning confocal microscopic analysis showed that ectopically expressed CsCatH and CsCatB were co-localized with the lysosome. Upon infection by Edwardsiella tarda, a significant fish pathogen which caused a severe fish disease termed edwardsiellosis, the expressions of CsCatH and CsCatB were remarkedly upregulated. The knockdown of CsCatH and CsCatB significantly increased the replication of E. tarda and mitigated E. tarda-induced apoptosis in tongue sole tissues. These findings revealed the importance of CsCatH and CsCatB in anti-bacterial immunity of tongue sole.
Collapse
Affiliation(s)
- Yilong Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Hang Xu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Boguang Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China.
| |
Collapse
|
41
|
Senjor E, Kos J, Nanut MP. Cysteine Cathepsins as Therapeutic Targets in Immune Regulation and Immune Disorders. Biomedicines 2023; 11:biomedicines11020476. [PMID: 36831012 PMCID: PMC9953096 DOI: 10.3390/biomedicines11020476] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Cysteine cathepsins, as the most abundant proteases found in the lysosomes, play a vital role in several processes-such as protein degradation, changes in cell signaling, cell morphology, migration and proliferation, and energy metabolism. In addition to their lysosomal function, they are also secreted and may remain functional in the extracellular space. Upregulation of cathepsin expression is associated with several pathological conditions including cancer, neurodegeneration, and immune-system dysregulation. In this review, we present an overview of cysteine-cathepsin involvement and possible targeting options for mitigation of aberrant function in immune disorders such as inflammation, autoimmune diseases, and immune response in cancer.
Collapse
Affiliation(s)
- Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
42
|
Zheng B, Wang Y, Hu J, Bao Z, Wang M. Comparative analysis of two cathepsin L genes in Asiatic hard clam (Meretrix meretrix): Similar in sequence features, different in expression profiles. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108527. [PMID: 36621705 DOI: 10.1016/j.fsi.2023.108527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Cathepsin L is widely found in eukaryotes and prokaryotes, and it plays important roles in innate immunity. In the present study, we cloned two cathepsin L genes (designated as MmCTSL1 and MmCTSL2, respectively) from Asiatic hard clam (Meretrix meretrix). The complete sequence of MmCTSL1 cDNA contained a 5' untranslated region (UTR) of 31 bp, a 3' UTR of 228 bp with a poly (A) tail, and an open reading frame (ORF) of 1005 bp encoding 334 amino acids with predicted molecular weight of 37.5 kDa and theoretical isoelectric point of 5.27, and contained a signal peptide (from M1 to A16), a protease inhibitor I29 family domain (from W27 to F87), and a papain family cysteine protease domain (from L118 to T333). The complete sequence of MmCTSL2 cDNA contained a 5' UTR of 50 bp, a 3' UTR of 162 bp with a poly (A) tail, and an ORF of 996 bp encoding a polypeptide of 331 amino acids with predicted molecular weight of 36.8 kDa and theoretical isoelectric point of 7.07. It contained a signal peptide (from M1 to A16), a protease inhibitor I29 family domain (from W30 to F89), and a papain family cysteine protease domain (from L115 to T330). Real-time quantitative PCR analysis demonstrated that MmCTSL1 and MmCTSL2 were widely expressed in all the tested tissues, including adductor muscle, foot, gill, hemocytes, hepatopancreas and mantle, with the highest mRNA expression level in hepatopancreas and hemocytes, respectively. After Vibrio splendidus challenge, the mRNA expression levels of MmCTSL1 and MmCTSL2 in hemocytes and hepatopancreas were both significantly up-regulated with different expression profiles. In hemocytes, the expression levels of MmCTSL1 and MmCTSL2 reached their respective peaks (3.4-fold and 13.0-fold compared with the control, respectively) at 12 h after bacterial challenge, and MmCTSL2 responds earlier than MmCTSL1. In hepatopancreas, the expression levels of MmCTSL1 and MmCTSL2 reached their respective peaks at 6 h (9.0-fold compared with the control) and 24 h (2.8-fold compared with the control) after bacterial challenge, meaning that MmCTSL1 responds earlier than MmCTSL2. At the same time, whether in hepatopancreas or hemocytes, MmCTSL1 persist for a while after the bacterial challenge peak, while MmCTSL2 would quickly return to the initial level after the bacterial challenge peak. These results indicate that cathepsin L may be involved in the immune process of hard clam against V. splendidus with different potential roles.
Collapse
Affiliation(s)
- Bo Zheng
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute (Sanya 572024), Ocean University of China, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding (Qingdao 266003), and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute (Sanya 572024), Ocean University of China, China; Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572024, China.
| |
Collapse
|
43
|
Linders DGJ, Bijlstra OD, Fallert LC, Hilling DE, Walker E, Straight B, March TL, Valentijn ARPM, Pool M, Burggraaf J, Basilion JP, Vahrmeijer AL, Kuppen PJK. Cysteine Cathepsins in Breast Cancer: Promising Targets for Fluorescence-Guided Surgery. Mol Imaging Biol 2023; 25:58-73. [PMID: 36002710 PMCID: PMC9971096 DOI: 10.1007/s11307-022-01768-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/24/2022]
Abstract
The majority of breast cancer patients is treated with breast-conserving surgery (BCS) combined with adjuvant radiation therapy. Up to 40% of patients has a tumor-positive resection margin after BCS, which necessitates re-resection or additional boost radiation. Cathepsin-targeted near-infrared fluorescence imaging during BCS could be used to detect residual cancer in the surgical cavity and guide additional resection, thereby preventing tumor-positive resection margins and associated mutilating treatments. The cysteine cathepsins are a family of proteases that play a major role in normal cellular physiology and neoplastic transformation. In breast cancer, the increased enzymatic activity and aberrant localization of many of the cysteine cathepsins drive tumor progression, proliferation, invasion, and metastasis. The upregulation of cysteine cathepsins in breast cancer cells indicates their potential as a target for intraoperative fluorescence imaging. This review provides a summary of the current knowledge on the role and expression of the most important cysteine cathepsins in breast cancer to better understand their potential as a target for fluorescence-guided surgery (FGS). In addition, it gives an overview of the cathepsin-targeted fluorescent probes that have been investigated preclinically and in breast cancer patients. The current review underscores that cysteine cathepsins are highly suitable molecular targets for FGS because of favorable expression and activity patterns in virtually all breast cancer subtypes. This is confirmed by cathepsin-targeted fluorescent probes that have been shown to facilitate in vivo breast cancer visualization and tumor resection in mouse models and breast cancer patients. These findings indicate that cathepsin-targeted FGS has potential to improve treatment outcomes in breast cancer patients.
Collapse
Affiliation(s)
- Daan G. J. Linders
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Okker D. Bijlstra
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Laura C. Fallert
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Denise E. Hilling
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ethan Walker
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Taryn L. March
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - A. Rob P. M. Valentijn
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jacobus Burggraaf
- Centre for Human Drug Research, 2333 CL Leiden, The Netherlands
- Leiden Academic Center for Drug Research, 2333 AL Leiden, The Netherlands
| | - James P. Basilion
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106 USA
- Department of Radiology, Case School of Medicine, Case Western Reserve University, Cleveland, OH 44106 USA
| | | | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
44
|
Zhang SR, Pan M, Gao YB, Fan RY, Bin XN, Qian ST, Tang CL, Ying HJ, Wu JQ, He MF. Efficacy and mechanism study of cordycepin against brain metastases of small cell lung cancer based on zebrafish. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154613. [PMID: 36610112 DOI: 10.1016/j.phymed.2022.154613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/03/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Small cell lung cancer (SCLC) is an aggressive tumor with high brain metastasis (BM) potential. There has been no significant progress in the treatment of SCLC for more than 30 years. Cordycepin has shown the therapeutic potential for cancer by modulating multiple cellular signaling pathways. However, the effect and mechanism of cordycepin on anti-SCLC BM remain unknown. PURPOSE In this study, we focused on the anti-SCLC BM effect of cordycepin in the zebrafish model and its potential mechanism. STUDY DESIGN AND METHODS A SCLC xenograft model based on zebrafish embryos and in vitro cell migration assay were established. Cordycepin was administrated by soaking and microinjection in the zebrafish model. RNA-seq assay was performed to analyze transcriptomes of different groups. Geno Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment were performed to reveal the underlying mechanism. Real-time qPCR was used to verify the effects of cordycepin on the key genes. RESULTS Cordycepin showed lower cytotoxicity in vitro compared with cisplatin, anlotinib and etoposide, but showed comparable anti-proliferation and anti-BM effects in zebrafish SCLC xenograft model. Cordycepin showed significant anti-SCLC BM effects when administrated by both soaking and microinjection. RNA-seq demonstrated that cordycepin was involved in vitamin D metabolism, lipid transport, and proteolysis in cellular protein catabolic process pathways in SCLC BM microenvironment in zebrafish, and was involved in regulating the expressions of key genes such as cyp24a1, apoa1a, ctsl. The anti-BM effect of cordycepin in SCLC was mediated by reversing the expression of these genes. CONCLUSION Our work is the first to describe the mechanism of cordycepin against SCLC BM from the perspective of regulating the brain microenvironment, providing new evidence for the anti-tumor effect of cordycepin.
Collapse
Affiliation(s)
- Shi-Ru Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Miao Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Ying-Bin Gao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Ruo-Yue Fan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Xin-Ni Bin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Si-Tong Qian
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Cheng-Lun Tang
- Luzhou Pinchuang Technology Co. Ltd., Nanjing Sheng Ming Yuan Health Technology Co. Ltd., Nanjing 210032, China
| | - Han-Jie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China
| | - Jia-Qi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China.
| | - Ming-Fang He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
45
|
Nakamoto A, Goto M, Hasegawa H, Anzaki C, Nakamoto M, Shuto E, Sakai T. Essential Oil of Citrus sudachi Suppresses T Cell Activation Both In Vitro and In Vivo. J Nutr Sci Vitaminol (Tokyo) 2022; 68:513-520. [PMID: 36596549 DOI: 10.3177/jnsv.68.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The essential oil of Citrus sudachi (sudachi oil) is extracted from the peel of sudachi, a citrus plant. We investigated the effect of sudachi oil on immune function in both in vitro antigen (Ag) induced lymphocyte activation and in vivo Ag-specific immune response. In the in vitro study, the proliferative activity of splenocytes upon Ag-specific and non-specific stimulation was suppressed by treatment with sudachi oil in a dose-dependent manner. In addition, the expression level of Ag-presentation-related molecules and their Ag-presenting function on dendritic cells were suppressed by sudachi oil. To examine how sudachi oil regulates an Ag-specific immune response in vivo, mice were immunized with ovalbumin and the immune response of the mice was investigated. Ag-specific proliferation response of splenocytes from mice treated with sudachi essential oil was significantly suppressed. The results indicate that sudachi oil suppresses T cell and dendritic cell functions in vitro and Ag-specific T cell induction in vivo.
Collapse
Affiliation(s)
- Akiko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Miho Goto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Hina Hasegawa
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Chieri Anzaki
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Mariko Nakamoto
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Emi Shuto
- Department of Nutritional Science, Okayama Prefectural University
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
46
|
Bigot P, Chesseron S, Saidi A, Sizaret D, Parent C, Petit-Courty A, Courty Y, Lecaille F, Lalmanach G. Cleavage of Occludin by Cigarette Smoke-Elicited Cathepsin S Increases Permeability of Lung Epithelial Cells. Antioxidants (Basel) 2022; 12:antiox12010005. [PMID: 36670867 PMCID: PMC9854811 DOI: 10.3390/antiox12010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is an irreversible disease mainly caused by smoking. COPD is characterized by emphysema and chronic bronchitis associated with enhanced epithelial permeability. HYPOTHESIS Lung biopsies from smokers revealed a decreased expression level of occludin, which is a protein involved in the cohesion of epithelial tight junctions. Moreover, the occludin level correlated negatively with smoking history (pack-years), COPD grades, and cathepsin S (CatS) activity. Thus, we examined whether CatS could participate in the modulation of the integrity of human lung epithelial barriers. METHODS AND RESULTS Cigarette smoke extract (CSE) triggered the upregulation of CatS by THP-1 macrophages through the mTOR/TFEB signaling pathway. In a co-culture model, following the exposure of macrophages to CSE, an enhanced level of permeability of lung epithelial (16HBE and NHBE) cells towards FITC-Dextran was observed, which was associated with a decrease in occludin level. Similar results were obtained using 16HBE and NHBE cells cultured at the air-liquid interface. The treatment of THP-1 macrophages by CatS siRNAs or by a pharmacological inhibitor restored the barrier function of epithelial cells, suggesting that cigarette smoke-elicited CatS induced an alteration of epithelial integrity via the proteolytic injury of occludin. CONCLUSIONS Alongside its noteworthy resistance to oxidative stress induced by cigarette smoke oxidants and its deleterious elastin-degrading potency, CatS may also have a detrimental effect on the barrier function of epithelial cells through the cleavage of occludin. The obtained data emphasize the emerging role of CatS in smoking-related lung diseases and strengthen the relevance of targeting CatS in the treatment of emphysema and COPD.
Collapse
Affiliation(s)
- Paul Bigot
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Simon Chesseron
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Ahlame Saidi
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Damien Sizaret
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Pathological Anatomy and Cytology, The University Hospital Center of Tours, 37000 Tours, France
| | - Christelle Parent
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Aerosol therapy and Biotherapeutics for Respiratory Diseases”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Agnès Petit-Courty
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Yves Courty
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Fabien Lecaille
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
| | - Gilles Lalmanach
- Faculty of Medicine, University of Tours, 37000 Tours, France
- Team “Proteolytic Mechanisms in Inflammation”, INSERM, UMR1100, Research Center for Respiratory Diseases (CEPR), 37000 Tours, France
- Correspondence: ; Tel.: +33-2-47-36-61-51
| |
Collapse
|
47
|
Biasizzo M, Javoršek U, Vidak E, Zarić M, Turk B. Cysteine cathepsins: A long and winding road towards clinics. Mol Aspects Med 2022; 88:101150. [PMID: 36283280 DOI: 10.1016/j.mam.2022.101150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 12/03/2022]
Abstract
Biomedical research often focuses on properties that differentiate between diseased and healthy tissue; one of the current focuses is elevated expression and altered localisation of proteases. Among these proteases, dysregulation of cysteine cathepsins can frequently be observed in inflammation-associated diseases, which tips the functional balance from normal physiological to pathological manifestations. Their overexpression and secretion regularly exhibit a strong correlation with the development and progression of such diseases, making them attractive pharmacological targets. But beyond their mostly detrimental role in inflammation-associated diseases, cysteine cathepsins are physiologically highly important enzymes involved in various biological processes crucial for maintaining homeostasis and responding to different stimuli. Consequently, several challenges have emerged during the efforts made to translate basic research data into clinical applications. In this review, we present both physiological and pathological roles of cysteine cathepsins and discuss the clinical potential of cysteine cathepsin-targeting strategies for disease management and diagnosis.
Collapse
Affiliation(s)
- Monika Biasizzo
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Urban Javoršek
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Eva Vidak
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Miki Zarić
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; International Postgraduate School Jozef Stefan, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Boris Turk
- Jozef Stefan Institute, Department of Biochemistry and Molecular and Structural Biology, Jamova 39, SI-1000, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
48
|
Lecaille F, Chazeirat T, Saidi A, Lalmanach G. Cathepsin V: Molecular characteristics and significance in health and disease. Mol Aspects Med 2022; 88:101086. [PMID: 35305807 DOI: 10.1016/j.mam.2022.101086] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/31/2022]
Abstract
Human cysteine cathepsins form a family of eleven proteases (B, C, F, H, K, L, O, S, V, W, X/Z) that play important roles in a considerable number of biological and pathophysiological processes. Among them, cathepsin V, also known as cathepsin L2, is a lysosomal enzyme, which is mainly expressed in cornea, thymus, heart, brain, and skin. Cathepsin V is a multifunctional endopeptidase that is involved in both the release of antigenic peptides and the maturation of MHC class II molecules and participates in the turnover of elastin fibrils as well in the cleavage of intra- and extra-cellular substrates. Moreover, there is increasing evidence that cathepsin V may contribute to the progression of diverse diseases, due to the dysregulation of its expression and/or its activity. For instance, increased expression of cathepsin V is closely correlated with malignancies (breast cancer, squamous cell carcinoma, or colorectal cancer) as well vascular disorders (atherosclerosis, aortic aneurysm, hypertension) being the most prominent examples. This review aims to shed light on current knowledge on molecular aspects of cathepsin V (genomic organization, protein structure, substrate specificity), its regulation by protein and non-protein inhibitors as well to summarize its expression (tissue and cellular distribution). Then the core biological and pathophysiological roles of cathepsin V will be depicted, raising the question of its interest as a valuable target that can open up pioneering therapeutic avenues.
Collapse
Affiliation(s)
- Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| | - Thibault Chazeirat
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| |
Collapse
|
49
|
Huertas J, Lee HT. Multi‑faceted roles of cathepsins in ischemia reperfusion injury (Review). Mol Med Rep 2022; 26:368. [PMID: 36300202 PMCID: PMC9644425 DOI: 10.3892/mmr.2022.12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Cathepsins are one of the most abundant proteases within the lysosomes with diverse physiological effects ranging from immune responses, cell death and intracellular protein degradation. Cathepsins are involved in extracellular and systemic functions such as systemic inflammation and extracellular matrix degradation. Ischemia reperfusion (IR) injury is responsible for numerous diseases including myocardial infarction, acute kidney injury, stroke and acute graft failure after transplant surgery. Inflammation plays a major role in the reperfusion phase of IR injury and previous research has shown that cathepsins are key mediators of the inflammation cascade as well as apoptosis. Taken together, cathepsins modulation could provide potential therapeutic approaches to attenuate IR injury. The present review summarized the current understanding of various cathepsin subtypes, their major physiologic functions, their roles in multi‑organ IR injury and detailed selective cathepsin inhibitors with therapeutic potential.
Collapse
Affiliation(s)
- Jaime Huertas
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032-3784, USA
| | - H. Thomas Lee
- Department of Anesthesiology, College of Physicians and Surgeons of Columbia University, New York, NY 10032-3784, USA
| |
Collapse
|
50
|
Lucchino V, Scaramuzzino L, Scalise S, Lo Conte M, Zannino C, Benedetto GL, Aguglia U, Ferlazzo E, Cuda G, Parrotta EI. Insights into the Genetic Profile of Two Siblings Affected by Unverricht-Lundborg Disease Using Patient-Derived hiPSCs. Cells 2022; 11:3491. [PMID: 36359887 PMCID: PMC9655992 DOI: 10.3390/cells11213491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2023] Open
Abstract
Unverricht-Lundborg disease (ULD), also known as progressive myoclonic epilepsy 1 (EPM1), is a rare autosomal recessive neurodegenerative disorder characterized by a complex symptomatology that includes action- and stimulus-sensitive myoclonus and tonic-clonic seizures. The main cause of the onset and development of ULD is a repeat expansion of a dodecamer sequence localized in the promoter region of the gene encoding cystatin B (CSTB), an inhibitor of lysosomal proteases. Although this is the predominant mutation found in most patients, the physio-pathological mechanisms underlying the disease complexity remain largely unknown. In this work, we used patient-specific iPSCs and their neuronal derivatives to gain insight into the molecular and genetic machinery responsible for the disease in two Italian siblings affected by different phenotypes of ULD. Specifically, fragment length analysis on amplified CSTB promoters found homozygous status for dodecamer expansion in both patients and showed that the number of dodecamer repeats is the same in both. Furthermore, the luciferase reporter assay showed that the CSTB promoter activity was similarly reduced in both lines compared to the control. This information allowed us to draw important conclusions: (1) the phenotypic differences of the patients do not seem to be strictly dependent on the genetic mutation around the CSTB gene, and (2) that some other molecular mechanisms, not yet clearly identified, might be taken into account. In line with the inhibitory role of cystatin B on cathepsins, molecular investigations performed on iPSCs-derived neurons showed an increased expression of lysosomal cathepsins (B, D, and L) and a reduced expression of CSTB protein. Intriguingly, the increase in cathepsin expression does not appear to be correlated with the residual amount of CSTB, suggesting that other mechanisms, in addition to the regulation of cathepsins, could be involved in the pathological complexity of the disease.
Collapse
Affiliation(s)
- Valeria Lucchino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Luana Scaramuzzino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Stefania Scalise
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Michela Lo Conte
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Clara Zannino
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giorgia Lucia Benedetto
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Umberto Aguglia
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Edoardo Ferlazzo
- Department of Medical and Surgical Sciences, University Magna Graecia, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University Magna Graecia, 88100 Catanzaro, Italy
| | | |
Collapse
|