1
|
Vural D. Computational study on the impact of linkage sequence on the structure and dynamics of lignin. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2024; 53:405-414. [PMID: 39297929 DOI: 10.1007/s00249-024-01720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/12/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024]
Abstract
Lignin, one of the most abundant biopolymers on Earth, is of great research interest due to its industrial applications including biofuel production and materials science. The structural composition of lignin plays an important role in shaping its properties and functionalities. Notably, lignin exhibits substantial compositional diversity, which varies not only between different plant species but even within the same plant. Currently, it is unclear to what extent this compositional diversity plays on the overall structure and dynamics of lignin. To address this question, this paper reports on the development of two models of lignin containing all guaiacyl (G) subunits with varied linkage sequences and makes use of all-atom molecular dynamics simulations to examine the impact of linkage sequence alone on the lignin's structure and dynamics. This work demonstrates that the structure of the lignin polymer depends on its linkage sequence at temperatures above and below the glass transition temperature ( T g ), but the polymers exhibit similar structural properties as it is approaching the viscous flow state (480 K). At low temperatures, both of lignin models have a local dynamics confined in a cage, but the size of cages varies depending on structural differences. Interestingly, at temperatures higher than T g , the different linkage sequence leads to the subtle dynamical difference which diminishes at 480 K.
Collapse
Affiliation(s)
- Derya Vural
- Department of Physics, Faculty of Science, Marmara University, Istanbul, 34722, Türkiye.
| |
Collapse
|
2
|
Zheng S, Zhang Z, He S, Yang H, Atia H, Abdel-Mageed AM, Wohlrab S, Baráth E, Tin S, Heeres HJ, Deuss PJ, de Vries JG. Benzenoid Aromatics from Renewable Resources. Chem Rev 2024; 124:10701-10876. [PMID: 39288258 PMCID: PMC11467972 DOI: 10.1021/acs.chemrev.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/25/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
In this Review, all known chemical methods for the conversion of renewable resources into benzenoid aromatics are summarized. The raw materials that were taken into consideration are CO2; lignocellulose and its constituents cellulose, hemicellulose, and lignin; carbohydrates, mostly glucose, fructose, and xylose; chitin; fats and oils; terpenes; and materials that are easily obtained via fermentation, such as biogas, bioethanol, acetone, and many more. There are roughly two directions. One much used method is catalytic fast pyrolysis carried out at high temperatures (between 300 and 700 °C depending on the raw material), which leads to the formation of biochar; gases, such as CO, CO2, H2, and CH4; and an oil which is a mixture of hydrocarbons, mostly aromatics. The carbon selectivities of this method can be reasonably high when defined small molecules such as methanol or hexane are used but are rather low when highly oxygenated compounds such as lignocellulose are used. The other direction is largely based on the multistep conversion of platform chemicals obtained from lignocellulose, cellulose, or sugars and a limited number of fats and terpenes. Much research has focused on furan compounds such as furfural, 5-hydroxymethylfurfural, and 5-chloromethylfurfural. The conversion of lignocellulose to xylene via 5-chloromethylfurfural and dimethylfuran has led to the construction of two large-scale plants, one of which has been operational since 2023.
Collapse
Affiliation(s)
- Shasha Zheng
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Zhenlei Zhang
- State
Key Laboratory of Heavy Oil Processing, College of Chemical Engineering
and Environment, China University of Petroleum
(Beijing), 102249 Beijing, China
| | - Songbo He
- Joint International
Research Laboratory of Circular Carbon, Nanjing Tech University, Nanjing 211816, PR China
| | - Huaizhou Yang
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hanan Atia
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Ali M. Abdel-Mageed
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Eszter Baráth
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Sergey Tin
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| | - Hero J. Heeres
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Peter J. Deuss
- Green
Chemical Reaction Engineering, Engineering and Technology Institute
Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Johannes G. de Vries
- Leibniz
Institut für Katalyse e.V., Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
| |
Collapse
|
3
|
Pei Z, Liu X, Chen J, Wang H, Li H. Research Progress on Lignin Depolymerization Strategies: A Review. Polymers (Basel) 2024; 16:2388. [PMID: 39274021 PMCID: PMC11397036 DOI: 10.3390/polym16172388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
As the only natural source of aromatic biopolymers, lignin can be converted into value-added chemicals and biofuels, showing great potential in realizing the development of green chemistry. At present, lignin is predominantly used for combustion to generate energy, and the real value of lignin is difficult to maximize. Accordingly, the depolymerization of lignin is of great significance for its high-value utilization. This review discusses the latest progress in the field of lignin depolymerization, including catalytic conversion systems using various thermochemical, chemocatalytic, photocatalytic, electrocatalytic, and biological depolymerization methods, as well as the involved reaction mechanisms and obtained products of various protocols, focusing on green and efficient lignin depolymerization strategies. In addition, the challenges faced by lignin depolymerization are also expounded, putting forward possible directions of developing lignin depolymerization strategies in the future.
Collapse
Affiliation(s)
- Zhengfei Pei
- Key Laboratory of Surveillance and Management, Invasive Alien Species in Guizhou Education Department, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Xiaofang Liu
- Key Laboratory of Surveillance and Management, Invasive Alien Species in Guizhou Education Department, College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Jiasheng Chen
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Huan Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| | - Hu Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
The Consistency of Yields and Chemical Composition of HTL Bio-Oils from Lignins Produced by Different Preprocessing Technologies. ENERGIES 2022. [DOI: 10.3390/en15134707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
This work evaluates the effect of feedstock type and composition on the conversion of lignin to liquid by solvolysis with formic acid as hydrogen donor (LtL), by analyzing the yields and molecular composition of the liquid products and interpreting them in terms of both the type and the preprocessing of the lignocellulosic biomass using chemometric data analysis. Lignin samples of different types and purities from softwood, hardwood, and grasses (rice straw and corn stover) have been converted to bio-oil, and the molecular composition analyzed and quantified using GC-MS. LtL solvolysis was found to be a robust method for lignin conversion in terms of converting all samples into bio-oils rich in phenolic compounds regardless of the purity of the lignin sample. The bio-oil yields ranged from 24–94 wt.% relative to lignin input and could be modelled well as a function of the elemental composition of the feedstock. On a molecular basis, the softwood-derived bio-oil contained the most guaiacol-derivatives, and syringol was correlated to hardwood. However, the connection between compounds in the bio-oil and lignin origin was less pronounced than the effects of the methods for biomass fractionation, showing that the pretreatment of the biomass dominates both the yield and molecular composition of the bio-oil and must be addressed as a primary concern when utilization of lignin in a biorefinery is planned.
Collapse
|
5
|
Morales‐Huerta JC, Hernández‐Meléndez O, Garcés‐Sandoval FI, Montiel C, Hernández‐Luna MG, Manero O, Bárzana E, Vivaldo‐Lima E. Modeling of Pretreatment and Combined Alkaline and Enzymatic Hydrolyses of Blue Agave Bagasse in Corotating Twin‐screw Extruders. MACROMOL REACT ENG 2022. [DOI: 10.1002/mren.202100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Juan Carlos Morales‐Huerta
- Facultad de Química Departamento de Ingeniería Química Universidad Nacional Autónoma de México CU México City 04510 México
| | - Oscar Hernández‐Meléndez
- Facultad de Química Departamento de Ingeniería Química Universidad Nacional Autónoma de México CU México City 04510 México
| | - Fernando Iván Garcés‐Sandoval
- Facultad de Química Departamento de Ingeniería Química Universidad Nacional Autónoma de México CU México City 04510 México
| | - Carmina Montiel
- Facultad de Química Departamento de Ingeniería Química Universidad Nacional Autónoma de México CU México City 04510 México
- Facultad de Química Departamento de Alimentos y Biotecnología Universidad Nacional Autónoma de México CU México City 04510 México
| | | | - Octavio Manero
- Instituto de Investigaciones en Materiales Universidad Nacional Autónoma de México CU México City 04510 México
| | - Eduardo Bárzana
- Facultad de Química Departamento de Alimentos y Biotecnología Universidad Nacional Autónoma de México CU México City 04510 México
| | - Eduardo Vivaldo‐Lima
- Facultad de Química Departamento de Ingeniería Química Universidad Nacional Autónoma de México CU México City 04510 México
| |
Collapse
|