1
|
Lombardi F, Augello FR, Ciafarone A, Ciummo V, Altamura S, Cinque B, Palumbo P. 3D Models Currently Proposed to Investigate Human Skin Aging and Explore Preventive and Reparative Approaches: A Descriptive Review. Biomolecules 2024; 14:1066. [PMID: 39334833 PMCID: PMC11430810 DOI: 10.3390/biom14091066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Skin aging is influenced by intrinsic and extrinsic factors that progressively impair skin functionality over time. Investigating the skin aging process requires thorough research using innovative technologies. This review explores the use of in vitro human 3D culture models, serving as valuable alternatives to animal ones, in skin aging research. The aim is to highlight the benefits and necessity of improving the methodology in analyzing the molecular mechanisms underlying human skin aging. Traditional 2D models, including monolayers of keratinocytes, fibroblasts, or melanocytes, even if providing cost-effective and straightforward methods to study critical processes such as extracellular matrix degradation, pigmentation, and the effects of secretome on skin cells, fail to replicate the complex tissue architecture with its intricated interactions. Advanced 3D models (organoid cultures, "skin-on-chip" technologies, reconstructed human skin, and 3D bioprinting) considerably enhance the physiological relevance, enabling a more accurate representation of skin aging and its peculiar features. By reporting the advantages and limitations of 3D models, this review highlights the importance of using advanced in vitro systems to develop practical anti-aging preventive and reparative approaches and improve human translational research in this field. Further exploration of these technologies will provide new opportunities for previously unexplored knowledge on skin aging.
Collapse
Affiliation(s)
- Francesca Lombardi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Francesca Rosaria Augello
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Alessia Ciafarone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Valeria Ciummo
- Department of Innovative Technologies in Medicine and Dentistry, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy;
| | - Serena Altamura
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Benedetta Cinque
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| | - Paola Palumbo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (F.L.); (F.R.A.); (A.C.); (S.A.); (B.C.)
| |
Collapse
|
2
|
Wang Y, Wang L, Wei Y, Wei C, Yang H, Chen Q, Zhang R, Shen H. Advances in the molecular regulation mechanism of tumor dormancy and its therapeutic strategy. Discov Oncol 2024; 15:184. [PMID: 38795254 PMCID: PMC11127899 DOI: 10.1007/s12672-024-01049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 05/20/2024] [Indexed: 05/27/2024] Open
Abstract
Tumor dormancy is a stage in the growth and development of malignant cells and is one of the biological characteristics of malignant cells. Complex transitions involving dormant tumor cells between quiescent and proliferative states pose challenges for tumor eradication. This paper explores the biological features and molecular mechanisms of tumor dormancy and highlights emerging therapies. The strategies discussed promise innovative clinical potential against malignant tumors. Understanding the mechanisms of dormancy can help provide valuable insights into the diagnosis and treatment of malignant tumors to advance the fight against this world problem.
Collapse
Affiliation(s)
- Yuan Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Linlin Wang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Yaojun Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Chuang Wei
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Haohang Yang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Qiurui Chen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China.
| | - Han Shen
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 51006, People's Republic of China.
| |
Collapse
|
3
|
Ansaf RB, Ziebart R, Gudapati H, Simoes Torigoe RM, Victorelli S, Passos J, Wyles SP. 3D bioprinting-a model for skin aging. Regen Biomater 2023; 10:rbad060. [PMID: 37501679 PMCID: PMC10369216 DOI: 10.1093/rb/rbad060] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/04/2023] [Indexed: 07/29/2023] Open
Abstract
Human lifespan continues to extend as an unprecedented number of people reach their seventh and eighth decades of life, unveiling chronic conditions that affect the older adult. Age-related skin conditions include senile purpura, seborrheic keratoses, pemphigus vulgaris, bullous pemphigoid, diabetic foot wounds and skin cancer. Current methods of drug testing prior to clinical trials require the use of pre-clinical animal models, which are often unable to adequately replicate human skin response. Therefore, a reliable model for aged human skin is needed. The current challenges in developing an aged human skin model include the intrinsic variability in skin architecture from person to person. An ideal skin model would incorporate innate functionality such as sensation, vascularization and regeneration. The advent of 3D bioprinting allows us to create human skin equivalent for use as clinical-grade surgical graft, for drug testing and other needs. In this review, we describe the process of human skin aging and outline the steps to create an aged skin model with 3D bioprinting using skin cells (i.e. keratinocytes, fibroblasts and melanocytes). We also provide an overview of current bioprinted skin models, associated limitations and direction for future research.
Collapse
Affiliation(s)
- Ryeim B Ansaf
- Department of Biology, Colorado State University Pueblo, Pueblo, CO 81001, USA
| | - Rachel Ziebart
- Mayo Clinic Alix School of Medicine, Rochester, MN 55905, USA
| | | | | | - Stella Victorelli
- Mayo Clinic Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | - Joao Passos
- Mayo Clinic Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA
- Mayo Clinic Robert and Arlene Kogod Center on Aging, Rochester, MN 55905, USA
| | | |
Collapse
|
4
|
Abstract
Tumor metastasis is a multiple cascade process where tumor cells disseminate from the primary site to distant organs and subsequently adapt to the foreign microenvironment. Simulating the physiology of tumor metastatic events in a realistic and three-dimensional (3D) manner is a challenge for in vitro modeling. 3D bioprinting strategies, which can generate well-customized and bionic structures, enable the exploration of dynamic tumor metastasis process in a species-homologous, high-throughput and reproducible way. In this review, we summarize the recent application of 3D bioprinting in constructing in vitro tumor metastatic models and discuss its advantages and current limitations. Further perspectives on how to harness the potential of accessible 3D bioprinting strategies to better model tumor metastasis and guide anti-cancer therapies are also provided.
Collapse
Affiliation(s)
- Manqing Lin
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Mengyi Tang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Wenzhe Duan
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Shengkai Xia
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Wenwen Liu
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian 116023, China
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital, Dalian Medical University, Dalian 116023, China
- Cancer Translational Medicine Research Center, The Second Hospital, Dalian Medical University, Dalian 116023, China
| |
Collapse
|