1
|
Jeng LB, Chan WL, Teng CF. Independent prognostic significance of tissue and circulating microrna biomarkers in hepatocellular carcinoma. Discov Oncol 2025; 16:281. [PMID: 40056315 DOI: 10.1007/s12672-025-02043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/04/2025] [Indexed: 03/10/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Although many therapeutic modalities have been established for treating HCC patients, the outcomes of patients remain unsatisfactory. Development of independent prognostic biomarkers is thus an important need to allow for early diagnosis and timely treatment. MicroRNAs (miRNAs) are the most studied class of small non-coding RNAs. It has been shown that miRNAs play essential roles in the multiple steps of HCC tumorigenesis and progression. Furthermore, the baseline expression levels of many miRNAs are altered in tumor tissues and blood circulation of HCC patients. Therefore, miRNAs have emerged as independent biomarkers for the prediction of HCC prognosis. This review provides a comprehensive literature-based summary of tissue and circulating miRNA biomarkers with independent prognostic significance in HCC.
Collapse
Affiliation(s)
- Long-Bin Jeng
- Organ Transplantation Center, China Medical University Hospital, Taichung, 404, Taiwan
- Department of Surgery, China Medical University Hospital, Taichung, 404, Taiwan
- Cell Therapy Center, China Medical University Hospital, Taichung, 404, Taiwan
| | - Wen-Ling Chan
- Department of Public Health, College of Public Health, China Medical University, Taichung, 404, Taiwan
- Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Chiao-Fang Teng
- Organ Transplantation Center, China Medical University Hospital, Taichung, 404, Taiwan.
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Hsueh-Shih Rd., Northern Dist., Taichung, 404, Taiwan.
- Master Program for Cancer Biology and Drug Discovery, China Medical University, Taichung, 404, Taiwan.
| |
Collapse
|
2
|
Dovrolis N, Spathakis M, Collins AR, Pandey VK, Uddin MI, Anderson DD, Kaminska T, Paspaliaris V, Kolios G. Pan-Cancer Insights: A Study of Microbial Metabolite Receptors in Malignancy Dynamics. Cancers (Basel) 2024; 16:4178. [PMID: 39766077 PMCID: PMC11674037 DOI: 10.3390/cancers16244178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES The role of the gut microbiome in cancer biology has become an increasingly prominent area of research, particularly regarding the role of microbial metabolites and their receptors (MMRs). These metabolites, through the various gut-organ axes, have been proven to influence several pathogenetic mechanisms. This study conducted a comprehensive pan-cancer analysis of MMR transcriptomic profiles across twenty-three cancer types, exploring the mechanisms through which they can influence cancer development and progression. METHODS Utilizing both cancer cell lines from CCLE (Cancer Cell Line Encyclopedia) and human tumor samples from TCGA (The Cancer Gene Atlas), we analyzed 107 MMRs interacting with microbial metabolites such as short-chain fatty acids, bile acids, indole derivatives, and others while studying their interactions with key known cancer genes. RESULTS Our results revealed that certain MMRs, such as GPR84 and serotonin receptors, are consistently upregulated in various malignancies, while others, like ADRA1A, are frequently downregulated, suggesting diverse roles in cancer pathophysiology. Furthermore, we identified significant correlations between MMR expression and cancer hallmark genes and pathways, including immune evasion, proliferation, and metastasis. CONCLUSIONS These findings suggest that the interactions between microbial metabolites and MMRs may serve as potential biomarkers for cancer diagnosis, prognosis, and therapy, highlighting their therapeutic potential. This study underscores the significance of the microbiota-cancer axis and provides novel insights into microbiome-based strategies for cancer treatment.
Collapse
Affiliation(s)
- Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (G.K.)
| | - Michail Spathakis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (G.K.)
| | - Alexandra R. Collins
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | - Varun Kumar Pandey
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | - Muhammad Ikhtear Uddin
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | | | - Tetiana Kaminska
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
| | - Vasilis Paspaliaris
- Paspa Pharmaceuticals Pty Ltd., Hawthorn East, VIC 3145, Australia; (A.R.C.); (V.K.P.); (M.I.U.); (T.K.); (V.P.)
- BioGut Technologies Inc., Fort Worth, TX 76104, USA;
- Tithon Biotech, Inc., San Diego, CA 92127, USA
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (M.S.); (G.K.)
| |
Collapse
|
3
|
Fan W, Pan M, Zheng C, Shen H, Pi D, Song Q, Liang Z, Zhen J, Pan J, Liu L, Yang Q, Zhang Y. Leonurine Inhibits Hepatic Lipid Synthesis to Ameliorate NAFLD via the ADRA1a/AMPK/SCD1 Axis. Int J Mol Sci 2024; 25:10855. [PMID: 39409181 PMCID: PMC11476755 DOI: 10.3390/ijms251910855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Leonurine is a natural product unique to the Lamiaceae plant Leonurus japonicus Houtt., and it has attracted attention due to its anti-oxidative stress, anti-apoptosis, anti-fibrosis, and metabolic regulation properties. Also, it plays an important role in the prevention and treatment of nonalcoholic fatty liver disease (NAFLD) through a variety of biological mechanisms, but its mechanism of action remains to be elucidated. Therefore, this study aims to preliminarily explore the mechanisms of action of leonurine in NAFLD. Mice were randomly divided into four groups: the normal control (NC) group, the Model (M) group, the leonurine treatment (LH) group, and the fenofibrate treatment (FB) group. The NAFLD model was induced by a high-fat high-sugar diet (HFHSD) for 12 weeks, and liver pathological changes and biochemical indices were observed after 12 weeks. Transcriptomic analysis results indicated that leonurine intervention reversed the high-fat high-sugar diet-induced changes in lipid metabolism-related genes such as stearoyl-CoA desaturase 1 (Scd1), Spermine Synthase (Sms), AP-1 Transcription Factor Subunit (Fos), Oxysterol Binding Protein Like 5 (Osbpl5), and FK506 binding protein 5 (Fkbp5) in liver tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis results suggest that leonurine may exert its lipid-lowering effects through the AMP-activated protein kinase (AMPK) signaling pathway. Liver lipidomic analysis showed that leonurine could alter the abundance of lipid molecules related to fatty acyl (FAs) and glycerophospholipids (GPs) such as TxB3, carnitine C12-OH, carnitine C18:1-OH, and LPC (20:3/0:0). Molecular biology experiments and molecular docking techniques verified that leonurine might improve hepatic lipid metabolism through the alpha-1A adrenergic receptor (ADRA1a)/AMPK/SCD1 axis. In summary, the present study explored the mechanism by which leonurine ameliorated NAFLD by inhibiting hepatic lipid synthesis via the ADRA1a/AMPK/SCD1 axis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qinhe Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (W.F.); (M.P.); (C.Z.); (H.S.); (D.P.); (Q.S.); (Z.L.); (J.Z.); (J.P.); (L.L.)
| | - Yupei Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China; (W.F.); (M.P.); (C.Z.); (H.S.); (D.P.); (Q.S.); (Z.L.); (J.Z.); (J.P.); (L.L.)
| |
Collapse
|
4
|
Ren C, Cui L, Li R, Song X, Li J, Xi Q, Zhang Z, Zhao L. Hsa_circ_0080608 Attenuates Lung Cancer Progression by Functioning as a Competitive Endogenous RNA to Regulate the miR-661/ADRA1A Pathway. Horm Metab Res 2023; 55:876-884. [PMID: 37820700 DOI: 10.1055/a-2179-0283] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Circular RNAs (circRNAs) participate in the progression of human cancers and have been broadly elucidated. Here, we aimed to elucidate the roles and functional mechanisms of hsa_circ_0080608 (circ_0080608) in lung cancer. Quantitative real-time PCR (qPCR) was performed to assess the mRNA expression levels of circ_0080608, miR-661, and adrenoceptor alpha 1A (ADRA1A). Western blotting was performed to measure ADRA1A protein levels. CCK-8, colony formation, and Transwell assays were performed to determine the effect of circ_0080608 on cell proliferation and migration. Animal models were used to assess how circ_0080608 influences tumor progression in vivo. The binding relationships of miR-661's with circ_0080608 and ADRA1A was confirmed using dual-luciferase reporter and RIP assays. Circ_0080608 exhibited relatively low expression in lung cancer samples and cells. Lung cancer cells overexpressing circ_0080608 exhibited reduced migratory and proliferative abilities. Additionally, circ_0080608 binds to miR-661 and operates as a competing endogenous RNA (ceRNA) and shares a miR-661 binding site with the 3' UTR of ADRA1A. Furthermore, circ_0080608 inversely regulates miR-661 expression, consequently restraining the aggressive behavior of lung cancer cells. Lung cancer cells overexpressing ADRA1A also exhibit repressed migratory and proliferative abilities. However, reintroduction of miR-661 led to a decline in ADRA1A expression, thereby attenuating the functional effects of ADRA1A. Circ_0080608 impedes lung cancer progression by regulating the miR-661/ADRA1A pathway. Our findings provide new insights into the progression of lung cancer.
Collapse
Affiliation(s)
- Chengbo Ren
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Ling Cui
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Ruibiao Li
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Xiao Song
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Jinqiu Li
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Qiang Xi
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Zhilin Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| | - Lixia Zhao
- Department of Internal Medicine Oncology, The First Affiliated Hospital of Hebei North University, Zhangjiakou, China
| |
Collapse
|
5
|
Kircali MF, Turanli B. Idiopathic Pulmonary Fibrosis Molecular Substrates Revealed by Competing Endogenous RNA Regulatory Networks. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:381-392. [PMID: 37540140 DOI: 10.1089/omi.2023.0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic disease of the lung with poor prognosis. Fibrosis results from remodeling of the interstitial tissue. A wide range of gene expression changes are observed, but the role of micro RNAs (miRNAs) and circular RNAs (circRNA) is still unclear. Therefore, this study aimed to establish an messenger RNA (mRNA)-miRNA-circRNA competing endogenous RNA (ceRNA) regulatory network to uncover novel molecular signatures using systems biology tools. Six datasets were used to determine differentially expressed genes (DEGs) and miRNAs (DEmiRNA). Accordingly, protein-protein, mRNA-miRNA, and miRNA-circRNA interactions were constructed. Modules were determined and further analyzed in the Drug Gene Budger platform to identify potential therapeutic compounds. We uncovered common 724 DEGs and 278 DEmiRNAs. In the protein-protein interaction network, TMPRSS4, ESR2, TP73, CLEC4E, and TP63 were identified as hub protein coding genes. The mRNA-miRNA interaction network revealed two modules composed of ADRA1A, ADRA1B, hsa-miR-484 and CDH2, TMPRSS4, and hsa-miR-543. The DEmiRNAs in the modules further analyzed to propose potential circRNA regulators in the ceRNA network. These results help deepen the understanding of the mechanisms of IPF. In addition, the molecular leads reported herein might inform future innovations in diagnostics and therapeutics research and development for IPF.
Collapse
Affiliation(s)
- Muhammed Fatih Kircali
- School of Medicine, Marmara University, Istanbul, Türkiye
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| | - Beste Turanli
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Türkiye
| |
Collapse
|
6
|
Xue F, Cheng J, Liu Y, Cheng C, Zhang M, Sui W, Chen W, Hao P, Zhang Y, Zhang C. Cardiomyocyte-specific knockout of ADAM17 ameliorates left ventricular remodeling and function in diabetic cardiomyopathy of mice. Signal Transduct Target Ther 2022; 7:259. [PMID: 35909160 PMCID: PMC9339545 DOI: 10.1038/s41392-022-01054-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 05/06/2022] [Accepted: 06/05/2022] [Indexed: 02/08/2023] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has proven beneficial in attenuating diabetic cardiomyopathy (DCM) but has been found to be a substrate of a disintegrin and metalloprotease protein-17 (ADAM17). However, whether ADAM17 plays a role in the pathogenesis and intervention of DCM is obscure. In this study, we created cardiomyocyte-specific knockout of ADAM17 (A17α-MHCKO) mice, and left ventricular dimension, function, pathology and molecular biology were assessed in ADAM17fl/fl control, A17α-MHCKO control, ADAM17fl/fl diabetic and A17α-MHCKO diabetic mice. Both differentiated H9c2 cells and neonatal rat cardiomyocytes (NRCMs) were used to explore the molecular mechanisms underlying the effect of ADAM17 on DCM. The results showed that protein expression and activity of ADAM17 were upregulated whereas the protein expression of ACE2 was downregulated in the myocardium of diabetic mice. Cardiomyocyte-specific knockout of ADAM17 mitigated cardiac fibrosis and cardiomyocyte apoptosis and ameliorated cardiac dysfunction in mice with DCM. Bioinformatic analyses detected a number of genes enriched in metabolic pathways, in particular the AMPK signaling pathway, expressed differentially between the hearts of A17α-MHCKO and ADAM17fl/fl diabetic mice. The mechanism may involve activated AMPK pathway, increased autophagosome formation and improved autophagic flux, which reduced the apoptotic response in cardiomyocytes. In addition, hypoxia-inducible factor-1α (HIF-1α) might act as an upstream mediator of upregulated ADAM17 and ADAM17 might affect AMPK signaling via α1 A-adrenergic receptor (ADRA1A). These results indicated that ADAM17 activity and ACE2 shedding were enhanced in DCM, which was reversed by cardiomyocyte-specific ADAM17 knockout. Thus, inhibition of ADAM17 may provide a promising approach to the treatment of DCM.
Collapse
Affiliation(s)
- Fei Xue
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Jing Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yanping Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Cheng Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wenhai Sui
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Wenqiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Panpan Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Cardiovascular Disease Research Center of Shandong First Medical University, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
7
|
Lelou E, Corlu A, Nesseler N, Rauch C, Mallédant Y, Seguin P, Aninat C. The Role of Catecholamines in Pathophysiological Liver Processes. Cells 2022; 11:cells11061021. [PMID: 35326472 PMCID: PMC8947265 DOI: 10.3390/cells11061021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023] Open
Abstract
Over the last few years, the number of research publications about the role of catecholamines (epinephrine, norepinephrine, and dopamine) in the development of liver diseases such as liver fibrosis, fatty liver diseases, or liver cancers is constantly increasing. However, the mechanisms involved in these effects are not well understood. In this review, we first recapitulate the way the liver is in contact with catecholamines and consider liver implications in their metabolism. A focus on the expression of the adrenergic and dopaminergic receptors by the liver cells is also discussed. Involvement of catecholamines in physiological (glucose metabolism, lipids metabolism, and liver regeneration) and pathophysiological (impact on drug-metabolizing enzymes expression, liver dysfunction during sepsis, fibrosis development, or liver fatty diseases and liver cancers) processes are then discussed. This review highlights the importance of understanding the mechanisms through which catecholamines influence liver functions in order to draw benefit from the adrenergic and dopaminergic antagonists currently marketed. Indeed, as these molecules are well-known drugs, their use as therapies or adjuvant treatments in several liver diseases could be facilitated.
Collapse
Affiliation(s)
- Elise Lelou
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
| | - Anne Corlu
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
| | - Nicolas Nesseler
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
- CHU Rennes, Department of Anesthesia and Critical Care, F-35000 Rennes, France
| | - Claudine Rauch
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
| | - Yannick Mallédant
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
- CHU Rennes, Department of Anesthesia and Critical Care, F-35000 Rennes, France
| | - Philippe Seguin
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
- CHU Rennes, Department of Anesthesia and Critical Care, F-35000 Rennes, France
| | - Caroline Aninat
- INSERM, Université Rennes, INRAE, Institut NuMeCan, Nutrition, Metabolisms and Cancer, F-35000 Rennes, France; (E.L.); (A.C.); (N.N.); (C.R.); (Y.M.); (P.S.)
- Correspondence: ; Tel.: +33-2-23-23-48-68
| |
Collapse
|
8
|
Huang J, Zhou H, Diao Y, Yang Z. Hsa_circ_0000285 knockdown inhibits the progression of hepatocellular carcinoma by sponging miR-582-3p to regulate CCNB2 expression. Hum Exp Toxicol 2022; 41:9603271221115400. [PMID: 35839486 DOI: 10.1177/09603271221115400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AIM Hsa_circ_0000285, a novel circular RNA, has been proven to extensively take part in the pathogenesis of numerous tumors. In hepatocellular carcinoma (HCC), very little is known about hsa_circ_0000285 until now. Hence, this research aims to determine hsa_circ_0000285's functional role and underlying mechanisms in HCC. METHODS The expressions of miR-582-3p, hsa_circ_000028, and cyclin B2 (CCNB2) among the HCC cells and tumor samples were determined by performing western blotting and qRT-PCR analyses. The impacts of hsa_circ_000028 on the proliferative and migratory abilities of HCC cells were examined through the execution of CCK-8 and wound-healing assays. Meanwhile, the expressions of the proteins Bcl-2 and Bax were detected via western blotting. Tumor xenograft models were established to examine how hsa_circ_000028 functions during the mediation of HCC tumor growth in vivo. RNA immunoprecipitation and luciferase reporter experiments were performed for the validation of the interactions of miR-582-3p, hsa_circ_000028, and CCNB2 with each other. RESULTS Elevated hsa_circ_0000285 and CCNB2 expressions, and a decreased miR-582-3p expression were observed among the HCC cell lines and tumors. Hsa_circ_0000285 bound to miR-582-3p competitively to improve CCNB2 levels. Silencing of hsa_circ_0000285 promoted apoptosis and repressed proliferation and migration among HCC cells. Moreover, silencing hsa_circ_0000285 also impeded the growth of HCC tumors in vivo. Inhibiting hsa_circ_0000285 or CCNB2 reversed the miR-582-3p-knockdown-mediated promotion of malignant HCC cell phenotypes. CONCLUSION Our study has demonstrated that hsa_circ_0000285 fosters the development of malignant HCC cells phenotypes through the modulation of the miR-582-3p/CCNB2 axis. Thus, these results suggest that hsa_circ_0000285 is a prospective target for HCC treatment.
Collapse
Affiliation(s)
- Jing Huang
- Department of Hepatobiliary & Vascular Surgery, 580504School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Hongchi Zhou
- Department of Hepatobiliary & Vascular Surgery, 580504School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yun Diao
- Operation Room, 580504School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Zhiming Yang
- Department of Hepatobiliary & Vascular Surgery, 580504School of Clinical Medicine & The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|