1
|
Reznik SE, Kashou A, Ward D, Yellon SM. N,N-dimethylacetamide blocks inflammation-induced preterm birth and remediates maternal systemic immune responses. Sci Rep 2025; 15:8234. [PMID: 40065144 PMCID: PMC11893883 DOI: 10.1038/s41598-025-93282-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
The common excipient, N,N-dimethylacetamide (DMA), prevents imminent endotoxin-induced preterm birth in mice. The present study hypothesized that DMA forestalls preterm birth to term (defined as day 18.5 or later) by attenuating bacterial endotoxin lipopolysaccharide (LPS)-induced maternal systemic inflammatory responses and cervix remodeling. Accordingly, LPS (i.p.) on day 15 postbreeding stimulated preterm delivery within 24 h while mice treated with DMA 2 h preceding and 9 h following LPS administration remained pregnant, comparable to saline and DMA controls, to deliver viable pups at term. Irrespective of LPS or DMA + LPS treatment, maternal plasma pro- and anti-inflammatory cytokines on day 15.5 (12 h post-LPS) increased tenfold compared to baseline concentrations in controls. On day 16 of pregnancy, plasma concentrations of G-CSF and TNFα were statistically significantly reduced in the prepartum LPS + DMA group compared to those in postpartum mice given LPS. By day 18 of pregnancy, all cytokines returned to baseline-equivalent to low systemic levels throughout the study in saline and DMA controls that gave birth at term. In addition, maternal plasma progesterone declined within 12 h in prepartum LPS-treated mice to postpartum concentrations on day 16. Although a similar transient decrease occurred by 12 h in DMA + LPS mice, plasma progesterone returned to baseline concentrations in controls. Contemporaneously, the progression of prepartum cervix remodeling leading to preterm delivery was acutely forestalled by DMA without impeding birth at term. These findings support the hypothesis that DMA not only prevents inflammation-driven preterm birth, but rescues pregnancy for birth to occur at term. The results raise the possibility that maternal signals can forecast risk of preterm birth while selective suppression of systemic inflammation can mitigate adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Sandra E Reznik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
- Departments of Pathology and Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| | - Alexander Kashou
- Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Daylan Ward
- Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| | - Steven M Yellon
- Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA
| |
Collapse
|
2
|
Reznik SE, Kashou A, Ward D, Yellon SM. N,N-dimethylacetamide blocks inflammation-induced preterm birth and remediates maternal systemic immune responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.16.633350. [PMID: 39896567 PMCID: PMC11785055 DOI: 10.1101/2025.01.16.633350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The common excipient, N,N-dimethylacetamide (DMA), prevents imminent endotoxin-induced preterm birth in mice. The present study hypothesized that DMA forestalls preterm birth to term (defined as day 18.5 or later) by attenuating bacterial endotoxin lipopolysaccharide (LPS)-induced maternal systemic inflammatory responses and cervix remodeling. Accordingly, LPS (i.p.) on day 15 postbreeding stimulated preterm delivery within 24 h while mice treated with DMA 2 h preceding and 9 h following LPS administration remained pregnant, comparable to saline and DMA controls, to deliver viable pups at term. Irrespective of LPS or DMA+LPS treatment, maternal plasma pro- and anti-inflammatory cytokines on day 15.5 (12 h post-LPS) increased 10-fold compared to baseline concentrations in controls. On day 16 of pregnancy, plasma concentrations of G-CSF and TNFα were reduced in the prepartum LPS+DMA group compared to those in postpartum mice given LPS. By day 18 of pregnancy, all cytokines returned to baseline - equivalent to low systemic levels throughout the study in saline and DMA controls that gave birth at term. In addition, maternal plasma progesterone declined within 12 h in prepartum LPS-treated mice to postpartum concentrations on day 16. Although a similar transient decrease occurred by 12 h in DMA+LPS mice, plasma progesterone returned to baseline concentrations in controls. Contemporaneously, the progression of prepartum cervix remodeling leading to preterm delivery was acutely forestalled by DMA without impeding birth at term. These findings support the hypothesis that DMA not only prevents inflammation-driven preterm birth, but rescues pregnancy for birth to occur at term. The results raise the possibility that maternal signals can forecast risk of preterm birth while selective suppression of systemic inflammation can mitigate adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Sandra E Reznik
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439
- Departments of Pathology and Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Alexander Kashou
- Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - Daylan Ward
- Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350
| | - Steve M Yellon
- Longo Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, CA 92350
| |
Collapse
|
3
|
Walker SL, Noble J, Thomson A, Moran CM, Mellis D, Lee I, White LJ, Forbes S. Ultrasound-guided hepatic portal vein injection is not a reproducible technique for delivery of cell therapies to the liver in mice. Diabet Med 2023; 40:e15192. [PMID: 37531444 PMCID: PMC10947537 DOI: 10.1111/dme.15192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/04/2023]
Abstract
AIMS Our aim was to determine if ultrasound-guided HPV injection in mice would provide reproducible and reliable results, as is currently obtained via open laparotomy techniques, and offer a surgical refinement to emulate islet transplantation in humans. METHODS Fluorescent-polymer microparticles (20 μm) were injected (27G-needle) into the HPV via open laparotomy (n = 4) or under ultrasound-guidance (n = 4) using an MX550D-transducer with a Vevo3100-scanner (FUJIFILM VisualSonics, Inc.). Mice were culled 24-h post injection; organs were frozen, step sectioned (10 μm-slices) and 10 sections/mouse (50 μm-spacing) were quantified for microparticles in the liver and other organs by fluorescent microscopy. RESULTS Murine HPV injection, via open laparotomy-route, resulted in widespread distribution of microparticles in the liver, lungs and spleen; ultrasound-guided injection resulted in reduced microparticle delivery (p < 0.0001) and microparticle clustering in distinct areas of the liver at the site of needle penetration, with very few/no microparticles being seen in lung and spleen tissues, hypothesised to be due to flow into the body cavity: liver median (interquartile range) 4.15 (0.00-4.15) versus 0.00 (0.00-0.00) particle-count mm-2 , respectively. CONCLUSIONS Ultrasound-guided injection results in microparticle clustering in the liver, with an overall reduction in microparticle number when compared to open laparotomy HPV injection, and high variability in microparticle-counts detected between mice. Ultrasound-guided injection is not currently a technique that can replace open laparotomy HPV of islet transplantation in mice.
Collapse
Affiliation(s)
- Sophie L. Walker
- BHF Centre for Cardiovascular Science, Queens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - June Noble
- BHF Centre for Cardiovascular Science, Queens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Adrian Thomson
- BHF Centre for Cardiovascular Science, Queens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Carmel M. Moran
- BHF Centre for Cardiovascular Science, Queens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - David Mellis
- BHF Centre for Cardiovascular Science, Queens Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - I‐Ning Lee
- School of Pharmacy, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK
| | - Lisa J. White
- School of Pharmacy, Biodiscovery InstituteUniversity of Nottingham, University ParkNottinghamUK
| | - Shareen Forbes
- BHF Centre for Cardiovascular Science, Queens Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
4
|
Miller FA, Sacco A, David AL, Boyle AK. Interventions for Infection and Inflammation-Induced Preterm Birth: a Preclinical Systematic Review. Reprod Sci 2023; 30:361-379. [PMID: 35426035 PMCID: PMC9988807 DOI: 10.1007/s43032-022-00934-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/02/2022] [Indexed: 12/09/2022]
Abstract
Spontaneous preterm births (< 37 weeks gestation) are frequently associated with infection. Current treatment options are limited but new therapeutic interventions are being developed in animal models. In this PROSPERO-registered preclinical systematic review, we aimed to summarise promising interventions for infection/inflammation-induced preterm birth. Following PRISMA guidance, we searched PubMed, EMBASE, and Web of Science using the themes: "animal models", "preterm birth", "inflammation", and "therapeutics". We included original quantitative, peer-reviewed, and controlled studies applying prenatal interventions to prevent infection/inflammation-induced preterm birth in animal models. We employed two risk of bias tools. Of 4020 identified studies, 23 studies (24 interventions) met our inclusion criteria. All studies used mouse models. Preterm birth was most commonly induced by lipopolysaccharide (18 studies) or Escherichia coli (4 studies). Models varied according to infectious agent serotype, dose, and route of delivery. Gestational length was significantly prolonged in 20/24 interventions (83%) and markers of maternal inflammation were reduced in 20/23 interventions (87%). Interventions targeting interleukin-1, interleukin-6, and toll-like receptors show particular therapeutic potential. However, due to the heterogeneity of the methodology of the included studies, meta-analysis was impossible. All studies were assigned an unclear risk of bias using the SYRCLE risk of bias tool. Interventions targeting inflammation demonstrate therapeutic potential for the prevention of preterm birth. However, better standardisation of preterm birth models, including the dose, serotype, timing of administration and pathogenicity of infectious agent, and outcome reporting is urgently required to improve the reproducibility of preclinical studies, allow meaningful comparison of intervention efficacy, and aid clinical translation.
Collapse
Affiliation(s)
- Faith A Miller
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Adalina Sacco
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
| | - Anna L David
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK
- National Institute for Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Ashley K Boyle
- Elizabeth Garrett Anderson Institute for Women's Health, University College London, 86-96 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
5
|
Camara Serrano JA. Ultrasound Guided Surgery as a Refinement Tool in Oncology Research. Animals (Basel) 2022; 12:ani12233445. [PMID: 36496966 PMCID: PMC9739685 DOI: 10.3390/ani12233445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Refinement is one of the ethical pillars of the use of animals in research. Ultrasonography is currently used in human medicine as a surgical tool for guided biopsies and this idea can be applied to preclinical research thanks to the development of specific instruments. This will eliminate the necessity of a surgical opening for implanting cells in specific organs or taking samples from tissues. The approach for the injection will depend on the target but most of the case is going to be lateral, with the probe in a ventral position and the needle going into from the lateral. This is the situation for the thyroid gland, heart, liver, spleen, kidney, pancreas, uterus, and testicles. Other approaches, such as the dorsal, can be used in the spleen or kidney. The maximum injected volume will depend on the size of the structure. For biopsies, the technical protocol is similar to the injection knowing that in big organs such as the liver, spleen, or kidney we can take several samples moving slightly the needle inside the structure. In all cases, animals must be anesthetized and minimum pain management is required after the intervention.
Collapse
|
6
|
Dong Y, Rivetti S, Lingampally A, Tacke S, Kojonazarov B, Bellusci S, Ehrhardt H. Insights into the Black Box of Intra-Amniotic Infection and Its Impact on the Premature Lung: From Clinical and Preclinical Perspectives. Int J Mol Sci 2022; 23:9792. [PMID: 36077187 PMCID: PMC9456379 DOI: 10.3390/ijms23179792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Intra-amniotic infection (IAI) is one major driver for preterm birth and has been demonstrated by clinical studies to exert both beneficial and injurious effects on the premature lung, possibly due to heterogeneity in the microbial type, timing, and severity of IAI. Due to the inaccessibility of the intra-amniotic cavity during pregnancies, preclinical animal models investigating pulmonary consequences of IAI are indispensable to elucidate the pathogenesis of bronchopulmonary dysplasia (BPD). It is postulated that on one hand imbalanced inflammation, orchestrated by lung immune cells such as macrophages, may impact on airway epithelium, vascular endothelium, and interstitial mesenchyme, resulting in abnormal lung development. On the other hand, excessive suppression of inflammation may as well cause pulmonary injury and a certain degree of inflammation is beneficial. So far, effective strategies to prevent and treat BPD are scarce. Therapeutic options targeting single mediators in signaling cascades and mesenchymal stromal cells (MSCs)-based therapies with global regulatory capacities have demonstrated efficacy in preclinical animal models and warrant further validation in patient populations. Ante-, peri- and postnatal exposome analysis and therapeutic investigations using multiple omics will fundamentally dissect the black box of IAI and its effect on the premature lung, contributing to precisely tailored and individualized therapies.
Collapse
Affiliation(s)
- Ying Dong
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Feulgen Street 12, 35392 Giessen, Germany
| | - Stefano Rivetti
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Aulweg 130, 35392 Giessen, Germany
| | - Arun Lingampally
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Aulweg 130, 35392 Giessen, Germany
| | - Sabine Tacke
- Clinic for Small Animals (Surgery), Faculty of Veterinary Medicine, Justus-Liebig-University, Frankfurter Street 114, 35392 Giessen, Germany
| | - Baktybek Kojonazarov
- Institute for Lung Health (ILH), Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Aulweg 130, 35392 Giessen, Germany
| | - Saverio Bellusci
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig-University, Aulweg 130, 35392 Giessen, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig-University, Feulgen Street 12, 35392 Giessen, Germany
| |
Collapse
|
7
|
Microbiota of the Pregnant Mouse: Characterization of the Bacterial Communities in the Oral Cavity, Lung, Intestine, and Vagina through Culture and DNA Sequencing. Microbiol Spectr 2022; 10:e0128622. [PMID: 35916526 PMCID: PMC9430855 DOI: 10.1128/spectrum.01286-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mice are frequently used as animal models for mechanistic studies of infection and obstetrical disease, yet characterization of the murine microbiota during pregnancy is lacking. The objective of this study was to characterize the microbiotas of distinct body sites of the pregnant mouse—vagina, oral cavity, intestine, and lung—that harbor microorganisms that could potentially invade the murine amniotic cavity, thus leading to adverse pregnancy outcomes. The microbiotas of these body sites were characterized through anoxic, hypoxic, and oxic culture as well as through 16S rRNA gene sequencing. With the exception of the vagina, the cultured microbiotas of each body site varied by atmosphere, with the greatest diversity in the cultured microbiota appearing under anoxic conditions. Only cultures of the vagina were comprehensively representative of the microbiota observed through direct DNA sequencing of body site samples, primarily due to the predominance of two Rodentibacter strains. Identified as Rodentibacter pneumotropicus and Rodentibacter heylii, these isolates exhibited predominance patterns similar to those of Lactobacillus crispatus and Lactobacillus iners in the human vagina. Whole-genome sequencing of these Rodentibacter strains revealed shared genomic features, including the ability to degrade glycogen, an abundant polysaccharide in the vagina. In summary, we report body site-specific microbiotas in the pregnant mouse with potential ecological parallels to those of humans. Importantly, our findings indicate that the vaginal microbiotas of pregnant mice can be readily cultured, suggesting that mock vaginal microbiotas can be tractably generated and maintained for experimental manipulation in future mechanistic studies of host vaginal-microbiome interactions. IMPORTANCE Mice are widely utilized as animal models of obstetrical complications; however, the characterization of the murine microbiota during pregnancy has been neglected. Microorganisms from the vagina, oral cavity, intestine, and lung have been found in the intra-amniotic space, where their presence threatens the progression of gestation. Here, we characterized the microbiotas of pregnant mice and established the appropriateness of culture in capturing the microbiota at each site. The high relative abundance of Rodentibacter observed in the vagina is similar to that of Lactobacillus in humans, suggesting potential ecological parallels. Importantly, we report that the vaginal microbiota of the pregnant mouse can be readily cultured under hypoxic conditions, demonstrating that mock microbial communities can be utilized to test the potential ecological parallels between microbiotas in human and murine pregnancy and to evaluate the relevance of the structure of these microbiotas for adverse pregnancy outcomes, especially intra-amniotic infection and preterm birth.
Collapse
|
8
|
Stranik J, Kacerovsky M, Sterba M, Andrys C, Abad C, Staud F, Micuda S, Soucek O, Jacobsson B, Musilova I. Development of a Rat Model of Intra-Amniotic Inflammation via Ultrasound-Guided Administration of a Triggering Agent in the Gestational Sac to Enable Analysis of Individual Amniotic Fluid Samples. Front Pharmacol 2022; 13:871193. [PMID: 35496265 PMCID: PMC9039461 DOI: 10.3389/fphar.2022.871193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: To develop a rat model of intra-amniotic inflammation, characterized by the concentration of interleukin-6 in the amniotic fluid, induced by an ultrasound-guided transabdominal administration of lipopolysaccharide into individual gestational sacs.Methods: An ultrasound-guided transabdominal intra-amniotic administration of lipopolysaccharide or phosphate-buffered saline (PBS) as control was performed in rats on embryonic day 18. Only accessible gestational sacs with precise recording of their positions were injected. Twenty-four hours later, individual amniotic fluid samples were collected from the gestational sacs of laparotomized animals. The gestational sacs were divided into four subgroups: (i) with lipopolysaccharide: injected gestational sacs from rats undergoing lipopolysaccharide administration; (ii) without lipopolysaccharide: non-injected gestational sacs from rats undergoing lipopolysaccharide administration; (iii) with PBS: injected gestational sacs from rats undergoing PBS administration; and (iv) without PBS: non-injected gestational sacs from rats undergoing PBS administration. The concentration of interleukin-6 in individual amniotic fluid samples was assessed using ELISA.Results: In the group of five animals receiving lipopolysaccharide, 24 (33%) and 48 (77%) gestational sacs were and were not injected, respectively. The amniotic fluid was obtained from 21 (88%) injected and 46 (95%) non-injected sacs. In the control group of five animals receiving phosphate-buffered saline, 28 (35%) and 52 (75%) gestational sacs were and were not injected, respectively. The amniotic fluid was obtained from 18 (64%) injected and 50 (96%) non-injected sacs. No labor occurred, and only one fetal death was observed in a gestational sac injected with lipopolysaccharide. Differences in concentrations of interleukin-6 in the amniotic fluid were found among the subgroups of the gestational sacs (with lipopolysaccharide: median 762 pg/ml; without lipopolysaccharide: median 35.6 pg/ml; with PBS: median 35.6 pg/ml; and without PBS: median 35.6 pg/ml; p < 0.0001). Concentrations of interleukin-6 in the amniotic fluid from the gestational sacs with lipopolysaccharide were significantly higher than those in the three remaining subgroups (p < 0.0001). No differences in concentrations of interleukin-6 in the amniotic fluid were identified between the three remaining subgroups.Conclusion: The ultrasound-guided transabdominal intra-amniotic administration of lipopolysaccharide with a subsequent collection and analysis of amniotic fluid samples is feasible in rats. The intra-amniotic administration of lipopolysaccharide led to the development of intra-amniotic inflammation without leading to fetal mortality or induction of labor.
Collapse
Affiliation(s)
- Jaroslav Stranik
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czechia
| | - Martin Sterba
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Ctirad Andrys
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Cilia Abad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Ondrej Soucek
- Institute of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Ivana Musilova
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
- *Correspondence: Ivana Musilova,
| |
Collapse
|
9
|
Animal Models of Chorioamnionitis: Considerations for Translational Medicine. Biomedicines 2022; 10:biomedicines10040811. [PMID: 35453561 PMCID: PMC9032938 DOI: 10.3390/biomedicines10040811] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm birth is defined as any birth occurring before 37 completed weeks of gestation by the World Health Organization. Preterm birth is responsible for perinatal mortality and long-term neurological morbidity. Acute chorioamnionitis is observed in 70% of premature labor and is associated with a heavy burden of multiorgan morbidities in the offspring. Unfortunately, chorioamnionitis is still missing effective biomarkers and early placento- as well as feto-protective and curative treatments. This review summarizes recent advances in the understanding of the underlying mechanisms of chorioamnionitis and subsequent impacts on the pregnancy outcome, both during and beyond gestation. This review also describes relevant and current animal models of chorioamnionitis used to decipher associated mechanisms and develop much needed therapies. Improved knowledge of the pathophysiological mechanisms underpinning chorioamnionitis based on preclinical models is a mandatory step to identify early in utero diagnostic biomarkers and design novel anti-inflammatory interventions to improve both maternal and fetal outcomes.
Collapse
|
10
|
Brosius Lutz A, Al-Nasiry S, Kramer BW, Mueller M. Understanding Host-Pathogen Interactions in Acute Chorioamnionitis Through the Use of Animal Models. Front Cell Infect Microbiol 2021; 11:709309. [PMID: 34386434 PMCID: PMC8353249 DOI: 10.3389/fcimb.2021.709309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammation of the chorion and/or amnion during pregnancy is called chorioamnionitis. Acute chorioamnionitis is implicated in approximately 40% of preterm births and has wide-ranging implications for the mother, fetus, and newborn. Large disease burden and lack of therapeutic approaches drive the discovery programs to define and test targets to tackle chorioamnionitis. Central to the advancement of these studies is the use of animal models. These models are necessary to deepen our understanding of basic mechanisms of host-pathogen interactions central to chorioamnionitis disease pathogenesis. Models of chorioamnionitis have been developed in numerous species, including mice, rabbits, sheep, and non-human primates. The various models present an array of strategies for initiating an inflammatory response and unique opportunities for studying its downstream consequences for mother, fetus, or newborn. In this review, we present a discussion of the key features of human chorioamnionitis followed by evaluation of currently available animal models in light of these features and consideration of how these models can be best applied to tackle outstanding questions in the field.
Collapse
Affiliation(s)
- Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Salwan Al-Nasiry
- Department of Obstetrics and Gynecology, GROW School of Oncology and Developmental Biology, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| | - Martin Mueller
- Department of Obstetrics and Gynecology, Inselspital, Bern University Hospital, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland.,Department of Pediatrics, Maastricht University Medical Centre (MUMC), Maastricht, Netherlands
| |
Collapse
|
11
|
Cappelletti M, Doll JR, Stankiewicz TE, Lawson MJ, Sauer V, Wen B, Kalinichenko VV, Sun X, Tilburgs T, Divanovic S. Maternal regulation of inflammatory cues is required for induction of preterm birth. JCI Insight 2020; 5:138812. [PMID: 33208552 PMCID: PMC7710297 DOI: 10.1172/jci.insight.138812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Infection-driven inflammation in pregnancy is a major cause of spontaneous preterm birth (PTB). Both systemic infection and bacterial ascension through the vagina/cervix to the amniotic cavity are strongly associated with PTB. However, the contribution of maternal or fetal inflammatory responses in the context of systemic or localized models of infection-driven PTB is not well defined. Here, using intraperitoneal or intraamniotic LPS challenge, we examined the necessity and sufficiency of maternal and fetal Toll-like receptor (TLR) 4 signaling in induction of inflammatory vigor and PTB. Both systemic and local LPS challenge promoted induction of inflammatory pathways in uteroplacental tissues and induced PTB. Restriction of TLR4 expression to the maternal compartment was sufficient for induction of LPS-driven PTB in either systemic or intraamniotic challenge models. In contrast, restriction of TLR4 expression to the fetal compartment failed to induce LPS-driven PTB. Vav1-Cre-mediated genetic deletion of TLR4 suggested a critical role for maternal immune cells in inflammation-driven PTB. Further, passive transfer of WT in vitro-derived macrophages and dendritic cells to TLR4-null gravid females was sufficient to induce an inflammatory response and drive PTB. Cumulatively, these findings highlight the critical role for maternal regulation of inflammatory cues in induction of inflammation-driven parturition.
Collapse
Affiliation(s)
- Monica Cappelletti
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jessica R. Doll
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Traci E. Stankiewicz
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Matthew J. Lawson
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Vivien Sauer
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Bingqiang Wen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Lung Regenerative Medicine
| | - Vladimir V. Kalinichenko
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Lung Regenerative Medicine
| | | | - Tamara Tilburgs
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Senad Divanovic
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
12
|
Zhang HY, Wang F, Meng X, Feng C, Xiang L, Besner GE, Feng JX. Prenatal low-dose endotoxin exposure prolongs intestinal epithelial activation after birth and contributes to necrotizing enterocolitis. J Pediatr Surg 2020; 55:2308-2316. [PMID: 32321629 DOI: 10.1016/j.jpedsurg.2020.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/05/2020] [Accepted: 03/15/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To investigate the effects of low dose endotoxin on transcriptional activity in intestinal epithelium, and its role in necrotizing enterocolitis (NEC). METHODS Lipopolysaccharides (LPS) were injected into the amniotic cavity of pregnant mice under ultrasound guidance. The effects of LPS on fetal and neonatal intestines were determined. Mouse pups were exposed to low dose LPS (0.01 μg per fetus) prenatally and subjected to experimental NEC after birth. The incidence and severity of NEC, as well as intestinal permeability, NF-κB activation, and IL-6 expression were studied. The signaling pathways in the intestinal epithelial cells (IECs) that were activated by LPS were also investigated. RESULTS Low dose LPS did not increase apoptosis, myeloperoxidase activity, histological injury or NF-κB activity in fetal intestines. However, prenatal low dose LPS exposure disturbed the transient and self-limited activation of NF-κB in neonatal intestines after birth. Importantly, it increased the incidence and severity of experimental NEC in neonatal mice. In primary IECs, low dose LPS induced IRAK-1 expression via activation of GSK3β. Elevated IRAK-1 levels prolonged the activation of IECs upon stimulation by high dose LPS. CONCLUSION Prenatal low dose endotoxin exposure disturbs self-limited postnatal epithelial cell activation and predisposes the neonatal intestine to NEC. LEVEL OF EVIDENCE Not applicable (experimental animal study).
Collapse
Affiliation(s)
- Hong-Yi Zhang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fang Wang
- Department of Neurology, The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Xinrao Meng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chenzhao Feng
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Xiang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gail E Besner
- Department of Pediatric Surgery, Nationwide Children's Hospital, Ohio State University, Columbus, OH 43205, USA
| | - Jie-Xiong Feng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
13
|
Kim SW, Kim YY, Kim H, Ku SY. Animal models closer to intrauterine adhesive pathology. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1125. [PMID: 33240974 PMCID: PMC7576092 DOI: 10.21037/atm-20-3598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
14
|
Stranik J, Kacerovsky M, Vescicik P, Faist T, Jacobsson B, Musilova I. A rodent model of intra-amniotic inflammation/infection, induced by the administration of inflammatory agent in a gestational sac, associated with preterm delivery: a systematic review. J Matern Fetal Neonatal Med 2020; 35:1592-1600. [PMID: 32349576 DOI: 10.1080/14767058.2020.1757063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Rodents are the most commonly used animals in the study of spontaneous preterm delivery (PTD). Intra-amniotic inflammation/infection is a frequent and important cause of PTD. Intraperitoneal and intrauterine administrations of inflammatory agents are traditional methods to establish a rodent model of PTD associated with inflammation and infection. The intra-amniotic administration of inflammatory or infectious triggering agents to rodents can be useful to study not only intra-amniotic inflammatory response but also PTD associated with intra-amniotic inflammation/infection.Objective: This systematic review aimed mainly to assess and analyze all described methods of intra-amniotic administration of infectious and/or inflammatory agents to create a rodent model of intra-amniotic inflammation associated with PTD.Methods: A literature search through two electronic databases from their earliest entries to February 2019 was performed. The selection criteria were as follows: (1) rodents as model animals, (2) a model of intra-amniotic inflammation/infection associated with PTD, and (3) intra-amniotic administration of triggering agents. Data extraction included specification of the study (author and year of publication), characteristics of study animals (species, strain, and number of animals), characteristics of intervention (timing and used technique), substance used for induction of intra-amniotic inflammation/infection, and outcome assessment.Results: The search identified a total of 4673 articles, of which 118 were selected for full-text reading, but only 13 studies were included in the review. Intra-amniotic administration was used only in the articles that were published beyond 2004. Two different approaches were identified: (1) open surgery with direct puncture of the amniotic sacs and (2) transabdominal ultrasound-guided puncture of the gestational sacs. Live microorganisms (Ureaplasma parvum), bacterial products (extracellular membrane vesicles), and pathogen-associated (lipopolysaccharide) and damage-associated molecular patterns (high mobility group box-1, S100B, and surfactant protein A) were used to simulate intra-amniotic inflammation/infection. Differences in the effect on intra-amniotic inflammation/infection associated with PTD in the mouse model were identified among triggering agents. Intra-amniotic application of lipopolysaccharide in the rat model caused intra-amniotic inflammation, but it did not lead to PTD.Conclusion: The intra-amniotic administration of the triggering agents can be used to study intra-amniotic inflammatory response and intra-amniotic inflammation/infection in the rodents model.
Collapse
Affiliation(s)
- Jaroslav Stranik
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Peter Vescicik
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Tomas Faist
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Ivana Musilova
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
15
|
Cappelletti M, Presicce P, Kallapur SG. Immunobiology of Acute Chorioamnionitis. Front Immunol 2020; 11:649. [PMID: 32373122 PMCID: PMC7177011 DOI: 10.3389/fimmu.2020.00649] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Acute chorioamnionitis is characterized by neutrophilic infiltration and inflammation at the maternal fetal interface. It is a relatively common complication of pregnancy and can have devastating consequences including preterm labor, maternal infections, fetal infection/inflammation, fetal lung, brain, and gastrointestinal tract injury. In this review, we will discuss current understanding of the pathogenesis, immunobiology, and mechanisms of this condition. Most commonly, acute chorioamnionitis is a result of ascending infection with relatively low-virulence organisms such as the Ureaplasma species. Furthermore, recent vaginal microbiome studies suggest that there is a link between vaginal dysbiosis, vaginal inflammation, and ascending infection. Although less common, microorganisms invading the maternal-fetal interface via hematogenous route (e.g., Zika virus, Cytomegalovirus, and Listeria) can cause placental villitis and severe fetal inflammation and injury. We will provide an overview of the knowledge gleaned from different animal models of acute chorioamnionitis and the role of different immune cells in different maternal-fetal compartments. Lastly, we will discuss how infectious agents can break the maternal tolerance of fetal allograft during pregnancy and highlight the novel future therapeutic approaches.
Collapse
Affiliation(s)
- Monica Cappelletti
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Pietro Presicce
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Suhas G Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
van Boeckel SR, Macpherson H, Norman JE, Davidson DJ, Stock SJ. Inflammation-mediated generation and inflammatory potential of human placental cell-free fetal DNA. Placenta 2020; 93:49-55. [PMID: 32250739 PMCID: PMC7146537 DOI: 10.1016/j.placenta.2020.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022]
Abstract
Introduction Circulating DNA can be pro-inflammatory when detected by leukocytes via toll-like receptor 9 (TLR9). Cell-free fetal DNA (cff-DNA) of placental origin, circulates in pregnancy, and increased concentrations are seen in conditions associated with placental and maternal inflammation such as pre-eclampsia. However, whether cff-DNA is directly pro-inflammatory in pregnant women and what regulates cff-DNA levels in pregnancy are unknown. Methods Using a human term placental explant model, we examined whether induction of placental inflammation can promote cff-DNA release, and the capacity of this cff-DNA to stimulate peripheral blood mononuclear cells (PBMCs) from pregnant women. Results We demonstrate lipopolysaccharide (LPS)-mediated inflammation in placental explants and induced apoptosis after 24 h. However, this did not increase levels of cff-DNA generation compared to controls. Furthermore, the methylation status of the cff-DNA, was not altered by LPS-induced inflammation. Cff-DNA did not elicit production of inflammatory cytokines from PBMCs, in contrast to exposure to LPS or the TLR9 agonist CpG-ODN. Finally, we demonstrate that cff-DNA acquired directly from pregnant women did not differ in methylation status from placental extracted DNA, or from placental explant generated cell-free DNA, and that, unlike Escherichia coli DNA, this cff-DNA has a low level of unmethylated CpG sequences. Discussion Our data suggest that placental inflammation does not increase release of cff-DNA and that placental cff-DNA is not pro-inflammatory to circulating PBMCs. It thus seems unlikely that high levels of cff-DNA are either a direct consequence or cause of inflammation observed in obstetric complications.
Cell-free fetal DNA was generated using a human placental explant model. Lipopolysaccharide causes inflammation and cell death in placental explants. Inflammation does not increase cell-free fetal DNA release from placental explants. Generated DNA does not elicit inflammation from blood cells from pregnant women.
Collapse
Affiliation(s)
- Sara R van Boeckel
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom.
| | - Heather Macpherson
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Donald J Davidson
- University of Edinburgh Centre for Inflammation Research, QMRI, Edinburgh, United Kingdom
| | - Sarah J Stock
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom; Usher Institute, University of Edinburgh NINE Edinburgh BioQuarter, 9 Little France Road, Edinburgh, EH16 4UX, United Kingdom
| |
Collapse
|
17
|
Suff N, Karda R, Diaz JA, Ng J, Baruteau J, Perocheau D, Taylor PW, Alber D, Buckley SMK, Bajaj-Elliott M, Waddington SN, Peebles D. Cervical Gene Delivery of the Antimicrobial Peptide, Human β-Defensin (HBD)-3, in a Mouse Model of Ascending Infection-Related Preterm Birth. Front Immunol 2020; 11:106. [PMID: 32117260 PMCID: PMC7026235 DOI: 10.3389/fimmu.2020.00106] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/15/2020] [Indexed: 11/13/2022] Open
Abstract
Approximately 40% of preterm births are preceded by microbial invasion of the intrauterine space; ascent from the vagina being the most common pathway. Within the cervical canal, antimicrobial peptides and proteins (AMPs) are important components of the cervical barrier which help to prevent ascending vaginal infection. We investigated whether expression of the AMP, human β-defensin-3 (HBD3), in the cervical mucosa of pregnant mice could prevent bacterial ascent from the vagina into the uterine cavity. An adeno-associated virus vector containing both the HBD3 gene and GFP transgene (AAV8 HBD3.GFP) or control AAV8 GFP, was administered intravaginally into E13.5 pregnant mice. Ascending infection was induced at E16.5 using bioluminescent Escherichia coli (E. coli K1 A192PP-lux2). Bioluminescence imaging showed bacterial ascent into the uterine cavity, inflammatory events that led to premature delivery and a reduction in pups born alive, compared with uninfected controls. Interestingly, a significant reduction in uterine bioluminescence in the AAV8 HBD3.GFP-treated mice was observed 24 h post-E. coli infection, compared to AAV8 GFP treated mice, signifying reduced bacterial ascent in AAV8 HBD3.GFP-treated mice. Furthermore, there was a significant increase in the number of living pups in AAV HBD3.GFP-treated mice. We propose that HBD3 may be a potential candidate for augmenting cervical innate immunity to prevent ascending infection-related preterm birth and its associated neonatal consequences.
Collapse
Affiliation(s)
- Natalie Suff
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
- Preterm Birth Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
- Preterm Birth Group, Department of Women and Children's Health, King's College London, St Thomas' Hospital, London, United Kingdom
| | - Rajvinder Karda
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| | - Juan Antinao Diaz
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| | - Joanne Ng
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| | - Julien Baruteau
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
- Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Dany Perocheau
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| | - Peter W. Taylor
- University College London School of Pharmacy, London, United Kingdom
| | - Dagmar Alber
- Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Suzanne M. K. Buckley
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| | - Mona Bajaj-Elliott
- Preterm Birth Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
- Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Simon N. Waddington
- Gene Transfer Technology Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
- SA/MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Donald Peebles
- Preterm Birth Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| |
Collapse
|
18
|
Abstract
The cervix is the essential gatekeeper for birth. Incomplete cervix remodeling contributes to problems with delivery at or post-term while preterm birth is a major factor in perinatal morbidity and mortality in newborns. Lack of cervix biopsies from women during the period preceding term or preterm birth have led to use of rodent models to advanced understanding of the mechanism for prepartum cervix remodeling. The critical transition from a soft cervix to a compliant prepartum lower uterine segment has only recently been recognized to occur in various mammalian species when progesterone in circulation is at or near the peak of pregnancy in preparation for birth. In rodents, characterization of ripening resembles an inflammatory process with a temporal coincidence of decreased density of cell nuclei, decline in cross-linked extracellular collagen, and increased presence of macrophages in the cervix. Although a role for inflammation in parturition and cervix remodeling is not a new concept, a comprehensive examination of literature in this review reveals that many conclusions are drawn from comparisons before and after ripening has occurred, not during the process. The present review focuses on essential phenotypes and functions of resident myeloid and possibly other immune cells to bridge the gap with evidence that specific biomarkers may assess the progress of ripening both at term and with preterm birth. Moreover, use of endpoints to determine the effectiveness of various therapeutic approaches to forestall remodeling and reduce risks for preterm birth, or facilitate ripening to promote parturition will improve the postpartum well-being of mothers and newborns.
Collapse
Affiliation(s)
- Steven M Yellon
- Department of Basic Sciences, Longo Center for Perinatal Biology, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
19
|
Pavlidis I, Spiller OB, Sammut Demarco G, MacPherson H, Howie SEM, Norman JE, Stock SJ. Cervical epithelial damage promotes Ureaplasma parvum ascending infection, intrauterine inflammation and preterm birth induction in mice. Nat Commun 2020; 11:199. [PMID: 31924800 PMCID: PMC6954262 DOI: 10.1038/s41467-019-14089-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 12/13/2019] [Indexed: 12/18/2022] Open
Abstract
Around 40% of preterm births are attributed to ascending intrauterine infection, and Ureaplasma parvum (UP) is commonly isolated in these cases. Here we present a mouse model of ascending UP infection that resembles human disease, using vaginal inoculation combined with mild cervical injury induced by a common spermicide (Nonoxynol-9, as a surrogate for any mechanism of cervical epithelial damage). We measure bacterial load in a non-invasive manner using a luciferase-expressing UP strain, and post-mortem by qPCR and bacterial titration. Cervical exposure to Nonoxynol-9, 24 h pre-inoculation, facilitates intrauterine UP infection, upregulates pro-inflammatory cytokines, and increases preterm birth rates from 13 to 28%. Our results highlight the crucial role of the cervical epithelium as a barrier against ascending infection. In addition, we expect the mouse model will facilitate further research on the potential links between UP infection and preterm birth.
Collapse
Affiliation(s)
- Ioannis Pavlidis
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Cresent, Edinburgh, EH16 4TJ, UK.
| | - Owen B Spiller
- Division of Infection and Immunity, School of Medicine, Cardiff University, 6th floor University Hospital of Wales, Cardiff, CF14 4XN, UK.
| | - Gabriella Sammut Demarco
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Cresent, Edinburgh, EH16 4TJ, UK
| | - Heather MacPherson
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Cresent, Edinburgh, EH16 4TJ, UK
| | - Sarah E M Howie
- MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Cresent, Edinburgh, EH16 4TJ, UK
| | - Jane E Norman
- Faculty of Health Sciences, University of Bristol, 5 Tyndall avenue, Bristol, BS8 1UD, UK
| | - Sarah J Stock
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Cresent, Edinburgh, EH16 4TJ, UK.
- Usher Institute, University of Edinburgh, NINE Edinburgh BioQuarter, Edinburgh, EH16 4UX, UK.
| |
Collapse
|
20
|
Zierden HC, Ortiz Ortiz JI, Dimitrion P, Laney V, Bensouda S, Anders NM, Scardina M, Hoang T, Ronnett BM, Hanes J, Burd I, Mahendroo M, Ensign LM. Characterization of an Adapted Murine Model of Intrauterine Inflammation-Induced Preterm Birth. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:295-305. [PMID: 31837289 DOI: 10.1016/j.ajpath.2019.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/11/2019] [Accepted: 10/03/2019] [Indexed: 11/17/2022]
Abstract
Preterm birth (PTB) affects nearly 15 million infants each year. Of these PTBs, >25% are a result of inflammation or infection. Animal models have improved our understanding of the mechanisms leading to PTB. Prior work has described induction of intrauterine inflammation in mice with a single injection of lipopolysaccharide (LPS). Herein, we have improved the reproducibility and potency of LPS in the model using two injections distal to the cervix. An in vivo imaging system revealed more uniform distribution of Evans Blue Dye using a double distal injection (DDI) approach compared with a single proximal injection (SPI). Endotoxin concentrations in vaginal lavage fluid from SPI dams were significantly higher than from DDI dams. At equivalent LPS doses, DDI consistently induced more PTB than SPI, and DDI showed a linear dose-response, whereas SPI did not. Gene expression in myometrial tissue revealed increased levels of inflammatory markers in dams that received LPS DDI compared with LPS SPI. The SPI group showed more significant overexpression in cervical remodeling genes, likely due to the leakage of LPS from the uterine horns through the cervix. The more reliable PTB induction and uniform uterine exposure provided by this new model will be useful for further studying fetal outcomes and potential therapeutics for the prevention of inflammation-induced PTB.
Collapse
Affiliation(s)
- Hannah C Zierden
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Jairo I Ortiz Ortiz
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Peter Dimitrion
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victoria Laney
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sabrine Bensouda
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nicole M Anders
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Morgan Scardina
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thuy Hoang
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brigitte M Ronnett
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Justin Hanes
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Irina Burd
- Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Laura M Ensign
- The Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland; Department of Ophthalmology, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland; The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Division of Maternal Fetal Medicine, Department of Gynecology and Obstetrics, Integrated Research Center for Fetal Medicine, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
21
|
Boeckel SRV, Hrabalkova L, Baker TL, MacPherson H, Frew L, Boyle AK, McHugh BJ, Wilson K, Norman JE, Dorin JR, Davidson DJ, Stock SJ. Cathelicidins and the Onset of Labour. Sci Rep 2019; 9:7356. [PMID: 31089176 PMCID: PMC6517412 DOI: 10.1038/s41598-019-43766-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 05/01/2019] [Indexed: 01/07/2023] Open
Abstract
Preterm birth, defined as delivery before 37 weeks of gestation, is the leading cause of neonatal mortality and morbidity. Infection and inflammation are frequent antecedents of spontaneous preterm birth. Cathelicidin, an antimicrobial host defence peptide, is induced by infection and inflammation and although expressed in the reproductive tract and fetal tissues, its role in the pathogenesis of spontaneous preterm birth is unknown. Here we demonstrate that cathelicidin expression is increased at RNA and protein level in the mouse uterus in a model of inflammation-induced labour, where ultrasound guided intrauterine injection of lipopolysaccharide (LPS) at E17 stimulates preterm delivery within 24 hours. Cathelicidin-deficient (Camp−/−) mice are less susceptible to preterm delivery than wild type mice following intrauterine injection of 1 μg of LPS, and this is accompanied by a decrease in circulating IL-6, an inflammatory mediator implicated in the onset of labour. We also show that the proportion of cathelicidin expressing cells in the myometrium is higher in samples obtained from women in labour at term than pre-labour. Together, these data suggest that cathelicidin has roles in mediating pro-inflammatory responses in a murine model of inflammation-induced labour, and in human term labour.
Collapse
Affiliation(s)
- Sara R van Boeckel
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Lenka Hrabalkova
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Tina L Baker
- University of Edinburgh Centre for Inflammation Research, QMRI, Edinburgh, United Kingdom
| | - Heather MacPherson
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Lorraine Frew
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Ashley K Boyle
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Brian J McHugh
- University of Edinburgh Centre for Inflammation Research, QMRI, Edinburgh, United Kingdom
| | - Kirsten Wilson
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom
| | - Julia R Dorin
- University of Edinburgh Centre for Inflammation Research, QMRI, Edinburgh, United Kingdom
| | - Donald J Davidson
- University of Edinburgh Centre for Inflammation Research, QMRI, Edinburgh, United Kingdom
| | - Sarah J Stock
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive Health, University of Edinburgh, QMRI, Edinburgh, United Kingdom.
| |
Collapse
|
22
|
Kim YY, Choi BB, Lim JW, Kim YJ, Kim SY, Ku SY. Efficient Production of Murine Uterine Damage Model. Tissue Eng Regen Med 2019; 16:119-129. [PMID: 30989039 PMCID: PMC6439075 DOI: 10.1007/s13770-018-0149-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/13/2018] [Accepted: 07/23/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Thin or damaged endometrium causes uterine factor-derived infertility resulting in a failure of embryonic implantation. Regeneration of endometrium is a major issue in gynecology and reproductive medicine. Various types of cells and scaffolds were studied to establish an effective therapeutic strategy. For this type of investigations, production of optimal animal models is indispensable. In this study, we tried to establish various murine uterine damage models and compared their features. METHODS Three to ten-week-old C57BL/6 female mice were anesthetized using isoflurane. Chemical and mechanical methods using ethanol (EtOH) at 70 or 100% and copper scraper were compared to determine the most efficient condition. Damage of uterine tissue was induced either by vaginal or dorsal surgical approach. After 7-10 days, gross and microscopic morphology, safety and efficiency were compared among the groups. RESULTS Both chemical and mechanical methods resulted in thinner endometrium and reduced number of glands. Gross morphology assessment revealed that the damaged regions of uteri showed various shapes including shrinkage or cystic dilatation of uterine horns. The duration of anesthesia significantly affected recovery after procedure. Uterine damage was most effectively induced by dorsal approach using 100% EtOH treatment compared to mechanical methods. CONCLUSION Taken together, murine uterine damage models were most successfully established by chemical treatment. This production protocols could be applied further to larger animals such as non-human primate.
Collapse
Affiliation(s)
- Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Bo Bin Choi
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Ji Won Lim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Yong Jin Kim
- Department of Obstetrics and Gynecology, Korea University Guro Hospital, 148 Gurodong-ro, Guro-gu, Seoul, 08308 Republic of Korea
| | - Sung Yob Kim
- Department of Obstetrics and Gynecology, Jeju National University School of Medicine, 15 Aran 13-gil, Jeju-si, Jeju-do 63241 Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| |
Collapse
|
23
|
Boyle AK, Rinaldi SF, Rossi AG, Saunders PTK, Norman JE. Repurposing simvastatin as a therapy for preterm labor: evidence from preclinical models. FASEB J 2018; 33:2743-2758. [PMID: 30312114 PMCID: PMC6338657 DOI: 10.1096/fj.201801104r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Preterm birth (PTB), the leading cause of neonatal morbidity and mortality, urgently requires novel therapeutic agents. Spontaneous PTB, resulting from preterm labor, is commonly caused by intrauterine infection/inflammation. Statins are well-established, cholesterol-lowering drugs that can reduce inflammation and inhibit vascular smooth muscle contraction. We show that simvastatin reduced the incidence of PTB in a validated intrauterine LPS-induced PTB mouse model, decreased uterine proinflammatory mRNA concentrations (IL-6, Cxcl1, and Ccl2), and reduced serum IL-6 concentration. In human myometrial cells, simvastatin reduced proinflammatory mediator mRNA and protein expression (IL-6 and IL-8) and increased anti-inflammatory cytokine mRNA expression (IL-10 and IL-13). Critically, simvastatin inhibited myometrial cell contraction, basally and during inflammation, and reduced phosphorylated myosin light chain concentration. Supplementation with mevalonate and geranylgeranyl pyrophosphate, but not farnesyl pyrophosphate, abolished these anticontractile effects, indicating that the Rho/Rho-associated protein kinase pathway is critically involved. Thus, simvastatin reduces PTB incidence in mice, inhibits myometrial contractions, and exhibits key anti-inflammatory effects, providing a rationale for investigation into the repurposing of statins to treat preterm labor in women.—Boyle, A. K., Rinaldi, S. F., Rossi, A. G., Saunders, P. T. K., Norman, J. E. Repurposing simvastatin as a therapy for preterm labor: evidence from preclinical models.
Collapse
Affiliation(s)
- Ashley K Boyle
- Tommy's Centre for Maternal and Fetal Health, Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Sara F Rinaldi
- Tommy's Centre for Maternal and Fetal Health, Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Adriano G Rossi
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Philippa T K Saunders
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health, Medical Research Council (MRC) Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| |
Collapse
|
24
|
Suff N, Karda R, Diaz JA, Ng J, Baruteau J, Perocheau D, Tangney M, Taylor PW, Peebles D, Buckley SMK, Waddington SN. Ascending Vaginal Infection Using Bioluminescent Bacteria Evokes Intrauterine Inflammation, Preterm Birth, and Neonatal Brain Injury in Pregnant Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2164-2176. [PMID: 30036519 PMCID: PMC6168615 DOI: 10.1016/j.ajpath.2018.06.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/11/2022]
Abstract
Preterm birth is a serious global health problem and the leading cause of infant death before 5 years of age. At least 40% of cases are associated with infection. The most common way for pathogens to access the uterine cavity is by ascending from the vagina. Bioluminescent pathogens have revolutionized the understanding of infectious diseases. We hypothesized that bioluminescent Escherichia coli can be used to track and monitor ascending vaginal infections. Two bioluminescent strains were studied: E. coli K12 MG1655-lux, a nonpathogenic laboratory strain, and E. coli K1 A192PP-lux2, a pathogenic strain capable of causing neonatal meningitis and sepsis in neonatal rats. On embryonic day 16, mice received intravaginal E. coli K12, E. coli K1, or phosphate-buffered saline followed by whole-body bioluminescent imaging. In both cases, intravaginal delivery of E. coli K12 or E. coli K1 led to bacterial ascension into the uterine cavity, but only E. coli K1 induced preterm parturition. Intravaginal administration of E. coli K1 significantly reduced the proportion of pups born alive compared with E. coli K12 and phosphate-buffered saline controls. However, in both groups of viable pups born after bacterial inoculation, there was evidence of comparable brain inflammation by postnatal day 6. This study ascribes specific mechanisms by which exposure to intrauterine bacteria leads to premature delivery and neurologic inflammation in neonates.
Collapse
Affiliation(s)
- Natalie Suff
- Gene Transfer Technology Group, University College London, London, United Kingdom; Preterm Birth Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| | - Rajvinder Karda
- Gene Transfer Technology Group, University College London, London, United Kingdom
| | - Juan A Diaz
- Gene Transfer Technology Group, University College London, London, United Kingdom
| | - Joanne Ng
- Gene Transfer Technology Group, University College London, London, United Kingdom
| | - Julien Baruteau
- Gene Transfer Technology Group, University College London, London, United Kingdom; Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Dany Perocheau
- Gene Transfer Technology Group, University College London, London, United Kingdom
| | - Mark Tangney
- SynBio Centre, University College Cork, Cork, Ireland
| | - Peter W Taylor
- School of Pharmacy, University College London, London, United Kingdom
| | - Donald Peebles
- Preterm Birth Group, Department of Maternal and Fetal Medicine, Institute for Women's Health, University College London, London, United Kingdom
| | - Suzanne M K Buckley
- Gene Transfer Technology Group, University College London, London, United Kingdom.
| | - Simon N Waddington
- Gene Transfer Technology Group, University College London, London, United Kingdom; MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
25
|
Pan J, Zhan C, Yuan T, Wang W, Shen Y, Sun Y, Wu T, Gu W, Chen L, Yu H. Effects and molecular mechanisms of intrauterine infection/inflammation on lung development. Respir Res 2018; 19:93. [PMID: 29747649 PMCID: PMC5946538 DOI: 10.1186/s12931-018-0787-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Intrauterine infection/inflammation plays an important role in the development of lung injury and bronchopulmonary dysplasia (BPD) in preterm infants, While a multifactorial genesis is likely, mechanisms involved in BPD after intrauterine infection/inflammation are largely unknown. Recent studies have suggested microRNAs (miRNAs) are likely to play a role. Therefore, this study aimed to study the effects and mechanisms of intrauterine infection/inflammation on lung development, and to identify miRNAs related to lung injury and BPD. METHODS An animal model of intrauterine infection/inflammation was established with pregnant SD rats endocervically inoculated with E.coli. The fetal and neonatal rats were observed at embryonic day (E) 17, 19, 21 and postnatal day (P) 1, 3, 7, 14, respectively. Body weight, lung weight, the expression levels of NLRP3, TNF-α, IL-lβ, IL-6, VEGF, Collagen I, SP-A, SP-B and SP-C in the lung tissues of fetal and neonatal rats were measured. Expression profiles of 1218 kinds of miRNAs in the lungs of neonatal rats were detected by miRNA microarray technique. Target genes of the identified miRNAs were predicted through online software. RESULTS Intrauterine infection/inflammation compromised not only weight development but also lung development of the fetal and neonatal rats. The results showed significantly increased expression of NLRP3, TNF-α, IL-1β, IL-6, Collagen I, and significantly decreased expression of VEGF, SP-A, SP-B and SP-C in the fetal and neonatal rat lung tissues in intrauterine infection group compared to the control group at different observation time point (P < 0.05). Forty-three miRNAs with significant differential expression were identified. Possible target genes regulated by the identified miRNAs are very rich. CONCLUSIONS Intrauterine infection/inflammation results in lung histological changes which are very similar to those observed in BPD. Possible mechanisms may include NLRP3 inflammasome activation followed by inflammatory cytokines expression up-regulated, inhibiting the expression of pulmonary surfactant proteins, interfering with lung interstitial development. There are many identified miRNAs which target a wide range of genes and may play an important role in the processes of lung injury and BPD.
Collapse
Affiliation(s)
- Jiarong Pan
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Canyang Zhan
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Tianming Yuan
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Weiyan Wang
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Ying Shen
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Yi Sun
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Tai Wu
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Weizhong Gu
- Zhejiang Key Laboratory for Diagnosis and Therapy of Neonatal Disease, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Lihua Chen
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| | - Huimin Yu
- Department of Neonatology, Children’s Hospital, Zhejiang University School of Medicine, 3333 Binsheng Road, Hangzhou, Zhejiang, 310052 People’s Republic of China
| |
Collapse
|
26
|
Nallasamy S, Akins M, Tetreault B, Luby-Phelps K, Mahendroo M. Distinct reorganization of collagen architecture in lipopolysaccharide-mediated premature cervical remodeling. Biol Reprod 2018; 98:63-74. [PMID: 29161343 PMCID: PMC5803761 DOI: 10.1093/biolre/iox155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 11/13/2022] Open
Abstract
Previous work has identified divergent mechanisms by which cervical remodeling is achieved in preterm birth (PTB) induced by hormone withdrawal (mifepristone) or lipopolysaccharide (LPS). Our current study aims to document how collagen architecture is modified to achieve premature cervical remodeling in mice treated with LPS as a model of infection-induced inflammation. Cervices were collected on gestation day (d) 15 from mice with premature cervical ripening induced by LPS and compared to d15 and d18 controls as well as a hormone withdrawal PTB model. Second harmonic generation (SHG) and electron microscopy were utilized for visualization of collagen morphology and ultrastructure. LPS-mediated premature cervical ripening is characterized by unique structural changes in collagen fiber morphology. LPS treatment increased the interfibrillar spacing of collagen fibrils. A preferential disruption of collagen fiber architecture in the subepithelial region compared to midstroma region was evidenced by increased pores lacking collagen signal in SHG images in the LPS-treated mice. Coinciding with this alteration, the infiltration of neutrophils was concentrated in the subepithelial stromal region as compared to midstromal region implicating the potential role of immune cells to extracellular matrix reorganization in inflammation-induced preterm cervical ripening. The current study demonstrates a preferential disorganization of collagen interfibrillar spacing and collagen fiber structure in LPS-mediated ripening.
Collapse
Affiliation(s)
- Shanmugasundaram Nallasamy
- Department of Obstetrics and Gynecology and Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Meredith Akins
- Department of Obstetrics and Gynecology and Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Breanna Tetreault
- Department of Obstetrics and Gynecology and Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kate Luby-Phelps
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mala Mahendroo
- Department of Obstetrics and Gynecology and Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
27
|
van Boeckel SR, Davidson DJ, Norman JE, Stock SJ. Cell-free fetal DNA and spontaneous preterm birth. Reproduction 2017; 155:R137-R145. [PMID: 29269517 PMCID: PMC5812054 DOI: 10.1530/rep-17-0619] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/21/2017] [Indexed: 12/17/2022]
Abstract
Inflammation is known to play a key role in preterm and term parturition. Cell-free fetal DNA (cff-DNA) is present in the maternal circulation and increases with gestational age and some pregnancy complications (e.g. preterm birth, preeclampsia). Microbial DNA and adult cell-free DNA can be pro-inflammatory through DNA-sensing mechanisms such as Toll-like receptor 9 and the Stimulator of Interferon Genes (STING) pathway. However, the pro-inflammatory properties of cff-DNA, and the possible effects of this on pregnancy and parturition are unknown. Clinical studies have quantified cff-DNA levels in the maternal circulation in women who deliver preterm and women who deliver at term and show an association between preterm labor and higher cff-DNA levels in the 2nd, 3rd trimester and at onset of preterm birth symptoms. Together with potential pro-inflammatory properties of cff-DNA, this rise suggests a potential mechanistic role in the pathogenesis of spontaneous preterm birth. In this review, we discuss the evidence linking cff-DNA to adverse pregnancy outcomes, including preterm birth, obtained from preclinical and clinical studies.
Collapse
Affiliation(s)
- Sara R van Boeckel
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive HealthUniversity of Edinburgh, QMRI, Edinburgh, UK
| | - Donald J Davidson
- MRC Centre for Inflammation ResearchUniversity of Edinburgh, QMRI, Edinburgh, UK
| | - Jane E Norman
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive HealthUniversity of Edinburgh, QMRI, Edinburgh, UK
| | - Sarah J Stock
- Tommy's Centre for Maternal and Fetal Health at the MRC Centre for Reproductive HealthUniversity of Edinburgh, QMRI, Edinburgh, UK
| |
Collapse
|
28
|
Lombardi A, Makieva S, Rinaldi SF, Arcuri F, Petraglia F, Norman JE. Expression of Matrix Metalloproteinases in the Mouse Uterus and Human Myometrium During Pregnancy, Labor, and Preterm Labor. Reprod Sci 2017; 25:938-949. [PMID: 28950743 DOI: 10.1177/1933719117732158] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Uterine extracellular matrix (ECM) remodeling occurs throughout pregnancy and at parturition. Imbalanced availability of key mediators in ECM degradation, namely, matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), is implicated in the pathogenesis of preterm labor (PTL). OBJECTIVES Examine the expression of MMPs and their inhibitors TIMPs in (a) the mouse uterus throughout normal gestation, at labor, and during inflammation-induced PTL and (b) the human term and preterm myometrium. METHODS The expression of Mmp-2/9/3/10 and Timp-1/2 was determined in the uterus of C57BL/6 mice (n = 6/group) during pregnancy (on days (d) 5, 8, 12, 15, 17, and 18), at normal labor, and during lipopolysaccharide-induced PTL (n = 6/group). The expression of MMP-10 and TIMP-1 was determined in human term and preterm myometrium before the onset of labor (TNL, n = 7; PTNL, n = 7) and during active labor (TL, n = 8; PTL, n = 8). Gene expression and tissue localization were assessed by quantitative polymerase chain reaction and immunohistochemistry, respectively. RESULTS Mmp-10 was higher during murine labor (53-fold vs early pregnancy) in contrast to Mmp-2/3/9 and Timp-1, the expression of which reached a nadir at labor ( P < .001 vs d5 [ Mmp-2/ 9] or P < .05 vs d8 [ Mmp-3 and Timp-1]). The Mmp-3/10 and Timp-1 were localized to the uterine epithelium and stroma/myometrium. In the human myometrium, TIMP-1 messenger RNA was higher and MMP-10 was lower in TL versus TNL ( P < .05), PTL ( P < .001), and PTNL ( P < .001). MMP-10 and TIMP-1 were localized to the myometrial smooth muscle cells, interstitial fibroblasts, and inflammatory cells. CONCLUSIONS These data implicate MMP-3, TIMP-1, and MMP-10 in the uterine ECM remodeling during physiological and pathological parturition.
Collapse
Affiliation(s)
- Annalia Lombardi
- 1 Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Sofia Makieva
- 2 Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sara F Rinaldi
- 2 Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Felice Arcuri
- 1 Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Felice Petraglia
- 1 Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Jane E Norman
- 2 Tommy's Centre for Maternal and Fetal Health, MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Gomez-Lopez N, Romero R, Arenas-Hernandez M, Panaitescu B, Garcia-Flores V, Mial TN, Sahi A, Hassan SS. Intra-amniotic administration of lipopolysaccharide induces spontaneous preterm labor and birth in the absence of a body temperature change. J Matern Fetal Neonatal Med 2017; 31:439-446. [PMID: 28139962 DOI: 10.1080/14767058.2017.1287894] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Intra-amniotic infection is associated with spontaneous preterm labor. In most cases, the infection is subclinical and bacteria are detected in the amniotic cavity rather than in the chorioamniotic membranes. The aims of this study were to establish a model of intra-amniotic lipopolysaccharide (LPS)-induced preterm labor/birth that resembles the subclinical syndrome and to compare this model to two established models of LPS-induced preterm labor/birth. METHODS Pregnant B6 mice received an intra-amniotic, intra-uterine, or intra-peritoneal injection of LPS (100 ng/amniotic sac, 15 μg/25 μL, and 15 μg/200 μL respectively) or PBS (control). Following injection, body temperature (every two hours for a 12-h period), gestational age, and the rate of preterm labor/birth were recorded. RESULTS An intra-amniotic injection of LPS resulted in preterm labor/birth [LPS 80 ± 24.79% (8/10) versus PBS 0% (0/8); p = 0.001] without causing maternal hypothermia. Intra-peritoneal [LPS 100% (8/8) versus PBS 0% (0/8); p < 0.001)] and intra-uterine [LPS 100% (8/8) versus PBS 28.57 ± 33.47% (2/7); p =0 .007] injections of LPS induced preterm labor/birth; yet, maternal hypothermia was observed. CONCLUSION Intra-amniotic injection of LPS induces preterm labor/birth in the absence of a body temperature change, which resembles the subclinical syndrome.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- a Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research , Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services , Bethesda , MD , and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA.,c Department of Immunology and Microbiology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Roberto Romero
- a Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research , Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services , Bethesda , MD , and Detroit , MI , USA.,d Department of Obstetrics and Gynecology , University of Michigan , Ann Arbor , MI , USA.,e Department of Epidemiology and Biostatistics , Michigan State University , East Lansing , MI , USA.,f Center for Molecular Medicine and Genetics , Wayne State University , Detroit , MI , USA
| | - Marcia Arenas-Hernandez
- a Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research , Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services , Bethesda , MD , and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Bogdan Panaitescu
- a Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research , Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services , Bethesda , MD , and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Valeria Garcia-Flores
- a Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research , Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services , Bethesda , MD , and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Tara N Mial
- a Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research , Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services , Bethesda , MD , and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Aashna Sahi
- b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| | - Sonia S Hassan
- a Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research , Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services , Bethesda , MD , and Detroit , MI , USA.,b Department of Obstetrics and Gynecology , Wayne State University School of Medicine , Detroit , MI , USA
| |
Collapse
|
30
|
Cappelletti M, Della Bella S, Ferrazzi E, Mavilio D, Divanovic S. Inflammation and preterm birth. J Leukoc Biol 2016; 99:67-78. [DOI: 10.1189/jlb.3mr0615-272rr] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Preterm birth is the leading cause of neonatal morbidity and mortality. Although the underlying causes of pregnancy-associated complication are numerous, it is well established that infection and inflammation represent a highly significant risk factor in preterm birth. However, despite the clinical and public health significance, infectious agents, molecular trigger(s), and immune pathways underlying the pathogenesis of preterm birth remain underdefined and represent a major gap in knowledge. Here, we provide an overview of recent clinical and animal model data focused on the interplay between infection-driven inflammation and induction of preterm birth. Furthermore, here, we highlight the critical gaps in knowledge that warrant future investigations into the interplay between immune responses and induction of preterm birth.
Collapse
Affiliation(s)
- Monica Cappelletti
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, and the University of Cincinnati College of Medicine , Cincinnati, Ohio , USA
| | - Silvia Della Bella
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Enrico Ferrazzi
- Department of Woman, Mother and Neonate, Buzzi Childrenˈs Hospital, Biomedical and Clinical Sciences School of Medicine, University of Milan , Italy
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center , Rozzano , Italy
| | - Senad Divanovic
- Division of Immunobiology, Cincinnati Children’s Hospital Research Foundation, and the University of Cincinnati College of Medicine , Cincinnati, Ohio , USA
| |
Collapse
|