BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Li A, King J, Moro A, Sugi MD, Dawson DW, Kaplan J, Li G, Lu X, Strieter RM, Burdick M, Go VL, Reber HA, Eibl G, Hines OJ. Overexpression of CXCL5 is associated with poor survival in patients with pancreatic cancer. Am J Pathol. 2011;178:1340-1349. [PMID: 21356384 DOI: 10.1016/j.ajpath.2010.11.058] [Cited by in Crossref: 103] [Cited by in F6Publishing: 99] [Article Influence: 10.3] [Reference Citation Analysis]
Number Citing Articles
1 Kowalczuk O, Burzykowski T, Niklinska WE, Kozlowski M, Chyczewski L, Niklinski J. CXCL5 as a potential novel prognostic factor in early stage non-small cell lung cancer: results of a study of expression levels of 23 genes. Tumour Biol 2014;35:4619-28. [PMID: 24500664 DOI: 10.1007/s13277-014-1605-x] [Cited by in Crossref: 30] [Cited by in F6Publishing: 34] [Article Influence: 4.3] [Reference Citation Analysis]
2 Lenk L, Pein M, Will O, Gomez B, Viol F, Hauser C, Egberts JH, Gundlach JP, Helm O, Tiwari S, Weiskirchen R, Rose-John S, Röcken C, Mikulits W, Wenzel P, Schneider G, Saur D, Schäfer H, Sebens S. The hepatic microenvironment essentially determines tumor cell dormancy and metastatic outgrowth of pancreatic ductal adenocarcinoma. Oncoimmunology 2017;7:e1368603. [PMID: 29296518 DOI: 10.1080/2162402X.2017.1368603] [Cited by in Crossref: 19] [Cited by in F6Publishing: 13] [Article Influence: 4.8] [Reference Citation Analysis]
3 Zhang H, Xia W, Lu X, Sun R, Wang L, Zheng L, Ye Y, Bao Y, Xiang Y, Guo X. A novel statistical prognostic score model that includes serum CXCL5 levels and clinical classification predicts risk of disease progression and survival of nasopharyngeal carcinoma patients. PLoS One 2013;8:e57830. [PMID: 23469080 DOI: 10.1371/journal.pone.0057830] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 1.8] [Reference Citation Analysis]
4 Hao F, Xu Q, Zhao Y, Stevens JV, Young SH, Sinnett-Smith J, Rozengurt E. Insulin Receptor and GPCR Crosstalk Stimulates YAP via PI3K and PKD in Pancreatic Cancer Cells. Mol Cancer Res. 2017;15:929-941. [PMID: 28360038 DOI: 10.1158/1541-7786.mcr-17-0023] [Cited by in Crossref: 26] [Cited by in F6Publishing: 19] [Article Influence: 6.5] [Reference Citation Analysis]
5 Vinader V, Afarinkia K. The emerging role of CXC chemokines and their receptors in cancer. Future Med Chem. 2012;4:853-867. [PMID: 22571611 DOI: 10.4155/fmc.12.48] [Cited by in Crossref: 19] [Cited by in F6Publishing: 21] [Article Influence: 2.1] [Reference Citation Analysis]
6 Feng X, Zhang D, Li X, Ma S, Zhang C, Wang J, Li Y, Liang L, Zhang P, Qu Y, Zhang Z, Yang Z, Xiang Y, Zhang W, Wang S, Shao W, Wang W. CXCL5, the upregulated chemokine in patients with uterine cervix cancer, in vivo and in vitro contributes to oncogenic potential of Hela uterine cervix cancer cells. Biomed Pharmacother 2018;107:1496-504. [PMID: 30257367 DOI: 10.1016/j.biopha.2018.08.149] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
7 Maeda S, Kuboki S, Nojima H, Shimizu H, Yoshitomi H, Furukawa K, Miyazaki M, Ohtsuka M. Duffy antigen receptor for chemokines (DARC) expressing in cancer cells inhibits tumor progression by suppressing CXCR2 signaling in human pancreatic ductal adenocarcinoma. Cytokine 2017;95:12-21. [PMID: 28214673 DOI: 10.1016/j.cyto.2017.02.007] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
8 Kuo TL, Weng CC, Kuo KK, Chen CY, Wu DC, Hung WC, Cheng KH. APC haploinsufficiency coupled with p53 loss sufficiently induces mucinous cystic neoplasms and invasive pancreatic carcinoma in mice. Oncogene 2016;35:2223-34. [PMID: 26411367 DOI: 10.1038/onc.2015.284] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
9 Wang S, Wu Y, Hou Y, Guan X, Castelvetere MP, Oblak JJ, Banerjee S, Filtz TM, Sarkar FH, Chen X, Jena BP, Li C. CXCR2 macromolecular complex in pancreatic cancer: a potential therapeutic target in tumor growth. Transl Oncol 2013;6:216-25. [PMID: 23544174 DOI: 10.1593/tlo.13133] [Cited by in Crossref: 32] [Cited by in F6Publishing: 28] [Article Influence: 4.0] [Reference Citation Analysis]
10 Rossant CJ, Carroll D, Huang L, Elvin J, Neal F, Walker E, Benschop JJ, Kim EE, Barry ST, Vaughan TJ. Phage display and hybridoma generation of antibodies to human CXCR2 yields antibodies with distinct mechanisms and epitopes. MAbs 2014;6:1425-38. [PMID: 25484064 DOI: 10.4161/mabs.34376] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.7] [Reference Citation Analysis]
11 Qiu WZ, Zhang HB, Xia WX, Ke LR, Yang J, Yu YH, Liang H, Huang XJ, Liu GY, Li WZ, Xiang YQ, Kang TB, Guo X, Lv X. The CXCL5/CXCR2 axis contributes to the epithelial-mesenchymal transition of nasopharyngeal carcinoma cells by activating ERK/GSK-3β/snail signalling. J Exp Clin Cancer Res 2018;37:85. [PMID: 29665837 DOI: 10.1186/s13046-018-0722-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
12 Zheng X, Liu X, Zheng H, Wang H, Hong D. Integrated bioinformatics analysis identified COL11A1 as an immune infiltrates correlated prognosticator in pancreatic adenocarcinoma. Int Immunopharmacol 2021;90:106982. [PMID: 33129696 DOI: 10.1016/j.intimp.2020.106982] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Carneiro-Lobo TC, Scalabrini LC, Magalhães LDS, Cardeal LB, Rodrigues FS, Dos Santos EO, Baldwin AS, Levantini E, Giordano RJ, Bassères DS. IKKβ targeting reduces KRAS-induced lung cancer angiogenesis in vitro and in vivo: A potential anti-angiogenic therapeutic target. Lung Cancer 2019;130:169-78. [PMID: 30885340 DOI: 10.1016/j.lungcan.2019.02.027] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
14 Xia J, Xu X, Huang P, He M, Wang X. The potential of CXCL5 as a target for liver cancer - what do we know so far? Expert Opin Ther Targets 2015;19:141-6. [PMID: 25495348 DOI: 10.1517/14728222.2014.993317] [Cited by in Crossref: 11] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]
15 Spurgeon ME, den Boon JA, Horswill M, Barthakur S, Forouzan O, Rader JS, Beebe DJ, Roopra A, Ahlquist P, Lambert PF. Human papillomavirus oncogenes reprogram the cervical cancer microenvironment independently of and synergistically with estrogen. Proc Natl Acad Sci U S A 2017;114:E9076-85. [PMID: 29073104 DOI: 10.1073/pnas.1712018114] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 8.0] [Reference Citation Analysis]
16 Valeta-Magara A, Hatami R, Axelrod D, Roses DF, Guth A, Formenti SC, Schneider RJ. Pro-oncogenic cytokines and growth factors are differentially expressed in the post-surgical wound fluid from malignant compared to benign breast lesions. Springerplus 2015;4:483. [PMID: 26361584 DOI: 10.1186/s40064-015-1260-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
17 Zhang X, Wang W, Mize GJ, Takayama TK, True LD, Vessella RL. Protease-activated receptor 2 signaling upregulates angiogenic growth factors in renal cell carcinoma. Exp Mol Pathol 2013;94:91-7. [PMID: 22960271 DOI: 10.1016/j.yexmp.2012.08.005] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 1.1] [Reference Citation Analysis]
18 Sepuru KM, Nagarajan B, Desai UR, Rajarathnam K. Molecular Basis of Chemokine CXCL5-Glycosaminoglycan Interactions. J Biol Chem 2016;291:20539-50. [PMID: 27471273 DOI: 10.1074/jbc.M116.745265] [Cited by in Crossref: 30] [Cited by in F6Publishing: 23] [Article Influence: 6.0] [Reference Citation Analysis]
19 Kresse SH, Rydbeck H, Skårn M, Namløs HM, Barragan-Polania AH, Cleton-Jansen AM, Serra M, Liestøl K, Hogendoorn PC, Hovig E, Myklebost O, Meza-Zepeda LA. Integrative analysis reveals relationships of genetic and epigenetic alterations in osteosarcoma. PLoS One 2012;7:e48262. [PMID: 23144859 DOI: 10.1371/journal.pone.0048262] [Cited by in Crossref: 66] [Cited by in F6Publishing: 61] [Article Influence: 7.3] [Reference Citation Analysis]
20 Vela M, Aris M, Llorente M, Garcia-Sanz JA, Kremer L. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges. Front Immunol 2015;6:12. [PMID: 25688243 DOI: 10.3389/fimmu.2015.00012] [Cited by in Crossref: 59] [Cited by in F6Publishing: 62] [Article Influence: 9.8] [Reference Citation Analysis]
21 Ding Y, Song N, Luo Y. Role of bone marrow-derived cells in angiogenesis: focus on macrophages and pericytes. Cancer Microenviron 2012;5:225-36. [PMID: 22528877 DOI: 10.1007/s12307-012-0106-y] [Cited by in Crossref: 28] [Cited by in F6Publishing: 24] [Article Influence: 3.1] [Reference Citation Analysis]
22 Eibl G, Rozengurt E. KRAS, YAP, and obesity in pancreatic cancer: A signaling network with multiple loops. Semin Cancer Biol. 2019;54:50-62. [PMID: 29079305 DOI: 10.1016/j.semcancer.2017.10.007] [Cited by in Crossref: 25] [Cited by in F6Publishing: 27] [Article Influence: 6.3] [Reference Citation Analysis]
23 Li BH, Garstka MA, Li ZF. Chemokines and their receptors promoting the recruitment of myeloid-derived suppressor cells into the tumor. Mol Immunol 2020;117:201-15. [PMID: 31835202 DOI: 10.1016/j.molimm.2019.11.014] [Cited by in Crossref: 29] [Cited by in F6Publishing: 20] [Article Influence: 14.5] [Reference Citation Analysis]
24 Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy. Nat Rev Cancer 2020;20:662-80. [PMID: 32753728 DOI: 10.1038/s41568-020-0285-7] [Cited by in Crossref: 122] [Cited by in F6Publishing: 88] [Article Influence: 122.0] [Reference Citation Analysis]
25 Soler-Cardona A, Forsthuber A, Lipp K, Ebersberger S, Heinz M, Schossleitner K, Buchberger E, Gröger M, Petzelbauer P, Hoeller C, Wagner E, Loewe R. CXCL5 Facilitates Melanoma Cell-Neutrophil Interaction and Lymph Node Metastasis. J Invest Dermatol 2018;138:1627-35. [PMID: 29474942 DOI: 10.1016/j.jid.2018.01.035] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
26 Jia X, Wei S, Xiong W. CXCL5/NF-κB Pathway as a Therapeutic Target in Hepatocellular Carcinoma Treatment. J Oncol 2021;2021:9919494. [PMID: 34194499 DOI: 10.1155/2021/9919494] [Reference Citation Analysis]
27 Zhang R, Liu Q, Peng J, Wang M, Li T, Liu J, Cui M, Zhang X, Gao X, Liao Q, Zhao Y. CXCL5 overexpression predicts a poor prognosis in pancreatic ductal adenocarcinoma and is correlated with immune cell infiltration. J Cancer 2020;11:2371-81. [PMID: 32201508 DOI: 10.7150/jca.40517] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
28 Steele CW, Jamieson NB, Evans TR, McKay CJ, Sansom OJ, Morton JP, Carter CR. Exploiting inflammation for therapeutic gain in pancreatic cancer. Br J Cancer. 2013;108:997-1003. [PMID: 23385734 DOI: 10.1038/bjc.2013.24] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 5.8] [Reference Citation Analysis]
29 Merz V, Gaule M, Zecchetto C, Cavaliere A, Casalino S, Pesoni C, Contarelli S, Sabbadini F, Bertolini M, Mangiameli D, Milella M, Fedele V, Melisi D. Targeting KRAS: The Elephant in the Room of Epithelial Cancers. Front Oncol 2021;11:638360. [PMID: 33777798 DOI: 10.3389/fonc.2021.638360] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
30 Di Ciaula A, Portincasa P. Fat, epigenome and pancreatic diseases. Interplay and common pathways from a toxic and obesogenic environment. Eur J Intern Med. 2014;25:865-873. [PMID: 25457435 DOI: 10.1016/j.ejim.2014.10.012] [Cited by in Crossref: 31] [Cited by in F6Publishing: 25] [Article Influence: 4.4] [Reference Citation Analysis]
31 Thyagarajan A, Alshehri MSA, Miller KLR, Sherwin CM, Travers JB, Sahu RP. Myeloid-Derived Suppressor Cells and Pancreatic Cancer: Implications in Novel Therapeutic Approaches. Cancers (Basel) 2019;11:E1627. [PMID: 31652904 DOI: 10.3390/cancers11111627] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 8.5] [Reference Citation Analysis]
32 Lee DH, Kim GW, Jeon YH, Yoo J, Lee SW, Kwon SH. Advances in histone demethylase KDM4 as cancer therapeutic targets. FASEB J 2020;34:3461-84. [PMID: 31961018 DOI: 10.1096/fj.201902584R] [Cited by in Crossref: 22] [Cited by in F6Publishing: 9] [Article Influence: 22.0] [Reference Citation Analysis]
33 Mo M, Li Y, Hu X. Serum CXCL5 level is associated with tumor progression in penile cancer. Biosci Rep 2021;41:BSR20202133. [PMID: 33458757 DOI: 10.1042/BSR20202133] [Reference Citation Analysis]
34 Liu K, Lai M, Wang S, Zheng K, Xie S, Wang X. Construction of a CXC Chemokine-Based Prediction Model for the Prognosis of Colon Cancer. Biomed Res Int 2020;2020:6107865. [PMID: 32337262 DOI: 10.1155/2020/6107865] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
35 Wang T, Chen B, Meng T, Liu Z, Wu W. Identification and immunoprofiling of key prognostic genes in the tumor microenvironment of hepatocellular carcinoma. Bioengineered 2021;12:1555-75. [PMID: 33955820 DOI: 10.1080/21655979.2021.1918538] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
36 Guan Z, Li C, Fan J, He D, Li L. Androgen receptor (AR) signaling promotes RCC progression via increased endothelial cell proliferation and recruitment by modulating AKT → NF-κB → CXCL5 signaling. Sci Rep 2016;6:37085. [PMID: 27848972 DOI: 10.1038/srep37085] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 3.4] [Reference Citation Analysis]
37 Wörmann SM, Diakopoulos KN, Lesina M, Algül H. The immune network in pancreatic cancer development and progression. Oncogene 2014;33:2956-67. [PMID: 23851493 DOI: 10.1038/onc.2013.257] [Cited by in Crossref: 106] [Cited by in F6Publishing: 98] [Article Influence: 13.3] [Reference Citation Analysis]
38 Chung S, Chandra P, Koo JP, Shim YB. Development of a bifunctional nanobiosensor for screening and detection of chemokine ligand in colorectal cancer cell line. Biosens Bioelectron 2018;100:396-403. [PMID: 28954256 DOI: 10.1016/j.bios.2017.09.031] [Cited by in Crossref: 21] [Cited by in F6Publishing: 12] [Article Influence: 5.3] [Reference Citation Analysis]
39 Zhao Y, Zhang X, Zhao H, Wang J, Zhang Q. CXCL5 secreted from adipose tissue-derived stem cells promotes cancer cell proliferation. Oncol Lett 2018;15:1403-10. [PMID: 29434831 DOI: 10.3892/ol.2017.7522] [Cited by in F6Publishing: 9] [Reference Citation Analysis]
40 Dorr MM, Guignard R, Auger FA, Rochette PJ. The use of tissue-engineered skin to demonstrate the negative effect of CXCL5 on epidermal ultraviolet radiation-induced cyclobutane pyrimidine dimer repair efficiency. Br J Dermatol 2021;184:123-32. [PMID: 32271940 DOI: 10.1111/bjd.19117] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
41 Rapoport BL, Steel HC, Theron AJ, Smit T, Anderson R. Role of the Neutrophil in the Pathogenesis of Advanced Cancer and Impaired Responsiveness to Therapy. Molecules 2020;25:E1618. [PMID: 32244751 DOI: 10.3390/molecules25071618] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 11.0] [Reference Citation Analysis]
42 Zhou J, Xiang Y, Yoshimura T, Chen K, Gong W, Huang J, Zhou Y, Yao X, Bian X, Wang JM. The role of chemoattractant receptors in shaping the tumor microenvironment. Biomed Res Int 2014;2014:751392. [PMID: 25110692 DOI: 10.1155/2014/751392] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 2.9] [Reference Citation Analysis]
43 Hertzer KM, Donald GW, Hines OJ. CXCR2: a target for pancreatic cancer treatment? Expert Opin Ther Targets 2013;17:667-80. [PMID: 23425074 DOI: 10.1517/14728222.2013.772137] [Cited by in Crossref: 33] [Cited by in F6Publishing: 30] [Article Influence: 4.1] [Reference Citation Analysis]
44 Zhan HX, Zhou B, Cheng YG, Xu JW, Wang L, Zhang GY, Hu SY. Crosstalk between stromal cells and cancer cells in pancreatic cancer: New insights into stromal biology. Cancer Lett. 2017;392:83-93. [PMID: 28189533 DOI: 10.1016/j.canlet.2017.01.041] [Cited by in Crossref: 53] [Cited by in F6Publishing: 49] [Article Influence: 13.3] [Reference Citation Analysis]
45 Łukaszewicz-Zając M, Gryko M, Mroczko B. The role of selected chemokines and their specific receptors in pancreatic cancer. Int J Biol Markers 2018;33:141-7. [PMID: 29799354 DOI: 10.1177/1724600817753094] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
46 Choi SH, Ruggiero D, Sorice R, Song C, Nutile T, Vernon Smith A, Concas MP, Traglia M, Barbieri C, Ndiaye NC, Stathopoulou MG, Lagou V, Maestrale GB, Sala C, Debette S, Kovacs P, Lind L, Lamont J, Fitzgerald P, Tönjes A, Gudnason V, Toniolo D, Pirastu M, Bellenguez C, Vasan RS, Ingelsson E, Leutenegger AL, Johnson AD, DeStefano AL, Visvikis-Siest S, Seshadri S, Ciullo M. Six Novel Loci Associated with Circulating VEGF Levels Identified by a Meta-analysis of Genome-Wide Association Studies. PLoS Genet 2016;12:e1005874. [PMID: 26910538 DOI: 10.1371/journal.pgen.1005874] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 7.6] [Reference Citation Analysis]
47 Okabe H, Beppu T, Ueda M, Hayashi H, Ishiko T, Masuda T, Otao R, Horlad H, Mima K, Miyake K. Identification of CXCL5/ENA-78 as a factor involved in the interaction between cholangiocarcinoma cells and cancer-associated fibroblasts. Int J Cancer. 2012;131:2234-2241. [PMID: 22337081 DOI: 10.1002/ijc.27496] [Cited by in Crossref: 57] [Cited by in F6Publishing: 52] [Article Influence: 6.3] [Reference Citation Analysis]
48 Sundaram K, Rao DS, Ries WL, Reddy SV. CXCL5 stimulation of RANK ligand expression in Paget's disease of bone. Lab Invest 2013;93:472-9. [PMID: 23439434 DOI: 10.1038/labinvest.2013.5] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 2.1] [Reference Citation Analysis]
49 Rainczuk A, Rao J, Gathercole J, Stephens AN. The emerging role of CXC chemokines in epithelial ovarian cancer. Reproduction. 2012;144:303-317. [PMID: 22771929 DOI: 10.1530/rep-12-0153] [Cited by in Crossref: 28] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
50 Chen H, Wang X, Wu F, Mo X, Hu C, Wang M, Xu H, Yao C, Xia H, Lan L. Centromere protein F is identified as a novel therapeutic target by genomics profile and contributing to the progression of pancreatic cancer. Genomics 2021;113:1087-95. [PMID: 33166601 DOI: 10.1016/j.ygeno.2020.10.039] [Reference Citation Analysis]
51 Kimbara S, Kondo S. Immune checkpoint and inflammation as therapeutic targets in pancreatic carcinoma. World J Gastroenterol 2016;22:7440-52. [PMID: 27672267 DOI: 10.3748/wjg.v22.i33.7440] [Cited by in CrossRef: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
52 Kogure M, Takawa M, Cho HS, Toyokawa G, Hayashi K, Tsunoda T, Kobayashi T, Daigo Y, Sugiyama M, Atomi Y, Nakamura Y, Hamamoto R. Deregulation of the histone demethylase JMJD2A is involved in human carcinogenesis through regulation of the G(1)/S transition. Cancer Lett 2013;336:76-84. [PMID: 23603248 DOI: 10.1016/j.canlet.2013.04.009] [Cited by in Crossref: 48] [Cited by in F6Publishing: 47] [Article Influence: 6.0] [Reference Citation Analysis]
53 Takahashi M, Hori M, Ishigamori R, Mutoh M, Imai T, Nakagama H. Fatty pancreas: A possible risk factor for pancreatic cancer in animals and humans. Cancer Sci. 2018;109:3013-3023. [PMID: 30099827 DOI: 10.1111/cas.13766] [Cited by in Crossref: 26] [Cited by in F6Publishing: 26] [Article Influence: 8.7] [Reference Citation Analysis]
54 Cheng Y, Ma X, Wei Y, Wei X. Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 2019;1871:289-312. [DOI: 10.1016/j.bbcan.2019.01.005] [Cited by in Crossref: 72] [Cited by in F6Publishing: 62] [Article Influence: 36.0] [Reference Citation Analysis]
55 Crucian BE, Zwart SR, Mehta S, Uchakin P, Quiriarte HD, Pierson D, Sams CF, Smith SM. Plasma cytokine concentrations indicate that in vivo hormonal regulation of immunity is altered during long-duration spaceflight. J Interferon Cytokine Res 2014;34:778-86. [PMID: 24702175 DOI: 10.1089/jir.2013.0129] [Cited by in Crossref: 91] [Cited by in F6Publishing: 66] [Article Influence: 13.0] [Reference Citation Analysis]
56 Wu MY, Shen M, Xu MD, Yu ZY, Tao M. FOLFIRINOX regulated tumor immune microenvironment to extend the survival of patients with resectable pancreatic ductal adenocarcinoma. Gland Surg 2020;9:2125-35. [PMID: 33447563 DOI: 10.21037/gs-20-828] [Reference Citation Analysis]
57 Rosati A, Bersani S, Tavano F, Dalla Pozza E, De Marco M, Palmieri M, De Laurenzi V, Franco R, Scognamiglio G, Palaia R, Fontana A, di Sebastiano P, Donadelli M, Dando I, Medema JP, Dijk F, Welling L, di Mola FF, Pezzilli R, Turco MC, Scarpa A. Expression of the antiapoptotic protein BAG3 is a feature of pancreatic adenocarcinoma and its overexpression is associated with poorer survival. Am J Pathol 2012;181:1524-9. [PMID: 22944597 DOI: 10.1016/j.ajpath.2012.07.016] [Cited by in Crossref: 43] [Cited by in F6Publishing: 39] [Article Influence: 4.8] [Reference Citation Analysis]
58 Purohit A, Varney M, Rachagani S, Ouellette MM, Batra SK, Singh RK. CXCR2 signaling regulates KRAS(G¹²D)-induced autocrine growth of pancreatic cancer. Oncotarget. 2016;7:7280-7296. [PMID: 26771140 DOI: 10.18632/oncotarget.6906] [Cited by in Crossref: 24] [Cited by in F6Publishing: 21] [Article Influence: 4.8] [Reference Citation Analysis]
59 Andersen LMK, Wegner CS, Simonsen TG, Huang R, Gaustad JV, Hauge A, Galappathi K, Rofstad EK. Lymph node metastasis and the physicochemical micro-environment of pancreatic ductal adenocarcinoma xenografts. Oncotarget 2017;8:48060-74. [PMID: 28624797 DOI: 10.18632/oncotarget.18231] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
60 Miyazaki H, Takabe K, Yeudall WA. Chemokines, chemokine receptors and the gastrointestinal system. World J Gastroenterol. 2013;19:2847-2863. [PMID: 23704819 DOI: 10.3748/wjg.v19.i19.2847] [Cited by in CrossRef: 13] [Cited by in F6Publishing: 10] [Article Influence: 1.6] [Reference Citation Analysis]
61 Nie Y, Jiang MC, Liu C, Liu Q, Zhu X. CXCL5 Has Potential to Be a Marker for Hepatocellular Carcinoma Prognosis and Was Correlating With Immune Infiltrates. Front Oncol 2021;11:637023. [PMID: 33869023 DOI: 10.3389/fonc.2021.637023] [Reference Citation Analysis]
62 Chao T, Furth EE, Vonderheide RH. CXCR2-Dependent Accumulation of Tumor-Associated Neutrophils Regulates T-cell Immunity in Pancreatic Ductal Adenocarcinoma. Cancer Immunol Res 2016;4:968-82. [PMID: 27737879 DOI: 10.1158/2326-6066.CIR-16-0188] [Cited by in Crossref: 99] [Cited by in F6Publishing: 72] [Article Influence: 19.8] [Reference Citation Analysis]
63 Lee N, Nikfarjam M, He H. Functions of the CXC ligand family in the pancreatic tumor microenvironment. Pancreatology 2018;18:705-16. [DOI: 10.1016/j.pan.2018.07.011] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
64 Cullis J, Das S, Bar-Sagi D. Kras and Tumor Immunity: Friend or Foe? Cold Spring Harb Perspect Med. 2018;8. [PMID: 29229670 DOI: 10.1101/cshperspect.a031849] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 9.7] [Reference Citation Analysis]
65 Zhu X, Qiao Y, Liu W, Wang W, Shen H, Lu Y, Hao G, Zheng J, Tian Y. CXCL5 is a potential diagnostic and prognostic marker for bladder cancer patients. Tumour Biol 2016;37:4569-77. [PMID: 26503215 DOI: 10.1007/s13277-015-4275-4] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 2.3] [Reference Citation Analysis]
66 Forsthuber A, Lipp K, Andersen L, Ebersberger S, Graña-Castro ', Ellmeier W, Petzelbauer P, Lichtenberger BM, Loewe R. CXCL5 as Regulator of Neutrophil Function in Cutaneous Melanoma. J Invest Dermatol 2019;139:186-94. [PMID: 30009831 DOI: 10.1016/j.jid.2018.07.006] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
67 Wu K, Yu S, Liu Q, Bai X, Zheng X, Wu K. The clinical significance of CXCL5 in non-small cell lung cancer. Onco Targets Ther. 2017;10:5561-5573. [PMID: 29200871 DOI: 10.2147/ott.s148772] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 3.5] [Reference Citation Analysis]
68 Nywening TM, Belt BA, Cullinan DR, Panni RZ, Han BJ, Sanford DE, Jacobs RC, Ye J, Patel AA, Gillanders WE. Targeting both tumour-associated CXCR2+ neutrophils and CCR2+ macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 2018;67:1112-1123. [PMID: 29196437 DOI: 10.1136/gutjnl-2017-313738] [Cited by in Crossref: 139] [Cited by in F6Publishing: 127] [Article Influence: 34.8] [Reference Citation Analysis]
69 Steele CW, Karim SA, Leach JDG, Bailey P, Upstill-Goddard R, Rishi L, Foth M, Bryson S, McDaid K, Wilson Z, Eberlein C, Candido JB, Clarke M, Nixon C, Connelly J, Jamieson N, Carter CR, Balkwill F, Chang DK, Evans TRJ, Strathdee D, Biankin AV, Nibbs RJB, Barry ST, Sansom OJ, Morton JP. CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma. Cancer Cell. 2016;29:832-845. [PMID: 27265504 DOI: 10.1016/j.ccell.2016.04.014] [Cited by in Crossref: 361] [Cited by in F6Publishing: 321] [Article Influence: 72.2] [Reference Citation Analysis]
70 Litman-zawadzka A, Łukaszewicz-zając M, Mroczko B. Novel potential biomarkers for pancreatic cancer – A systematic review. Advances in Medical Sciences 2019;64:252-7. [DOI: 10.1016/j.advms.2019.02.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
71 Mochizuki K, Oishi N, Kawai M, Odate T, Tahara I, Inoue T, Kasai K, Kondo T. Expressions of IL-8 and CXCL5 in uterine endometrioid carcinomas which have frequent neutrophil infiltration and comparison to colorectal adenocarcinoma. Histol Histopathol 2020;35:1503-10. [PMID: 33185249 DOI: 10.14670/HH-18-281] [Reference Citation Analysis]
72 Xu H, Ma Y, Zhang J, Gu J, Jing X, Lu S, Fu S, Huo J. Identification and Verification of Core Genes in Colorectal Cancer. Biomed Res Int 2020;2020:8082697. [PMID: 32462020 DOI: 10.1155/2020/8082697] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
73 Yu M, Ma X, Jiang D, Wang L, Zhan Q, Zhao J. CXC chemokine ligand 5 (CXCL5) disrupted the permeability of human brain microvascular endothelial cells via regulating p38 signal. Microbiol Immunol 2021;65:40-7. [PMID: 33026667 DOI: 10.1111/1348-0421.12854] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
74 Wu L, Awaji M, Saxena S, Varney ML, Sharma B, Singh RK. IL-17-CXC Chemokine Receptor 2 Axis Facilitates Breast Cancer Progression by Up-Regulating Neutrophil Recruitment. Am J Pathol 2020;190:222-33. [PMID: 31654638 DOI: 10.1016/j.ajpath.2019.09.016] [Cited by in Crossref: 19] [Cited by in F6Publishing: 14] [Article Influence: 9.5] [Reference Citation Analysis]
75 Purohit A, Saxena S, Varney M, Prajapati DR, Kozel JA, Lazenby A, Singh RK. Host Cxcr2-Dependent Regulation of Pancreatic Cancer Growth, Angiogenesis, and Metastasis. Am J Pathol 2021;191:759-71. [PMID: 33453178 DOI: 10.1016/j.ajpath.2021.01.002] [Reference Citation Analysis]
76 Xie F, Dong D, Du N, Guo L, Ni W, Yuan H, Zhang N, Jie J, Liu G, Tai G. An 8‑gene signature predicts the prognosis of cervical cancer following radiotherapy. Mol Med Rep 2019;20:2990-3002. [PMID: 31432147 DOI: 10.3892/mmr.2019.10535] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
77 Chuang MH, Jan MS, Chang JT, Lu FJ. The Chinese medicine JC-001 enhances the chemosensitivity of Lewis lung tumors to cisplatin by modulating the immune response. BMC Complement Altern Med 2017;17:210. [PMID: 28399860 DOI: 10.1186/s12906-017-1728-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
78 Kuo PL, Huang MS, Hung JY, Chou SH, Chiang SY, Huang YF, Yang CJ, Tsai MJ, Chang WA, Hsu YL. Synergistic effect of lung tumor-associated dendritic cell-derived HB-EGF and CXCL5 on cancer progression. Int J Cancer 2014;135:96-108. [PMID: 24346967 DOI: 10.1002/ijc.28673] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 2.4] [Reference Citation Analysis]
79 Bendell J, Sharma S, Patel MR, Windsor KS, Wainberg ZA, Gordon M, Chaves J, Berlin J, Brachmann CB, Zavodovskaya M, Liu J, Thai D, Bhargava P, Shah MA, Khan SA, Starodub A. Safety and Efficacy of Andecaliximab (GS-5745) Plus Gemcitabine and Nab-Paclitaxel in Patients with Advanced Pancreatic Adenocarcinoma: Results from a Phase I Study. Oncologist 2020;25:954-62. [PMID: 32812320 DOI: 10.1634/theoncologist.2020-0474] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
80 Merath K, Mehta R, Hyer JM, Bagante F, Sahara K, Alexandrescu S, Marques HP, Aldrighetti L, Maithel SK, Pulitano C, Weiss MJ, Bauer TW, Shen F, Poultsides GA, Soubrane O, Martel G, Koerkamp BG, Guglielmi A, Itaru E, Ejaz A, Pawlik TM. Impact of body mass index on tumor recurrence among patients undergoing curative-intent resection of intrahepatic cholangiocarcinoma- a multi-institutional international analysis. Eur J Surg Oncol 2019;45:1084-91. [PMID: 30871884 DOI: 10.1016/j.ejso.2019.03.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
81 Novillo A, Gaibar M, Romero-Lorca A, Gilsanz MF, Beltrán L, Galán M, Antón B, Malón D, Moreno A, Fernández-Santander A. Efficacy of bevacizumab-containing chemotherapy in metastatic colorectal cancer and CXCL5 expression: Six case reports. World J Gastroenterol 2020;26:1979-86. [PMID: 32390708 DOI: 10.3748/wjg.v26.i16.1979] [Cited by in CrossRef: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
82 Nieto Gutierrez A, McDonald PH. GPCRs: Emerging anti-cancer drug targets. Cell Signal 2018;41:65-74. [PMID: 28931490 DOI: 10.1016/j.cellsig.2017.09.005] [Cited by in Crossref: 72] [Cited by in F6Publishing: 57] [Article Influence: 18.0] [Reference Citation Analysis]
83 Guerra-Calderas L, González-Barrios R, Herrera LA, Cantú de León D, Soto-Reyes E. The role of the histone demethylase KDM4A in cancer. Cancer Genet 2015;208:215-24. [PMID: 25633974 DOI: 10.1016/j.cancergen.2014.11.001] [Cited by in Crossref: 43] [Cited by in F6Publishing: 37] [Article Influence: 6.1] [Reference Citation Analysis]
84 Konduru AS, Lee BC, Li JD. Curcumin suppresses NTHi-induced CXCL5 expression via inhibition of positive IKKβ pathway and up-regulation of negative MKP-1 pathway. Sci Rep 2016;6:31695. [PMID: 27538525 DOI: 10.1038/srep31695] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
85 Jiang Y, Wang S, Holcomb J, Trescott L, Guan X, Hou Y, Brunzelle J, Sirinupong N, Li C, Yang Z. Crystallographic analysis of NHERF1–PLCβ3 interaction provides structural basis for CXCR2 signaling in pancreatic cancer. Biochemical and Biophysical Research Communications 2014;446:638-43. [DOI: 10.1016/j.bbrc.2014.03.028] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.3] [Reference Citation Analysis]
86 Gleeson FC, Levy MJ, Jackson RA, Murphy SJ, Halling KC, Kipp BR, Graham RP, Zhang L. Endoscopic ultrasound may be used to deliver gene expression signatures using digital mRNA detection methods to immunophenotype pancreatic ductal adenocarcinoma to facilitate personalized immunotherapy. Pancreatology 2020;20:229-38. [DOI: 10.1016/j.pan.2019.12.002] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
87 Hu B, Fan H, Lv X, Chen S, Shao Z. Prognostic significance of CXCL5 expression in cancer patients: a meta-analysis. Cancer Cell Int. 2018;18:68. [PMID: 29743818 DOI: 10.1186/s12935-018-0562-7] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
88 Bardi GT, Smith MA, Hood JL. Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine 2018;105:63-72. [PMID: 29459345 DOI: 10.1016/j.cyto.2018.02.002] [Cited by in Crossref: 57] [Cited by in F6Publishing: 55] [Article Influence: 19.0] [Reference Citation Analysis]
89 Tazzyman S, Niaz H, Murdoch C. Neutrophil-mediated tumour angiogenesis: subversion of immune responses to promote tumour growth. Semin Cancer Biol 2013;23:149-58. [PMID: 23410638 DOI: 10.1016/j.semcancer.2013.02.003] [Cited by in Crossref: 78] [Cited by in F6Publishing: 71] [Article Influence: 9.8] [Reference Citation Analysis]
90 Zheng J, Zhu X, Zhang J. CXCL5 knockdown expression inhibits human bladder cancer T24 cells proliferation and migration. Biochem Biophys Res Commun 2014;446:18-24. [PMID: 24583128 DOI: 10.1016/j.bbrc.2014.01.172] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 2.1] [Reference Citation Analysis]
91 Wang Z, Han Y, Zhang Z, Jia C, Zhao Q, Song W, Chen T, Zhang Y, Wang X. Identification of genes and signaling pathways associated with the pathogenesis of juvenile spondyloarthritis. Mol Med Rep 2018;18:1263-70. [PMID: 29901120 DOI: 10.3892/mmr.2018.9136] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
92 Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z, Huang XW, Fan J, Zhou J. Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology. 2012;56:2242-2254. [PMID: 22711685 DOI: 10.1002/hep.25907] [Cited by in Crossref: 189] [Cited by in F6Publishing: 165] [Article Influence: 23.6] [Reference Citation Analysis]
93 Li W, Jia X, Shen C, Zhang M, Xu J, Shang Y, Zhu K, Hu M, Yan Q, Qin D, Lee MS, Zhu J, Lu H, Krueger BJ, Renne R, Gao SJ, Lu C. A KSHV microRNA enhances viral latency and induces angiogenesis by targeting GRK2 to activate the CXCR2/AKT pathway. Oncotarget 2016;7:32286-305. [PMID: 27058419 DOI: 10.18632/oncotarget.8591] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
94 Zhou SL, Dai Z, Zhou ZJ, Chen Q, Wang Z, Xiao YS, Hu ZQ, Huang XY, Yang GH, Shi YH, Qiu SJ, Fan J, Zhou J. CXCL5 contributes to tumor metastasis and recurrence of intrahepatic cholangiocarcinoma by recruiting infiltrative intratumoral neutrophils. Carcinogenesis. 2014;35:597-605. [PMID: 24293410 DOI: 10.1093/carcin/bgt397] [Cited by in Crossref: 91] [Cited by in F6Publishing: 87] [Article Influence: 11.4] [Reference Citation Analysis]
95 Hua X, Chen J, Su Y, Liang C. Identification of an immune-related risk signature for predicting prognosis in clear cell renal cell carcinoma. Aging (Albany NY) 2020;12:2302-32. [PMID: 32028264 DOI: 10.18632/aging.102746] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 11.0] [Reference Citation Analysis]
96 Sepuru KM, Poluri KM, Rajarathnam K. Solution structure of CXCL5--a novel chemokine and adipokine implicated in inflammation and obesity. PLoS One 2014;9:e93228. [PMID: 24695525 DOI: 10.1371/journal.pone.0093228] [Cited by in Crossref: 22] [Cited by in F6Publishing: 17] [Article Influence: 3.1] [Reference Citation Analysis]
97 Corliss BA, Azimi MS, Munson JM, Peirce SM, Murfee WL. Macrophages: An Inflammatory Link Between Angiogenesis and Lymphangiogenesis. Microcirculation 2016;23:95-121. [PMID: 26614117 DOI: 10.1111/micc.12259] [Cited by in Crossref: 128] [Cited by in F6Publishing: 117] [Article Influence: 25.6] [Reference Citation Analysis]
98 Korkolopoulou P, Levidou G, El-Habr EA, Adamopoulos C, Samaras V, Zisakis A, Kavantzas N, Boviatsis E, Fragkou P, Papavassiliou AG, Patsouris E, Piperi C. Expression of interleukin-8 receptor CXCR2 and suppressor of cytokine signaling-3 in astrocytic tumors. Mol Med 2012;18:379-88. [PMID: 22231733 DOI: 10.2119/molmed.2011.00449] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 0.9] [Reference Citation Analysis]
99 Zhang W, Wang H, Sun M, Deng X, Wu X, Ma Y, Li M, Shuoa SM, You Q, Miao L. CXCL5/CXCR2 axis in tumor microenvironment as potential diagnostic biomarker and therapeutic target. Cancer Commun (Lond) 2020;40:69-80. [PMID: 32237072 DOI: 10.1002/cac2.12010] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 17.0] [Reference Citation Analysis]