1
|
OUP accepted manuscript. Nutr Rev 2022; 80:1974-1984. [DOI: 10.1093/nutrit/nuac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
2
|
Tan Z, Lu P, Adewole D, Diarra M, Gong J, Yang C. Iron requirement in the infection of Salmonella and its relevance to poultry health. J APPL POULTRY RES 2021. [DOI: 10.1016/j.japr.2020.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
3
|
Doguer C, Ha JH, Collins JF. Intersection of Iron and Copper Metabolism in the Mammalian Intestine and Liver. Compr Physiol 2018; 8:1433-1461. [PMID: 30215866 DOI: 10.1002/cphy.c170045] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron and copper have similar physiochemical properties; thus, physiologically relevant interactions seem likely. Indeed, points of intersection between these two essential trace minerals have been recognized for many decades, but mechanistic details have been lacking. Investigations in recent years have revealed that copper may positively influence iron homeostasis, and also that iron may antagonize copper metabolism. For example, when body iron stores are low, copper is apparently redistributed to tissues important for regulating iron balance, including enterocytes of upper small bowel, the liver, and blood. Copper in enterocytes may positively influence iron transport, and hepatic copper may enhance biosynthesis of a circulating ferroxidase, ceruloplasmin, which potentiates iron release from stores. Moreover, many intestinal genes related to iron absorption are transactivated by a hypoxia-inducible transcription factor, hypoxia-inducible factor-2α (HIF2α), during iron deficiency. Interestingly, copper influences the DNA-binding activity of the HIF factors, thus further exemplifying how copper may modulate intestinal iron homeostasis. Copper may also alter the activity of the iron-regulatory hormone hepcidin. Furthermore, copper depletion has been noted in iron-loading disorders, such as hereditary hemochromatosis. Copper depletion may also be caused by high-dose iron supplementation, raising concerns particularly in pregnancy when iron supplementation is widely recommended. This review will cover the basic physiology of intestinal iron and copper absorption as well as the metabolism of these minerals in the liver. Also considered in detail will be current experimental work in this field, with a focus on molecular aspects of intestinal and hepatic iron-copper interplay and how this relates to various disease states. © 2018 American Physiological Society. Compr Physiol 8:1433-1461, 2018.
Collapse
Affiliation(s)
- Caglar Doguer
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Nutrition and Dietetics Department, Namık Kemal University, Tekirdag, Turkey
| | - Jung-Heun Ha
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA.,Department of Food and Nutrition, Chosun University Note: Caglar Doguer and Jung-Heun Ha have contributed equally to this work., Gwangju, Korea
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Florida, Gainesville, USA
| |
Collapse
|
4
|
Mladěnka P, Hrdina R, Hübl M, Šimůnek T. The Fate of Iron in The Organism and Its Regulatory Pathways. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2018.40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Iron is an essential element involved in many life-necessary processes. Interestingly, in mammals there is no active excretion mechanism for iron. Therefore iron kinetics has to be meticulously regulated. The most important step for regulation of iron kinetics is absorption. The absorption takes place in small intestine and it is implicated that it requires several proteins. Iron is then released from enterocytes into the circulation and delivered to the cells. Iron movement inside the cell is only partially elucidated and its traffic to mitochondia is not known. Surprisingly, the regulation of various proteins related to iron kinetics and energy metabolism at the molecular level is better described. On contrary, the complex control of iron absorption cannot be fully explicated with present knowledge.
Collapse
|
5
|
Collins JF, Flores SR, Wang X, Anderson GJ. Mechanisms and Regulation of Intestinal Iron Transport. PHYSIOLOGY OF THE GASTROINTESTINAL TRACT 2018:1451-1483. [DOI: 10.1016/b978-0-12-809954-4.00060-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Abstract
In recent years, a number of components of the iron absorption pathway have been identified, greatly increasing our understanding of this important process. These include two molecules involved in brush border iron uptake, the ferric reductase DcytB and the iron transporter DMT1, and two mediating iron transfer to the body, the iron transporter Ireg1 and the ferroxidase hephaestin (Hp). Analysis of the regulation of these molecules has provided us with valuable insights into how the body responds to changes in iron requirements, and has enabled us to re-examine how iron absorption is controlled, and in particular the mucosal block phenomenon. Evidence suggests that the block to absorption that follows a priming dose of iron is the result of elevated intracellular iron levels decreasing the expression of the brush border iron transporter DMT1. Based on these observations, it is possible to propose a general model for the regulation of iron absorption whereby the basolateral transfer step involving Ireg1 and Hp controls the rate of absorption. In this model, DMT1 expression, and hence, brush border uptake, is regulated by local iron levels that are, in turn, determined by the rate of basolateral transfer.
Collapse
Affiliation(s)
- D M Frazer
- a Joint Clinical Sciences Program, The Queensland Institute of Medical Research and The University of Queensland, PO Royal Brisbane Hospital , Brisbane , Qld 4029 , Australia
| | - G J Anderson
- a Joint Clinical Sciences Program, The Queensland Institute of Medical Research and The University of Queensland, PO Royal Brisbane Hospital , Brisbane , Qld 4029 , Australia
| |
Collapse
|
7
|
Kraidith K, Svasti S, Teerapornpuntakit J, Vadolas J, Chaimana R, Lapmanee S, Suntornsaratoon P, Krishnamra N, Fucharoen S, Charoenphandhu N. Hepcidin and 1,25(OH)2D3 effectively restore Ca2+ transport in β-thalassemic mice: reciprocal phenomenon of Fe2+ and Ca2+ absorption. Am J Physiol Endocrinol Metab 2016; 311:E214-E223. [PMID: 27245334 DOI: 10.1152/ajpendo.00067.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
Previously, β-thalassemia, an inherited anemic disorder with iron overload caused by loss-of-function mutation of β-globin gene, has been reported to induce osteopenia and impaired whole body calcium metabolism, but the pathogenesis of aberrant calcium homeostasis remains elusive. Herein, we investigated how β-thalassemia impaired intestinal calcium absorption and whether it could be restored by administration of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] or hepcidin, the latter of which was the liver-derived antagonist of intestinal iron absorption. The results showed that, in hemizygous β-globin knockout (BKO) mice, the duodenal calcium transport was lower than that in wild-type littermates, and severity was especially pronounced in female mice. Both active and passive duodenal calcium fluxes in BKO mice were found to be less than those in normal mice. This impaired calcium transport could be restored by 7-day 1,25(OH)2D3 treatment. The 1,25(OH)2D3-induced calcium transport was diminished by inhibitors of calcium transporters, e.g., L-type calcium channel, NCX1, and PMCA1b, as well as vesicular transport inhibitors. Interestingly, the duodenal calcium transport exhibited an inverse correlation with transepithelial iron transport, which was markedly enhanced in thalassemic mice. Thus, 3-day subcutaneous hepcidin injection and acute direct hepcidin exposure in the Ussing chamber were capable of restoring the thalassemia-associated impairment of calcium transport; however, the positive effect of hepcidin on calcium transport was completely blocked by proteasome inhibitors MG132 and bortezomib. In conclusion, both 1,25(OH)2D3 and hepcidin could be used to alleviate the β-thalassemia-associated impairment of calcium absorption. Therefore, our study has shed light on the development of a treatment strategy to rescue calcium dysregulation in β-thalassemia.
Collapse
Affiliation(s)
- Kamonshanok Kraidith
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Saovaros Svasti
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; and
| | | | - Jim Vadolas
- Cell and Gene Therapy Research Group, Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Australia
| | - Rattana Chaimana
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Sarawut Lapmanee
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panan Suntornsaratoon
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nateetip Krishnamra
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand; and
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research, Faculty of Science, Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand;
| |
Collapse
|
8
|
Choi I, Sung K, Kim Y, Park Y. Effect of Transferrin on Enhancing Bioavailability of Iron. Biosci Biotechnol Biochem 2014; 68:578-83. [PMID: 15056890 DOI: 10.1271/bbb.68.578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transferrin was isolated and purified from bovine plasma. An intestinal segment in situ experiment showed that 19.2% of injected iron was absorbed when FeCl(3) (80 microg Fe/ml) was injected into a duodenum segment of iron-deficient rats. With addition of 10 and 20 mg of purified transferrin/ml, however, ratios of absorbed iron through duodenum segments were significantly increased to 52.7 and 57.9%, respectively. After transferrin-rich extract was isolated by batch type ion exchange chromatography, a soluble ferric complex of the transferrin extract was prepared by adding ferric salts to transferrin extract followed by dialysis, sterilization, and freeze drying. Results of the animal experiment for comparing bioavailabilities of different irons showed that irons in Fe-transferrin extract was most efficiently absorbed and incorporated into hemoglobin generation in anemic rats.
Collapse
Affiliation(s)
- Inwook Choi
- Korea Food Research Institute, Seongnam-si, Kyunggi-do, Korea.
| | | | | | | |
Collapse
|
9
|
Ma XY, Liu SB, Lu L, Li SF, Xie JJ, Zhang LY, Zhang JH, Luo XG. Relative bioavailability of iron proteinate for broilers fed a casein-dextrose diet. Poult Sci 2014; 93:556-63. [PMID: 24604848 DOI: 10.3382/ps.2013-03296] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An experiment was carried out to determine the bioavailability of organic Fe as Fe proteinate (Alltech, Nicholasville, KY) relative to inorganic Fe source (FeSO4•7H2O) for broiler chicks fed a casein-dextrose diet. A total of 448 1-d-old Arbor Acres commercial male broiler chicks were randomly allotted to 1 of 8 replicate cages (8 chicks per cage) for each of 7 treatments in a completely randomized design involving a 2 × 3 factorial arrangement of treatments with 2 Fe sources (Fe proteinate and Fe sulfate) and 3 levels of added Fe (10, 20, or 40 mg of Fe/kg) plus a Fe-unsupplemented control diet containing 4.56 mg of Fe/kg by analysis. Feed and distilled-deionized water were available ad libitum for an experimental phase of 14 d. At 14 d of age, blood samples were collected for testing hemoglobin (Hb) and hematocrit, and calculating total body Hb Fe, whereas liver and kidney samples were excised for Fe analyses. The results showed that ADG, ADFI, blood Hb, hematocrit, and total body Hb Fe and Fe concentrations in liver and kidney increased linearly (P < 0.0001), whereas mortality decreased linearly (P < 0.0001) as dietary Fe level increased. However, only blood Hb concentration and total body Hb Fe differed (P < 0.004) between the 2 Fe sources. Based on slope ratios from the multiple linear regression of Hb concentration and total body Hb Fe on daily intake of analyzed dietary Fe, the bioavailability of Fe proteinate relative to FeSO4•7H2O (100%) was 117 and 114%, respectively (P < 0.009). The results indicated that blood Hb concentration and total body Hb Fe were sensitive indices in reflecting differences in bioavailability among different Fe sources, and Fe proteinate was significantly more available to broilers than inorganic Fe sulfate in enhancing Hb concentration and total body Hb Fe.
Collapse
Affiliation(s)
- X Y Ma
- Mineral Nutrition Research Division, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Powell JJ, Bruggraber SFA, Faria N, Poots LK, Hondow N, Pennycook TJ, Latunde-Dada GO, Simpson RJ, Brown AP, Pereira DIA. A nano-disperse ferritin-core mimetic that efficiently corrects anemia without luminal iron redox activity. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1529-38. [PMID: 24394211 PMCID: PMC4315135 DOI: 10.1016/j.nano.2013.12.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/18/2013] [Accepted: 12/24/2013] [Indexed: 11/24/2022]
Abstract
The 2-5 nm Fe(III) oxo-hydroxide core of ferritin is less ordered and readily bioavailable compared to its pure synthetic analogue, ferrihydrite. We report the facile synthesis of tartrate-modified, nano-disperse ferrihydrite of small primary particle size, but with enlarged or strained lattice structure (~ 2.7 Å for the main Bragg peak versus 2.6 Å for synthetic ferrihydrite). Analysis indicated that co-precipitation conditions can be achieved for tartrate inclusion into the developing ferrihydrite particles, retarding both growth and crystallization and favoring stabilization of the cross-linked polymeric structure. In murine models, gastrointestinal uptake was independent of luminal Fe(III) reduction to Fe(II) and, yet, absorption was equivalent to that of ferrous sulphate, efficiently correcting the induced anemia. This process may model dietary Fe(III) absorption and potentially provide a side effect-free form of cheap supplemental iron. From the Clinical Editor Small size tartrate-modified, nano-disperse ferrihydrite was used for efficient gastrointestinal delivery of soluble Fe(III) without the risk for free radical generation in murine models. This method may provide a potentially side effect-free form iron supplementation.
Collapse
Affiliation(s)
- Jonathan J Powell
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK.
| | | | - Nuno Faria
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Lynsey K Poots
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| | - Nicole Hondow
- Institute for Materials Research, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds, UK
| | - Timothy J Pennycook
- SuperSTEM, Daresbury Laboratories, Warrington, UK; Department of Materials, University of Oxford, Oxford, UK
| | - Gladys O Latunde-Dada
- Diabetes & Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Robert J Simpson
- Diabetes & Nutritional Sciences Division, School of Medicine, King's College London, London, UK
| | - Andy P Brown
- Institute for Materials Research, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds, UK
| | - Dora I A Pereira
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Cambridge, UK
| |
Collapse
|
11
|
Rejitha V, Peter MCS. Adrenaline and triiodothyronine modify the iron handling in the freshwater air-breathing fish Anabas testudineus Bloch: role of ferric reductase in iron acquisition. Gen Comp Endocrinol 2013; 181:130-8. [PMID: 23168087 DOI: 10.1016/j.ygcen.2012.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 11/04/2012] [Accepted: 11/09/2012] [Indexed: 01/23/2023]
Abstract
The effects of in vivo adrenaline and triiodothyronine (T(3)) on ferric reductase (FR) activity, a membrane-bound enzyme that reduces Fe(III) to Fe(II) iron, were studied in the organs of climbing perch (Anabas testudineus Bloch). Adrenaline injection (10 ng g(-1)) for 30 min produced significant inhibition of FR activity in the liver and kidney and that suggests a role for this stress hormone in iron acquisition in this fish. Short-term T(3) injection (40 ng g(-1)) reduced FR activity in the gills of fed fish but not in the unfed fish. Similar reduction of FR activity was also obtained in the intestine and kidney of fed fish after T(3) injection. Feeding produced pronounced decline in FR activity in the spleen but T(3) challenge in fed and unfed fish increased its activity in this iron storing organ and that point to the sensitivity of FR system to feeding activity. The in vitro effects of Fe on FR activity in the gill explants of freshwater fish showed correlations of FR with Na(+), K(+)-ATPase and H(+)-ATPase activities. Substantial increase in the FR activity was found in the gill explants incubated with all the tested doses of Fe(II) iron (1.80, 3.59 and 7.18 μM) and Fe(III) iron (1.25, 2.51 and 5.02 μM) and this indicate that FR and Na pump activity are positively correlated. On the contrary, substantial reduction of gill H(+)-ATPase activity was found in the gill explants incubated with Fe(II) iron and Fe(III) iron indicating that perch gills may not require a high acidic microenvironment for the reduction of Fe(III) iron. Accumulation of iron in the gill explants after Fe(III) iron incubation implies a direct relationship between Fe acquisition and FR activity in this tissue. The inverse correlation between FR activity and H(+)-ATPase activity in Fe(II) or Fe(III) loaded gills and the significant positive correlations of FR activity with total [Fe] content in the Fe(III) loaded gills substantiate that FR which shows sensitivity to sodium and proton pumps, has a vital role in Fe(II) and Fe(III) iron handling in this fish. Our data also provide evidence that adrenaline, T(3) and the feeding status are the vital factors that can regulate the storage and handling of iron in fish.
Collapse
Affiliation(s)
- V Rejitha
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
| | | |
Collapse
|
12
|
Choi J, Masaratana P, Latunde-Dada GO, Arno M, Simpson RJ, McKie AT. Duodenal reductase activity and spleen iron stores are reduced and erythropoiesis is abnormal in Dcytb knockout mice exposed to hypoxic conditions. J Nutr 2012; 142:1929-34. [PMID: 22990466 DOI: 10.3945/jn.112.160358] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Duodenal cytochrome b (Dcytb, Cybrd1) is a ferric reductase localized in the duodenum that is highly upregulated in circumstances of increased iron absorption. To address the contribution of Dcytb to total duodenal ferric reductase activity as well as its wider role in iron metabolism, we first measured duodenal ferric reductase activity in wild-type (WT) and Dcytb knockout (Dcytb(-/-)) mice under 3 conditions known to induce gut ferric reductase: dietary iron deficiency, hypoxia, and pregnancy. Dcytb(-/-) and WT mice were randomly assigned to control (iron deficiency experiment, 48 mg/kg dietary iron; hypoxia experiment, normal atmospheric pressure; pregnancy experiment, nonpregnant animals) or treatment (iron deficiency experiment, 2-3 mg/kg dietary iron; hypoxia experiment, 53.3 kPa pressure; pregnancy experiment, d 20 of pregnancy) groups and duodenal reductase activity measured. We found no induction of ferric reductase activity in Dcytb(-/-) mice under any of these conditions, indicating there are no other inducible ferric reductases present in the duodenum. To test whether Dcytb was required for iron absorption in conditions with increased erythropoietic demand, we also measured tissue nonheme iron levels and hematological indices in WT and Dcytb(-/-) mice exposed to hypoxia. There was no evidence of gross alterations in iron absorption, hemoglobin, or total liver nonheme iron in Dcytb(-/-) mice exposed to hypoxia compared with WT mice. However, spleen nonheme iron was significantly less (6.7 ± 1.0 vs. 12.7 ± 0.9 nmol · mg tissue(-1); P < 0.01, n = 7-8) in hypoxic Dcytb(-/-) compared with hypoxic WT mice and there was evidence of impaired reticulocyte hemoglobinization with a lower reticulocyte mean corpuscular hemoglobin (276 ± 1 vs. 283 ± 2 g · L(-1); P < 0.05, n = 7-8) in normoxic Dcytb(-/-) compared with normoxic WT mice. We therefore conclude that DCYTB is the primary iron-regulated duodenal ferric reductase in the gut and that Dcytb is necessary for optimal iron metabolism.
Collapse
Affiliation(s)
- Jeehyea Choi
- Diabetes and Nutritional Sciences Division, School of Biomedical and Health Sciences, King’s College, London, UK
| | | | | | | | | | | |
Collapse
|
13
|
Ma Q, Kim EY, Lindsay EA, Han O. Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 cells. J Food Sci 2011; 76:H143-50. [PMID: 22417433 DOI: 10.1111/j.1750-3841.2011.02184.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
UNLABELLED Although heme iron is an important form of dietary iron, its intestinal absorption mechanism remains elusive. Our previous study revealed that (-)-epigallocatechin-3-gallate (EGCG) and grape seed extract (GSE) markedly inhibited intestinal heme iron absorption by reducing the basolateral iron export in Caco-2 cells. The aim of this study was to examine whether small amounts of EGCG, GSE, and green tea extract (GT) could inhibit heme iron absorption, and to test whether the inhibitory action of polyphenols could be offset by ascorbic acid. A heme-⁵⁵Fe absorption study was conducted by adding various concentrations of EGCG, GSE, and GT to Caco-2 cells in the absence and presence of ascorbic acid. Polyphenolic compounds significantly inhibited heme-⁵⁵Fe absorption in a dose-dependent manner. The addition of ascorbic acid did not modulate the inhibitory effect of dietary polyphenols on heme iron absorption when the cells were treated with polyphenols at a concentration of 46 mg/L. However, ascorbic acid was able to offset or reverse the inhibitory effects of polyphenolic compounds when lower concentrations of polyphenols were added (≤ 4.6 mg/L). Ascorbic acid modulated the heme iron absorption without changing the apical heme uptake, the expression of the proteins involved in heme metabolism and basolateral iron transport, and heme oxygenase activity, indicating that ascorbic acid may enhance heme iron absorption by modulating the intracellular distribution of ⁵⁵Fe. These results imply that the regular consumption of dietary ascorbic acid can easily counteract the inhibitory effects of low concentrations of dietary polyphenols on heme iron absorption but cannot counteract the inhibitory actions of high concentrations of polyphenols. PRACTICAL APPLICATION Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner. The small amounts of polyphenolic compounds present in foods are capable of reducing heme iron transport across the intestinal enterocyte. However, the inhibitory effects of dietary polyphenolic compounds on heme iron absorption can be offset by ascorbic acid and can possibly be avoided by decreasing the consumption of polyphenols while simultaneously taking ascorbic acid.
Collapse
Affiliation(s)
- Qianyi Ma
- Dept. of Nutritional Sciences, Pennsylvania State Univ., University Park, PA 16802, USA
| | | | | | | |
Collapse
|
14
|
Anderson GJ, Vulpe CD. Mammalian iron transport. Cell Mol Life Sci 2009; 66:3241-61. [PMID: 19484405 PMCID: PMC11115736 DOI: 10.1007/s00018-009-0051-1] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 04/21/2009] [Accepted: 05/12/2009] [Indexed: 02/07/2023]
Abstract
Iron is essential for basic cellular processes but is toxic when present in excess. Consequently, iron transport into and out of cells is tightly regulated. Most iron is delivered to cells bound to plasma transferrin via a process that involves transferrin receptor 1, divalent metal-ion transporter 1 and several other proteins. Non-transferrin-bound iron can also be taken up efficiently by cells, although the mechanism is poorly understood. Cells can divest themselves of iron via the iron export protein ferroportin in conjunction with an iron oxidase. The linking of an oxidoreductase to a membrane permease is a common theme in membrane iron transport. At the systemic level, iron transport is regulated by the liver-derived peptide hepcidin which acts on ferroportin to control iron release to the plasma.
Collapse
Affiliation(s)
- Gregory Jon Anderson
- Iron Metabolism Laboratory, Queensland Institute of Medical Research, PO Royal Brisbane Hospital, QLD, Australia.
| | | |
Collapse
|
15
|
Gutzeit D, Winterhalter P, Jerz G. Nutritional Assessment of Processing Effects on Major and Trace Element Content in Sea Buckthorn Juice (Hippophaë rhamnoidesL. ssp. rhamnoides). J Food Sci 2008; 73:H97-102. [DOI: 10.1111/j.1750-3841.2008.00817.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Kwong RWM, Niyogi S. An in vitro examination of intestinal iron absorption in a freshwater teleost, rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 2008; 178:963-75. [PMID: 18542970 DOI: 10.1007/s00360-008-0279-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 05/20/2008] [Accepted: 05/25/2008] [Indexed: 11/25/2022]
Abstract
This study investigated the physiological characteristics of intestinal iron absorption in a freshwater teleost, rainbow trout (Oncorhynchus mykiss). Using an in vitro gastro-intestinal sac technique, we evaluated the spatial pattern and concentration dependent profile of iron uptake, and also the influence of luminal chemistry (pH and chelation) on iron absorption. We demonstrated that the iron uptake rate in the anterior intestine is significantly higher than that in the mid and posterior intestine. Interestingly, absorption of iron in the anterior intestine occurs likely via simple diffusion, whereas a carrier-mediated pathway is apparent in the mid and posterior intestine. The uptake of ferric and ferrous iron appeared to be linear over the entire range of iron concentration tested (0-20 microM), however the uptake of ferrous iron was significantly higher than that of ferric iron at high iron concentrations (>15 microM). An increase in mucosal pH from 7.4 to 8.2 significantly reduced iron absorption in both mid and posterior intestine, implying the involvement of a Fe(2+)/H(+) symporter. Iron chelators (nitrilotriacetic acid and desferrioxamine mesylate) had no effects on iron absorption, which suggests that fish are able to acquire chelated iron via intestine.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Toxicology Center, University of Saskatchewan, Saskatoon, SK, Canada S7N 5B3
| | | |
Collapse
|
17
|
Latunde-Dada GO, Simpson RJ, McKie AT. Duodenal cytochrome B expression stimulates iron uptake by human intestinal epithelial cells. J Nutr 2008; 138:991-5. [PMID: 18492824 DOI: 10.1093/jn/138.6.991] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Duodenal cytochrome B (Dcytb) is localized principally in the apical membrane of the enterocyte. It is thought to act as a ferric reductase that furnishes Fe(II), the specific and selective iron species transported by divalent metal transporter 1 (DMT1) in the duodenal enterocytes. Expression of both genes is strongly iron regulated and is thought to be required for transcellular iron trafficking in concert in response to physiological requirements. We tested this hypothesis by expressing Dcytb in Caco-2 cells, a human cell line model often used to mimic intestinal enterocytes. Iron uptake (59Fe) was significantly higher in Dcytb-transfected Caco-2 cells than in cells transfected with empty vector as a control. Fe(III) reductase activity of Dcytb was measured with ferrozine, a strong chelator of Fe(II) species. Cells expressing Dcytb exhibited enhanced ferric reductase activity as well as increased 59Fe uptake compared with cells transfected with empty vector as a control. Ferrozine blocked iron uptake and preincubation of cells with dehydroascorbate (to increase cellular ascorbate levels) stimulated iron uptake. Cotransfection of Dcytb and DMT1 resulted in an additive increase in iron uptake by the cells. The results confirm Dcytb can act as a ferric reductase that stimulates iron uptake in Caco-2 cells.
Collapse
Affiliation(s)
- Gladys O Latunde-Dada
- Nutritional Sciences Division, School of Biomedical and Health Sciences, King's College London, London, SE1 9HN, UK.
| | | | | |
Collapse
|
18
|
Chua ACG, Graham RM, Trinder D, Olynyk JK. The regulation of cellular iron metabolism. Crit Rev Clin Lab Sci 2008; 44:413-59. [PMID: 17943492 DOI: 10.1080/10408360701428257] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While iron is an essential trace element required by nearly all living organisms, deficiencies or excesses can lead to pathological conditions such as iron deficiency anemia or hemochromatosis, respectively. A decade has passed since the discovery of the hemochromatosis gene, HFE, and our understanding of hereditary hemochromatosis (HH) and iron metabolism in health and a variety of diseases has progressed considerably. Although HFE-related hemochromatosis is the most widespread, other forms of HH have subsequently been identified. These forms are not attributed to mutations in the HFE gene but rather to mutations in genes involved in the transport, storage, and regulation of iron. This review is an overview of cellular iron metabolism and regulation, describing the function of key proteins involved in these processes, with particular emphasis on the liver's role in iron homeostasis, as it is the main target of iron deposition in pathological iron overload. Current knowledge on their roles in maintaining iron homeostasis and how their dysregulation leads to the pathogenesis of HH are discussed.
Collapse
Affiliation(s)
- Anita C G Chua
- School of Medicine and Pharmacology, University of Western Australia, Fremantle, Western Australia, Australia
| | | | | | | |
Collapse
|
19
|
Abstract
Iron is an essential trace metal in the human diet due to its obligate role in a number of metabolic processes. In the diet, iron is present in a number of different forms, generally described as haem (from haemoglobin and myoglobin in animal tissue) and non-haem iron (including ferric oxides and salts, ferritin and lactoferrin). This review describes the molecular mechanisms that co-ordinate the absorption of iron from the diet and its release into the circulation. While many components of the iron transport pathway have been elucidated, a number of key issues still remain to be resolved. Future work in this area will provide a clearer picture regarding the transcellular flux of iron and its regulation by dietary and humoral factors.
Collapse
Affiliation(s)
- Paul Sharp
- Department of Nutrition & Dietetics, King's College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH, United Kingdom.
| | | |
Collapse
|
20
|
Raja KB, Jafri SE, Peters TJ, Simpson RJ. Iron and cadmium uptake by duodenum of hypotransferrinaemic mice. Biometals 2007; 19:547-53. [PMID: 16937261 DOI: 10.1007/s10534-005-5919-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 12/14/2005] [Indexed: 11/25/2022]
Abstract
Absorption from food is an important route for entry of the toxic metal, cadmium, into the body. Both cadmium and iron are believed to be taken up by duodenal enterocytes via the iron regulated, proton-coupled transporter, DMT1. This means that cadmium uptake could be enhanced in conditions where iron absorption is increased. We measured pH dependent uptake of (109)Cd and (59)Fe by duodenum from mice with an in vitro method. Mice with experimental (hypoxia, iron deficiency) or hereditary (hypotransferrinaemia) increased iron absorption were studied. All three groups of mice showed increased (59)Fe uptake (p<0.05) compared to their respective controls. Hypotransferrinaemic and iron deficient mice exhibited an increase in (109)Cd uptake (p<0.05). Cadmium uptake was not, however, increased by lowering the medium pH from 7.4 to 6. In contrast, (59)Fe uptake (from (59)FeNTA(2)) and ferric reductase activity was increased by lowering medium pH in control and iron deficient mice (p<0.05). The data show that duodenal cadmium uptake can be increased by hereditary iron overload conditions. The uptake is not, however, altered by lowering medium pH suggesting that DMT1-independent uptake pathways may operate.
Collapse
Affiliation(s)
- Kishor B Raja
- Department of Clinical Biochemistry, King's College London, London, UK
| | | | | | | |
Collapse
|
21
|
Taylor EM, Raja KB, Simpson RJ, Peters TJ. Modulation of duodenal iron uptake by hypoxia and fasting in the rat. Br J Nutr 2007. [DOI: 10.1079/bjn19970045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effect of hypoxic exposure on invitroduodenal Fe uptake kinetics was studied in tissue fragments from rats that were fed or fasted overnight before study. Hypoxic exposure was for 3 d at 0·5 atm and fasting was for the last 18-24 h before Fe uptake determinations. The non-permeable Fe2+chelator 3-(2-pyridyl)-5,6-bis-(4-phenyl-sulphonic acid)-l,2,4-triazine (ferrozine), and medium deoxygenation inhibited uptake in all experimental groups. Ferrozine sensitivity and mucosal Fe3+reductase activity were greatest in hypoxic animals. Fe uptake was inhibited by membrane depolarization only after fasting or hypoxic exposure of the rats. The data demonstrated that Fe uptake by rat duodenal fragments involves at least two mechanisms: a membrane-potentialindependent mechanism which is not responsive to hypoxia and a second mechanism, induced by fasting or hypoxia, which is inhibited by membrane depolarization. Uptake is partially dependent on reduction of Fe3+to Fe2+and this is primarily associated with the second mechanism for uptake. These properties have been reported also in mouse and human Fe uptake, suggesting that the rat is a useful model for the study of basic mechanisms of Fe absorption
Collapse
|
22
|
Khemiss F, Ghoul-Mazgar S, Moshtaghie AA, Saidane D. Study of the effect of aqueous extract of Grewia tenax fruit on iron absorption by everted gut sac. JOURNAL OF ETHNOPHARMACOLOGY 2006; 103:90-8. [PMID: 16169169 DOI: 10.1016/j.jep.2005.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 06/07/2005] [Accepted: 07/25/2005] [Indexed: 05/04/2023]
Abstract
Grewia tenax roots, leaves, juice and fruit decoctions have been used in Africa and Southeast Asiatic countries for a variety of medical purposes. In this investigation, we report the effect of aqueous extract of Grewia tenax fruit (AEGTF) on the variation in vitro of iron absorption. The incubation of freshly prepared rat everted gut sac (EGS) in Ringer medium containing FeSO(4) in the absence of AEGTF showed that in stomach there is iron absorption only at 15 min of incubation time, whereas, at duodenum and jejunum, iron uptake occurs just after 1 min of incubation time and the maximum of iron absorption is registered at 15 min of incubation time. Addition of AEGTF at different concentrations favors significantly this iron transfer from the mucous side toward the serous one. The maximum of iron absorption was carried out in the presence of AEGTF at 10 mg/ml and 5 min of incubation time in stomach, duodenum and jejunum. AEGTF used at high doses (20 and 30 mg/ml) reduced significantly iron uptake suggesting a probable toxic effect of this extract. Histological studies confirmed the presence of cytotoxic signs as multinucleated giant cells and the disappearance of enterocyte border brush. With the aim of elucidating the mechanism of action of AEGTF, we are attempting to isolate the active principles present in this extract.
Collapse
Affiliation(s)
- F Khemiss
- Laboratory of Physiology, Faculty of Dental Medicine, Monastir, Tunisia.
| | | | | | | |
Collapse
|
23
|
Cadet E, Gadenne M, Capron D, Rochette J. [Advances in iron metabolism: a transition state]. Rev Med Interne 2004; 26:315-24. [PMID: 15820567 DOI: 10.1016/j.revmed.2004.09.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 09/19/2004] [Indexed: 11/16/2022]
Abstract
PURPOSE Advances towards the understanding of gene regulation and protein function recently discovered through iron metabolism disorders are the subject of this review. CURRENT KNOWLEDGE AND KEY POINTS Within a few years the discovery of genes that determine heritable defects of cellular iron uptake or regulation in mice as in humans have provided new insights for investigation into iron metabolism pathways. FUTURE PROSPECTS AND PROJECTS It is still unclear how connections are made between new proteins in iron uptake, trafficking and regulation of iron homeostasis. Gene expression studies using microarrays technology in different iron conditions should help to explore iron homeostasis further.
Collapse
Affiliation(s)
- E Cadet
- Service de génétique moléculaire médicale et UPRES EA 2629, CHU d'Amiens, université de Picardie-Jules-Verne, 3, rue des Louvels, 80036 Amiens cedex, France.
| | | | | | | |
Collapse
|
24
|
Laftah AH, Raja KB, Beaumont N, Simpson RJ, Deacon A, Solanky N, Srai SKS, Peters TJ. The effects of inhibition of haem biosynthesis by griseofulvin on intestinal iron absorption. Basic Clin Pharmacol Toxicol 2004; 94:161-8. [PMID: 15078340 DOI: 10.1111/j.1742-7843.2004.pto940402.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The relationship between haem biosynthesis and intestinal iron absorption in mice was investigated by ascertaining the effect of the haem synthesis inhibitor, griseofulvin, on duodenal iron absorption using both in vivo and in vitro measurements. Urinary 5-aminolaevulinic acid levels were increased within 24 hr of feeding mice with griseofulvin diet (2.5% w/w), with more marked increases seen after 3-7 days. Urinary porphobilinogen levels also showed a similar trend. In vivo intestinal iron absorption was significantly reduced (P<0.05) in experimental mice, mainly due to reduction in the transfer of 59Fe from the enterocytes to the portal circulation. In vitro studies using isolated duodenal fragments also exhibited marked decreases in both iron uptake and Fe (III) reduction. Changes in mucosal Divalent Metal Transporter 1 (DMT-1), Dcytb and Ireg1 (iron regulated protein 1) mRNA levels paralleled the changes in iron absorption. The reduction in iron absorption after griseofulvin treatment was normalised when mice were simultaneously injected with haem-arginate. These data support the hypothesis that intermediates in haem biosynthesis, particularly 5-aminolaevulinic acid, regulate intestinal iron absorption.
Collapse
Affiliation(s)
- Abas H Laftah
- Department of Clinical Biochemistry, GKT School of Medicine and Dentistry, Bessemer Rd, London SE5 9PJ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Thomas C, Oates PS. Differences in the uptake of iron from Fe(II) ascorbate and Fe(III) citrate by IEC-6 cells and the involvement of ferroportin/IREG-1/MTP-1/SLC40A1. Pflugers Arch 2004; 448:431-7. [PMID: 15114483 DOI: 10.1007/s00424-004-1290-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 01/20/2004] [Indexed: 10/26/2022]
Abstract
Dietary iron is present in the intestine as Fe(II) and Fe(III). Since enterocytes take up Fe(II) by the divalent metal transporter (DMT1), Fe(III) must be reduced. Whether other Fe(III) transport processes are present is unknown. Release of iron from the enterocyte into the plasma involves the iron-regulated transporter-1/metal transporter protein-1 (IREG-1/MTP-1, ferroportin) but ferroportin is also found on the apical membrane. We compared the uptake of iron from Fe(II):ascorbate and Fe(III):citrate using the rat intestinal enterocyte cell line-6 (IEC-6), in the presence of ferrous chelators, a blocking antibody to ferroportin, at different pH and during the over-expression of DMT1. Firstly, surface ferrireduction was absent. Secondly, blocking ferroportin partly and totally reduced Fe(II) and Fe(III) uptake, respectively. Thirdly, optimal Fe(II) uptake occurred at pH 5.5 but Fe(III) uptake was unaffected by pH and, fourthly, over-expression of DMT1 increased uptake of Fe(II) and Fe(III). This indicates that an increased extracellular H+ concentration facilitates DMT1-mediated Fe(II) uptake at the cell membrane. However, since Fe(III) uptake required DMT1, but not cell surface ferrireduction, and was independent of variations in extracellular pH, it appears that Fe(III) is internalised before ferrireduction and transport by DMT1. Ferroportin may function as a modulator of DMT1 activity and play a role in Fe(III) uptake, possibly by affecting the number or affinity of citrate binding sites.
Collapse
Affiliation(s)
- Carla Thomas
- Physiology, M311, School of Biomedical and Chemical Sciences, The University of Western Australia, 35 Stirling Highway, WA 6009, Crawley, Australia
| | | |
Collapse
|
26
|
Atanasova B, Mudway IS, Laftah AH, Latunde-Dada GO, McKie AT, Peters TJ, Tzatchev KN, Simpson RJ. Duodenal ascorbate levels are changed in mice with altered iron metabolism. J Nutr 2004; 134:501-5. [PMID: 14988437 DOI: 10.1093/jn/134.3.501] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ascorbate has long been thought to play an important role in intestinal iron absorption. The recent identification of a possible ascorbate-dependent duodenal ferric reductase suggests a role for intracellular ascorbate in the control of iron absorption. We set out to determine whether duodenal ascorbate concentrations are altered by treatments known to alter the rate of iron absorption and whether ascorbate levels affect duodenal reductase activity. Duodenal ascorbate was extracted and assayed by HPLC and/or a chemical assay. Ferric reductase was assayed in vitro with ferric nitrilotriacetate or nitroblue tetrazolium as substrates. Duodenal ascorbate concentrations were increased by iron deficiency, genetic hypotransferrinemia, and hypoxia. Parenteral iron overload increased iron stores but did not affect duodenal ascorbate concentrations. Hemolytic anemia induced in mice by phenylhydrazine injection also did not affect duodenal ascorbate concentrations. In vitro studies with incubated duodenum showed that decreased tissue ascorbate was associated with decreased mucosal ferric reductase activity, whereas incubation with dehydroascorbate prevented both the decrease in ascorbate concentration and reductase activity. Mouse duodenum ascorbate concentrations changed in response to treatments that altered iron absorption rates; in particular, ascorbate levels generally increased when iron absorption was increased by iron deficiency, hypoxia, or genetic hypotransferrinemia. We conclude that changes in ascorbate levels are associated with changes in ferric reductase activity. These findings are consistent with the proposal that duodenal ascorbate plays a role in intestinal iron absorption.
Collapse
Affiliation(s)
- Bisera Atanasova
- Department of Clinical Laboratory and Clinical Immunology, Medical University, Sofia, Bulgaria
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ghio AJ, Nozik-Grayck E, Turi J, Jaspers I, Mercatante DR, Kole R, Piantadosi CA. Superoxide-dependent iron uptake: a new role for anion exchange protein 2. Am J Respir Cell Mol Biol 2003; 29:653-60. [PMID: 12791678 DOI: 10.1165/rcmb.2003-0070oc] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Lung cells import iron across the plasma membrane as ferrous (Fe2+) ion by incompletely understood mechanisms. We tested the hypothesis that human bronchial epithelial (HBE) cells import non-transferrin-bound iron (NTBI) using superoxide-dependent ferri-reductase activity involving anion exchange protein 2 (AE2) and extracellular bicarbonate (HCO3-). HBE cells that constitutively express AE2 mRNA by reverse transcriptase-polymerase chain reaction and AE2 protein by Western analysis avidly transported NTBI after exposure to either Fe2+ or Fe3+, but reduction of Fe3+ to Fe2+ was first required. The ability of HBE cells to reduce Fe3+ and transport Fe2+ was inhibited by active extracellular superoxide dismutase (SOD). Similarly, HBE cells that overexpress Cu,Zn SOD after adenoviral infection with AdSOD1 showed diminished iron uptake. The role of AE2 in iron uptake was indicated by three lines of evidence: (i) lack of both iron reduction and iron transport in bicarbonate-free buffer at controlled pH, (ii) failure of HBE cells treated with stilbene AE inhibitors to reduce Fe3+ or transport iron, and (iii) inhibition of iron uptake in HBE cells by inhibition of AE2 protein expression with antisense oligonucleotides. We thus disclose a novel ferri-reductase mechanism of NTBI uptake by human lung cells that employs superoxide exchange for HCO3- by AE2 protein in the plasma membrane.
Collapse
Affiliation(s)
- Andrew J Ghio
- P.O. Box 3315, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Silvia Miret
- Department of Life Sciences, King's College London, The Franklin-Wilkins Building, London
| | | | | |
Collapse
|
29
|
Ferguson CJ, Wareing M, Delannoy M, Fenton R, McLarnon SJ, Ashton N, Cox AG, McMahon RFT, Garrick LM, Green R, Smith CP, Riccardi D. Iron handling and gene expression of the divalent metal transporter, DMT1, in the kidney of the anemic Belgrade (b) rat. Kidney Int 2003; 64:1755-64. [PMID: 14531808 DOI: 10.1046/j.1523-1755.2003.00274.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND We have previously shown that the rat kidney reabsorbs metabolically significant amounts of iron and that it expresses the divalent metal transporter 1, DMT1. The Belgrade (b) rat carries a mutation in DMT1 gene, which causes hypochromic, microcytic anemia due to impaired intestinal iron absorption and transport of iron out of the transferrin cycle endosome. In the duodenum of b/b rats, expression of DMT1 mRNA and protein is increased, suggesting a feedback regulation by iron stores. The aim of this study was to investigate iron handling and DMT1 expression in the kidneys of Belgrade rats. METHODS Animals were maintained for 3 weeks on a synthetic diet containing 185 mg/kg iron (FeSO4), after which functional and molecular parameters were analyzed in male heterozygous (+/b) and homozygous (b/b) rats (N = 4 to 6 for each group). RESULTS Serum iron concentration was significantly higher in b/b compared to +/b rats while urinary iron excretion rates were unchanged in b/b compared to +/b rats. Northern analysis using a rat DMT1 probe showed comparable mRNA levels between +/b and b/b animals. Western analysis and immunofluorescence microscopy performed using a polyclonal antibody against rat DMT1 showed that DMT1-specific immunoreactivity was almost absent in the kidneys of b/b rats compared to that seen in +/b animals. CONCLUSION Our results indicate that the G185R mutation of DMT1 causes protein instability in the kidneys of b/b rats. Given that +/b and b/b rats excrete comparable amounts of iron, the lack of DMT1 protein is compensated by an alternative, yet to be identified, mechanism.
Collapse
Affiliation(s)
- Carole J Ferguson
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Laftah AH, Raja K, Simpson RJ, Peters TJ. Effect of Tin-mesoporphyrin, an inhibitor of haem catabolism, on intestinal iron absorption. Br J Haematol 2003; 122:298-304. [PMID: 12846900 DOI: 10.1046/j.1365-2141.2003.04376.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Haem biosynthesis is the most important destination for absorbed iron, hence it can be hypothesized that iron absorption regulation should be integrated with haem metabolism. As an initial step to test this hypothesis, the effect on iron absorption of Tin-mesoporphyrin (SnMP), inhibitor of haem oxygenase, altering haem and its biosynthetic intermediates, was studied. Mice injected with SnMP (5-25 micro mol/kg daily for up to 3 d) showed dose-dependent increases in intestinal iron absorption measured in vivo and in vitro. In order to investigate the effects of SnMP, enzymes and intermediates of haem metabolism were measured. Hepatic 5-amino-laevulinate (ALA) synthase activity (pmol/min/mg protein) was significantly reduced in SnMP-treated mice (10 and 25 micro mol/kg daily for 3 d) (mean +/- standard deviation, control 11.2 +/- 2.6; treated 6.3 +/- 1.7; P < 0.01). Hepatic ALA dehydratase activity (pmol porphobilinogen/mg protein/min) showed significant reductions following SnMP treatment (control 180 +/- 60, treated 130 +/- 50; P < 0.05). The effect of SnMP on iron absorption was reversible, with absorption returning to normal after 3 d. Furthermore, the effect of SnMP on duodenal iron absorption was abolished by the simultaneous injection of ALA (6 micro mol/l). ALA alone had no effect on iron absorption. In-vitro studies using duodenal fragments isolated from mice treated with SnMP (10 micro mol/kg daily for 3 d), showed significant increases (P < 0.05) in both mucosal iron uptake and Fe(III) reducing activity. We conclude that intermediates in haem metabolism, in particular levels of ALA, may play a role in duodenal iron absorption.
Collapse
Affiliation(s)
- Abas H Laftah
- Department of Clinical Biochemistry, GKT School of Medicine and Dentistry Department of Life Sciences, King's College London, London, UK.
| | | | | | | |
Collapse
|
31
|
Chung J, Wessling-Resnick M. Molecular mechanisms and regulation of iron transport. Crit Rev Clin Lab Sci 2003; 40:151-82. [PMID: 12755454 DOI: 10.1080/713609332] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Iron homeostasis is primarily maintained through regulation of its transport. This review summarizes recent discoveries in the field of iron transport that have shed light on the molecular mechanisms of dietary iron uptake, pathways for iron efflux to and between peripheral tissues, proteins implicated in organellar transport of iron (particularly the mitochondrion), and novel regulators that have been proposed to control iron assimilation. The transport of both transferrin-bound and nontransferrin-bound iron to peripheral tissues is discussed. Finally, the regulation of iron transport is also considered at the molecular level, with posttranscriptional, transcriptional, and posttranslational control mechanisms being reviewed.
Collapse
Affiliation(s)
- Jayong Chung
- Department of Nutrition, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
32
|
Abstract
Transition metals are essential for health, forming integral components of proteins involved in all aspects of biological function. However, in excess these metals are potentially toxic, and to maintain metal homeostasis organisms must tightly coordinate metal acquisition and excretion. The diet is the main source for essential metals, but in aquatic organisms an alternative uptake route is available from the water. This review will assess physiological, pharmacological and recent molecular evidence to outline possible uptake pathways in the gills and intestine of teleost fish involved in the acquisition of three of the most abundant transition metals necessary for life; iron, copper, and zinc.
Collapse
Affiliation(s)
- Nicolas R Bury
- King's College London, School of Health and Life Sciences, Franklin-Wilkins Building, 150 Stamford Street, London, SE1 9NN, UK.
| | | | | |
Collapse
|
33
|
Latunde-Dada GO, Van der Westhuizen J, Vulpe CD, Anderson GJ, Simpson RJ, McKie AT. Molecular and functional roles of duodenal cytochrome B (Dcytb) in iron metabolism. Blood Cells Mol Dis 2002; 29:356-60. [PMID: 12547225 DOI: 10.1006/bcmd.2002.0574] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dcytb has been identified as the mammalian transplasma ferric reductase that catalyzes the reduction of ferric to ferrous iron in the process of iron absorption. Its mRNA and protein levels are up-regulated by several independent stimulators of iron absorption. Furthermore, its cDNA encodes putative binding sites for heme and ascorbic acid. Using Northern and Western blots, RT-PCR and confocal microscopy, we studied the expression and localisation of Dcytb in cell lines and tissues of CD1 mice. Dcytb expression and function were modulated by iron. Dcytb and DMT1, both predominantly localised in the apical region of the duodenum were up-regulated in iron deficiency. Dcytb, the iron regulated ferric reductase may also utilize cytoplasmic ascorbate as electron donor for transmembrane reduction of iron. Dcytb expression was found in other tissues apart from the duodenum and its regulation and functions at these other sites are of interest in iron metabolism.
Collapse
Affiliation(s)
- G O Latunde-Dada
- Division of Life Sciences, King's College, 150 Stamford Street, London SE1 9NN, UK
| | | | | | | | | | | |
Collapse
|
34
|
Ma Y, Specian RD, Yeh KY, Yeh M, Rodriguez-Paris J, Glass J. The transcytosis of divalent metal transporter 1 and apo-transferrin during iron uptake in intestinal epithelium. Am J Physiol Gastrointest Liver Physiol 2002; 283:G965-74. [PMID: 12223357 DOI: 10.1152/ajpgi.00005.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Caco-2 cells grown in bicameral chambers are a model system to study intestinal iron absorption. Caco-2 cells exhibit constitutive transport of iron from the apical (luminal) chamber to the basal (serosal) chamber that is enhanced by apo-transferrin in the basal chamber, with the apo-transferrin undergoing endocytosis to the apical portion of the cell. With the addition of iron to the apical surface, divalent metal transporter 1 (DMT1) on the brush-border membrane (BBM) undergoes endocytosis. These findings suggest that in Caco-2 cells DMT1 and apo-transferrin may cooperate in iron transport through transcytosis. To prove this hypothesis, we determined by confocal microscopy that, after addition of iron to the apical chamber, DMT1 from the BBM and Texas red apo-transferrin from the basal chamber colocalized in a perinuclear compartment. Colocalization was also observed by isolating endosomes from Caco-2 cells after ingestion of ultra-small paramagnetic particles from either the basal or apical chamber. The isolated endosomes contained both transferrin and DMT1 independent of the chamber from which the paramagnetic particles were endocytosed. These findings suggest that iron transport across intestinal epithelia may be mediated by transcytosis.
Collapse
Affiliation(s)
- Yuxiang Ma
- Feist-Weiller Cancer Center and Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | |
Collapse
|
35
|
Cremonesi P, Acebron A, Raja KB, Simpson RJ. Iron absorption: biochemical and molecular insights into the importance of iron species for intestinal uptake. PHARMACOLOGY & TOXICOLOGY 2002; 91:97-102. [PMID: 12427107 DOI: 10.1034/j.1600-0773.2002.910301.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Recent advances in cloning of proteins involved in intestinal iron absorption can inform design and understanding of therapeutic iron preparations. Redox chemistry of iron is particularly important in iron metabolism, both as a potential source of toxic intermediates and as an essential requirement for efficient iron transport. The initial step in iron absorption (uptake from lumen to mucosa) is particularly important and several pathways involving Fe(III) reduction or transport and Fe(II) transport have been identified. Novel genes associated with iron uptake include Dcytb, a putative iron-regulated reductase and DMT1, a Fe(II) carrier in the brush border membrane. Other mechanisms may also operate, however. We review the recent findings and apply this to understanding the absorption of Fe(III) pharmaceuticals.
Collapse
Affiliation(s)
- Piero Cremonesi
- Italfarmaco Research Center, v. Dei Lavoratori 64 Cinisello B. Milano, Italy
| | | | | | | |
Collapse
|
36
|
Dupic F, Fruchon S, Bensaid M, Borot N, Radosavljevic M, Loreal O, Brissot P, Gilfillan S, Bahram S, Coppin H, Roth MP. Inactivation of the hemochromatosis gene differentially regulates duodenal expression of iron-related mRNAs between mouse strains. Gastroenterology 2002; 122:745-51. [PMID: 11875007 DOI: 10.1053/gast.2002.31877] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND & AIMS Hfe knockout mice, like patients with hereditary hemochromatosis, have augmented duodenal iron absorption and increased iron deposition in hepatic parenchymal cells. The goals of the present study were to gain further insight into the control of iron absorption by comparing the transcript levels of iron-related genes in the duodenum of DBA/2 Hfe-/- mice, susceptible to iron loading, and wild-type controls, and to test whether variations in the duodenal expression of these messengers contribute to the DBA/2 and C57BL/6 strain differences in the severity of hepatic iron loading. METHODS Expression of the different transcripts was quantified by real-time polymerase chain reaction. RESULTS The 2 strains differ strikingly, not only in the severity of hepatic iron loading, but also in the duodenal expression of iron-related genes. In DBA/2 Hfe-/- mice, increased intestinal iron absorption results from the concomitant up-regulation of the Dcytb, DMT1, and FPN1 messengers. No increase in the expression of these messengers is seen in C57BL/6 Hfe-/- mice. CONCLUSIONS The up-regulation of these transcripts suggests that an inappropriate iron-deficiency signal is sensed by the duodenal enterocytes, leading to an enhanced ferric reductase activity and the increase of duodenal iron uptake and transfer to the circulation. The genes modifying the hemochromatosis phenotype probably act by modifying the expression of these 3 messengers.
Collapse
Affiliation(s)
- Françoise Dupic
- Unité de Physiopathologie Cellulaire et Moléculaire, CNRS UPR 2163, CHU Purpan, Toulouse, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zerounian NR, Linder MC. Effects of copper and ceruloplasmin on iron transport in the Caco 2 cell intestinal model. J Nutr Biochem 2002; 13:138-148. [PMID: 11893478 DOI: 10.1016/s0955-2863(01)00205-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies have implicated copper proteins, including ceruloplasmin, in intestinal iron transport. Polarized Caco2 cells with tight junctions were used to examine the possibilities that (a) ceruloplasmin promotes iron absorption by enhancing release at the basolateral cell surface and (b) copper deficiency reduces intestinal iron transport. Iron uptake and overall transport were followed for 90 min with 1 &mgr;M 59Fe(II) applied to the apical surface of Caco2 cell monolayers. Apotransferrin (38 &mgr;M) was in the basolateral chamber. Induction of iron deficiency with desferrioxamine (100 &mgr;M; 18 h) markedly increased uptake and overall transport of iron. Uptake increased from about 20% to about 65% of dose, and overall 59Fe transport from <1% to 60% of dose. On the basis of actual iron released into the basal chamber (measured with bathophenanthroline), transport increased 8-fold. Desferrioxamine pretreatment reduced cellular Fe by 55%. The addition of freshly isolated, enzymatically active human ceruloplasmin to the basolateral chamber during absorption had no effect on uptake or transport of iron by the cells. Unexpectedly, pretreatment with three different chelators of copper (18 h), which reduced cellular levels about 40%, more than doubled iron uptake and raised overall transport to 20%. This was so, whether or not cells were also made iron deficient with desferrioxamine. Acute addition of 1 &mgr;M Cu(II) to the apical chamber had no significant effect upon iron uptake, retention, or transport in iron deficient or normal cells, in the presence of absence of ascorbate. We conclude that intestinal absorption of Fe(II) is unlikely to depend upon plasma ceruloplasmin, and that cuproproteins involved in this form of iron transport must be binding copper tightly.
Collapse
Affiliation(s)
- Nora R. Zerounian
- Department of Chemistry and Biochemistry and Institute for Molecular Biology, California State University, 92834-6866, Fullerton, CA, USA
| | | |
Collapse
|
38
|
Han O, Wessling-Resnick M. Copper repletion enhances apical iron uptake and transepithelial iron transport by Caco-2 cells. Am J Physiol Gastrointest Liver Physiol 2002; 282:G527-33. [PMID: 11842003 DOI: 10.1152/ajpgi.00414.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The influence of copper status on Caco-2 cell apical iron uptake and transepithelial transport was examined. Cells grown for 7-8 days in media supplemented with 1 microM CuCl(2) had 10-fold higher cellular levels of copper compared with control. Copper supplementation did not affect the integrity of differentiated Caco-2 cell monolayers grown on microporous membranes. Copper-repleted cells displayed increased uptake of iron as well as increased transport of iron across the cell monolayer. Northern blot analysis revealed that expression of the apical iron transporter divalent metal transporter-1 (DMT1), the basolateral transporter ferroportin-1 (Fpn1), and the putative ferroxidase hephaestin (Heph) was upregulated by copper supplementation, whereas the recently identified ferrireductase duodenal cytochrome b (Dcytb) was not. These results suggest that DMT1, Fpn1, and Heph are involved in the iron uptake process modulated by copper status. Although a clear role for Dcytb was not identified, an apical surface ferrireductase was modulated by copper status, suggesting that its function also contributes to the enhanced iron uptake by copper-repleted cells. A model is proposed wherein copper promotes iron depletion of intestinal Caco-2 cells, creating a deficiency state that induces upregulation of iron transport factors.
Collapse
Affiliation(s)
- Okhee Han
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Knöpfel M, Solioz M. Characterization of a cytochrome b(558) ferric/cupric reductase from rabbit duodenal brush border membranes. Biochem Biophys Res Commun 2002; 291:220-5. [PMID: 11846393 DOI: 10.1006/bbrc.2002.6423] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Iron and probably also copper are absorbed by the intestine in their reduced form. A b-type cytochrome, Dcytb, has recently been cloned from mouse and has been proposed to be the corresponding reductase. However, the nature of the cytochrome and the reduction reaction remain unknown. Here we describe the isolation and functional characterization of a novel b-type cytochrome from rabbit enterocytes. The 33 kDa heme protein was solubilized from brush border membranes with Triton X-100 and purified by successive ion exchange chromatography and hydrophobic interaction chromatography. Spectroscopic analysis of the heme revealed a b(558) cytochrome. The purified hemoprotein exhibited ascorbate-stimulated reduction of iron(III) and copper(II). The rate constants, k(1), for these reactions were 1.38 +/- 0.12 and 0.64 +/- 0.16 min(-1), respectively. Cytochrome b(558) may be the rabbit Dcytb homologue. A novel mechanism of how cytochrome b(558) could shuttle electrons from cytoplasmic ascorbate to luminal dehydroascorbate is proposed.
Collapse
Affiliation(s)
- Martin Knöpfel
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, Berne, Switzerland.
| | | |
Collapse
|
40
|
Richardson DR. Cloning of the ferrireductase that may be involved in iron transport in the small intestine: revisiting Crane's controversial oxidoreductase. Redox Rep 2002; 6:133-5. [PMID: 11523586 DOI: 10.1179/135100001101536229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- D R Richardson
- The Iron Metabolism and Chelation Group, The Heart Research Institute, Sydney, New South Wales, Australia.
| |
Collapse
|
41
|
Bury NR, Grosell M, Wood CM, Hogstrand C, Wilson RW, Rankin JC, Busk M, Lecklin T, Jensen FB. Intestinal iron uptake in the European flounder (Platichthys flesus). J Exp Biol 2001; 204:3779-87. [PMID: 11719541 DOI: 10.1242/jeb.204.21.3779] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Iron is an essential element because it is a key constituent of the metalloproteins involved in cellular respiration and oxygen transport. There is no known regulated excretory mechanism for iron, and homeostasis is tightly controlled via its uptake from the diet. This study assessed in vivo intestinal iron uptake and in vitro iron absorption in a marine teleost, the European flounder Platichthys flesus. Ferric iron, in the form 59FeCl3, was reduced to Fe2+ by ascorbate, and the bioavailability of Fe3+ and Fe2+ were compared. In vivo Fe2+ uptake was significantly greater than Fe3+ uptake and was reduced by the iron chelator desferrioxamine. Fe2+ was also more bioavailable than Fe3+ in in vitro studies that assessed the temporal pattern and concentration-dependency of iron absorption. The posterior region, when compared with the anterior and mid regions of the intestine, was the preferential site for Fe2+ uptake in vivo. In vitro iron absorption was upregulated in the posterior intestine in response to prior haemoglobin depletion of the fish, and the transport showed a Q10 value of 1.94. Iron absorption in the other segments of the intestine did not correlate with haematocrit, and Q10 values were lower. Manipulation of the luminal pH had no effect on in vitro iron absorption. The present study demonstrates that a marine teleost absorbs Fe2+ preferentially in the posterior intestine. This occurs in spite of extremely high luminal bicarbonate concentrations recorded in vivo, which may be expected to reduce the bioavailability of divalent cations as a result of the precipitation as carbonates (e.g. FeCO3).
Collapse
Affiliation(s)
- N R Bury
- Division of Health and Life Sciences, King's College London, 150 Stamford Street, London SE1 9NN, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
McKie AT, Barrow D, Latunde-Dada GO, Rolfs A, Sager G, Mudaly E, Mudaly M, Richardson C, Barlow D, Bomford A, Peters TJ, Raja KB, Shirali S, Hediger MA, Farzaneh F, Simpson RJ. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 2001; 291:1755-9. [PMID: 11230685 DOI: 10.1126/science.1057206] [Citation(s) in RCA: 726] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability of intestinal mucosa to absorb dietary ferric iron is attributed to the presence of a brush-border membrane reductase activity that displays adaptive responses to iron status. We have isolated a complementary DNA, Dcytb (for duodenal cytochrome b), which encoded a putative plasma membrane di-heme protein in mouse duodenal mucosa. Dcytb shared between 45 and 50% similarity to the cytochrome b561 family of plasma membrane reductases, was highly expressed in the brush-border membrane of duodenal enterocytes, and induced ferric reductase activity when expressed in Xenopus oocytes and cultured cells. Duodenal expression levels of Dcytb messenger RNA and protein were regulated by changes in physiological modulators of iron absorption. Thus, Dcytb provides an important element in the iron absorption pathway.
Collapse
Affiliation(s)
- A T McKie
- Department of Molecular Medicine, Guy's, King's and St. Thomas' School of Medicine, King's College London, Rayne Institute, Denmark Hill Campus, 123 Coldharbour Lane, London SE5 9NU, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Iron homeostasis is maintained by regulating its absorption: Under conditions of deficiency, assimilation is enhanced but iron uptake is otherwise limited to prevent toxicity due to overload. Iron deficiency remains the most important micronutrient deficiency worldwide, but increasing awareness of the genetic basis for iron-loading diseases points to iron overload as a major public health issue as well. Recent identification of mutant alleles causing iron uptake disorders in mice and humans provides new insights into the mechanisms involved in iron transport and its regulation. This article summarizes these discoveries and discusses their impact on our current understanding of iron transport and its regulation.
Collapse
Affiliation(s)
- M Wessling-Resnick
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
| |
Collapse
|
44
|
Knöpfel M, Schulthess G, Funk F, Hauser H. Characterization of an integral protein of the brush border membrane mediating the transport of divalent metal ions. Biophys J 2000; 79:874-84. [PMID: 10920019 PMCID: PMC1300985 DOI: 10.1016/s0006-3495(00)76343-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The transport of Fe(2+) and other divalent transition metal ions across the intestinal brush border membrane (BBM) was investigated using brush border membrane vesicles (BBMVs) as a model. This transport is an energy-independent, protein-mediated process. The divalent metal ion transporter of the BBM is a spanning protein, very likely a protein channel, that senses the phase transition of the BBM, as indicated by a break in the Arrhenius plot. The transporter has a broad substrate range that includes Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+). Under physiological conditions the transport of divalent metal ions is proton-coupled, leading to the acidification of the internal cavity of BBMVs. The divalent metal ion transporter can be solubilized in excess detergent (30 mM diheptanoylphosphatidylcholine or 1% Triton X-100) and reconstituted into an artificial membrane system by detergent removal. The reconstituted membrane system showed metal ion transport characteristics similar to those of the original BBMVs. The properties of the protein described here closely resemble those of the proton-coupled divalent cation transporter (DCT1, Nramp2) described by, Nature. 388:482-488). We may conclude that a protein of the Nramp family is present in the BBM, facilitating the transport of Fe(2+) and other divalent transition metal ions.
Collapse
Affiliation(s)
- M Knöpfel
- Institute of Biochemistry, Swiss Federal Institute of Technology, ETH Centre, CH-8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
45
|
Lee PL, Halloran C, Cross AR, Beutler E. NADH-ferric reductase activity associated with dihydropteridine reductase. Biochem Biophys Res Commun 2000; 271:788-95. [PMID: 10814540 DOI: 10.1006/bbrc.2000.2708] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mammals dietary ferric iron is reduced to ferrous iron for more efficient absorption by the intestine. Analysis of a pig duodenal membrane fraction revealed two NADH-dependent ferric reductase activities, one associated with a b-type cytochrome and the other not. Purification and characterization of the non-cytochrome ferric reductase identified a 31 kDa protein. MALDI-MS analysis and amino acid sequencing identified the ferric reductase as being related to the 26 kDa liver NADH-dependent quinoid dihydropteridine reductase (DHPR). The NADH-dependent DHPR ferric reductase activity was found to be pteridine-independent since exhaustive dialysis did not reduce activity and heat-inactivation destroyed activity. In intestinal Caco-2 cells, DHPR mRNA levels were found to be regulated by iron. Thus, DHPR appears to be a dual function enzyme, a NADH-dependent dihydopteridine reductase and an iron-regulated, NADH-dependent, pteridine-independent ferric reductase.
Collapse
Affiliation(s)
- P L Lee
- Department of Molecular and Experimental Medicine, Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | |
Collapse
|
46
|
Motoya T, Miyashita M, Kawachi A, Yamada K. Effects of ascorbic acid on interactions between ciprofloxacin and ferrous sulphate, sodium ferrous citrate or ferric pyrophosphate, in mice. J Pharm Pharmacol 2000; 52:397-401. [PMID: 10813549 DOI: 10.1211/0022357001774147] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The absorption of ciprofloxacin has been reported to be impaired by concomitant administration of ferrous sulphate. The effects of sodium ferrous citrate and ferric pyrophosphate, which have been used as extensively as ferrous sulphate, on the absorption of ciprofloxacin were compared with that of ferrous sulphate. The effects of ascorbic acid on the interactions between ciprofloxacin and each iron compound were studied in mice. Mice were treated orally with ciprofloxacin (50 mg kg(-1)) alone, the iron compound (ferrous sulphate, sodium ferrous citrate or ferric pyrophosphate; 50 mg elemental iron kg(-1)) alone, ciprofloxacin with each iron compound or ciprofloxacin in combination with each iron compound and ascorbic acid (250 mg kg(-1)). The maximum serum concentration of ciprofloxacin was significantly (P < 0.01) reduced from 1.15+/-0.11 microg mL(-1) (ciprofloxacin alone) to 0.17+/-0.01, 0.27+/-0.01 or 0.28+/-0.02 microg mL(-1), respectively, when ferrous sulphate, sodium ferrous citrate or ferric pyrophosphate was administered along with ciprofloxacin. The addition of ascorbic acid did not affect the inhibitory effects of each iron compound on the absorption of ciprofloxacin. Ciprofloxacin did not affect the variation of serum iron levels after administration of each iron compound. The addition of ascorbic acid significantly (P < 0.01) enhanced the increase in serum iron concentration after administration of sodium ferrous citrate, showing an increase from 270+/-6 microg dL(-1) to 463+/-11 microg dL(-1) compared with an increase from 248+/-8 microg dL(-1) to 394+/-18 microg dL(-1) after administration of sodium ferrous citrate alone. Ascorbic acid also caused a significant (P < 0.01) increase in serum iron concentration from 261+/-16 microg dL(-1) to 360+/-12 microg dL(-1) after administration of ferric pyrophosphate, although it did not affect the levels after ferrous sulphate administration. The results suggest that sodium ferrous citrate and ferric pyrophosphate should not be administered with ciprofloxacin (as for ferrous sulphate) and that sodium ferrous citrate is converted to the ferric form more easily than ferrous sulphate. This difference in convertibility might contribute to a clinical difference between sodium ferrous citrate and ferrous sulphate.
Collapse
Affiliation(s)
- T Motoya
- Department of Hospital Pharmacy, Faculty of Medicine, Kagoshima University, Sakuragaoka, Japan
| | | | | | | |
Collapse
|
47
|
McKie AT, Marciani P, Rolfs A, Brennan K, Wehr K, Barrow D, Miret S, Bomford A, Peters TJ, Farzaneh F, Hediger MA, Hentze MW, Simpson RJ. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol Cell 2000; 5:299-309. [PMID: 10882071 DOI: 10.1016/s1097-2765(00)80425-6] [Citation(s) in RCA: 1029] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iron absorption by the duodenal mucosa is initiated by uptake of ferrous Fe(II) iron across the brush border membrane and culminates in transfer of the metal across the basolateral membrane to the portal vein circulation by an unknown mechanism. We describe here the isolation and characterization of a novel cDNA (Ireg1) encoding a duodenal protein that is localized to the basolateral membrane of polarized epithelial cells. Ireg1 mRNA and protein expression are increased under conditions of increased iron absorption, and the 5' UTR of the Ireg1 mRNA contains a functional iron-responsive element (IRE). IREG1 stimulates iron efflux following expression in Xenopus oocytes. We conclude that IREG1 represents the long-sought duodenal iron export protein and is upregulated in the iron overload disease, hereditary hemochromatosis.
Collapse
Affiliation(s)
- A T McKie
- Department of Molecular Medicine, King's College London, Guy's, King's, St Thomas' School of Medicine, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tandy S, Williams M, Leggett A, Lopez-Jimenez M, Dedes M, Ramesh B, Srai SK, Sharp P. Nramp2 expression is associated with pH-dependent iron uptake across the apical membrane of human intestinal Caco-2 cells. J Biol Chem 2000; 275:1023-9. [PMID: 10625641 DOI: 10.1074/jbc.275.2.1023] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The absorption of dietary non-heme iron by intestinal enterocytes is crucial to the maintenance of body iron homeostasis. This process must be tightly regulated since there are no distinct mechanisms for the excretion of excess iron from the body. An insight into the cellular mechanisms has recently been provided by expression cloning of a divalent cation transporter (DCT1) from rat duodenum and positional cloning of its human homologue, Nramp2. Here we demonstrate that Nramp2 is expressed in the apical membrane of the human intestinal epithelial cell line, Caco 2 TC7, and is associated with functional iron transport in these cells with a substrate preference for iron over other divalent cations. Iron transport occurs by a proton-dependent mechanism, exhibiting a concurrent intracellular acidification. Taken together, these data suggest that the expression of the Nramp2 transporter in human enterocytes may play an important role in intestinal iron absorption.
Collapse
Affiliation(s)
- S Tandy
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rolfs A, Hediger MA. Metal ion transporters in mammals: structure, function and pathological implications. J Physiol 1999; 518:1-12. [PMID: 10373684 PMCID: PMC2269412 DOI: 10.1111/j.1469-7793.1999.0001r.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite the importance of metal ions in several catalytic functions, there has been, until recently, little molecular information available on the mechanisms whereby metal ions are actively taken up by mammalian cells. The classical concept for iron uptake into mammalian cells has been the endocytosis of transferrin-bound Fe3+ by the transferrin receptor. Studies with hypotransferrinaemic mice revealed that in the intestine mucosal transferrin is derived from the plasma and that its presence is not required in the intestinal lumen for dietary iron absorption. This suggests that, at least in the intestine, other non-receptor-mediated uptake systems exist. The molecular identification of metal ion transporters is of great importance, in particular since an increasing number of human diseases are thought to be related to disturbances in metal ion homeostasis, including metal ion overload and deficiency disorders (i.e. anaemia, haemochromatosis, Menkes disease, Wilson's disease), and neurodegenerative diseases (i.e. Alzheimer's, Friedreich's ataxia and Parkinson's diseases). Furthermore, susceptibilities to mycobacterial infections are caused by metal ion transporter defects. The pathological implications of disturbed metal ion homeostasis confirm the vital roles these metal ions play in the catalytic function of many enzymes, in gene regulation (zinc-finger proteins), and in free radical homeostasis. Recent insights have significantly advanced our knowledge of how metal ions are taken up or released by mammalian cells. The purpose of this review is to summarize these advances and to give an overview on the growing number of mammalian metal ion transporters.
Collapse
Affiliation(s)
- A Rolfs
- Membrane Biology Program and Renal Division, Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
50
|
Cellular and Subcellular Localization of the Nramp2 Iron Transporter in the Intestinal Brush Border and Regulation by Dietary Iron. Blood 1999. [DOI: 10.1182/blood.v93.12.4406.412k21_4406_4417] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic studies in animal models of microcytic anemia and biochemical studies of transport have implicated the Nramp2gene in iron transport. Nramp2 generates two alternatively spliced mRNAs that differ at their 3′ untranslated region by the presence or absence of an iron-response element (IRE) and that encode two proteins with distinct carboxy termini. Antisera raised against Nramp2 fusion proteins containing either the carboxy or amino termini of Nramp2 and that can help distinguish between the two Nramp2 protein isoforms (IRE: isoform I; non-IRE: isoform II) were generated. These antibodies were used to identify the cellular and subcellular localization of Nramp2 in normal tissues and to study possible regulation by dietary iron deprivation. Immunoblotting experiments with membrane fractions from intact organs show that Nramp2 is expressed at low levels throughout the small intestine and to a higher extent in kidney. Dietary iron starvation results in a dramatic upregulation of the Nramp2 isoform I in the proximal portion of the duodenum only, whereas expression in the rest of the small intestine and in kidney remains largely unchanged in response to the lack of dietary iron. In proximal duodenum, immunostaining studies of tissue sections show that Nramp2 protein expression is abundant under iron deplete condition and limited to the villi and is absent in the crypts. In the villi, staining is limited to the columnar absorptive epithelium of the mucosa (enterocytes), with no expression in mucus-secreting goblet cells or in the lamina propria. Nramp2 expression is strongest in the apical two thirds of the villi and is very intense at the brush border of the apical pole of the enterocytes, whereas the basolateral membrane of these cells is negative for Nramp2. These results strongly suggest that Nramp2 is indeed responsible for transferrin-independent iron uptake in the duodenum. These findings are discussed in the context of overall mechanisms of iron acquisition by the body.
Collapse
|