1
|
Liao S, Xiang J, Wu S. One-pot Synthesis of High-performance Green-emitting Carbon Dots for Cd 2+ Sensing and Anti-counterfeiting Applications. J Fluoresc 2025; 35:2135-2145. [PMID: 38507127 DOI: 10.1007/s10895-024-03669-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
This study presents a facile one-pot solvothermal synthesis of high-performance green fluorescent carbon dots (G-CDs) using o-phenylenediamine and ethylenediamine as precursors. The G-CDs show excellent optical, temporal, and chemical stability. Notably, they exhibit the highest quantum yield of 24.2% in ethanol and a strong green emission peaking at 546 nm under 440-490 nm excitation. In addition, G-CDs have outstanding salt resistance and multi-solvent compatibility. Due to its bright photoluminescence, G-CDs can be used as a secure ink for anti-counterfeiting. More remarkably, Cd2+ ions can efficiently quench the fluorescence of G-CDs with a detection limit of 0.152 µmol/L, enabling accurate quantification of Cd2+ in water systems. The simple synthesis of high-performance G-CDs expands their applicability in sensing and bioimaging.
Collapse
Affiliation(s)
- Shihua Liao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jiamei Xiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Shaogui Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China.
| |
Collapse
|
2
|
Mankoti M, Meena SS, Mohanty A. Exploring the potential of eco-friendly carbon dots in monitoring and remediation of environmental pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43492-43523. [PMID: 38713351 DOI: 10.1007/s11356-024-33448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Photoluminescent carbon dots (CDs) have garnered significant interest owing to their distinctive optical and electronic properties. In contrast to semiconductor quantum dots, which incorporated toxic elements in their composition, CDs have emerged as a promising alternative, rendering them suitable for both environmental and biological applications. CDs exhibit astonishing features, including photoluminescence, charge transfer, quantum confinement effect, and biocompatibility. Recently, CDs derived from green sources have drawn a lot of attention due to their strong photostability, reduced toxicity, better biocompatibility, enhanced fluorescence, and simplicity. These attributes have shown great promise in the areas of LED technology, bioimaging, photocatalysis, drug delivery, biosensing, and antibacterial activity. In contrast, this review offers a comprehensive overview of various green sources utilized to produce CDs and methodologies, along with their merits and demerits, with a notable emphasis on physiochemical properties. Additionally, the paper provides insight into the bibliometric analysis and recent advancements of CDs in sensing, photocatalysis, and antibacterial activity. In this field, extensive research is underway, and a total of 7,438 articles have been identified. Among these, 4242 articles are dedicated to sensing applications, while 1518 and 1678 focus on adsorption and degradation. Carbon dots demonstrate exceptional sensing capabilities within the nanomolar range with a selectivity of up to 95% for pollutants. They exhibit excellent degradation efficiency exceeding 90% within 10-130 min and possess an adsorption capacity from 100 to 800 mg/g. These fascinating qualities render them suitable for diverse applications.
Collapse
Affiliation(s)
- Megha Mankoti
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Sumer Singh Meena
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Anee Mohanty
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| |
Collapse
|
3
|
Kong J, Wei Y, Zhou F, Shi L, Zhao S, Wan M, Zhang X. Carbon Quantum Dots: Properties, Preparation, and Applications. Molecules 2024; 29:2002. [PMID: 38731492 PMCID: PMC11085940 DOI: 10.3390/molecules29092002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Carbon quantum dots are a novel form of carbon material. They offer numerous benefits including particle size adjustability, light resistance, ease of functionalization, low toxicity, excellent biocompatibility, and high-water solubility, as well as their easy accessibility of raw materials. Carbon quantum dots have been widely used in various fields. The preparation methods employed are predominantly top-down methods such as arc discharge, laser ablation, electrochemical and chemical oxidation, as well as bottom-up methods such as templates, microwave, and hydrothermal techniques. This article provides an overview of the properties, preparation methods, raw materials for preparation, and the heteroatom doping of carbon quantum dots, and it summarizes the applications in related fields, such as optoelectronics, bioimaging, drug delivery, cancer therapy, sensors, and environmental remediation. Finally, currently encountered issues of carbon quantum dots are presented. The latest research progress in synthesis and application, as well as the challenges outlined in this review, can help and encourage future research on carbon quantum dots.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangfeng Zhang
- School of Medicine, Henan Polytechnic University, Jiaozuo 454000, China; (Y.W.); (F.Z.); (L.S.); (S.Z.); (M.W.)
| |
Collapse
|
4
|
Salzano F, Aulitto M, Fiorentino G, Cannella D, Peeters E, Limauro D. A novel endo-1,4-β-xylanase from Alicyclobacillus mali FL18: Biochemical characterization and its synergistic action with β-xylosidase in hemicellulose deconstruction. Int J Biol Macromol 2024; 264:130550. [PMID: 38432267 DOI: 10.1016/j.ijbiomac.2024.130550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
A novel endo-1,4-β-xylanase-encoding gene was identified in Alicyclobacillus mali FL18 and the recombinant protein, named AmXyn, was purified and biochemically characterized. The monomeric enzyme worked optimally at pH 6.6 and 80 °C on beechwood xylan with a specific activity of 440.00 ± 0.02 U/mg and a good catalytic efficiency (kcat/KM = 91.89 s-1mLmg-1). In addition, the enzyme did not display any activity on cellulose, suggesting a possible application in paper biobleaching processes. To develop an enzymatic mixture for xylan degradation, the association between AmXyn and the previously characterized β-xylosidase AmβXyl, deriving from the same microorganism, was assessed. The two enzymes had similar temperature and pH optima and showed the highest degree of synergy when AmXyn and AmβXyl were added sequentially to beechwood xylan, making this mixture cost-competitive and suitable for industrial use. Therefore, this enzymatic cocktail was also employed for the hydrolysis of wheat bran residue. TLC and HPAEC-PAD analyses revealed a high conversion rate to xylose (91.56 %), placing AmXyn and AmβXyl among the most promising biocatalysts for the saccharification of agricultural waste.
Collapse
Affiliation(s)
- Flora Salzano
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Martina Aulitto
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Gabriella Fiorentino
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - David Cannella
- PhotoBiocatalysis Unit, Biomass Transformation lab - BTL, and Crop production and Biostimulation Lab - CPBL, Universitè libre de Brussels, ULB, Belgium
| | - Eveline Peeters
- Department of Bioengineering Sciences Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Danila Limauro
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia, 80126 Naples, Italy.
| |
Collapse
|
5
|
Wang X, Yan F, Chen Y, Bai X, Fu Y. Localized electron-accepted yellow-emission carbon dots encapsulated in UiO-66 for efficient visible-light driven photocatalytic activity. CHEMOSPHERE 2023; 343:140250. [PMID: 37741371 DOI: 10.1016/j.chemosphere.2023.140250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023]
Abstract
Metal organic frameworks (MOFs) possess a large surface area, inherent porosity and high crystallinity. Nevertheless, they lack electron acceptors, which limit the exploitation of their photocatalytic properties. Carbon dots (CDs) known for excellent optical properties can serve as localized electron acceptors. As a novel hybrid nanomaterial, the structure of CDs@MOFs effectively facilitates charge separation and carrier transfer, bring about a marked improvement of photocatalytic activity. In this study, yellow-emission carbon dots (YCDs) were encapsulated within zirconium-based metal organic framework (UiO-66) via a dynamic adsorption method. Compared with blue carbon dots (BCDs), the YCDs@UiO-66 exhibited superior degradation performance. It demonstrates that incorporation of YCDs broadens the UV absorption range of UiO-66, thereby enhancing light utilization. The degradation efficiency of YCDs@UiO-66 was 92.6%, whereas UiO-66 alone achieved only 63.1%. Notably, the results of the radical quenching experiment and electron paramagnetic resonance (EPR) revealed that h+ and •O2- played a prominent role in the photodegradation of tetracycline hydrochloride (TCH). This study highlights that the introducing YCDs in MOFs-mediated photocatalytic reactions is a viable strategy to improve catalytic efficiency.
Collapse
Affiliation(s)
- Xiule Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China.
| | - Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China.
| | - Ying Chen
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China.
| | - Xinyi Bai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, PR China; School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, PR China.
| | - Yang Fu
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
6
|
Li G, Xu J, Xu K. Physiological Functions of Carbon Dots and Their Applications in Agriculture: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2684. [PMID: 37836325 PMCID: PMC10574142 DOI: 10.3390/nano13192684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023]
Abstract
Carbon dots are carbon-based nanoparticles, which have the characteristics of a simple preparation process, photoluminescence, biocompatibility, an adjustable surface function, water solubility, and low-level toxicity. They are widely used in biological applications, such as imaging, biosensing, photocatalysis, and molecular transfer. They have also aroused great interest among researchers in agriculture, and there has been significant progress in improving crop growth and production. This review presents the physiological functions of carbon dots for crop growth and development, photosynthesis, water and nutrient absorption, and abiotic stress resistance and their applications in improving the ecological environment and agriculture as biosensors, and future application prospects and research directions of carbon dots in agriculture.
Collapse
Affiliation(s)
- Guohui Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (G.L.); (J.X.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Research Institute of Rice Industrial Engineering Technology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Jiwei Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (G.L.); (J.X.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Research Institute of Rice Industrial Engineering Technology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Ke Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China; (G.L.); (J.X.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
- Research Institute of Rice Industrial Engineering Technology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Design and Applications of Enzyme-Linked Nanostructured Materials for Efficient Bio-catalysis. Top Catal 2023. [DOI: 10.1007/s11244-022-01770-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Kamyab H, Chelliapan S, Tavakkoli O, Mesbah M, Bhutto JK, Khademi T, Kirpichnikova I, Ahmad A, ALJohani AA. A review on carbon-based molecularly-imprinted polymers (CBMIP) for detection of hazardous pollutants in aqueous solutions. CHEMOSPHERE 2022; 308:136471. [PMID: 36126738 DOI: 10.1016/j.chemosphere.2022.136471] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/30/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
This article discusses the unique properties and performance of carbon-based molecularly-imprinted polymers (MIPs) for detecting hazardous pollutants in aqueous solutions. Although MIPs have several advantages such as specific recognition sites, selectivity, and stability, they suffer from a series of drawbacks, including loss of conductivity, electrocatalytic activity, and cost, which limit their use in various fields. Carbon-based MIPs, which utilize carbon electrodes, carbon nanoparticles, carbon dots, carbon nanotubes, and graphene substrates, have been the focus of research in recent years to enhance their properties and remove their weaknesses as much as possible. These carbon-based nanomaterials have excellent sensitivity and specificity for molecular identification. As a result, they have been widely used in various applications, such as assessing the environmental, biological, and food samples. This article examines the growth of carbon-based MIPs and their environmental applications.
Collapse
Affiliation(s)
- Hesam Kamyab
- Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Department of Electric Power Stations, Network and Supply Systems, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Omid Tavakkoli
- Department of Petroleum Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Bahru, Malaysia
| | - Mohsen Mesbah
- Engineering Department, Razak Faculty of Technology & Informatics, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Javed Khan Bhutto
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Tayebeh Khademi
- Azman Hashim International Business School (AHIBS), Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Irina Kirpichnikova
- Department of Electric Power Stations, Network and Supply Systems, South Ural State University (National Research University), 76 Prospekt Lenina, 454080, Chelyabinsk, Russian Federation
| | - Akil Ahmad
- Chemistry Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Anas Ayesh ALJohani
- Department of Electrical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|