1
|
Kotwal N, Pathania D, Singh A, Din Sheikh ZU, Kothari R. Enzyme immobilization with nanomaterials for hydrolysis of lignocellulosic biomass: Challenges and future Perspectives. Carbohydr Res 2024; 543:109208. [PMID: 39013334 DOI: 10.1016/j.carres.2024.109208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
Enzyme immobilization has emerged as a prodigious strategy in the enzymatic hydrolysis of lignocellulosic biomass (LCB) promising enhanced efficacy and stability of the enzymes. Further, enzyme immobilization on magnetic nanoparticles (MNPs) facilitates the easy recovery and reuse of biocatalysts. This results in the development of a nanobiocatalytic system, that serves as an eco-friendly and inexpensive LCB deconstruction approach. This review provides an overview of nanomaterials used for immobilization with special emphasis on the nanomaterial-enzyme interactions and strategies of immobilization. After the succinct outline of the immobilization procedures and supporting materials, a comprehensive assessment of the catalysis enabled by nanomaterial-immobilized biocatalysts for the conversion and degradation of lignocellulosic biomasses is provided by gathering state-of-the-art examples. The challenges and future directions associated with this technique providing a potential solution in the present article. Insight on the recent advancements in the process of nanomaterial-based immobilization for the hydrolysis of lignocellulosic biomass has also been highlighted in the article.
Collapse
Affiliation(s)
- Neha Kotwal
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| | - Deepak Pathania
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India.
| | - Anita Singh
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India; Department of Environmental Studies, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India.
| | - Zaheer Ud Din Sheikh
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| | - Richa Kothari
- Department of Environmental Sciences, Central University of Jammu, Rahya-Suchani, (Bagla) Samba, J&K, 181143, India
| |
Collapse
|
2
|
Yang AA, Cui JP, Liu Y, Zhang XS, Sun ZB, Luo N, Li WZ, Luan J. Fabrication of bimetallic-doped materials derived from a Cu-based complex for enhanced dye adsorption and iodine capture. Dalton Trans 2023; 52:14220-14234. [PMID: 37766592 DOI: 10.1039/d3dt02749j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
In this work, we used Cu(II) ions, a bis-pyridyl-bis-amide ligand [N,N'-bis(4-pyridinecarboxamide)-1,2-cyclohexane (4-bpah)], and an aromatic dicarboxylic acid [1,4-cyclohexanedicarboxylic acid (H2CHDA)] to construct a 1D binuclear Cu-based complex, namely {[Cu3(4-bpah)(CHDA)3(H2O)]·2H2O}n (1). Moreover, we also developed a facile method to synthesize two monometallic/bimetallic-doped materials which were derived from the Cu complex (C-N-1 and C-V-1, which were doped with nitrogen and vanadium, respectively). The as-synthesized derived materials were fully characterized and the iodine sorption/release capabilities were investigated in detail. We performed iodine adsorption experiments on the two monometallic/bimetallic-doped materials and found that C-N-1 and C-V-1 possess highly efficient adsorption activities for the adsorption of iodine from solution. The C-N-1 and C-V-1 complexes exhibited remarkable adsorption capacities of 1141.60 and 1170.70 mg g-1, respectively, for iodine from a cyclohexane solution. Moreover, the dye adsorption properties of C-N-1 and C-V-1 were also investigated in detail. The obtained C-N-1 and C-V-1 exhibit effective dye uptake performances in water solution. The adsorption of Congo red (CR) on a single metal carbon material C-N-1 doped with heteroatoms reached equilibrium within 240 min and reached an adsorption capacity of 1357.00 mg g-1 and the adsorption capacities of C-V-1 for methylene blue (MB), gentian violet (GV), rhodamine B (RhB), and CR at room temperature were found to be 187.60, 190.60 and 108.10 and 1501.00 mg g-1 in 180 min, respectively. By comparison, we found that doping vanadium could play an important role in the adsorption processes. The adsorption capacity of C-V-1 (containing the vanadium in its structure) was relatively higher than that of C-N-1, which indicated that the introduction of non-noble metals may effectively tune the adsorption kinetics activity and the introduction of noble metals can change the surface electronegativity of porous carbon materials, thus leading to significantly improved adsorption capabilities.
Collapse
Affiliation(s)
- Ai-Ai Yang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jian-Peng Cui
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Yu Liu
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Xiao-Sa Zhang
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Ze-Bang Sun
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Nan Luo
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Wen-Ze Li
- College of Science, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China.
| | - Jian Luan
- College of Sciences, Northeastern University, Shenyang, 110819, P. R. China.
| |
Collapse
|
3
|
Karimi-Maleh H, Erk N. Gemcitabine drug intercalation with ds-DNA at surface of ds-DNA/Pt-ZnO/SWCNTs/GCE biosensor: A DNA-biosensor for gemcitabine monitoring confirmed by molecular docking study. CHEMOSPHERE 2023; 336:139268. [PMID: 37343636 DOI: 10.1016/j.chemosphere.2023.139268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Herein, a facile and highly sensitive electroanalytical tool for monitoring and quantifying the antineoplastic drug gemcitabine in real sample was provided. In this regard, a novel DNA-biosensor based on Pt-doped ZnO decorated single walled carbon nanotubes (Pt-ZnO/SWCNTs) hybrid nanomaterial modification of glassy carbon electrode (GCE) was fabricated. Ds-DNA (Calf Thymus), as a biological recognition element, was decorated onto nanomaterial-modified GCE via layer-by-layer fabrication strategy to attain ultimate biosensor ds-DNA/Pt-ZnO/SWCNTs/GCE. The characterizations confirmed the successful fabrication of hybrid nanomaterial, as well as the modification of electrode surface by fabricated nanomaterial. The electrochemical impedance spectroscopy (EIS) analysis revealed that the nanomaterial modification of GCE surface enhanced the electrical conductivity thanks to the synergistic effects of Pt-ZnO and SWCNTs structures, thereby boosted the electrocatalytic activity of the resultant biosensor. The electrochemical characterization results showed that the suggested biosensor is capable of detecting gemcitabine in a wide concentration range of 0.01-30.0 μM, with a detection limit of 5.0 nM. The intercalation binding mode of Gemcitabine inside guanine and cytosine rich region of DNA receptor was approved by molecular docking study. The results of the experimental data were well congruent with the molecular docking analysis, which showed that the binding mode of gemcitabine drug with ds-DNA was intercalation.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, China; School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey.
| |
Collapse
|
4
|
Ameen F, Mostafazadeh R, Hamidian Y, Erk N, Sanati AL, Karaman C, Ayati A. Modeling of adsorptive removal of azithromycin from aquatic media by CoFe 2O 4/NiO anchored microalgae-derived nitrogen-doped porous activated carbon adsorbent and colorimetric quantifying of azithromycin in pharmaceutical products. CHEMOSPHERE 2023; 329:138635. [PMID: 37068612 DOI: 10.1016/j.chemosphere.2023.138635] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Herein, it was aimed to optimize the removal process of Azithromycin (Azi) from the aquatic environment via CoFe2O4/NiO nanoparticles anchored onto the microalgae-derived nitrogen-doped porous activated carbon (N-PAC), besides developing a colorimetric method for the swift monitoring of Azi in pharmaceutical products. In this study, the Spirulina platensis (Sp) was used as a biomass resource for fabricating CoFe2O4/NiO@N-PAC adsorbent. The pores of N-PAC mainly entail mesoporous structures with a mean pore diameter of 21.546 nm and total cavity volume (Vtotal) of 0.033578 cm3. g-1. The adsorption studies offered that 98.5% of Azi in aqueous media could remove by CoFe2O4/NiO@N-PAC. For the cyclic stability analysis, the adsorbent was separated magnetically and assessed at the end of five adsorption-desorption cycles with a negligible decrease in adsorption. The kinetic modeling revealed that the adsorption of Azi onto the CoFe2O4/NiO@N-PAC was well-fitted to the second-order reaction kinetics, and the highest adsorption capacity was found as 2000 mg. g-1 at 25 °C based on the Langmuir adsorption isotherm model at 0.8 g. L-1 adsorbent concentration. The Freundlich isotherm model had the best agreement with the experimental data. Thermodynamic modeling indicated the spontaneous and exothermic nature of the adsorption process. Moreover, the effects of pH, temperature, and operating time were also optimized in the colorimetric Azi detection. The blue ion-pair complexes between Azi and Coomassie Brilliant Blue G-250 (CBBG-250) reagent followed Beer's law at wavelengths of 640 nm in the concentration range of 1.0 μM to 1.0 mM with a 0.94 μM limit of detection (LOD). In addition, the selectivity of Azi determination was verified in presence of various species. Furthermore, the applicability of CBBG-250 dye for quantifying Azi was evaluated in Azi capsules as real samples, which revealed the acceptable recovery percentage (98.72-101.27%). This work paves the way for engineering advanced nanomaterials for the removal and monitoring of Azi and assures the sustainability of environmental protection and public health.
Collapse
Affiliation(s)
- Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Reza Mostafazadeh
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Yasamin Hamidian
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey
| | - Nevin Erk
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560, Ankara, Turkey.
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal
| | - Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, 07070, Turkey.
| | - Ali Ayati
- ChemBio Cluster, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
5
|
Junejo B, Eryilmaz M, Rizvanoglu SS, Palabiyik IM, Ghumro T, Mallah A, Solangi AR, Hyder SI, Maleh HK, Dragoi EN. Pharmacological assessment of Co 3O 4, CuO, NiO and ZnO nanoparticles via antibacterial, anti-biofilm and anti-quorum sensing activities. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:2840-2851. [PMID: 37318927 PMCID: wst_2023_150 DOI: 10.2166/wst.2023.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Infectious diseases have risen dramatically as a result of the resistance of many common antibiotics. Nanotechnology provides a new avenue of investigation for the development of antimicrobial agents that effectively combat infection. The combined effects of metal-based nanoparticles (NPs) are known to have intense antibacterial activities. However, a comprehensive analysis of some NPs regarding these activities is still unavailable. This study uses the aqueous chemical growth method to synthesize Co3O4, CuO, NiO and ZnO NPs. The prepared materials were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction techniques. The antibacterial activities of NPs were tested against Gram-positive and Gram-negative bacteria using the microdilution method, such as the minimum inhibitory concentration (MIC) method. The best MIC value among all the metal oxide NPs was 0.63 against Staphylococcus epidermidis ATCC12228 through ZnO NPs. The other metal oxide NPs also showed satisfactory MIC values against different test bacteria. In addition, the biofilm inhibition and antiquorum sensing activities of NPs were also examined. The present study presents a novel approach for the relative analysis of metal-based NPs in antimicrobial studies, demonstrating their potential for bacteria removal from water and wastewater.
Collapse
Affiliation(s)
- Bindia Junejo
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Sindh 76080, Pakistan
| | - Mujde Eryilmaz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Suna Sibel Rizvanoglu
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Ismail Murat Palabiyik
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Tania Ghumro
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Sindh 76080, Pakistan
| | - Arfana Mallah
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway; M. A. Kazi Institute of Chemistry, University of Sindh, Jamshoro 76080, Pakistan
| | - Amber R Solangi
- National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Sindh 76080, Pakistan
| | - Syed Iqleem Hyder
- Department of Chemistry, Government College University, Hyderabad, Sindh, Pakistan
| | - Hassan Karimi Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave., Chengdu, China
| | - Elena Niculina Dragoi
- Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, 'Gheorghe Asachi' Technical University, Bld D. Mangeron no. 73, Iasi 700050, Romania E-mail:
| |
Collapse
|
6
|
Ghalkhani M, Teymourinia H, Ebrahimi F, Irannejad N, Karimi-Maleh H, Karaman C, Karimi F, Dragoi EN, Lichtfouse E, Singh J. Engineering and application of polysaccharides and proteins-based nanobiocatalysts in the recovery of toxic metals, phosphorous, and ammonia from wastewater: A review. Int J Biol Macromol 2023; 242:124585. [PMID: 37105252 DOI: 10.1016/j.ijbiomac.2023.124585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Global waste production is anticipated reach to 2.59 billion tons in 2030, thus accentuating issues of environmental pollution and health security. 37 % of waste is landfilled, 33 % is discharged or burned in open areas, and only 13.5 % is recycled, which makes waste management poorly efficient in the context of the circular economy. There is therefore a need for methods to recycle waste into valuable materials through resource recovery process. Progress in the field of recycling is strongly dependent on the development of efficient, stable, and reusable, yet inexpensive catalysts. In this case, a growing attention has been paid to development and application of nanobiocatalysts with promising features. The main purpose of this review paper is to: (i) introduce nanobiomaterials and describe their effective role in the preparation of functional nanobiocatalysts for the recourse recovery aims; (ii) provide production methods and the efficiency improvement of nanobaiocatalysts; (iii) give comprehensive description of valued resource recovery for reducing toxic chemicals from the contaminated environment; (iv) describe various technologies for the valued resource recovery; (v) state the limitation of the valued resource recovery; (vi) and finally economic importance and current scenario of nanobiocatalysts strategies applicable for the resource recovery processes.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | | | - Fatemeh Ebrahimi
- Thin Layer and Nanotechnology Laboratory, Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Neda Irannejad
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India.
| | - Ceren Karaman
- Department of Electricity and Energy, Vocational School of Technical Sciences, Akdeniz University, Antalya 07070, Turkey; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan 9477177870, Iran
| | - Elena Niculina Dragoi
- "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, "Gheorghe Asachi" Technical University, Bld. D. Mangeron no 73, 700050, Iasi, Romania
| | - Eric Lichtfouse
- Tate Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China.
| | - Jagpreet Singh
- Department of Chemical Engineering, University Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| |
Collapse
|
7
|
Genç AE, Akça A, Karaman C, Camarada MB, Dragoi EN. Ammonia free catalytic reduction of nitric oxide on Ni-embedded graphene nanostructure: A density functional theory investigation. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
8
|
Dhiman P, Sharma G, Alodhayb AN, Kumar A, Rana G, Sithole T, ALOthman ZA. Constructing a Visible-Active CoFe 2O 4@Bi 2O 3/NiO Nanoheterojunction as Magnetically Recoverable Photocatalyst with Boosted Ofloxacin Degradation Efficiency. Molecules 2022; 27:8234. [PMID: 36500330 PMCID: PMC9741353 DOI: 10.3390/molecules27238234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Constructing visible-light-active Z-scheme heterojunctions has proven fruitful in enhancing the photocatalytic activity of photocatalysts for superior water clean-up. Herein, we report the fabrication of a CoFe2O4@Bi2O3/NiO (CBN) Z-scheme nanoheterojunction. The obtained CBN heterojunction was used for visible-light-assisted degradation of ofloxacin (OFL) in water. The OFL degradation efficiency achieved by the CBN heterojunction was 95.2% in 90 min with a rate constant of kapp = 0.03316 min-1, which was about eight times that of NiO and thirty times that of CoFe2O4. The photocatalytic activity of a Bi2O3/NiO Z-scheme heterojunction was greatly enhanced by the visible activity and redox mediator effect of the cobalt ferrite co-catalyst. Higher charge-carrier separation, more visible-light capture, and the Z-scheme mechanism in the Z-scheme system were the important reasons for the high performance of CBN. The scavenging experiments suggested ●O2- as an active species for superior OFL degradation. The possible OFL degradation pathway was predicted based on LC-MS findings of degradation intermediate products. The magnetic nature of the CBN helped in the recovery of the catalyst after reuse for six cycles. This work provides new insights into designing oxide-based heterojunctions with high visible-light activity, magnetic character, and high redox capabilities for potential practical applications in environmental treatment.
Collapse
Affiliation(s)
- Pooja Dhiman
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
- Department of Chemistry, College of Science, King Saud University, Bldg. #5, Riyadh 11451, Saudi Arabia
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2088, South Africa
| | - Abdullah N. Alodhayb
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
| | - Garima Rana
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173229, India
| | - Thandiwe Sithole
- Department of Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2088, South Africa
| | - Zeid A. ALOthman
- Department of Chemistry, College of Science, King Saud University, Bldg. #5, Riyadh 11451, Saudi Arabia
| |
Collapse
|