1
|
Gao S, Liu T, Liu Q. DNMT1 promotes bladder cancer progression and immune escape by inhibiting MYH11 expression by methylating its promoter. Int Urol Nephrol 2025:10.1007/s11255-025-04527-w. [PMID: 40314887 DOI: 10.1007/s11255-025-04527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Bladder cancer (BC) is a fatal malignancy of the urinary tract with limited effective biomarkers and therapeutic targets. This paper delved into the mechanism of MYH11 and DNMT1 in BC progression. METHODS Differential genes obtained from the GSE3167 dataset were analyzed by the R language limma package. RT-qPCR, Western blot, and immunohistochemistry were carried out to assess MYH11 and DNMT1 expression in BC cell lines and BC tissues. Cell migration, invasion, proliferation, and apoptosis were detected by Transwell assay, CCK-8, and TUNEL after different lentiviral vector treatments. MB49 cells with different infections were administered into mice to monitor tumor growth and immune escape. Flow cytometry detected the rate of CD45+CD4+-positive cells in the tumor tissues and PD-1 and TIM-3 expression in CD4+ T cells. MYH11 methylation was analyzed using the qMSP assay. ChIP and dual-luciferase assay were used for regulatory assays. RESULTS MYH11 was lowly expressed in BC. Overexpression of MYH11 inhibited the malignant progression of BC cells, promoted anti-tumor immune responses of CD4+ T cells, and inhibited immune escape and tumor development in mice. DNMT1 inhibited MYH11 expression by elevating MYH11 promoter methylation. DNMT1 inhibition impeded the immune escape of BC cells, which was reversed by silencing MYH11. DNMT1 silencing prevented immune escape via transcriptional activation of MYH11 and hindered tumor growth in mice. CONCLUSION DNMT1 promotes immune escape and malignant progression of BC by methylating the promoter of MYH11.
Collapse
Affiliation(s)
- Shan Gao
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Tianyi Liu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China
| | - Qing Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Harbin Medical University, No. 246, Xuefu Road, Harbin, 150001, Heilongjiang, People's Republic of China.
| |
Collapse
|
2
|
Sufiyan S, Salam H, Ilyas S, Amin W, Arshad F, Fatima K, Naeem S, Laghari AA, Enam SA, Mughal N. Prognostic implications of DNA methylation machinery (DNMTs and TETs) expression in gliomas: correlations with tumor grading and patient survival. J Neurooncol 2025:10.1007/s11060-025-05032-x. [PMID: 40208514 DOI: 10.1007/s11060-025-05032-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
PURPOSE DNA methylation is a crucial epigenetic modification that regulates gene expression and chromatin structure. Its dysregulation is linked to glioma progression and prognosis, particularly through alterations in methylation machinery. DNMTs and TETs play key roles in these processes, but their involvement in gliomagenesis remains complex, especially in the context of IDH mutations. This study examines the expression patterns of DNMT and TET family genes in gliomas to assess their prognostic significance and therapeutic potential. MATERIALS AND METHODS mRNA expression levels of DNMT1, DNMT3A, DNMT3B, DNMT3L, TET1, TET2, TET3, and TDG were analyzed in 75 glioma samples and 10 normal controls using real-time quantitative PCR (qPCR). Statistical analyses and graphical representation were performed using R (v3.3.2) and RStudio (v1.4.1717), with p-values < 0.05 considered significant. Findings were validated using publicly available databases, TCGA and CGGA. RESULTS Compared to normal controls, DNMTs and TETs were significantly downregulated in gliomas, with expression levels inversely correlated with histological grade. Survival analysis using the log-rank test demonstrated a significant association between lower TETs and DNMTs expression and an increased risk of mortality. However, multivariate Cox regression analysis indicated that DNMTs and TETs expression were not independent prognostic markers for patient survival, suggesting their impact may be influenced by other clinical and molecular factors. Validation through online databases (TCGA and CGGA) showed that TET family expression across histological grades was consistent with our samples, whereas TDG and DNMT family expression differed. CONCLUSION Our findings suggest that DNMTs and TETs may serve as therapeutic targets in glioma due to their downregulation and association with survival, with TET family members (TET1, TET2, and TET3) validated through online databases. However, their prognostic value is limited, as other clinical and molecular factors influence patient outcomes. The downregulation of DNMTs in our samples compared to online databases can be attributed to distinct epigenetic mechanisms: in IDH-mutant gliomas, DNMT suppression results from global hypermethylation (G-CIMP) due to 2-HG accumulation, which inhibits TET enzymes and disrupts DNA methylation homeostasis. In contrast, IDH-wildtype high-grade gliomas exhibit global hypomethylation, genomic instability, oncogenic signaling, and dedifferentiation, reducing the demand for active DNA methylation maintenance. These findings underscore the complex regulation of DNMTs and TETs in gliomas and their potential therapeutic implications.
Collapse
Affiliation(s)
- Sufiyan Sufiyan
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Hira Salam
- Department of Oral Pathology, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Sahar Ilyas
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Wajiha Amin
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatima Arshad
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, 75300, Pakistan
| | | | - Sana Naeem
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan
| | - Altaf Ali Laghari
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Syed Ather Enam
- Department of Surgery, Aga Khan University Hospital, Karachi, Pakistan.
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan.
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, Karachi, Pakistan.
| | - Nouman Mughal
- Department of Biological & Biomedical Science, Aga Khan University Hospital, Karachi, Pakistan.
- Center of Oncological Research in Surgery, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
3
|
Cesarini V, Appleton SL, de Franciscis V, Catalucci D. The recent blooming of therapeutic aptamers. Mol Aspects Med 2025; 102:101350. [PMID: 39933246 DOI: 10.1016/j.mam.2025.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
In the dynamic landscape of biomedical research, therapeutic RNA aptamers have recently come to the forefront, showing significant potential in diagnostics and therapeutics. This review aims to raise awareness of aptamer technology within the scientific community by exploring the progress made in the therapeutic field, from the lessons learned in research to the future opportunities and impact that these innovative molecules are increasingly having on society to meet current health needs, i.e. targeted and personalized therapies.
Collapse
Affiliation(s)
- Valeriana Cesarini
- National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB), Milan, Italy
| | - Silvia Lucia Appleton
- National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB), Milan, Italy
| | - Vittorio de Franciscis
- National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB), Milan, Italy.
| | - Daniele Catalucci
- National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB), Milan, Italy; Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, (Milan), Italy.
| |
Collapse
|
4
|
Harvanik P, Šemeláková M, Solárová Z, Solár P. Novel factors of cisplatin resistance in epithelial ovarian tumours. Adv Med Sci 2025; 70:94-102. [PMID: 39880191 DOI: 10.1016/j.advms.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/11/2024] [Accepted: 01/15/2025] [Indexed: 01/31/2025]
Abstract
Ovarian tumours are these days one of the biggest oncogynecological problems. In addition to surgery, the treatment of ovarian cancer includes also chemotherapy in which platinum preparations are one of the most used chemotherapeutic drugs. The principle of antineoplastic effects of cisplatin (cis-diamminedichloroplatinum(II), CDDP) is its binding to the DNA and the formation of adducts. While DNA adducts induce the process of apoptosis, or inhibit the process of DNA replication, which prevents further division of tumour cells, various molecular mechanisms can reverse this process. On the other hand, with increasing scientific knowledge, it is becoming clearer that chemotherapy resistance is a very complex process. In this regard, factors and the amount of their expression may regulate the effect of resistance to chemotherapy. This review focuses on new molecular mechanisms and factors such as mitochondrial dynamics, epithelial-mesenchymal transition (EMT), cluster of differentiation, exosomes and others, that could be involved in the emergence of CDDP resistance.
Collapse
Affiliation(s)
- Pavol Harvanik
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Martina Šemeláková
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Zuzana Solárová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Peter Solár
- Department of Medical Biology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic.
| |
Collapse
|
5
|
Lanka G, Banerjee S, Adhikari N, Ghosh B. Fragment-based discovery of new potential DNMT1 inhibitors integrating multiple pharmacophore modeling, 3D-QSAR, virtual screening, molecular docking, ADME, and molecular dynamics simulation approaches. Mol Divers 2025; 29:117-137. [PMID: 38637479 DOI: 10.1007/s11030-024-10837-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/05/2024] [Indexed: 04/20/2024]
Abstract
DNA methyl transferases (DNMTs) are one of the crucial epigenetic modulators associated with a wide variety of cancer conditions. Among the DNMT isoforms, DNMT1 is correlated with bladder, pancreatic, and breast cancer, as well as acute myeloid leukemia and esophagus squamous cell carcinoma. Therefore, the inhibition of DNMT1 could be an attractive target for combating cancers and other metabolic disorders. The disadvantages of the existing nucleoside and non-nucleoside DNMT1 inhibitors are the main motive for the discovery of novel promising inhibitors. Here, pharmacophore modeling, 3D-QSAR, and e-pharmacophore modeling of DNMT1 inhibitors were performed for the large fragment database screening. The resulting fragments with high dock scores were combined into molecules. The current study revealed several constitutional pharmacophoric features that can be essential for selective DNMT1 inhibition. The fragment docking and virtual screening identified 10 final hit molecules that exhibited good binding affinities in terms of docking score, binding free energies, and acceptable ADME properties. Also, the modified lead molecules (GL1b and GL2b) designed in this study showed effective binding with DNMT1 confirmed by their docking scores, binding free energies, 3D-QSAR predicted activities and acceptable drug-like properties. The MD simulation studies also suggested that leads (GL1b and GL2b) formed stable complexes with DNMT1. Therefore, the findings of this study can provide effective information for the development/identification of novel DNMT1 inhibitors as effective anticancer agents.
Collapse
Affiliation(s)
- Goverdhan Lanka
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India
| | - Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P. O. Box 17020, Kolkata, West Bengal, 700032, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, P. O. Box 17020, Kolkata, West Bengal, 700032, India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India.
- Computer Aided Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus, Shamirpet, Hyderabad, 500078, India.
| |
Collapse
|
6
|
Manoukian P, Kuhnen LC, van Laarhoven HWM, Bijlsma MF. Association of epigenetic landscapes with heterogeneity and plasticity in pancreatic cancer. Crit Rev Oncol Hematol 2025; 206:104573. [PMID: 39581245 DOI: 10.1016/j.critrevonc.2024.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. Due to a lack of clear symptoms, patients often present with advanced disease, with limited clinical intervention options. The high mortality rate of PDAC is, however, also a result of several other factors that include a high degree of heterogeneity and treatment resistant cellular phenotypes. Molecular subtypes of PDAC have been identified that are thought to represent cellular phenotypes at the tissue level. The epigenetic landscape is an important factor that dictates these subtypes. Permissive epigenetic landscapes serve as drivers of molecular heterogeneity and cellular plasticity in developing crypts as well as metaplastic lesions. Drawing parallels with other cancers, we hypothesize that epigenetic permissiveness is a potential driver of cellular plasticity in PDAC. In this review will explore the epigenetic alterations that underlie PDAC cell states and relate them to cellular plasticity from other contexts. In doing so, we aim to highlight epigenomic drivers of PDAC heterogeneity and plasticity and, with that, offer some insight to guide pre-clinical research.
Collapse
Affiliation(s)
- Paul Manoukian
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| | - Leo C Kuhnen
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Kalra A, Meltzer SJ. The Role of DNA Methylation in Gastrointestinal Disease: An Expanded Review of Malignant and Nonmalignant Gastrointestinal Diseases. Gastroenterology 2025; 168:245-266. [PMID: 38971197 PMCID: PMC11698954 DOI: 10.1053/j.gastro.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/20/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Esophageal, colorectal, pancreatic, hepatocellular, and gastric cancer together impact millions of patients worldwide each year, with high overall mortality rates, and are increasing in incidence. Additionally, premalignant gastrointestinal diseases, such as Barrett's esophagus and inflammatory bowel disease, are also increasing in incidence. However, involvement of aberrant DNA methylation in these diseases is incompletely understood, especially given recent research advancements in this field. Here, we review knowledge of this epigenetic mechanism in gastrointestinal preneoplasia and neoplasia, considering mechanisms of action, genetic and environmental factors, and 5'-C-phosphate-G-3' island methylator phenotype. We also highlight developments in translational research, focusing on genomic-wide data, methylation-based biomarkers and diagnostic tests, machine learning, and therapeutic epigenetic strategies.
Collapse
Affiliation(s)
- Andrew Kalra
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen J Meltzer
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
8
|
Li Y, Guo C, Zhang F, Cheng S, Li Y, Luo S, Zeng Y, Zhao Y, Wu K. DNMT1 inhibition improves the activity of memory-like natural killer cells by enhancing the level of autophagy. Mol Biol Rep 2024; 52:68. [PMID: 39704855 DOI: 10.1007/s11033-024-10181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a common hematological tumor, but it is difficult to treat. DNMT1 is a DNA methyltransferase whose main function is to maintain stable DNA methylation during the DNA replication process. DNMT1 also plays an important role in AML, but its function in cytokine-induced memory-like natural killer (CIML NK) cell activity remains unclear. METHODS AND RESULTS In this study, we isolated primary NK cells from the peripheral blood of healthy volunteers and AML patients and treated them with 10 ng/mL IL-12, 50 ng/mL IL-15 and 50 ng/mL IL-18 to promote their differentiation into CIML NK cells. The activity of CIML NK cells was evaluated by RT‒qPCR, western blotting, ELISAs, and flow cytometry. DNMT1 was highly expressed in NK cells from AML patients. Knocking down DNMT1 significantly increased the expression of CD25, CD137, CD107a, IFN-γ, and TNF-α and increased the activity of CIML NK cells. Mechanistically, knocking down DNMT1 promoted autophagy by activating the AMPK/mTOR signaling pathway, thereby enhancing the activity of CIML NK cells and alleviating the progression of AML. CONCLUSIONS Our study revealed that the downregulation of DNMT expression may be a new target for the treatment of AML.
Collapse
Affiliation(s)
- Yixun Li
- Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Chong Guo
- Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Fujia Zhang
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Shenju Cheng
- Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Yanhong Li
- Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Shan Luo
- Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Yun Zeng
- Department of Hematology, Hematology Research Center of Yunnan Province, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Yaling Zhao
- Department of Pediatrics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China.
| | - Kun Wu
- Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China.
| |
Collapse
|
9
|
Gu X, Wei S, Lv X. Circulating tumor cells: from new biological insights to clinical practice. Signal Transduct Target Ther 2024; 9:226. [PMID: 39218931 PMCID: PMC11366768 DOI: 10.1038/s41392-024-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/31/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
The primary reason for high mortality rates among cancer patients is metastasis, where tumor cells migrate through the bloodstream from the original site to other parts of the body. Recent advancements in technology have significantly enhanced our comprehension of the mechanisms behind the bloodborne spread of circulating tumor cells (CTCs). One critical process, DNA methylation, regulates gene expression and chromosome stability, thus maintaining dynamic equilibrium in the body. Global hypomethylation and locus-specific hypermethylation are examples of changes in DNA methylation patterns that are pivotal to carcinogenesis. This comprehensive review first provides an overview of the various processes that contribute to the formation of CTCs, including epithelial-mesenchymal transition (EMT), immune surveillance, and colonization. We then conduct an in-depth analysis of how modifications in DNA methylation within CTCs impact each of these critical stages during CTC dissemination. Furthermore, we explored potential clinical implications of changes in DNA methylation in CTCs for patients with cancer. By understanding these epigenetic modifications, we can gain insights into the metastatic process and identify new biomarkers for early detection, prognosis, and targeted therapies. This review aims to bridge the gap between basic research and clinical application, highlighting the significance of DNA methylation in the context of cancer metastasis and offering new avenues for improving patient outcomes.
Collapse
Affiliation(s)
- Xuyu Gu
- Department of Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shiyou Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
10
|
Hu X, Wang W, Ma T, Zhang W, Tang X, Zheng Y, Zheng X. Long non-coding RNA SIX1-1 promotes proliferation of cervical cancer cells via negative transcriptional regulation of RASD1. Hum Cell 2024; 37:1446-1461. [PMID: 39014290 DOI: 10.1007/s13577-024-01104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Cervical cancer poses a significant health burden for women globally, and the rapid proliferation of cervical cancer cells greatly worsens patient prognosis. Long non-coding RNAs (lncRNAs) play a crucial role in regulating tumor cell proliferation. However, the involvement of lncRNAs in cervical cancer cell proliferation remains unclear. In this study, we investigated the lncRNA SIX1-1, which was found to be upregulated in cervical cancer tissues and cell lines. Functional assays revealed that knockdown of SIX1-1 inhibited cell proliferation in vitro and reduced tumor growth in vivo. Mechanistically, SIX1-1 was predominantly localized in the nucleus and could bind with DNMT1 protein. The expression of SIX1-1 enhanced the interaction of DNMT1 with RASD1 promoter, leading to the methylation of the promoter and decreased mRNA transcription. Then RASD1 downregulation activated the cAMP/PKA/CREB signaling pathway, promoting cell proliferation. Rescue experiments showed that knockdown of RASD1 restored the inhibited cell proliferation caused by decreased expression of SIX1-1, indicating that RASD1 acted as the functional mediator of SIX1-1. In conclusion, SIX1-1 promoted cervical cancer cell proliferation by modulating RASD1 expression. This suggests that targeting the SIX1-1/RASD1 axis could be a potential antitumor strategy for cervical cancer.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
- Department of Obstetrics and Gynecology, Affiliated Hospital of the NCO School of Army Medical University (Third Military Medical University), Shijiazhuang, 050000, China
| | - Wan Wang
- Department of Medical Genetics, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Teng Ma
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Wanqi Zhang
- The Teaching and Experiment Center, Basic Medicine College, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaohui Tang
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, China
| | - Yingru Zheng
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, China.
| | - Xiuhui Zheng
- Department of Obstetrics and Gynecology, Daping Hospital, Army Medical University (Third Military Medical University), No. 10 Changjiang Branch Road, Yuzhong District, Chongqing, China.
| |
Collapse
|
11
|
Chen T, Mahdadi S, Vidal M, Desbène-Finck S. Non-nucleoside inhibitors of DNMT1 and DNMT3 for targeted cancer therapy. Pharmacol Res 2024; 207:107328. [PMID: 39079576 DOI: 10.1016/j.phrs.2024.107328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
DNA methylation can deactivate tumor suppressor genes thus causing cancers. Two DNA methylation inhibitors have been approved by the Food and Drug Administration (FDA) and have entered clinical use. However, these inhibitors are nucleoside analogues that can be incorporated into DNA or RNA and induce significant side effects. DNMT1 and DNMT3 are key enzymes involved in DNA methylation. In the acute myeloid leukemia model, a non-nucleoside DNMT1-specific inhibitor has shown lower toxicity and improved pharmacokinetics compared to traditional nucleoside drugs. DNMT3 is also implicated in certain specific cancers. Thus, developing non-nucleoside inhibitors for DNMT1 or DNMT3 can help in understanding their roles in carcinogenesis and provide targeted treatment options in certain cancers. Although no non-nucleoside inhibitors have yet entered clinical trials, in this review, we focus on DNMT1 or DNMT3 selective inhibitors. For DNMT1 selective inhibitors, we have compiled information on the repurposed drugs, derivative compounds and selective inhibitors identified through virtual screening. Additionally, we have outlined potential targets for DNMT1, including protein-protein complex, RNA mimics and aptamers. Compared to DNMT1, research on DNMT3-specific inhibitors has been less extensive. In this context, our exploration has identified a limited number of molecular inhibitors, and we have proposed specific long non-coding RNAs (lncRNAs) as potential contributors to the selective inhibition of DNMT3. This collective effort aims to offer valuable insights into the development of non-nucleoside inhibitors that selectively target DNMT1 or DNMT3.
Collapse
Affiliation(s)
- Ting Chen
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France
| | - Syrine Mahdadi
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France
| | - Michel Vidal
- UMR 8038 CNRS, U1268 INSERM, UFR de pharmacie, Université Paris cité, 75270, France; Toxicology, Cochin Hospital, HUPC, APHP, Paris 75014, France
| | | |
Collapse
|
12
|
Liu L, Zhao J, Guo H, Jia J, Shi L, Ma J, Zhang Z. Participation of Long Noncoding RNA FOXP4-AS1 in the Development and Progression of Endometrioid Carcinoma with Epigenetically Silencing DUSP5. Cancer Biother Radiopharm 2024; 39:451-462. [PMID: 38512300 DOI: 10.1089/cbr.2023.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Background: Long noncoding RNAs (lncRNAs), as emerging regulators of a wide variety of biological processes via diverse mechanisms, have been demonstrated to be of increasing importance in biology. Genome-wide association studies of tumor samples have identified several lncRNAs as either oncogenes or tumor suppressors in various types of cancers. In recent years, the importance of lncRNAs, especially in endometrioid cancer (EEC), has become increasingly well understood. The lncRNA Forkhead box P4 antisense RNA 1 (FOXP4-AS1) has been reported to fulfill roles in several types of cancers; however, the main biological function and associated underlying molecular mechanism of FOXP4-AS1 in EEC have yet to be fully elucidated. The present study therefore aimed to investigate how RNA FOXP4-AS1 may participate in the development and progression of endometrioid carcinoma tissues. Materials and Methods: In the present study, the expression level of FOXP4-AS1 was investigated in endometrioid carcinoma tissues and matching nearby normal endometrial tissues collected from patients receiving surgery at the hospital. A series of molecular biological assays were performed to investigate the effect of FOXP4-AS1 on cell proliferation, cell migration, and cell invasion. Results: An increased concentration of FOXP4-AS1 was identified in endometrioid carcinoma samples and cell lines compared with the corresponding controls, and this lncRNA was found to be positively correlated with advanced FIGO stages in patients with endometrial cancer. Furthermore, knocking down endogenous FOXP4-AS1 led to a significant reduction in the colony formation number and a significant inhibition of cell proliferation, cell migration, and cell invasion in endometrioid carcinoma cells. Moreover, dual-specificity phosphatase 5 (DUSP5), which is lowly expressed in endometrioid carcinoma tissues cells and negatively modulated by FOXP4-AS1, was identified as the downstream target molecule of FOXP4-AS1. Subsequently, the mechanistic experiments confirmed that, through binding to enhancer of zeste homolog 2 (EZH2; one of the catalytic subunits of polycomb repressive complex 2 [PRC2]), FOXP4-AS1 could epigenetically suppress the expression of DUSP5. Finally, the oncogenic function of the FOXP4-AS1/EZH2/DUSP5 axis in endometrioid carcinoma was confirmed via rescue assays. Conclusions: The findings of the present study have highlighted how FOXP4-AS1 fulfills an oncogenic role in endometrioid carcinoma, and targeting FOXP4-AS1 and its pathway may provide new biomarkers for patients with endometrioid carcinoma.
Collapse
Affiliation(s)
- Leilei Liu
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingyun Zhao
- Department of Reproduction, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hui Guo
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jingde Jia
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Li Shi
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Ma
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhengmao Zhang
- Department of Obstetrics and Gynecology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Lou L, Deng T, Yuan Q, Wang L, Wang Z, Li X. Targeted silencing of SOCS1 by DNMT1 promotes stemness of human liver cancer stem-like cells. Cancer Cell Int 2024; 24:206. [PMID: 38867242 PMCID: PMC11170857 DOI: 10.1186/s12935-024-03322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Human liver cancer stem-like cells (HLCSLCs) are widely acknowledged as significant factors in the recurrence and eradication of hepatocellular carcinoma (HCC). The sustenance of HLCSLCs' stemness is hypothesized to be intricately linked to the epigenetic process of DNA methylation modification of genes associated with anticancer properties. The present study aimed to elucidate the stemness-maintaining mechanism of HLCSLCs and provide a novel idea for the clearance of HLCSLCs. METHODS The clinical relevance of DNMT1 and SOCS1 in hepatocellular carcinoma (HCC) patients was evaluated through the GEO and TCGA databases. Cellular immunofluorescence assay, methylation-specific PCR, chromatin immunoprecipitation were conducted to explore the expression of DNMT1 and SOCS1 and the regulatory relationship between them in HLCSLCs. Spheroid formation, soft agar colony formation, expression of stemness-associated molecules, and tumorigenicity of xenograft in nude mice were used to evaluate the stemness of HLCSLCs. RESULTS The current analysis revealed a significant upregulation of DNMT1 and downregulation of SOCS1 in HCC tumor tissues compared to adjacent normal liver tissues. Furthermore, patients exhibiting an elevated DNMT1 expression or a reduced SOCS1 expression had low survival. This study illustrated the pronounced expression and activity of DNMT1 in HLCSLCs, which effectively targeted the promoter region of SOCS1 and induced hypermethylation, consequently suppressing the expression of SOCS1. Notably, the stemness of HLCSLCs was reduced upon treatment with DNMT1 inhibitors in a concentration-dependent manner. Additionally, the overexpression of SOCS1 in HLCSLCs significantly mitigated their stemness. The knockdown of SOCS1 expression reversed the effect of DNMT1 inhibitor on the stemness of HLCSLCs. DNMT1 directly binds to the SOCS1 promoter. In vivo, DNMT1 inhibitors suppressed SOCS1 expression and inhibited the growth of xenograft. CONCLUSION DNMT1 targets the promoter region of SOCS1, induces hypermethylation of its CpG islands, and silences its expression, thereby promoting the stemness of HLCSLCs.
Collapse
Affiliation(s)
- Lei Lou
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Tingyun Deng
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Qing Yuan
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Lianghou Wang
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Zhi Wang
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China
| | - Xiang Li
- Department of Preclinical Medicine, Hunan Normal University School of Medicine, Changsha, 410013, China.
| |
Collapse
|
14
|
Gu X, Minko T. Targeted Nanoparticle-Based Diagnostic and Treatment Options for Pancreatic Cancer. Cancers (Basel) 2024; 16:1589. [PMID: 38672671 PMCID: PMC11048786 DOI: 10.3390/cancers16081589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest cancers, presents significant challenges in diagnosis and treatment due to its aggressive, metastatic nature and lack of early detection methods. A key obstacle in PDAC treatment is the highly complex tumor environment characterized by dense stroma surrounding the tumor, which hinders effective drug delivery. Nanotechnology can offer innovative solutions to these challenges, particularly in creating novel drug delivery systems for existing anticancer drugs for PDAC, such as gemcitabine and paclitaxel. By using customization methods such as incorporating conjugated targeting ligands, tumor-penetrating peptides, and therapeutic nucleic acids, these nanoparticle-based systems enhance drug solubility, extend circulation time, improve tumor targeting, and control drug release, thereby minimizing side effects and toxicity in healthy tissues. Moreover, nanoparticles have also shown potential in precise diagnostic methods for PDAC. This literature review will delve into targeted mechanisms, pathways, and approaches in treating pancreatic cancer. Additional emphasis is placed on the study of nanoparticle-based delivery systems, with a brief mention of those in clinical trials. Overall, the overview illustrates the significant advances in nanomedicine, underscoring its role in transcending the constraints of conventional PDAC therapies and diagnostics.
Collapse
Affiliation(s)
- Xin Gu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08554, USA
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
15
|
Firouzjaei AA, Mahmoudi A, Almahmeed W, Teng Y, Kesharwani P, Sahebkar A. Identification and analysis of the molecular targets of statins in colorectal cancer. Pathol Res Pract 2024; 256:155258. [PMID: 38522123 DOI: 10.1016/j.prp.2024.155258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world. According to several types of research, statins may impact the development and treatment of CRC. This work aimed to use bioinformatics to discover the relationship between statin targets and differentially expressed genes (DEGs) in CRC patients and determine the possible molecular effect of statins on CRC suppression. We used CRC datasets from the GEO database to select CRC-related DEGs. DGIdb and STITCH databases were used to identify gene targets of subtypes of statin. Further, we identified the statin target of CRC DEGs hub genes by using a Venn diagram of CRC DEGs and statin targets. Funrich and enrichr databases were carried out for the KEGG pathway and gene ontology (GO) enrichment analysis, respectively. GSE74604 and GSE10950 were used to identify CRC DEGs. After analyzing datasets,1370 genes were identified as CRC DEGs, and 345 targets were found for statins. We found that 35 genes are CRC DEGs statin targets. We found that statin targets in CRC were enriched in the receptor and metallopeptidase activity for molecular function, cytoplasm and plasma membrane for cellular component, signal transduction, and cell communication for biological process genes were substantially enriched based on FunRich enrichment. Analysis of the KEGG pathways revealed that the overexpressed DEGs were enriched in the IL-17, PPAR, and Toll-like receptor signaling pathways. Finally, CCNB1, DNMT1, AURKB, RAC1, PPARGC1A, CDKN1A, CAV1, IL1B, and HSPD1 were identified as hub CRC DEGs statin targets. The genetic and molecular aspects of our findings reveal that statins might have a therapeutic effect on CRC.
Collapse
Affiliation(s)
- Ali Ahmadizad Firouzjaei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Mahmoudi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Yu Y, Fu W, Xie Y, Jiang X, Wang H, Yang X. A review on recent advances in assays for DNMT1: a promising diagnostic biomarker for multiple human cancers. Analyst 2024; 149:1002-1021. [PMID: 38204433 DOI: 10.1039/d3an01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The abnormal expression of human DNA methyltransferases (DNMTs) is closely related with the occurrence and development of a wide range of human cancers. DNA (cytosine-5)-methyltransferase-1 (DNMT1) is the most abundant human DNA methyltransferase and is mainly responsible for genomic DNA methylation patterns. Abnormal expression of DNMT1 has been found in many kinds of tumors, and DNMT1 has become a valuable target for the diagnosis and drug therapy of diseases. Nowadays, DNMT1 has been found to be involved in multiple cancers such as pancreatic cancer, breast cancer, bladder cancer, lung cancer, gastric cancer and other cancers. In order to achieve early diagnosis and for scientific research, various analytical methods have been developed for qualitative or quantitative detection of low-abundance DNMT1 in biological samples and human tumor cells. Herein, we provide a brief explication of the research progress of DNMT1 involved in various cancer types. In addition, this review focuses on the types, principles, and applications of DNMT1 detection methods, and discusses the challenges and potential future directions of DNMT1 detection.
Collapse
Affiliation(s)
- Yang Yu
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Wen Fu
- Department of Thoracic Surgery, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Yaxing Xie
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xue Jiang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Wang
- Department of Laboratory Medicine, QianWei People's Hospital, Leshan 614400, China
| | - Xiaolan Yang
- Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
17
|
Geißert R, Lammert A, Wirth S, Hönig R, Lohfink D, Unger M, Pek D, Schlüter K, Scheftschik T, Smit DJ, Jücker M, Menke A, Giehl K. K-Ras(V12) differentially affects the three Akt isoforms in lung and pancreatic carcinoma cells and upregulates E-cadherin and NCAM via Akt3. Cell Commun Signal 2024; 22:85. [PMID: 38291468 PMCID: PMC10826106 DOI: 10.1186/s12964-024-01484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
K-Ras is the most frequently mutated Ras variant in pancreatic, colon and non-small cell lung adenocarcinoma. Activating mutations in K-Ras result in increased amounts of active Ras-GTP and subsequently a hyperactivation of effector proteins and downstream signaling pathways. Here, we demonstrate that oncogenic K-Ras(V12) regulates tumor cell migration by activating the phosphatidylinositol 3-kinases (PI3-K)/Akt pathway and induces the expression of E-cadherin and neural cell adhesion molecule (NCAM) by upregulation of Akt3. In vitro interaction and co-precipitation assays identified PI3-Kα as a bona fide effector of active K-Ras4B but not of H-Ras or N-Ras, resulting in enhanced Akt phosphorylation. Moreover, K-Ras(V12)-induced PI3-K/Akt activation enhanced migration in all analyzed cell lines. Interestingly, Western blot analyses with Akt isoform-specific antibodies as well as qPCR studies revealed, that the amount and the activity of Akt3 was markedly increased whereas the amount of Akt1 and Akt2 was downregulated in EGFP-K-Ras(V12)-expressing cell clones. To investigate the functional role of each Akt isoform and a possible crosstalk of the isoforms in more detail, each isoform was stably depleted in PANC-1 pancreatic and H23 lung carcinoma cells. Akt3, the least expressed Akt isoform in most cell lines, is especially upregulated and active in Akt2-depleted cells. Since expression of EGFP-K-Ras(V12) reduced E-cadherin-mediated cell-cell adhesion by induction of polysialylated NCAM, Akt3 was analyzed as regulator of E-cadherin and NCAM. Western blot analyses revealed pronounced reduction of E-cadherin and NCAM in the Akt3-kd cells, whereas Akt1 and Akt2 depletion upregulated E-cadherin, especially in H23 lung carcinoma cells. In summary, we identified oncogenic K-Ras4B as a key regulator of PI3-Kα-Akt signaling and Akt3 as a crucial regulator of K-Ras4B-induced modulation of E-cadherin and NCAM expression and localization.
Collapse
Affiliation(s)
- Rebekka Geißert
- Signal Transduction of Cellular Motility, Internal Medicine IV, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392, Giessen, Germany
| | - Angela Lammert
- Signal Transduction of Cellular Motility, Internal Medicine IV, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392, Giessen, Germany
| | - Stefanie Wirth
- Signal Transduction of Cellular Motility, Internal Medicine IV, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392, Giessen, Germany
| | - Rabea Hönig
- Signal Transduction of Cellular Motility, Internal Medicine IV, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392, Giessen, Germany
| | - Dirk Lohfink
- Molecular Oncology of Solid Tumors, Internal Medicine IV, Justus Liebig University Giessen, Aulweg 128, D-35392, Giessen, Germany
| | - Monika Unger
- Institute of Pharmacology and Toxicology, University of Ulm, D-89069, Ulm, Germany
| | - Denis Pek
- Institute of Pharmacology and Toxicology, University of Ulm, D-89069, Ulm, Germany
| | - Konstantin Schlüter
- Signal Transduction of Cellular Motility, Internal Medicine IV, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392, Giessen, Germany
| | - Theresa Scheftschik
- Molecular Oncology of Solid Tumors, Internal Medicine IV, Justus Liebig University Giessen, Aulweg 128, D-35392, Giessen, Germany
| | - Daniel J Smit
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, D-20246, Hamburg, Germany
| | - Manfred Jücker
- Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, D-20246, Hamburg, Germany
| | - Andre Menke
- Molecular Oncology of Solid Tumors, Internal Medicine IV, Justus Liebig University Giessen, Aulweg 128, D-35392, Giessen, Germany
| | - Klaudia Giehl
- Signal Transduction of Cellular Motility, Internal Medicine IV, Science Unit for Basic and Clinical Medicine, Justus Liebig University Giessen, Aulweg 128, D-35392, Giessen, Germany.
| |
Collapse
|
18
|
Yang W, Wang S, Tong S, Zhang WD, Qin JJ. Expanding the ubiquitin code in pancreatic cancer. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166884. [PMID: 37704111 DOI: 10.1016/j.bbadis.2023.166884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/23/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
The ubiquitin-proteasome system (UPS) is a fundamental regulatory mechanism in cells, vital for maintaining cellular homeostasis, compiling signaling transduction, and determining cell fates. These biological processes require the coordinated signal cascades of UPS members, including ubiquitin ligases, ubiquitin-conjugating enzymes, deubiquitinases, and proteasomes, to ubiquitination and de-ubiquitination on substrates. Recent studies indicate that ubiquitination code rewriting is particularly prominent in pancreatic cancer. High frequency mutation or aberrant hyperexpression of UPS members dysregulates ferroptosis, tumor microenvironment, and metabolic rewiring processes and contribute to tumor growth, metastasis, immune evasion, and acquired drug resistance. We conduct an in-depth overview of ubiquitination process in pancreatic cancer, highlighting the role of ubiquitin code in tumor-promoting and tumor-suppressor pathways. Furthermore, we review current UPS modulators and analyze the potential of UPS modulators as cancer therapy.
Collapse
Affiliation(s)
- Wenyan Yang
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China; Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shiqun Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Shengqiang Tong
- College of Pharmaceutical Science, Zhejiang University of Technology, Huzhou 313200, China
| | - Wei-Dong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jiang-Jiang Qin
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
19
|
Hu Y, He Y, Luo N, Li X, Guo L, Zhang K. A feedback loop between lncRNA MALAT1 and DNMT1 promotes triple-negative breast cancer stemness and tumorigenesis. Cancer Biol Ther 2023; 24:2235768. [PMID: 37548553 PMCID: PMC10408694 DOI: 10.1080/15384047.2023.2235768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND The function of long non-coding RNA (lncRNA) MALAT1 in regulating triple-negative breast cancer (TNBC) stemness and tumorigenesis was investigated. METHODS Sphere formation and colony formation assays coupled with flow cytometry were employed to evaluate the percentage of CD44high/CD44low cells, and ALDH+ cells were performed to evaluate the stemness. Bisulfite sequencing PCR (BSP) was employed to detect the methylation level of MALAT1. Tumor xenograft experiment was performed to evaluate tumorigenesis in vivo. Finally, dual-luciferase reporter and RIP assays were employed to verify the binding relationship between MALAT1 and miR-137. RESULTS Our results revealed that MALAT1 and BCL11A were highly expressed in TNBC, while miR-137 and DNMT1 were lowly expressed. Our results proved that MALAT1 positively regulated BCL11A expression through targeting miR-137. Functional experiments revealed that MALAT1 inhibited DNMT1 expression through acting on the miR-137/BCL11A pathway to enhance TNBC stemness and tumorigenesis. We also found that high MALAT1 expression in TNBC was related to the DNMT1-mediated hypomethylation of MALAT1. As expected, DNMT1 overexpression could remarkably inhibit TNBC stemness and tumorigenesis, which was eliminated by MALAT1 overexpression. CONCLUSION MALAT1 downregulated DNMT1 by miR-137/BCL11A pathway to enhance TNBC stemness and tumorigenesis; meanwhile, DNMT1/MALAT1 formed a positive feedback loop to continuously promote TNBC malignant behaviors.
Collapse
Affiliation(s)
- Yu Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Yuqiong He
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Na Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Xin Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Lei Guo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| | - Kejing Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- Department of General Surgery, Xiangya Hospital, Central South University, Clinical Research Center for Breast Cancer in Hunan Province, Changsha, Hunan Province, P.R. China
| |
Collapse
|
20
|
Krauß L, Schneider C, Hessmann E, Saur D, Schneider G. Epigenetic control of pancreatic cancer metastasis. Cancer Metastasis Rev 2023; 42:1113-1131. [PMID: 37659057 PMCID: PMC10713713 DOI: 10.1007/s10555-023-10132-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023]
Abstract
Surgical resection, when combined with chemotherapy, has been shown to significantly improve the survival rate of patients with pancreatic ductal adenocarcinoma (PDAC). However, this treatment option is only feasible for a fraction of patients, as more than 50% of cases are diagnosed with metastasis. The multifaceted process of metastasis is still not fully understood, but recent data suggest that transcriptional and epigenetic plasticity play significant roles. Interfering with epigenetic reprogramming can potentially control the adaptive processes responsible for metastatic progression and therapy resistance, thereby enhancing treatment responses and preventing recurrence. This review will focus on the relevance of histone-modifying enzymes in pancreatic cancer, specifically on their impact on the metastatic cascade. Additionally, it will also provide a brief update on the current clinical developments in epigenetic therapies.
Collapse
Affiliation(s)
- Lukas Krauß
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
| | - Carolin Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology, Gastrointestinal Oncology and Endocrinology, University Medical Center Göttingen, 37075, Göttingen, Germany
- Clinical Research Unit 5002, KFO5002, University Medical Center Göttingen, 37075, Göttingen, Germany
- CCC-N (Comprehensive Cancer Center Lower Saxony), 37075, Göttingen, Germany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer Therapy, Technical University Munich, 81675, Munich, Germany
- German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120, Heidelberg, Germany
| | - Günter Schneider
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075, Göttingen, Germany.
- CCC-N (Comprehensive Cancer Center Lower Saxony), 37075, Göttingen, Germany.
| |
Collapse
|
21
|
Yan L, Geng Q, Cao Z, Liu B, Li L, Lu P, Lin L, Wei L, Tan Y, He X, Li L, Zhao N, Lu C. Insights into DNMT1 and programmed cell death in diseases. Biomed Pharmacother 2023; 168:115753. [PMID: 37871559 DOI: 10.1016/j.biopha.2023.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
DNMT1 (DNA methyltransferase 1) is the predominant member of the DNMT family and the most abundant DNMT in various cell types. It functions as a maintenance DNMT and is involved in various diseases, including cancer and nervous system diseases. Programmed cell death (PCD) is a fundamental mechanism that regulates cell proliferation and maintains the development and homeostasis of multicellular organisms. DNMT1 plays a regulatory role in various types of PCD, including apoptosis, autophagy, necroptosis, ferroptosis, and others. DNMT1 is closely associated with the development of various diseases by regulating key genes and pathways involved in PCD, including caspase 3/7 activities in apoptosis, Beclin 1, LC3, and some autophagy-related proteins in autophagy, glutathione peroxidase 4 (GPX4) and nuclear receptor coactivator 4 (NCOA4) in ferroptosis, and receptor-interacting protein kinase 1-receptor-interacting protein kinase 3-mixed lineage kinase domain-like protein (RIPK1-RIPK3-MLKL) in necroptosis. Our study summarizes the regulatory relationship between DNMT1 and different types of PCD in various diseases and discusses the potential of DNMT1 as a common regulatory hub in multiple types of PCD, offering a perspective for therapeutic approaches in disease.
Collapse
Affiliation(s)
- Lan Yan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Geng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiwen Cao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peipei Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Lin
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lini Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Tan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaojuan He
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
22
|
Chen Q, Zhao H, Hu J. A robust six-gene prognostic signature based on two prognostic subtypes constructed by chromatin regulators is correlated with immunological features and therapeutic response in lung adenocarcinoma. Aging (Albany NY) 2023; 15:12330-12368. [PMID: 37938151 PMCID: PMC10683604 DOI: 10.18632/aging.205183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
Accumulating evidence has demonstrated that chromatin regulators (CRs) regulate immune cell infiltration and are correlated with prognoses of patients in some cancers. However, the immunological and prognostic roles of CRs in lung adenocarcinoma (LUAD) are still unclear. Here, we systematically revealed the correlations of CRs with immunological features and the survival in LUAD patients based on a cohort of gene expression datasets from the public TCGA and GEO databases and real RNA-seq data by an integrative analysis using a comprehensive bioinformatics method. Totals of 160 differentially expressed CRs (DECRs) were identified between LUAD and normal lung tissues, and two molecular prognostic subtypes (MPSs) were constructed and evaluated based on 27 prognostic DECRs using five independent datasets (p =0.016, <0.0001, =0.008, =0.00038 and =0.00055, respectively). Six differentially expressed genes (DEGs) (CENPK, ANGPTL4, CCL20, CPS1, GJB3, TPSB2) between two MPSs had the most important prognostic feature and a six-gene prognostic model was established. LUAD patients in the low-risk subgroup showed a higher overall survival (OS) rate than those in the high-risk subgroup in nine independent datasets (p <0.0001, =0.021, =0.016, =0.0099, <0.0001, =0.0045, <0.0001, =0.0038 and =0.00013, respectively). Six-gene prognostic signature had the highest concordance index of 0.673 compared with 19 reported prognostic signatures. The risk score was significantly correlated with immunological features and activities of oncogenic signaling pathways. LUAD patients in the low-risk subgroup benefited more from immunotherapy and were less sensitive to conventional chemotherapy agents. This study provides novel insights into the prognostic and immunological roles of CRs in LUAD.
Collapse
Affiliation(s)
- Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Hongbo Zhao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming, China
| | - Jing Hu
- Department of Medical Oncology, First People’s Hospital of Yunnan Province, Kunming, China
- Department of Medical Oncology, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
23
|
Zhan Y, Liu Y, Yang R, Chen Q, Teng F, Huang Y, Jiang X, Wang Y, Yu B, Zhang D, Bao L, Liu X, Huang J. CircPTEN suppresses human clear cell renal carcinoma progression and resistance to mTOR inhibitors by targeting epigenetic modification. Drug Resist Updat 2023; 71:101003. [PMID: 37866104 DOI: 10.1016/j.drup.2023.101003] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 10/24/2023]
Abstract
Renal cell carcinoma (RCC) is known to be the most commonly diagnosed kidney cancer. Clear cell RCC (ccRCC) represents approximately 85 % of diagnosed RCC cases. Targeted therapeutics, such as multi-targeted tyrosine kinase inhibitors (TKI) and mTOR inhibitors, are widely used in ccRCC therapy. However, patients treated with mTOR and TKI inhibitors easily acquire drug resistance, making the therapy less effective. Here, we demonstrated that circPTEN inhibits the expression of its parental gene PTEN by reducing methylation of the PTEN promotor and inhibits GLUT1 expression by reducing m6A methylation of GLUT1, which suppresses ccRCC progression and resistance to mTOR inhibitors.
Collapse
Affiliation(s)
- Yangyang Zhan
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Third Affiliated hospital of Navy Medical University, 225 Changhai Road, Yangpu District, Shanghai, China
| | - Yang Liu
- Department of Orthopedics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dongfang Road, Pudong District, Shanghai 200127, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Qiong Chen
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Pudong District, Shanghai 200127, China
| | - Fei Teng
- Department of Liver Surgery and Organ Transplantation, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Yueying Huang
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Third Affiliated hospital of Navy Medical University, 225 Changhai Road, Yangpu District, Shanghai, China
| | - Xin Jiang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Yueming Wang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Pudong District, Shanghai 200127, China
| | - Bin Yu
- WisGen Biosciences Inc., No.400 Fucheng Road, Baiyang Street, Qiantang District, Hangzhou 310000, Zhejiang, China
| | - Ding Zhang
- The Medical Department, 3D Medicines Inc., 118 Furonghua Road, Pudong District, Shanghai 201114, China
| | - Leilei Bao
- Department of Pharmacy, Shanghai Eastern Hepatobiliary Surgery Hospital, Third Affiliated hospital of Navy Medical University, 225 Changhai Road, Yangpu District, Shanghai, China.
| | - Xinli Liu
- Department of Digestive Oncology, Liaoning Cancer Hospital & Institute, Dalian University of Technology, 44 Xiaoheyan Road, Dadong District, Shenyang 110042, Liaoning Province, China.
| | - Jiwei Huang
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Pudong District, Shanghai 200127, China.
| |
Collapse
|
24
|
Yadav P, Bandyopadhayaya S, Soni S, Saini S, Sharma LK, Shrivastava SK, Mandal CC. Simvastatin prevents BMP-2 driven cell migration and invasion by suppressing oncogenic DNMT1 expression in breast cancer cells. Gene 2023; 882:147636. [PMID: 37442305 DOI: 10.1016/j.gene.2023.147636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Both epigenetic and genetic changes in the cancer genome act simultaneously to promote tumor development and metastasis. Aberrant DNA methylation, a prime epigenetic event, is often observed in various cancer types. The elevated DNA methyltransferase 1 (DNMT1) enzyme creates DNA hypermethylation at CpG islands to drive oncogenic potential. This study emphasized to decipher the molecular mechanism of endogenous regulation of DNMT1 expression for finding upstream signaling molecules. Cancer database analyses found an upregulated DNMT1 expression in most cancer types including breast cancer. Overexpression of DNMT1 showed an increased cell migration, invasion, and stemness potential whereas 5-azacytidine (DNMT1 inhibitor) and siRNA mediated knockdown of DNMT1 exhibited inhibition of such cancer activities in breast cancer MDA-MB-231 and MCF-7 cells. Infact, cancer database analyses further found a positive correlation of DNMT1 transcript with both cholesterol pathway regulatory genes and BMP signaling molecules. Experimental observations documented that the cholesterol-lowering drug, simvastatin decreased DNMT1 transcript as well as protein, whereas BMP-2 treatment increased DNMT1 expression in breast cancer cells. In addition, expression of various key cholesterol regulatory genes was found to be upregulated in response to BMP-2 treatment. Moreover, simvastatin inhibited BMP-2 induced DNMT1 expression in breast cancer cells. Thus, this study for the first time reveals that both BMP-2 signaling and cholesterol pathways could regulate endogenous DNMT1 expression in cancer cells.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India
| | - Sunil Saini
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Lokendra K Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, U.P., India
| | - Sandeep K Shrivastava
- Centre for Innovation, Research & Development, Dr. B. Lal Clinical Laboratory Pvt Ltd. Jaipur, Rajasthan, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer 305817, Rajasthan, India.
| |
Collapse
|
25
|
Steers GJ, O’Leary BR, Du J, Wagner BA, Carroll RS, Domann FE, Goswami PC, Buettner GR, Cullen JJ. Pharmacologic Ascorbate and DNMT Inhibitors Increase DUOX Expression and Peroxide-Mediated Toxicity in Pancreatic Cancer. Antioxidants (Basel) 2023; 12:1683. [PMID: 37759986 PMCID: PMC10525653 DOI: 10.3390/antiox12091683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Recent studies have demonstrated an important role for vitamin C in the epigenetic regulation of cancer-related genes via DNA demethylation by the ten-eleven translocation (TET) methylcytosine dioxygenase enzymes. DNA methyltransferase (DNMT) reverses this, increasing DNA methylation and decreasing gene expression. Dual oxidase (DUOX) enzymes produce hydrogen peroxide (H2O2) in normal pancreatic tissue but are silenced in pancreatic cancer (PDAC). Treatment of PDAC with pharmacologic ascorbate (P-AscH-, intravenous, high dose vitamin C) increases DUOX expression. We hypothesized that inhibiting DNMT may act synergistically with P-AscH- to further increase DUOX expression and cytotoxicity of PDAC. PDAC cells demonstrated dose-dependent increases in DUOX mRNA and protein expression when treated with DNMT inhibitors. PDAC cells treated with P-AscH- + DNMT inhibitors demonstrated increased DUOX expression, increased intracellular oxidation, and increased cytotoxicity in vitro and in vivo compared to either treatment alone. These findings suggest a potential therapeutic, epigenetic mechanism to treat PDAC.
Collapse
Affiliation(s)
- Garett J. Steers
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Brianne R. O’Leary
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Juan Du
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Brett A. Wagner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
| | - Rory S. Carroll
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | - Frederick E. Domann
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
| | - Prabhat C. Goswami
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
| | - Garry R. Buettner
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
| | - Joseph J. Cullen
- Free Radical and Radiation Biology Division, Department of Radiation Oncology, Iowa City, IA 52242, USA; (G.J.S.); (B.R.O.); (J.D.); (B.A.W.); (R.S.C.); (F.E.D.); (P.C.G.); (G.R.B.)
- The Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| |
Collapse
|
26
|
He E, Jiang Y, Wei D, Wang Y, Sun W, Jia M, Shi B, Cui H. The potential effects and mechanism of echinacoside powder in the treatment of Hirschsprung's Disease. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14222-14240. [PMID: 37679133 DOI: 10.3934/mbe.2023636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Possible complications, such as intestinal obstruction and inflammation of the intestinal tract, can have a detrimental effect on the prognosis after surgery for Hirschsprung disease. The aim of this study was to investigate the potential targets and mechanisms of action of echinacoside to improve the prognosis of Hirschsprung disease. Genes related to the disease were obtained through analysis of the GSE96854 dataset and four databases: OMIM, DisGeNET, Genecard and NCBI. The targets of echinacoside were obtained from three databases: PharmMapper, Drugbank and TargetNet. The intersection of disease genes and drug targets was validated by molecular docking. The valid docked targets were further explored for their expression by using immunohistochemistry. In this study, enrichment analysis was used to explore the mechanistic pathways involved in the genes. Finally, we identified CA1, CA2, CA9, CA12, DNMT1, RIMS2, RPGRIP1L and ZEB2 as the core targets. Except for ZEB2, which is predominantly expressed in brain tissue, the remaining seven genes show tissue specificity and high expression in the gastrointestinal tract. RIMS2 possesses a high mutation phenomenon in pan-cancer, while a validated ceRNA network of eight genes was constructed. The core genes are involved in several signaling pathways, including the one-carbon metabolic process, carbonate dehydratase activity and others. This study may help us to further understand the pharmacological mechanisms of echinacoside and provide new guidance and ideas to guide the treatment of Hirschsprung disease.
Collapse
Affiliation(s)
- Enyang He
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Yuhang Jiang
- Tianjin Medical University of Clinical Medicine, Tianjin, China
| | - Diwei Wei
- Tianjin Medical University of Pediatrics, Tianjin, China
| | - Yifan Wang
- Tianjin Medical University of Pediatrics, Tianjin, China
| | - Wenjing Sun
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Miao Jia
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Bowen Shi
- Tianjin Medical University of Pediatric Surgery, Tianjin, China
| | - Hualei Cui
- Tianjin Children's Hospital of Minimally Invasive Surgery, Tianjin, China
| |
Collapse
|
27
|
Chen Q, Liu B, Zeng Y, Hwang JW, Dai N, Corrêa I, Estecio M, Zhang X, Santos MA, Chen T, Cheng X. GSK-3484862 targets DNMT1 for degradation in cells. NAR Cancer 2023; 5:zcad022. [PMID: 37206360 PMCID: PMC10189803 DOI: 10.1093/narcan/zcad022] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
Maintenance of genomic methylation patterns at DNA replication forks by DNMT1 is the key to faithful mitotic inheritance. DNMT1 is often overexpressed in cancer cells and the DNA hypomethylating agents azacytidine and decitabine are currently used in the treatment of hematologic malignancies. However, the toxicity of these cytidine analogs and their ineffectiveness in treating solid tumors have limited wider clinical use. GSK-3484862 is a newly-developed, dicyanopyridine containing, non-nucleoside DNMT1-selective inhibitor with low cellular toxicity. Here, we show that GSK-3484862 targets DNMT1 for protein degradation in both cancer cell lines and murine embryonic stem cells (mESCs). DNMT1 depletion was rapid, taking effect within hours following GSK-3484862 treatment, leading to global hypomethylation. Inhibitor-induced DNMT1 degradation was proteasome-dependent, with no discernible loss of DNMT1 mRNA. In mESCs, GSK-3484862-induced Dnmt1 degradation requires the Dnmt1 accessory factor Uhrf1 and its E3 ubiquitin ligase activity. We also show that Dnmt1 depletion and DNA hypomethylation induced by the compound are reversible after its removal. Together, these results indicate that this DNMT1-selective degrader/inhibitor will be a valuable tool for dissecting coordinated events linking DNA methylation to gene expression and identifying downstream effectors that ultimately regulate cellular response to altered DNA methylation patterns in a tissue/cell-specific manner.
Collapse
Affiliation(s)
- Qin Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Bigang Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Yang Zeng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Jee Won Hwang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Nan Dai
- New England Biolabs, Inc, Ipswich, MA 01938, USA
| | | | - Marcos R Estecio
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
| | - Margarida A Santos
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Taiping Chen
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX77030, USA
| |
Collapse
|
28
|
Karan D, Singh M, Dubey S, Van Veldhuizen PJ, Saunthararajah Y. DNA Methyltransferase 1 Targeting Using Guadecitabine Inhibits Prostate Cancer Growth by an Apoptosis-Independent Pathway. Cancers (Basel) 2023; 15:2763. [PMID: 37345101 DOI: 10.3390/cancers15102763] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Epigenetic alterations such as DNA methylation and histone modifications are implicated in repressing several tumor suppressor genes in prostate cancer progression. In this study, we determined the anti-prostate cancer effect of a small molecule drug guadecitabine (gDEC) that inhibits/depletes the DNA methylation writer DNA methyltransferase 1 (DNMT1). gDEC inhibited prostate cancer cell growth and proliferation in vitro without activating the apoptotic cascade. Molecular studies confirmed DNMT1 depletion and modulated epithelial-mesenchymal transition markers E-cadherin and β-catenin in several prostate cancer cell lines (LNCaP, 22Rv1, and MDA PCa 2b). gDEC treatment also significantly inhibited prostate tumor growth in vivo in mice (22Rv1, MDA PCa 2b, and PC-3 xenografts) without any observed toxicities. gDEC did not impact the expression of androgen receptor (AR) or AR-variant 7 (AR-V7) nor sensitize the prostate cancer cells to the anti-androgen enzalutamide in vitro. In further investigating the mechanism of cytoreduction by gDEC, a PCR array analyses of 84 chromatin modifying enzymes demonstrated upregulation of several lysine-specific methyltransferases (KMTs: KMT2A, KMT2C, KMT2E, KMT2H, KMT5A), confirmed by additional expression analyses in vitro and of harvested xenografts. Moreover, gDEC treatment increased global histone 3 lysine 4 mono-and di-methylation (H3K4me1 and H3K4me2). In sum, gDEC, in addition to directly depleting the corepressor DNMT1, upregulated KMT activating epigenetic enzymes, activating terminal epithelial program activation, and prostate cancer cell cycling exits independent of apoptosis.
Collapse
Affiliation(s)
- Dev Karan
- Department of Pathology, MCW Cancer Center, Prostate Cancer Center of Excellence, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Manohar Singh
- Department of Pathology, MCW Cancer Center, Prostate Cancer Center of Excellence, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Seema Dubey
- Department of Pathology, MCW Cancer Center, Prostate Cancer Center of Excellence, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Peter J Van Veldhuizen
- Department of Internal Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yogen Saunthararajah
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
29
|
Wangzhou K, Fu W, Li M, Lu Z, Lai Z, Liu C, Tan Y, Hao C. microRNA-17 is a tumor suppressor in oral squamous cell carcinoma and is repressed by LSD1. Oral Dis 2023; 29:491-504. [PMID: 34152066 DOI: 10.1111/odi.13944] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The effects of epigenetic modifiers have been uncovered on cellular reprogramming and, specifically, on sustaining characteristics of cancer stem cells. We here aim to investigate whether lysine-specific demethylase 1 (LSD1) affects the development of oral squamous cell carcinoma (OSCC) by sustaining the cancer stem cells from OSCC (OSCSCs). METHODS RT-qPCR detection was firstly conducted to screen out research gene by determining differential expression of histone demethylases and methylases in identified OSCSCs. Then, microarray analysis was carried out in cells with poor expression of LSD1. RESULTS OSCSCs expressed high levels of LSD1, and LSD1 inhibition reduced cell viability, migration, invasion, and sphere formation of OSCSCs. Later mechanistic studies suggested that LSD1 inhibited microRNA (miR)-17 expression through histone demethylation. miR-17 bound to KPNA2, and LSD1 downstream genes were mainly enriched in the PI3K/AKT pathway. Importantly, miR-17 inhibitor reversed the inhibitory effect of si-LSD1 on cell activity, while si-KPNA2 abolished the promotive effect of miR-17 inhibitor on cell activity both in vitro and in vivo. CONCLUSION Overall, LSD1 functions as a cancer stem cell supporter in OSCC by catalyzing demethylation of miR-17 and activating the downstream KPNA2/PI3K/AKT pathway, which contributes to understanding of the mechanisms associated with epigenetic regulation in OSCC.
Collapse
Affiliation(s)
- Kaixin Wangzhou
- School of Management, Hainan Medical University, Haikou, China
| | - Wanren Fu
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Mengmeng Li
- Department of Research and Education, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical, Haikou, China
| | - Zishao Lu
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhiying Lai
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Cheng Liu
- Department of Stomatology, Harbin Stomatological Hospital, Harbin, China
| | - Yi Tan
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Chunbo Hao
- Department of Stomatology, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
30
|
Sibuh BZ, Quazi S, Panday H, Parashar R, Jha NK, Mathur R, Jha SK, Taneja P, Jha AK. The Emerging Role of Epigenetics in Metabolism and Endocrinology. BIOLOGY 2023; 12:256. [PMID: 36829533 PMCID: PMC9953656 DOI: 10.3390/biology12020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023]
Abstract
Each cell in a multicellular organism has its own phenotype despite sharing the same genome. Epigenetics is a somatic, heritable pattern of gene expression or cellular phenotype mediated by structural changes in chromatin that occur without altering the DNA sequence. Epigenetic modification is an important factor in determining the level and timing of gene expression in response to endogenous and exogenous stimuli. There is also growing evidence concerning the interaction between epigenetics and metabolism. Accordingly, several enzymes that consume vital metabolites as substrates or cofactors are used during the catalysis of epigenetic modification. Therefore, altered metabolism might lead to diseases and pathogenesis, including endocrine disorders and cancer. In addition, it has been demonstrated that epigenetic modification influences the endocrine system and immune response-related pathways. In this regard, epigenetic modification may impact the levels of hormones that are important in regulating growth, development, reproduction, energy balance, and metabolism. Altering the function of the endocrine system has negative health consequences. Furthermore, endocrine disruptors (EDC) have a significant impact on the endocrine system, causing the abnormal functioning of hormones and their receptors, resulting in various diseases and disorders. Overall, this review focuses on the impact of epigenetics on the endocrine system and its interaction with metabolism.
Collapse
Affiliation(s)
- Belay Zeleke Sibuh
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore 560043, India
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK
- Clinical Bioinformatics, School of Health Sciences, The University of Manchester, Manchester M13 9P, UK
- SCAMT Institute, ITMO University, St. Petersburg 197101, Russia
| | - Hrithika Panday
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Ritika Parashar
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
| | - Runjhun Mathur
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
| | - Pankaj Taneja
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Knowledge Park III, Greater Noida 201310, India
| |
Collapse
|
31
|
Shu Y, Hai Y, Cao L, Wu J. Deep-learning based approach to identify substrates of human E3 ubiquitin ligases and deubiquitinases. Comput Struct Biotechnol J 2023; 21:1014-1021. [PMID: 36733699 PMCID: PMC9883182 DOI: 10.1016/j.csbj.2023.01.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/19/2023] Open
Abstract
E3 ubiquitin ligases (E3s) and deubiquitinating enzymes (DUBs) play key roles in protein degradation. However, a large number of E3 substrate interactions (ESIs) and DUB substrate interactions (DSIs) remain elusive. Here, we present DeepUSI, a deep learning-based framework to identify ESIs and DSIs using the rich information present in protein sequences. Utilizing the collected golden standard dataset, key hyperparameters in the process of model training, including the ones relevant to data sampling and number of epochs, have been systematically assessed. The performance of DeepUSI was thoroughly evaluated by multiple metrics, based on internal and external validation. Application of DeepUSI to cancer-associated E3 and DUB genes identified a list of druggable substrates with functional implications, warranting further investigation. Together, DeepUSI presents a new framework for predicting substrates of E3 ubiquitin ligases and deubiquitinates.
Collapse
Key Words
- AUPRC, area under the PR curve
- AUROC, area under the ROC curve
- CNN, convolutional neutral network
- DSI, DUB-substrate interaction
- DUB, deubiquitinating enzymes
- DUB-substrate interactions
- Deep learning
- E1, ubiquitin-activating enzymes
- E2, ubiquitin-conjugating enzymes
- E3, ubiquitin ligases
- E3-substrate interactions
- ESI, E3-substrate interaction
- GSP, gold standard positive dataset
- PR, precision recall
- Pan-cancer analysis
- ROC, receiver operating characteristic
- TCGA, The Cancer Genome Atlas
- UPS, ubiquitin-proteasome system
- Ubiquitin proteasome system
- Ubiquitination
Collapse
Affiliation(s)
- Yixuan Shu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yanru Hai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lihua Cao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jianmin Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, Beijing 100142, China,Peking University International Cancer Institute, Peking University, Beijing 100191, China,Correspondence to: Center for Cancer Bioinformatics, Peking University Cancer Hospital & Institute, 52 Fu-Cheng Road, Hai-Dian District, Beijing 100142, China.
| |
Collapse
|
32
|
[Influence of E-cadherin methylation on prognosis in children with acute lymphoblastic leukemia]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2023; 25:46-50. [PMID: 36655663 PMCID: PMC9893830 DOI: 10.7499/j.issn.1008-8830.2208018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES To study the significance of E-cadherin and the association between E-cadherin methylation status and prognosis in children with acute lymphoblastic leukemia (ALL) by examining the mRNA and protein expression of E-cadherin and its gene methylation status in bone marrow mononuclear cells of children with ALL. METHODS The samples of 5 mL bone marrow blood were collected from 42 children with ALL who were diagnosed for the first time at diagnosis (pre-treatment group) and on day 33 of induction chemotherapy (post-treatment group). RT-qPCR, Western blot, and methylation-specific PCR were used to measure the mRNA and protein expression of E-cadherin and the methylation level of the E-cadherin gene. The changes in each index after induction chemotherapy were compared. RESULTS The mRNA and protein expression levels of E-cadherin in the post-treatment group were significantly higher than those in the pre-treatment group (P<0.05), while the positive rate of E-cadherin gene methylation in the post-treatment group was significantly lower than that in the pre-treatment group (P<0.05). At the end of the test, the children with negative methylation had significantly higher overall survival rate and event-free survival rate than those with positive methylation (P<0.05). CONCLUSIONS E-cadherin expression is associated with the development of ALL in children, and its decreased expression and increased methylation level may indicate a poor prognosis.
Collapse
|
33
|
Zhang W, Jiang T, Xie K. Epigenetic reprogramming in pancreatic premalignancy and clinical implications. Front Oncol 2023; 13:1024151. [PMID: 36874143 PMCID: PMC9978013 DOI: 10.3389/fonc.2023.1024151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
Pancreatic cancer (PC) is the most lethal human cancer, with less than 10% 5-year survival. Pancreatic premalignancy is a genetic and epigenomic disease and is linked to PC initiation. Pancreatic premalignant lesions include pancreatic intraepithelial neoplasia (PanIN), intraductal papillary mucinous neoplasm (IPMN), and mucinous cystic neoplasm (MCN), with pancreatic acinar-to-ductal metaplasia (ADM) as the major source of pancreatic premalignant lesions. Emerging evidence reveals that an epigenetic dysregulation is an early event in pancreatic tumorigenesis. The molecular mechanisms of epigenetic inheritance include chromatin remodeling; modifications in histone, DNA, and RNA; non-coding RNA expression; and alternative splicing of RNA. Changes in those epigenetic modifications contribute to the most notable alterations in chromatin structure and promoter accessibility, thus leading to the silence of tumor suppressor genes and/or activation of oncogenes. The expression profiles of various epigenetic molecules provide a promising opportunity for biomarker development for early diagnosis of PC and novel targeted treatment strategies. However, how the alterations in epigenetic regulatory machinery regulate epigenetic reprogramming in pancreatic premalignant lesions and the different stages of their initiation needs further investigation. This review will summarize the current knowledge of epigenetic reprogramming in pancreatic premalignant initiation and progression, and its clinical applications as detection and diagnostic biomarkers and therapeutic targets in PC.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Tingting Jiang
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, School of Medicine, The South China University of Technology, Guangzhou, China.,Department of Pathology, School of Medicine, The South China University of Technology, Guangzhou, China
| |
Collapse
|
34
|
Blood-based DNA methylation signatures in cancer: A systematic review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166583. [PMID: 36270476 DOI: 10.1016/j.bbadis.2022.166583] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022]
Abstract
DNA methylation profiles are in dynamic equilibrium via the initiation of methylation, maintenance of methylation and demethylation, which control gene expression and chromosome stability. Changes in DNA methylation patterns play important roles in carcinogenesis and primarily manifests as hypomethylation of the entire genome and the hypermethylation of individual loci. These changes may be reflected in blood-based DNA, which provides a non-invasive means for cancer monitoring. Previous blood-based DNA detection objects primarily included circulating tumor DNA/cell-free DNA (ctDNA/cfDNA), circulating tumor cells (CTCs) and exosomes. Researchers gradually found that methylation changes in peripheral blood mononuclear cells (PBMCs) also reflected the presence of tumors. Blood-based DNA methylation is widely used in early diagnosis, prognosis prediction, dynamic monitoring after treatment and other fields of clinical research on cancer. The reversible methylation of genes also makes them important therapeutic targets. The present paper summarizes the changes in DNA methylation in cancer based on existing research and focuses on the characteristics of the detection objects of blood-based DNA, including ctDNA/cfDNA, CTCs, exosomes and PBMCs, and their application in clinical research.
Collapse
|
35
|
Zhang CY, Liu S, Yang M. Clinical diagnosis and management of pancreatic cancer: Markers, molecular mechanisms, and treatment options. World J Gastroenterol 2022; 28:6827-6845. [PMID: 36632312 PMCID: PMC9827589 DOI: 10.3748/wjg.v28.i48.6827] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer (PC) is the third-leading cause of cancer deaths. The overall 5-year survival rate of PC is 9%, and this rate for metastatic PC is below 3%. However, the PC-induced death cases will increase about 2-fold by 2060. Many factors such as genetic and environmental factors and metabolic diseases can drive PC development and progression. The most common type of PC in the clinic is pancreatic ductal adenocarcinoma, comprising approximately 90% of PC cases. Multiple pathogenic processes including but not limited to inflammation, fibrosis, angiogenesis, epithelial-mesenchymal transition, and proliferation of cancer stem cells are involved in the initiation and progression of PC. Early diagnosis is essential for curable therapy, for which a combined panel of serum markers is very helpful. Although some mono or combined therapies have been approved by the United States Food and Drug Administration for PC treatment, current therapies have not shown promising outcomes. Fortunately, the development of novel immunotherapies, such as oncolytic viruses-mediated treatments and chimeric antigen receptor-T cells, combined with therapies such as neoadjuvant therapy plus surgery, and advanced delivery systems of immunotherapy will improve therapeutic outcomes and combat drug resistance in PC patients. Herein, the pathogenesis, molecular signaling pathways, diagnostic markers, prognosis, and potential treatments in completed, ongoing, and recruiting clinical trials for PC were reviewed.
Collapse
Affiliation(s)
- Chun-Ye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, Zhejiang Province, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, United States
| |
Collapse
|
36
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
37
|
ITGA2 induces STING expression in pancreatic cancer by inducing DNMT1 degradation. Cell Oncol (Dordr) 2022; 45:1421-1434. [PMID: 36331797 DOI: 10.1007/s13402-022-00731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Integrin alpha 2 (ITGA2, also known as CD49b or VLA-2) is the alpha subunit of a transmembrane receptor for collagens and related proteins. Previously, we found that ITGA2 may regulate immune cell infiltration in pancreatic cancer by inducing PD-L1 expression. As yet, however, whether ITGA2 regulates immune cell infiltration in pancreatic cancer by other mechanisms remains unclear. METHODS RNA sequencing was performed to identify differentially expressed genes in ITGA2-silenced pancreatic cancer cells. Protein-protein interactions were detected via co-immunoprecipitation. The infiltration level of immune cells was assessed using an immunofluorescence staining assay. RESULTS We found that ITGA2 can activate the cytosolic DNA-sensing pathway and promote STING expression in pancreatic cancer cells. In addition, we found that ITGA2 induces DNMT1 degradation by disrupting the interaction between DNMT1 and Kindlin2 in pancreatic cancer cells. As a DNA methyltransferase, we found that DNMT1 overexpression induced by ITGA2 silencing significantly up-regulated the methylation level of the STING gene promoter. Finally, ITGA2 silencing combined with DNMT1 inhibitor treatment induced immune cell infiltration in pancreatic cancer. CONCLUSION Our data indicate that ITGA2 induces STING expression by interacting with DNMT1 and inducing the degradation of DNMT1. ITGA2 silencing combined with DNMT1 inhibitor treatment may be a novel therapeutic strategy for pancreatic cancer.
Collapse
|
38
|
Li M, Zhang D. DNA methyltransferase-1 in acute myeloid leukaemia: beyond the maintenance of DNA methylation. Ann Med 2022; 54:2011-2023. [PMID: 35838271 PMCID: PMC9291682 DOI: 10.1080/07853890.2022.2099578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA methylation is considered an essential epigenetic event during leukaemogenesis and the emergence of drug resistance, which is primarily regulated by DNA methyltransferases. DNA methyltransferase-1 (DNMT1) is one of the members of DNA methyltransferases, in charge of maintaining established methylation. Recently, DNMT1 is shown to promote malignant events of cancers through the epigenetic and non-epigenetic processes. Increasing studies in solid tumours have identified DNMT1 as a therapeutic target and a regulator of therapy resistance; however, it is unclear whether DNMT1 is a critical regulator in acute myeloid leukaemia (AML) and how it works. In this review, we summarized the recent understanding of DNMT1 in normal haematopoiesis and AML and discussed the possible functions of DNMT1 in promoting the development of AML and predicting the sensitivity of hypomethylation agents to better understand the relationship between DNMT1 and AML and to look for new hope to treat AML patients.Key messagesThe function of DNA methyltransferase-1 in acute myeloid leukaemia.DNA methyltransferase-1 predicts the sensitivity of drug and involves the emergence of drug resistance.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
39
|
Shen Q, Zhang C, Jiang X, Li J, Liu F, Zhang X, En G, Pang B. Emerging current trends and research focus related to pancreatic cancer metabolism: A bibliometric and visualized analysis. Front Oncol 2022; 12:1009700. [PMID: 36505775 PMCID: PMC9732726 DOI: 10.3389/fonc.2022.1009700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Background As a malignant digestive system tumor, pancreatic cancer has unique metabolic characteristics. In recent years, the study of pancreatic cancer metabolism is in full swing, which provides a new direction for the treatment of pancreatic cancer patients. However, there is no systematic report of pancreatic cancer metabolism. In this paper, bibliometrics and visualization methods were used to analyze the number of publications, countries/regions, authors, institutions, journals, co-cited references, and keywords of pancreatic cancer metabolism articles, to summarize the research trends and predict research hotspots. Methods We searched, screened and downloaded articles on pancreatic cancer metabolism through the Web of Science Core Collection (WoSCC). Using CiteSpace, VOSviewer and Bibliometrix Package to analyze publications, countries/regions, authors, institutions, journals, co-cited references, and keywords of pancreatic cancer metabolism to identify research trends and predict research hotspots. Results According to the inclusion and exclusion criteria, a total of 5,255 articles were retrieved during the period 1943-2022. The number of publications on pancreatic cancer metabolism is increasing year by year. The United States (n=1602, 30.49%), China (n=1074, 20.44%), and Italy (n=313, 5.96%) are the three countries with the largest number of publications and citations, and there is close cooperation between countries. LI J (n=55) is the most prolific author. FUDAN UNIV (n=348) is the most published institution. CANCERS (n=118), PLOS ONE (n=93), and CANCER RESEARCH (n=80) are the most popular journals in this field. "Nutriment-deficient environment", "cancer chemoprevention" and "targeting cancer stem cell" are the main areas of focus. "immunotherapy", "ferroptosis" and "targeted therapy" are hot keywords in recent years. Taking pancreatic cancer metabolism as an entry point to study the role of traditional Chinese medicine (TCM) mainly focuses on curcumin and resveratrol, lack of broader and deeper research on TCM. Conclusions The number of publications on pancreatic cancer metabolism has generally increased, and scholars have generally paid more attention to this field. "immunotherapy", "ferroptosis" and "targeted therapy" are the current research hotspots. The in-depth study of pancreatic cancer metabolism will provide new ideas for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Qian Shen
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junchen Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Fudong Liu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ge’er En
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
40
|
The lncRNA KIF9-AS1 Accelerates Hepatocellular Carcinoma Growth by Recruiting DNMT1 to Promote RAI2 DNA Methylation. JOURNAL OF ONCOLOGY 2022; 2022:3888798. [PMID: 36276278 PMCID: PMC9584731 DOI: 10.1155/2022/3888798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a very common malignant tumor. Long noncoding RNAs (lncRNAs) enable discoveries of new therapeutic tumor targets. We aimed to study the role and potential regulatory mechanisms of the lncRNA KIF9-AS1 in HCC. Methods CCK-8, scratch assay, and flow cytometry were used to detect cell proliferation, migration, and apoptosis, respectively. Bax, Bcl-2, ERK, and pERK expression were measured by western blotting. StarBase predicted KIF9-AS1 expression in HCC and paracancerous tissues. RPISeq predicted the interaction score of KIF9-AS1 and DNMT1, and MethyPrimer revealed the CpG island distribution in the RAI2 promoter. MSP was performed to measure RAI2 methylation. RIP and ChIP were performed to examine lncRNA KIF9-AS1, DNMT1, and RAI2 interactions. Finally, the effect of KIF9-AS1 knockdown on HCC was verified with nude mice. Results We found that KIF9-AS1 expression was increased in HCC tissues. KIF9-AS1 knockdown inhibited the proliferation and migration, and facilitated the apoptosis of HCC cells. lncRNA KIF9-AS1-mediated RAI2 expression led to DNMT1 recruitment and regulated RAI2 DNA methylation. RAI2 overexpression inhibited the proliferation and migration and promoted the apoptosis of HCC cells. KIF9-AS1 knockdown inhibited subcutaneous tumor formation in vivo. Conclusion This study shows that KIF9-AS1 accelerates HCC growth by inducing DNMT1 promotion of RAI2 DNA methylation.
Collapse
|
41
|
Organic cation transporter 2 activation enhances sensitivity to oxaliplatin in human pancreatic ductal adenocarcinoma. Biomed Pharmacother 2022; 153:113520. [DOI: 10.1016/j.biopha.2022.113520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/31/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
|
42
|
Liu P, Yang F, Zhang L, Hu Y, Chen B, Wang J, Su L, Wu M, Chen W. Emerging role of different DNA methyltransferases in the pathogenesis of cancer. Front Pharmacol 2022; 13:958146. [PMID: 36091786 PMCID: PMC9453300 DOI: 10.3389/fphar.2022.958146] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is one of the most essential epigenetic mechanisms to regulate gene expression. DNA methyltransferases (DNMTs) play a vital role in DNA methylation in the genome. In mammals, DNMTs act with some elements to regulate the dynamic DNA methylation patterns of embryonic and adult cells. Conversely, the aberrant function of DNMTs is frequently the hallmark in judging cancer, including total hypomethylation and partial hypermethylation of tumor suppressor genes (TSGs), which improve the malignancy of tumors, aggravate the ailment for patients, and significantly exacerbate the difficulty of cancer therapy. Since DNA methylation is reversible, currently, DNMTs are viewed as an important epigenetic target for drug development. However, the impression of DNMTs on cancers is still controversial, and therapeutic methods targeting DNMTs remain under exploration. This review mainly summarizes the relationship between the main DNMTs and cancers as well as regulatory mechanisms and clinical applications of DNMTs in cancer and highlights several forthcoming strategies for targeting DNMTs.
Collapse
Affiliation(s)
- Pengcheng Liu
- Department of Human Resources, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fan Yang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lizhi Zhang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Bangjie Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianpeng Wang
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Lei Su
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mingyue Wu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjian Chen
- Department of Orthopaedics, Anhui Provincial Children’s Hospital, Hefei, China
| |
Collapse
|
43
|
Shi Q, Feng N, Ma Q, Wang S, Zhang H, Huang D, Sun J, Shi M. ZNF354C Mediated by DNMT1 Ameliorates Lung Ischemia-Reperfusion Oxidative Stress Injury by Reducing TFPI Promoter Methylation to Upregulate TFPI. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7288729. [PMID: 35915612 PMCID: PMC9338733 DOI: 10.1155/2022/7288729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022]
Abstract
Background Pulmonary ischemia reperfusion- (I/R-) induced dysfunction is a significant clinical problem after lung transplantation. In this study, we aim to explore the molecular mechanism of lung I/R injury (LIRI). Methods Bioinformatic analysis of gene involved in oxidative stress. A HUVEC oxygen glucose deprivation/reoxygenation (OGD/R) model and I/R mouse model were first established via I/R. The cellular proliferation, migration, reactive oxygen species (ROS), and parameters of lung injury were assessed via CCK-8, EdU staining, Transwell, cellular ROS kit, and H&E staining. We also confirmed related gene expressions and protein levels and the interaction between the tissue factor pathway inhibitor (TFPI) promotor and ZNF354C. Results Bioinformatic analysis results showed TFPI contributed to oxidative stress. OGD/R caused a reduction in cell viability and migration, hypermethylation of TFPI, increased ROS, and downregulation of ZNF354C, TFPI, and DNA methyltransferases (DNMTs) in HUVECs. Besides, ZNF354C could directly bind to the TFPI promoter, enhance proliferation and migration, and inhibit ROS in OGD/R-induced HUVECs by upregulating TFPI. More importantly, we discovered that 5-Aza could reduce TFPI methylation, upregulate TFPI, and enhance the binding of ZNF354C to the TFPI promoter in LIRI. Furthermore, DNMT1 silencing could induce proliferation and migration and prevent ROS in OGD/R-induced HUVECs by upregulating ZNF354C. Additionally, we verified that ZNF354C could alleviate LIRI by preventing DNA methylation in vivo. Conclusions ZNF354C overexpression induced proliferation and migration, as well as suppressed ROS in OGD/R-induced HUVECs, and alleviated LIRI in mice by inhibiting TFPI promoter methylation to upregulate TFPI. Therefore, ZNF354C and TFPI methylation might be promising molecular markers for LIRI therapy.
Collapse
Affiliation(s)
- Qi Shi
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Nana Feng
- Department of Respiratory and Critical Medicine, Shanghai Eighth People's Hospital Affiliated to Jiang Su University, Shanghai 200030, China
| | - Qingyun Ma
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Shaohua Wang
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Huijun Zhang
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Dayu Huang
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| | - Jiayuan Sun
- Department of Respiratory Endoscopy, Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Meng Shi
- Department of Thoracic and Cardiovascular Surgery, Huashan Hospital, Affiliated with Fudan University, Shanghai 200040, China
| |
Collapse
|
44
|
Teng D, Xia S, Hu S, Yan Y, Liu B, Yang Y, Du X. miR-887-3p Inhibits the Progression of Colorectal Cancer via Downregulating DNMT1 Expression and Regulating P53 Expression. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7179733. [PMID: 35795731 PMCID: PMC9252659 DOI: 10.1155/2022/7179733] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/19/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer worldwide and the second leading cause of cancer-related deaths. Many researchers have reported that abnormal microRNAs (miRs) were expressed in CRC and participated in the occurrence and progression of CRC. However, there are few reports of miR-887-3p regulating CRC development. In the current study, we investigated the abnormal expression of miR-887-3p and also demonstrated its regulatory role and detailed molecular mechanism in CRC. Initially, miRNA expression data were obtained from TCGA-COAD that consisted of 453 CRC samples and 8 normal tissue samples. These were downloaded and analyzed to compare the expression level of miR-887-3p in CRC tissues to that in normal tissues. Moreover, 32 pairs of surgically resected CRC tumors and para-cancer tissues from our hospital were collected. Quantitative real-time PCR (qRT-PCR) was performed to detect miR-887-3p expression levels in CRC tissues, para-cancer tissues, several CRC cell lines, and an intestinal epithelial cell line. Following miR-887-3p mimic transfection in colon cancer SW480 cell line, the regulatory roles of miR-887-3p on cell proliferation, apoptosis, invasion, migration, and epithelial-mesenchymal transition (EMT) were detected through CCK-8, flow cytometry, transwell assay, and Western blot. After potential targeting protein was predicted by bioinformatic websites, the luciferase reporter assay and Western blot were used to confirm the target of miR-887-3p. The targeting protein expressions were detected by Western blot and qRT-PCR. The relationship between miR-887-3p level and the effect of miR-887-3p on P53 expression was evaluated by Western blot and qRT-PCR. The effects of miR-887-3p on CRC cell growth in vivo by xenograft tumor experiments were investigated, and Ki-67 in tumor tissue was determined by immunohistochemistry. Results. The COAD data demonstrated that the expression levels of miR-887-3p in CRC clinical sample tissues and cell line cultures were remarkably lower than para-cancer normal tissues and NCM460 cells (normal colonic epithelial cell line). Functional experiments demonstrated that overexpression of miR-887-3p in SW480 cells significantly reduced proliferation, migration, invasion, and EMT, and promoted cancer cell apoptosis. Additionally, Western blot, qRT-PCR, and luciferase reporter assays confirmed that DNMT1 was a downstream target of miR-887-3p. Moreover, the blocking of DNMT1 by miR-887-3p mimics also promoted P53 expression. Finally, overexpression of DNMT1 in SW480 cells could partially reverse the regulatory effect of miR-887-3p mimics on CRC cell development. From in vivo experiments, overexpression of miR-887-3p could inhibit tumor growth in CRC xenograft mice and reduce the Ki-67 level. Conclusion. The microRNA miR-887-3p is a potential biomarker of CRC. It inhibited CRC cell proliferation, invasion, and EMT, and promoted cell apoptosis through targeting and downregulating DNMT1 and promoting P53 expression. Therefore, miR-887-3p may be a good biomarker and therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Da Teng
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shaoyou Xia
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Shidong Hu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yang Yan
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Boyan Liu
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yu Yang
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaohui Du
- Department of General Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
45
|
SOX5 promotes cell growth and migration through modulating the DNMT1/p21 pathway in bladder cancer. Acta Biochim Biophys Sin (Shanghai) 2022; 54:987-998. [PMID: 35880568 PMCID: PMC9909322 DOI: 10.3724/abbs.2022075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Bladder cancer (BC) is one of the most prevalent and life-threatening cancers among the male population worldwide. Sex determining region Y-box protein 5 (SOX5) plays important roles in a variety of human cancers. However, little research has been conducted on the function and underlying mechanism of SOX5 in BC. In the present study, we first reveal the increased expression of SOX5 in BC tissues and in vitro cells lines. Second, we discover that inhibition of SOX5 inhibits cell growth and migration but promotes cell apoptosis. Meanwhile, ectopic SOX5 expression stimulates cell growth and migration in BC cells. Then, we show that suppressing SOX5 inhibits the expression of DNA methyltransferase 1 (DNMT1), and that overexpressing DNMT1 alleviates the cell progress of BC cells inhibited by SOX5. Furthermore, we demonstrate that DNMT1 inhibits p21 expression by affecting DNA methylation of the p21 promoter. Collectively, we demonstrate that SOX5 exerts its functions in BC cells by modulating the SOX5/DNMT1/p21 pathway. Finally, we demonstrate that SOX5 knockdown inhibits xenograft tumor growth in vivo. In conclusion, our study elucidates the oncogenic role of SOX5 and its underlying molecular mechanism in BC, and reveals a novel pathway which has the potential to serve as a diagnostic biomarker and therapeutic target for BC.
Collapse
|
46
|
Ganji C, Farran B. Current clinical trials for epigenetic targets and therapeutic inhibitors for pancreatic cancer therapy. Drug Discov Today 2022; 27:1404-1410. [PMID: 34952224 DOI: 10.1016/j.drudis.2021.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/08/2021] [Accepted: 12/17/2021] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is an aggressive disease characterized by high mortality. Diagnosis at advanced stage, resistance, and recurrence are major hurdles for PC therapy and contribute to poor survival rate. Mutations in tumor-promoting kinases and epigenetic dysregulation in tumor suppressor genes are hallmarks of PC and can be used for diagnosis and therapy. In this review, we highlight dysregulated genes associated with epigenetic mechanisms, including DNA methylation and histone acetylation, involved in PC progression and resistance. We also explore epigenetic drugs currently in clinical trials. Combining epigenetic drugs and targeted therapies might represent a promising approach for PC.
Collapse
Affiliation(s)
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
47
|
Abstract
It has been estimated that nearly 80% of anticancer drug-treated patients receive potentially nephrotoxic drugs, while the kidneys play a central role in the excretion of anticancer drugs. Nephrotoxicity has long been a serious complication that hampers the effectiveness of cancer treatment and continues to influence both mortality and length of hospitalization among cancer patients exposed to either conventional cytotoxic agents or targeted therapies. Kidney injury arising from anticancer drugs tends to be associated with preexisting comorbidities, advanced cancer stage, and the use of concomitant non-chemotherapeutic nephrotoxic drugs. Despite the prevalence and impact of kidney injury on therapeutic outcomes, the field is sorely lacking in an understanding of the mechanisms driving cancer drug-induced renal pathophysiology, resulting in quite limited and largely ineffective management of anticancer drug-induced nephrotoxicity. Consequently, there is a clear imperative for understanding the basis for nephrotoxic manifestations of anticancer agents for the successful management of kidney injury by these drugs. This article provides an overview of current preclinical research on the nephrotoxicity of cancer treatments and highlights prospective approaches to mitigate cancer therapy-related renal toxicity.
Collapse
Affiliation(s)
- Chaoling Chen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Dengpiao Xie
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - David A Gewirtz
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Ningjun Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| |
Collapse
|
48
|
Liu YY, Ding CZ, Chen JL, Wang ZS, Yang B, Wu XM. A Novel Small Molecular Inhibitor of DNMT1 Enhances the Antitumor Effect of Radiofrequency Ablation in Lung Squamous Cell Carcinoma Cells. Front Pharmacol 2022; 13:863339. [PMID: 35401185 PMCID: PMC8983860 DOI: 10.3389/fphar.2022.863339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022] Open
Abstract
Radiofrequency ablation (RFA) is a relatively new and effective therapeutic strategy for treating lung squamous cell carcinomas (LSCCs). However, RFA is rarely used in the clinic for LSCC which still suffers from a lack of effective comprehensive treatment strategies. In the present work, we investigate iDNMT, a novel small molecular inhibitor of DNMT1 with a unique structure. In clinical LSCC specimens, endogenous DNMT1 was positively associated with methylation rates of miR-27-3p's promoter. Moreover, endogenous DNMT1 was negatively correlated with miR-27-3p expression which targets PSEN-1, the catalytic subunit of γ-secretase, which mediates the cleavage and activation of the Notch pathway. We found that DNMT1 increased activation of the Notch pathway in clinical LSCC samples while downregulating miR-27-3p expression and hypermethylation of miR-27-3p's promoter. In addition of inhibiting activation of the Notch pathway by repressing methylation of the miR-27-3p promoter, treatment of LSCC cells with iDNMT1 also enhanced the sensitivity of LSCC tumor tissues to RFA treatment. These data suggest that iDNMT-induced inhibition of DNMT-1 enhances miR-27-3p expression in LSCC to inhibit activation of the Notch pathway. Furthermore, the combination of iDNMT and RFA may be a promising therapeutic strategy for LSCC.
Collapse
Affiliation(s)
- Yuan-Yuan Liu
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| | - Cheng-Zhi Ding
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| | - Jia-Ling Chen
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| | - Zheng-Shuai Wang
- Department of Traditional Chinese Medicine, Zhengzhou Xinhua Hospital of Traditional Chinese Medicine, Zhengzhou, China
| | - Bin Yang
- Department of Hepatology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Ming Wu
- Department of Thoracic Surgery, He Nan Provincial Chest Hospital, Zhengzhou, China
| |
Collapse
|
49
|
Cui Z, Sun S, Li J, Li J, Sha T, He J, Zuo L. Inhibitor of Growth 4 (ING4) Plays a Tumor-Repressing Role in Oral Squamous Cell Carcinoma via Nuclear Factor kappa-B (NF-kB)/DNA Methyltransferase 1 (DNMT1) Axis-Mediated Regulation of Aldehyde Dehydrogenase 1A2 (ALDH1A2). Curr Cancer Drug Targets 2022; 22:771-783. [PMID: 35388759 DOI: 10.2174/1568009622666220406104732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Inhibitor of growth 4 (ING4) level was reported to be decreased in head and neck squamous cell carcinoma (HNSC) tissue, however, it is unknown whether and how ING4 participates in regulating the development of oral squamous cell carcinoma (OSCC). OBJECTIVE To investigate the role and mechanism of ING4 in OSCC. METHODS ING4 was forced up-or down-regulated in two OSCC cell lines, and its effects on the malignant behavior of OSCC cells were investigated in vitro. The ubiquitination level of NF-kB p65 in ING4 upregulated cells was measured by co-immunoprecipitation. Moreover, the effects of ING4 on the methylation level of ALDH1A2 were evaluated by methylation-specific polymerase chain reaction (MSP) assay. The role of ING4 in OSCC growth in vivo was observed in nude mice. RESULTS Our results showed that the expression of ING4 in OSCC cell lines was lower than that in normal oral keratinocyte cells. In vitro, ING4 overexpression inhibited the proliferation, migration, and invasion of OSCC cell lines and ING4 silencing exhibited opposite results. We also demonstrated that ING4 overexpression promoted the ubiquitination and degradation of P65 and reduced DNA methyltransferase 1 (DNMT1) expression, and Aldehyde dehydrogenase 1A2 (ALDH1A2) methylation. Moreover, overexpression of p65 rescued the suppression of malignant behavior, induced by ING4 overexpression. In addition, ING4 negatively regulated the growth of OSCC xenograft tumors in vivo. CONCLUSION Our data evidenced that ING4 played a tumor-repressing role in OSCC in vivo and in vitro via NF-κB/DNMT1/ALDH1A2 axis.
Collapse
Affiliation(s)
- Zhi Cui
- The Third Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Shiqun Sun
- Department of Prosthodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jia Li
- Department of Oral and Maxillofacial Surgery Clinic, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jianing Li
- Department of Endodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Tong Sha
- The Third Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Jie He
- Department of Dental Implantology, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Linjing Zuo
- Department of Pedodontics, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
50
|
Tao C, Liu J, Li Z, Lai P, Zhang S, Qu J, Tang Y, Liu A, Zou Z, Bai X, Li J. DNMT1 is a negative regulator of osteogenesis. Biol Open 2022; 11:274589. [PMID: 35238333 PMCID: PMC8905718 DOI: 10.1242/bio.058534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
The role and underlying mechanisms of DNA methylation in osteogenesis/chondrogenesis remain poorly understood. We here reveal DNA methyltransferase 1 (DNMT1), which is responsible for copying DNA methylation onto the newly synthesized DNA strand after DNA replication, is overexpressed in sponge bone of people and mice with senile osteoporosis and required for suppression of osteoblast (OB) differentiation of mesenchymal stem cells (MSCs) and osteoprogenitors. Depletion of DNMT1 results in demethylation at the promoters of key osteogenic genes such as RORA and Fgfr2, and consequent upregulation of their transcription in vitro. Mechanistically, DNMT1 binds exactly to the promoters of these genes and are responsible for their 5-mc methylation. Conversely, simultaneous depletion of RORA or Fgfr2 blunts the effects of DNMT1 silencing on OB differentiation, suggesting RORA or Fgfr2 may be crucial for modulating osteogenic differentiation downstream of DNMT1. Collectively, these results reveal DNMT1 as a key repressor of OB differentiation and bone formation while providing us a new rationale for specific inhibition of DNMT1 as a potential therapeutic strategy to treat age-related bone loss. Summary: DNMT1 is overexpressed in sponge bone of people and mice with senile osteoporosis and required for suppression of osteoblast (OB) differentiation of mesenchymal stem cells (MSCs) and osteoprogenitors.
Collapse
Affiliation(s)
- Chen Tao
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jia Liu
- Department of Orthopedics, Affliated hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Ziqi Li
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Sheng Zhang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiankun Qu
- Department of Surgery, Tan Cheng County Maternal and Child Health Care Hospital, Linyi, Shandong 276100, China
| | - Yujin Tang
- Department of Orthopedics, Affliated hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, China
| | - Anling Liu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochun Bai
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Jianwei Li
- Division of Orthopaedics and Traumatology, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|