1
|
Bartoszewska E, Czapla M, Rakoczy K, Filipski M, Rekiel K, Skowron I, Kulbacka J, Kobierzycki C. The Role of Ion Channels in Cervical Cancer Progression: From Molecular Biomarkers to Diagnostic and Therapeutic Innovations. Cancers (Basel) 2025; 17:1538. [PMID: 40361464 PMCID: PMC12071956 DOI: 10.3390/cancers17091538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Ion channels are proteins that regulate the flow of ions across cell membranes, playing a vital role in cervical cancer development and progression. These channels serve as both potential diagnostic markers and therapeutic targets, offering new opportunities for cancer treatment. Moreover, ion channels are crucial molecular indicators and possible therapeutic targets due to their role in the development of cervical cancer. Our review focuses on the various types of ion channels which are associated with cervical cancer (CCa), including sodium, calcium, and potassium channels. In our review, we clarify their diagnostic and prognostic value, as well as their relationship to the prognosis and stage of the disease. We also examine how ion channels contribute to the metastasis of cervical cancer, specifically in relation to their influence on cell motility, invasion, and interaction with the tumor microenvironment. By examining preclinical and clinical research involving ion channel blockers and modulators, we also highlight the therapeutic potential of targeting ion channels. We have demonstrated the available assays and imaging methods based on ion channel activity as examples of emerging diagnostic breakthroughs that show promise for enhancing the early detection of cervical cancer. Additionally, the possibility that ion channel modulator-based combination therapy could improve the efficacy of traditional treatments is investigated. To demonstrate the potential of ion channels in cervical cancer diagnosis and treatment, our review highlights the current challenges and the promising role in cervical cancer diagnostics and therapy.
Collapse
Affiliation(s)
- Elżbieta Bartoszewska
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (M.C.); (K.R.); (M.F.); (K.R.); (I.S.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Melania Czapla
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (M.C.); (K.R.); (M.F.); (K.R.); (I.S.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (M.C.); (K.R.); (M.F.); (K.R.); (I.S.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Michał Filipski
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (M.C.); (K.R.); (M.F.); (K.R.); (I.S.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Katarzyna Rekiel
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (M.C.); (K.R.); (M.F.); (K.R.); (I.S.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Izabela Skowron
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345 Wroclaw, Poland; (E.B.); (M.C.); (K.R.); (M.F.); (K.R.); (I.S.)
- Student Research Group No. K148, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Christopher Kobierzycki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
2
|
Motamedzadeh A, Rahmati-Dehkordi F, Heydari H, Behnam M, Rashidi Noshabad FZ, Tamtaji Z, Taheri AT, Nabavizadeh F, Aschner M, Mirzaei H, Tamtaji OR. Therapeutic potential of Phycocyanin in gastrointestinal cancers and related disorders. Mol Biol Rep 2024; 51:741. [PMID: 38874869 DOI: 10.1007/s11033-024-09675-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Gastrointestinal cancer is the most fatal cancer worldwide. The etiology of gastrointestinal cancer has yet to be fully characterized. Alcohol consumption, obesity, tobacco, Helicobacter pylori and gastrointestinal disorders, including gastroesophageal reflux disease, gastric ulcer, colon polyps and non-alcoholic fatty liver disease are among the several risks factors for gastrointestinal cancers. Phycocyanin which is abundant in Spirulina. Phycocyanin, a member of phycobiliprotein family with intense blue color, is an anti-diabetic, neuroprotective, anti-oxidative, anti-inflammatory, and anticancer compound. Evidence exists supporting that phycocyanin has antitumor effects, exerting its pharmacological effects by targeting a variety of cellular and molecular processes, i.e., apoptosis, cell-cycle arrest, migration and Wnt/β-catenin signaling. Phycocyanin has also been applied in treatment of several gastrointestinal disorders such as, gastric ulcer, ulcerative colitis and fatty liver that is known as a risk factor for progression to cancer. Herein, we summarize various cellular and molecular pathways that are affected by phycocyanin, its efficacy upon combined drug treatment, and the potential for nanotechnology in its gastrointestinal cancer therapy.
Collapse
Affiliation(s)
- Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Rahmati-Dehkordi
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hoora Heydari
- Student Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Behnam
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Zeinab Tamtaji
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Abdolkarim Talebi Taheri
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nabavizadeh
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology, School of Medicine, Tehran University of medical sciences, Tehran, Iran.
| |
Collapse
|
3
|
Mohammad Amooie A, Zarrinpour V, Sadat Shandiz SA, Salehzadeh A. Apoptosis Induction by ZnFe 2O 4-Ag Biosynthesized by Chlorella vulgaris in MCF-7 Breast Cancer Cell Line. Biol Trace Elem Res 2024; 202:2022-2035. [PMID: 37642811 DOI: 10.1007/s12011-023-03814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
The incidence and mortality of breast cancer are growing which indicates the inefficiency of the current chemotherapy drugs. Due to the anticancer potential of Zn and Ag and the magnetic feature of iron oxide, in this work, we synthesized ZnFe2O4-Ag nanocomposite using Chlorella vulgaris and investigated its anticancer effect on breast cancer cell line. Physicochemical characterization was performed by FT-IR, XRD, SEM, TEM, VSM, EDS mapping, UV, and zeta potential assays. Cell cytotoxicity and apoptosis frequency were studied by the MTT and flow cytometry assays. Also, cell cycle analysis, Hoechst staining, and measuring ROS (reactive oxygen species) level were performed. The synthesized particles were almost spherical with a size range of 14-52 nm. The FT-IR and XRD assays confirmed the proper synthesis of the particles and VSM analysis showed that particles had magnetic property and the maximum saturation magnetization was 0.8 Emu/g. Also, the EDS mapping of the nanocomposite showed the Zn, Fe, O, and Ag elements. The MTT assay showed that the 50% inhibitory concentration (IC50) of ZnFe2O4-Ag for breast cancer and normal cells were 28 and 154 µg/mL, respectively, and the nanocomposite had stronger anticancer activity than cisplatin (IC50 = 84 µg/mL). Flow cytometry analysis showed that the exposure to the nanocomposite induced cell apoptosis by 77.5% and significantly induced ROS generation. Also, treating breast cancer cells with the nanocomposite induced cell cycle arrest and apoptotic features, including chromatin condensation and fragmentation. In conclusion, ZnFe2O4-Ag nanocomposite synthesized by C. vulgaris could suppress the proliferation of breast cancer cells by the generation of oxidative stress, apoptosis induction, and cell cycle arrest.
Collapse
Affiliation(s)
| | - Vajiheh Zarrinpour
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran.
| | | | - Ali Salehzadeh
- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran.
| |
Collapse
|
4
|
Dhar A, Gupta SL, Saini P, Sinha K, Khandelwal A, Tyagi R, Singh A, Sharma P, Jaiswal RK. Nanotechnology-based theranostic and prophylactic approaches against SARS-CoV-2. Immunol Res 2024; 72:14-33. [PMID: 37682455 DOI: 10.1007/s12026-023-09416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023]
Abstract
SARS-CoV-2 (COVID-19) pandemic has been an unpredicted burden on global healthcare system by infecting over 700 million individuals, with approximately 6 million deaths worldwide. COVID-19 significantly impacted all sectors, but it very adversely affected the healthcare system. These effects were much more evident in the resource limited part of the world. Individuals with acute conditions were also severely impacted. Although classical COVID-19 diagnostics such as RT-PCR and rapid antibody testing have played a crucial role in reducing the spread of infection, these diagnostic techniques are associated with certain limitations. For instance, drawback of RT-PCR diagnostics is that due to degradation of viral RNA during shipping, it can give false negative results. Also, rapid antibody testing majorly depends on the phase of infection and cannot be performed on immune compromised individuals. These limitations in current diagnostic tools require the development of nanodiagnostic tools for early detection of COVID-19 infection. Therefore, the SARS-CoV-2 outbreak has necessitated the development of specific, responsive, accurate, rapid, low-cost, and simple-to-use diagnostic tools at point of care. In recent years, early detection has been a challenge for several health diseases that require prompt attention and treatment. Disease identification at an early stage, increased imaging of inner health issues, and ease of diagnostic processes have all been established using a new discipline of laboratory medicine called nanodiagnostics, even before symptoms have appeared. Nanodiagnostics refers to the application of nanoparticles (material with size equal to or less than 100 nm) for medical diagnostic purposes. The special property of nanomaterials compared to their macroscopic counterparts is a lesser signal loss and an enhanced electromagnetic field. Nanosize of the detection material also enhances its sensitivity and increases the signal to noise ratio. Microchips, nanorobots, biosensors, nanoidentification of single-celled structures, and microelectromechanical systems are some of the most modern nanodiagnostics technologies now in development. Here, we have highlighted the important roles of nanotechnology in healthcare sector, with a detailed focus on the management of the COVID-19 pandemic. We outline the different types of nanotechnology-based diagnostic devices for SARS-CoV-2 and the possible applications of nanomaterials in COVID-19 treatment. We also discuss the utility of nanomaterials in formulating preventive strategies against SARS-CoV-2 including their use in manufacture of protective equipment, formulation of vaccines, and strategies for directly hindering viral infection. We further discuss the factors hindering the large-scale accessibility of nanotechnology-based healthcare applications and suggestions for overcoming them.
Collapse
Affiliation(s)
- Atika Dhar
- National Institute of Immunology, New Delhi, India, 110067
| | | | - Pratima Saini
- National Institute of Immunology, New Delhi, India, 110067
| | - Kirti Sinha
- Department of Zoology, Patna Science College, Patna University, Patna, Bihar, India
| | | | - Rohit Tyagi
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alka Singh
- Department of Chemistry, Feroze Gandhi College, Raebareli, U.P, India, 229001
| | - Priyanka Sharma
- Department of Zoology, Patna Science College, Patna University, Patna, Bihar, India.
| | - Rishi Kumar Jaiswal
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Loyola University Chicago, Stritch School of Medicine, Maywood, IL, 60153, USA.
| |
Collapse
|
5
|
Alsharedeh R, Alshraiedeh N, Aljabali AA, Tambuwala MM. Magnetosomes as Potential Nanocarriers for Cancer Treatment. Curr Drug Deliv 2024; 21:1073-1081. [PMID: 37340750 DOI: 10.2174/1567201820666230619155528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/22/2023]
Abstract
Magnetotactic bacteria (MTBs) and their organelles, magnetosomes, are intriguing options that might fulfill the criteria of using bacterial magnetosomes (BMs). The ferromagnetic crystals contained in BMs can condition the magnetotaxis of MTBs, which is common in water storage facilities. This review provides an overview of the feasibility of using MTBs and BMs as nanocarriers in cancer treatment. More evidence suggests that MTBs and BMs can be used as natural nanocarriers for conventional anticancer medicines, antibodies, vaccine DNA, and siRNA. In addition to improving the stability of chemotherapeutics, their usage as transporters opens the possibilities for the targeted delivery of single ligands or combinations of ligands to malignant tumors. Magnetosome magnetite crystals are different from chemically made magnetite nanoparticles (NPs) because they are strong single-magnetic domains that stay magnetized even at room temperature. They also have a narrow size range and a uniform crystal morphology. These chemical and physical properties are essential for their usage in biotechnology and nanomedicine. Bioremediation, cell separation, DNA or antigen regeneration, therapeutic agents, enzyme immobilization, magnetic hyperthermia, and contrast enhancement of magnetic resonance are just a few examples of the many uses for magnetite-producing MTB, magnetite magnetosomes, and magnetosome magnetite crystals. From 2004 to 2022, data mining of the Scopus and Web of Science databases showed that most research using magnetite from MTB was carried out for biological reasons, such as in magnetic hyperthermia and drug delivery.
Collapse
Affiliation(s)
- Rawan Alsharedeh
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Nid'a Alshraiedeh
- Department of Pharmaceutical Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa A Aljabali
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163 - P. O. BOX 566, Jordan
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| |
Collapse
|
6
|
Negut I, Bita B. Polymeric Micellar Systems-A Special Emphasis on "Smart" Drug Delivery. Pharmaceutics 2023; 15:976. [PMID: 36986837 PMCID: PMC10056703 DOI: 10.3390/pharmaceutics15030976] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Concurrent developments in anticancer nanotechnological treatments have been observed as the burden of cancer increases every year. The 21st century has seen a transformation in the study of medicine thanks to the advancement in the field of material science and nanomedicine. Improved drug delivery systems with proven efficacy and fewer side effects have been made possible. Nanoformulations with varied functions are being created using lipids, polymers, and inorganic and peptide-based nanomedicines. Therefore, thorough knowledge of these intelligent nanomedicines is crucial for developing very promising drug delivery systems. Polymeric micelles are often simple to make and have high solubilization characteristics; as a result, they seem to be a promising alternative to other nanosystems. Even though recent studies have provided an overview of polymeric micelles, here we included a discussion on the "intelligent" drug delivery from these systems. We also summarized the state-of-the-art and the most recent developments of polymeric micellar systems with respect to cancer treatments. Additionally, we gave significant attention to the clinical translation potential of polymeric micellar systems in the treatment of various cancers.
Collapse
Affiliation(s)
- Irina Negut
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
| | - Bogdan Bita
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| |
Collapse
|
7
|
Li G, Wu S, Chen W, Duan X, Sun X, Li S, Mai Z, Wu W, Zeng G, Liu H, Chen T. Designing Intelligent Nanomaterials to Achieve Highly Sensitive Diagnoses and Multimodality Therapy of Bladder Cancer. SMALL METHODS 2023; 7:e2201313. [PMID: 36599700 DOI: 10.1002/smtd.202201313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BC) is among the most common malignant tumors of the genitourinary system worldwide. In recent years, the rate of BC incidence has increased, and the recurrence rate is high, resulting in poor quality of life for patients. Therefore, how to develop an effective method to achieve synchronous precise diagnoses and BC therapies is a difficult problem to solve clinically. Previous reports usually focus on the role of nanomaterials as drug delivery carriers, while a summary of the functional design and application of nanomaterials is lacking. Summarizing the application of functional nanomaterials in high-sensitivity diagnosis and multimodality therapy of BC is urgently needed. This review summarizes the application of nanotechnology in BC diagnosis, including the application of nanotechnology in the sensoring of BC biomarkers and their role in monitoring BC. In addition, conventional and combination therapies strategy in potential BC therapy are analyzed. Moreover, different kinds of nanomaterials in BC multimodal therapy according to pathological features of BC are also outlined. The goal of this review is to present an overview of the application of nanomaterials in the theranostics of BC to provide guidance for the application of functional nanomaterials to precisely diagnose and treat BC.
Collapse
Affiliation(s)
- Guanlin Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Sicheng Wu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzhe Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xiaolu Duan
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Xinyuan Sun
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Shujue Li
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Zanlin Mai
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Wenzheng Wu
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Guohua Zeng
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Hongxing Liu
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| | - Tianfeng Chen
- Department of Urology, Guangzhou Institute of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510631, P. R. China
| |
Collapse
|
8
|
Liao C, Wu Z, Lin C, Chen X, Zou Y, Zhao W, Li X, Huang G, Xu B, Briganti GE, Qi Y, Wang X, Zeng T, Wuethrich A, Zou H. Nurturing the marriages of urinary liquid biopsies and nano-diagnostics for precision urinalysis of prostate cancer. SMART MEDICINE 2023; 2:e20220020. [PMID: 39188554 PMCID: PMC11236013 DOI: 10.1002/smmd.20220020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/28/2024]
Abstract
Prostate cancer remains the second-most common cancer diagnosed in men, despite the increasingly widespread use of serum prostate-specific antigen (PSA) screening. The controversial clinical implications and cost benefits of PSA screening have been highlighted due to its poor specificity, resulting in a high rate of overdiagnosis and underdiagnosis. Thus, the development of novel biomarkers for prostate cancer detection remains an intriguing challenge. Urine is emerging as a source for prostate cancer biomarker discovery. Currently, new urine biomarkers already outperform serum PSA in clinical diagnosis. Meanwhile, the advances in nanotechnology have provided a suite of diagnostic tools to study prostate cancer in more detail, sparking a new era of biomarker discoveries. In this review, we envision that future prostate cancer diagnosis will probably integrate multiplex nano-diagnostic approaches to detect novel urinary biomarkers. However, challenges remain in differentiating indolent from aggressive cancers to better inform treatment decisions, and clinical translation still needs to be overcome.
Collapse
Affiliation(s)
- Caizhi Liao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Zhihao Wu
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Chan Lin
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xiaofeng Chen
- School of Environmental and Geographical SciencesShanghai Normal UniversityShanghaiChina
- School of ChemistryNorthwestern UniversityChicagoIllinoisUSA
| | - Yaqun Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Wan Zhao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xin Li
- Department of UrologySir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | | | - Baisheng Xu
- Department of UrologyThe First People's Hospital of XiushuiJiujiangChina
| | | | - Yan Qi
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xianshu Wang
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Tao Zeng
- Department of Urologythe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbaneQueenslandAustralia
| | - Hongzhi Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
9
|
New Advances in Biomedical Application of Polymeric Micelles. Pharmaceutics 2022; 14:pharmaceutics14081700. [PMID: 36015325 PMCID: PMC9416043 DOI: 10.3390/pharmaceutics14081700] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 08/07/2022] [Indexed: 12/20/2022] Open
Abstract
In the last decade, nanomedicine has arisen as an emergent area of medicine, which studies nanometric systems, namely polymeric micelles (PMs), that increase the solubility and the stability of the encapsulated drugs. Furthermore, their application in dermal drug delivery is also relevant. PMs present unique characteristics because of their unique core-shell architecture. They are colloidal dispersions of amphiphilic compounds, which self-assemble in an aqueous medium, giving a structure-type core-shell, with a hydrophobic core (that can encapsulate hydrophobic drugs), and a hydrophilic shell, which works as a stabilizing agent. These features offer PMs adequate steric protection and determine their hydrophilicity, charge, length, and surface density properties. Furthermore, due to their small size, PMs can be absorbed by the intestinal mucosa with the drug, and they transport the drug in the bloodstream until the therapeutic target. Moreover, PMs improve the pharmacokinetic profile of the encapsulated drug, present high load capacity, and are synthesized by a reproducible, easy, and low-cost method. In silico approaches have been explored to improve the physicochemical properties of PMs. Based on this, a computer-aided strategy was developed and validated to enable the delivery of poorly soluble drugs and established critical physicochemical parameters to maximize drug loading, formulation stability, and tumor exposure. Poly(2-oxazoline) (POx)-based PMs display unprecedented high loading concerning water-insoluble drugs and over 60 drugs have been incorporated in POx PMs. Among various stimuli, pH and temperature are the most widely studied for enhanced drug release at the site of action. Researchers are focusing on dual (pH and temperature) responsive PMs for controlled and improved drug release at the site of action. These dual responsive systems are mainly evaluated for cancer therapy as certain malignancies can cause a slight increase in temperature and a decrease in the extracellular pH around the tumor site. This review is a compilation of updated therapeutic applications of PMs, such as PMs that are based on Pluronics®, micelleplexes and Pox-based PMs in several biomedical applications.
Collapse
|
10
|
Sousa DP, Conde J. Gold Nanoconjugates for miRNA Modulation in Cancer Therapy: From miRNA Silencing to miRNA Mimics. ACS MATERIALS AU 2022; 2:626-640. [PMID: 36397876 PMCID: PMC9650716 DOI: 10.1021/acsmaterialsau.2c00042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/03/2022]
Abstract
![]()
Cancer is a major healthcare burden and cause of death
worldwide,
with an estimated 19.3 million new cancer cases and 10 million cancer
deaths globally only in 2020. While several anticancer therapeutics
are available to date, many of these still show low treatment efficacy
and high off-target effects and adverse reactions. This prompts a
serious need to develop novel therapies that can decrease the side
effects and increase treatment efficacy. MicroRNAs (miRNAs) can have
a role in tumor development and progression, making them important
targets for the improvement of anticancer therapies. In this context,
gold nanoparticles have been widely studied for different clinical
applications due to their biocompatibility and possibility of customization,
and gold nanoconjugates targeting miRNAs are being developed for cancer
diagnosis and treatment. Here we summarize the research developed
so far and how it can contribute to cancer treatment, discuss how
it can be improved, and present the current challenges and future
perspectives on their design and application.
Collapse
Affiliation(s)
- Diana P. Sousa
- NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - João Conde
- NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
- ToxOmics, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| |
Collapse
|
11
|
Dheyab MA, Aziz AA, Moradi Khaniabadi P, Jameel MS, Oladzadabbasabadi N, Mohammed SA, Abdullah RS, Mehrdel B. Monodisperse Gold Nanoparticles: A Review on Synthesis and Their Application in Modern Medicine. Int J Mol Sci 2022; 23:7400. [PMID: 35806405 PMCID: PMC9266776 DOI: 10.3390/ijms23137400] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/12/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Gold nanoparticles (AuNPs) are becoming increasingly popular as drug carriers due to their unique properties such as size tenability, multivalency, low toxicity and biocompatibility. AuNPs have physical features that distinguish them from bulk materials, small molecules and other nanoscale particles. Their unique combination of characteristics is just now being fully realized in various biomedical applications. In this review, we focus on the research accomplishments and new opportunities in this field, and we describe the rising developments in the use of monodisperse AuNPs for diagnostic and therapeutic applications. This study addresses the key principles and the most recent published data, focusing on monodisperse AuNP synthesis, surface modifications, and future theranostic applications. Moving forward, we also consider the possible development of functionalized monodisperse AuNPs for theranostic applications based on these efforts. We anticipate that as research advances, flexible AuNPs will become a crucial platform for medical applications.
Collapse
Affiliation(s)
- Mohammed Ali Dheyab
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Azlan Abdul Aziz
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Pegah Moradi Khaniabadi
- Department of Radiology and Molecular Imaging, College of Medicine and Health Science, Sultan Qaboos University, Muscat 112, Oman;
| | - Mahmood S. Jameel
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
- Nano-Biotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nazila Oladzadabbasabadi
- Food Biopolymer Research Group, Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Malaysia;
| | | | - Raja Saleh Abdullah
- School of Physics, Universiti Sains Malaysia, Gelugor 11800, Malaysia; (M.S.J.); (S.A.M.); (R.S.A.)
| | - Baharak Mehrdel
- Department of Physiology and Pharmacology, Thomas J. Long School of Pharmacy & Health Science, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
12
|
Alshahrani SM. A judicious review on the applications of chemotherapeutic loaded nanoemulsions in cancer management. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Electrochemotherapy of Deep-Seated Tumors: State of Art and Perspectives as Possible "EPR Effect Enhancer" to Improve Cancer Nanomedicine Efficacy. Cancers (Basel) 2021; 13:cancers13174437. [PMID: 34503247 PMCID: PMC8431574 DOI: 10.3390/cancers13174437] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Electroporation-based therapies (reversible electroporation, irreversible electroporation, electrochemotherapy) are used for the selective treatment of deep-seated tumors. The combination of the structural modifications of the lipid bilayer of cell membranes, due to the application of electrical pulses in the targeted tissue, with the concomitant systemic (intravenous) administration of drugs can be considered as a sort of bridge between local-regional and systemic treatments. A possible further application of these techniques can be envisaged in their use as enhancers of the so-called “enhanced permeability and retention” effect. The intratumoral uptake of drug-loaded nanocarriers concomitant with the application of electric pulses in the target tumor is a new scenario worthy of attention and can represent a potential new frontier for drug delivery in oncology. Abstract Surgical resection is the gold standard for the treatment of many kinds of tumor, but its success depends on the early diagnosis and the absence of metastases. However, many deep-seated tumors (liver, pancreas, for example) are often unresectable at the time of diagnosis. Chemotherapies and radiotherapies are a second line for cancer treatment. The “enhanced permeability and retention” (EPR) effect is believed to play a fundamental role in the passive uptake of drug-loaded nanocarriers, for example polymeric nanoparticles, in deep-seated tumors. However, criticisms of the EPR effect were recently raised, particularly in advanced human cancers: obstructed blood vessels and suppressed blood flow determine a heterogeneity of the EPR effect, with negative consequences on nanocarrier accumulation, retention, and intratumoral distribution. Therefore, to improve the nanomedicine uptake, there is a strong need for “EPR enhancers”. Electrochemotherapy represents an important tool for the treatment of deep-seated tumors, usually combined with the systemic (intravenous) administration of anticancer drugs, such as bleomycin or cisplatin. A possible new strategy, worthy of investigation, could be the use of this technique as an “EPR enhancer” of a target tumor, combined with the intratumoral administration of drug-loaded nanoparticles. This is a general overview of the rational basis for which EP could be envisaged as an “EPR enhancer” in nanomedicine.
Collapse
|
14
|
Morais DO, Pancotti A, de Souza GS, Saivish MV, Braoios A, Moreli ML, Souza MVDB, da Costa VG, Wang J. Synthesis, characterization, and evaluation of antibacterial activity of transition metal oxyde nanoparticles. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:101. [PMID: 34406528 PMCID: PMC8373752 DOI: 10.1007/s10856-021-06578-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 05/13/2023]
Abstract
Nanoparticles (NPs) have a wide range of applications in various areas. For health application, cytotoxicity tests are used to ensure its efficiency and safety. In this paper, ZnFe2O4, CoFe2O4, Zn0.5Co0.5Fe2O4 NPs were synthesized, characterized and their antibacterial properties were evaluated. The Sol-Gel method was used to synthesize the NPs. Their electronic and crystallographic structures were characterized by Fourier Transform Infrared Spectroscopy Analysis (FTIR), X-ray fluorescence (XRF), X-Ray Diffraction (XRD), and Transmission Electron Microscopy (TEM). To perform the antibacterial evaluation, ferrites were dispersed through nanoemulsion to prevent the crystals from accumulating together. Then the evaluation was performed through microdilution in a 96-well plate and diffusion in agar disc in contact with 3 different strains of Staphylococcus aureus and Escherichia coli. It demonstrated that the Sol-Gel method was efficient to synthesize NPs with suitable sizes for health application. All synthesized NPs showed the inhibition of bacterias with different concentrations used.
Collapse
Affiliation(s)
- Dielly Oliveira Morais
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Alexandre Pancotti
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil.
| | - Guilherme Sastre de Souza
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Marielena Vogel Saivish
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Alexandre Braoios
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Marcos Lázaro Moreli
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Mauro Vinícius de B Souza
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Vivaldo G da Costa
- Universidade Federal de Jataí, Unidade Acadêmica Especial de Ciências Exatas, Rod. Br 364, km 168, Jataí, GO, Brazil
| | - Jiale Wang
- College of Science, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
15
|
Khan S, Vahdani Y, Hussain A, Haghighat S, Heidari F, Nouri M, Haj Bloukh S, Edis Z, Mahdi Nejadi Babadaei M, Ale-Ebrahim M, Hasan A, Sharifi M, Bai Q, Hassan M, Falahati M. Polymeric micelles functionalized with cell penetrating peptides as potential pH-sensitive platforms in drug delivery for cancer therapy: A review. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
16
|
Zhang Z, Niu X, Feng X, Wang X, Yu L, Wang W, Yuan Z. Construction of a pH/TGase "Dual Key"-Responsive Gold Nano-radiosensitizer with Liver Tumor-Targeting Ability. ACS Biomater Sci Eng 2021; 7:3434-3445. [PMID: 34129333 DOI: 10.1021/acsbiomaterials.1c00428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The method of tumor microenvironment (TME)-responsive aggregation has become a promising approach to enhance treatment effect by improving the accumulation of nanoparticles in tumors. The enzymatic cross-linking strategy has widely attracted attention owing to its good aggregation stability and biocompatibility. However, the enzymes in nontumor tissue can also catalyze the cross-linking reaction and reduce accumulation of nanoparticles in tumor. In this work, a "dual key"-responsive strategy is utilized to construct a transglutaminase (TGase)/pH-responsive radiosensitizer (Au@TAcoGal) with specific aggregation behavior in hepatic tumor cells. Au@TAcoGal can retain its stability in blood circulation (pH 7.4) even in the presence of TGase in plasma. On reaching tumor sites, it can be endocytosed by hepatoma cells by the active targeting of phenylboronic acid (PBA) and aggregated under acidity and overexpression of TGase in cells. Due to its specific accumulation in hepatoma cells, radiotherapy can be operated under a lower dose of X-ray. The results show that the cellular accumulation of Au@TAcoGal increases by 30-70%, and the cell survival rate is less than 25% under X-ray irradiation. The antineoplastic results show that Au@TAcoGal exhibits a higher therapeutic effect, and the tumor inhibition rate can reach 84.21%.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaoyan Niu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaoyue Feng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Xiaohui Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Licheng Yu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| |
Collapse
|
17
|
Synthesis of Starch Nanoparticles and Their Applications for Bioactive Compound Encapsulation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104547] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In recent years, starch nanoparticles (SNPs) have attracted growing attention due to their unique properties as a sustainable alternative to common nanomaterials since they are natural, renewable and biodegradable. SNPs can be obtained by the breakdown of starch granules through different techniques which include both physical and chemical methods. The final properties of the SNPs are strongly influenced by the synthesis method used as well as the operational conditions, where a controlled and monodispersed size is crucial for certain bioapplications. SNPs are considered to be a good vehicle to improve the controlled release of many bioactive compounds in different research fields due to their high biocompatibility, potential functionalization, and high surface/volume ratio. Their applications are frequently found in medicine, cosmetics, biotechnology, or the food industry, among others. Both the encapsulation properties as well as the releasing processes of the bioactive compounds are highly influenced by the size of the SNPs. In this review, a general description of the different types of SNPs (whole and hollow) synthesis methods is provided as well as on different techniques for encapsulating bioactive compounds, including direct and indirect methods, with application in several fields. Starches from different botanical sources and different bioactive compounds are compared with respect to the efficacy in vitro and in vivo. Applications and future research trends on SNPs synthesis have been included and discussed.
Collapse
|
18
|
Barani M, Hosseinikhah SM, Rahdar A, Farhoudi L, Arshad R, Cucchiarini M, Pandey S. Nanotechnology in Bladder Cancer: Diagnosis and Treatment. Cancers (Basel) 2021; 13:2214. [PMID: 34063088 PMCID: PMC8125468 DOI: 10.3390/cancers13092214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is the second most common cancer of the urinary tract in men and the fourth most common cancer in women, and its incidence rises with age. There are many conventional methods for diagnosis and treatment of BC. There are some current biomarkers and clinical tests for the diagnosis and treatment of BC. For example, radiotherapy combined with chemotherapy and surgical, but residual tumor cells mostly cause tumor recurrence. In addition, chemotherapy after transurethral resection causes high side effects, and lack of selectivity, and low sensitivity in sensing. Therefore, it is essential to improve new procedures for the diagnosis and treatment of BC. Nanotechnology has recently sparked an interest in a variety of areas, including medicine, chemistry, physics, and biology. Nanoparticles (NP) have been used in tumor therapies as appropriate tools for enhancing drug delivery efficacy and enabling therapeutic performance. It is noteworthy, nanomaterial could be reduced the limitation of conventional cancer diagnosis and treatments. Since, the major disadvantages of therapeutic drugs are their insolubility in an aqueous solvent, for instance, paclitaxel (PTX) is one of the important therapeutic agents utilized to treating BC, due to its ability to prevent cancer cell growth. However, its major problem is the poor solubility, which has confirmed to be a challenge when improving stable formulations for BC treatment. In order to reduce this challenge, anti-cancer drugs can be loaded into NPs that can improve water solubility. In our review, we state several nanosystem, which can effective and useful for the diagnosis, treatment of BC. We investigate the function of metal NPs, polymeric NPs, liposomes, and exosomes accompanied therapeutic agents for BC Therapy, and then focused on the potential of nanotechnology to improve conventional approaches in sensing.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|
19
|
Bag P, Maurya RK, Dadwal A, Sarkar M, Chawla PA, Narang RK, Kumar B. Recent Development in Synthesis of Carbon Dots from Natural Resources and Their Applications in Biomedicine and Multi‐Sensing Platform. ChemistrySelect 2021. [DOI: 10.1002/slct.202100468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Puja Bag
- Department of Pharmaceutical Analysis ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
| | - Rahul K. Maurya
- Amity Institute of Pharmacy Amity University Uttar Pradesh Lucknow Campus India
| | - Ankita Dadwal
- Department of Pharmaceutics ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
- Department of Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda 151001, Punjab India
| | - Mrinmoy Sarkar
- Department of Pharmaceutical Analysis ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
| | - Pooja A. Chawla
- Department of Pharmaceutical Analysis ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
- Department of Pharmaceutical Chemistry ISF College of Pharmacy, Ghal Kalan, G.T Road Moga, Punjab India- 142001
| | - Raj K. Narang
- Department of Pharmaceutics ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
| | - Bhupinder Kumar
- Department of Pharmaceutical Analysis ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
- Department of Pharmaceutical Chemistry ISF College of Pharmacy, Ghal Kalan, G.T Road Moga, Punjab India- 142001
| |
Collapse
|
20
|
Hak A, Ravasaheb Shinde V, Rengan AK. A review of advanced nanoformulations in phototherapy for cancer therapeutics. Photodiagnosis Photodyn Ther 2021; 33:102205. [PMID: 33561574 DOI: 10.1016/j.pdpdt.2021.102205] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Phototherapy has the potential to play a greater role in oncology. Phototherapy converts light energy into either chemical energy or thermal energy, which eventually destroys cancer cells after a series of biological reactions. With nanotechnology applications in cancer therapeutics, it has become possible to prepare smart drug carriers with multifunctional properties at the nanoscale level. These nanocarriers may be able to deliver the drug molecules to the target site more efficiently in the form of nanoparticles. Several intrinsic and extrinsic properties of these nanocarriers help target the tumor cells exclusively, and by utilizing these features, drug molecules can be delivered to the tumor cells specifically, which results in high tumor uptake and better therapeutic effects ultimately. Nanocarriers can also be designed to carry different drugs together to provide a platform for combination therapy like chemo-photodynamic therapy and chemo-photodynamic-photothermal therapy. In combination therapy, co-delivery of all different drugs is crucial to obtain their synergistic effects, and with the help of nanocarriers, it is possible to co-deliver these drugs by loading them together onto the nanocarriers.
Collapse
Affiliation(s)
- Arshadul Hak
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Vinod Ravasaheb Shinde
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, India.
| |
Collapse
|
21
|
Noschka R, Gerbl F, Löffler F, Kubis J, Rodríguez AA, Mayer D, Grieshober M, Holch A, Raasholm M, Forssmann WG, Spellerberg B, Wiese S, Weidinger G, Ständker L, Stenger S. Unbiased Identification of Angiogenin as an Endogenous Antimicrobial Protein With Activity Against Virulent Mycobacterium tuberculosis. Front Microbiol 2021; 11:618278. [PMID: 33537017 PMCID: PMC7848861 DOI: 10.3389/fmicb.2020.618278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis is a highly prevalent infectious disease with more than 1.5 million fatalities each year. Antibiotic treatment is available, but intolerable side effects and an increasing rate of drug-resistant strains of Mycobacterium tuberculosis (Mtb) may hamper successful outcomes. Antimicrobial peptides (AMPs) offer an alternative strategy for treatment of infectious diseases in which conventional antibiotic treatment fails. Human serum is a rich resource for endogenous AMPs. Therefore, we screened a library generated from hemofiltrate for activity against Mtb. Taking this unbiased approach, we identified Angiogenin as the single compound in an active fraction. The antimicrobial activity of endogenous Angiogenin against extracellular Mtb could be reproduced by synthetic Angiogenin. Using computational analysis, we identified the hypothetical active site and optimized the lytic activity by amino acid exchanges. The resulting peptide-Angie1-limited the growth of extra- and intracellular Mtb and the fast-growing pathogens Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Toward our long-term goal of evaluating Angie1 for therapeutic efficacy in vivo, we demonstrate that the peptide can be efficiently delivered into human macrophages via liposomes and is not toxic for zebrafish embryos. Taken together, we define Angiogenin as a novel endogenous AMP and derive the small, bioactive fragment Angie1, which is ready to be tested for therapeutic activity in animal models of tuberculosis and infections with fast-growing bacterial pathogens.
Collapse
Affiliation(s)
- Reiner Noschka
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Fabian Gerbl
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Florian Löffler
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Jan Kubis
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Armando A Rodríguez
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany.,Core Facility of Functional Peptidomics, Ulm University, Ulm, Germany
| | - Daniel Mayer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Mark Grieshober
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Armin Holch
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Martina Raasholm
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | | | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, Ulm, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Ludger Ständker
- Core Facility of Functional Peptidomics, Ulm University, Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
22
|
Sekar A, Yadav R, Kannaiyan P, Munuswamy-Ramanujam G. Evaluation of biopolymer-derived carbon dots as cancer diagnostic biomarkers for human monocyte cell lines ( THP-1). 3 Biotech 2021; 11:31. [PMID: 33457165 PMCID: PMC7782767 DOI: 10.1007/s13205-020-02568-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Fluorescent carbon dots (C-dots) were fabricated from Anogeissus latifolia (Gum ghatti) gum extract using direct microwave pyrolysis method. The C-dots are fine-tuned concerning three parameters, viz., NaOH addition (presence and absence), microwave power, and irradiation time. C-dots optical properties were investigated through UV-visible (UV-Vis) and fluorescence spectroscopy. Using field emission scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM), Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and Raman Spectroscopy, physiochemical properties of synthesized C-dots were inspected. The average size of C-dots was estimated to be 4.8 ± 2 nm and is amorphous. These C-dots displayed high solubility in an aqueous medium due to oxygen functionality, and showed good fluorescence stability to high-ionic concentration and varied pH. The fluorescence spectra outcomes specified that C-dots exhibited excitation-dependent emission behavior. Furthermore, the C-dots biological function was tested for cell biocompatibility and bioimaging. The cytotoxicity studies were performed on Vero cell lines and compared with THP-1 human monocyte cell lines at different concentrations. The results revealed good biocompatibility app. 80 and 90% for Vero and THP-1 cell lines even after 24 h incubation with the C-dots. Finally, by employing C-dots as the fluorescent tool, THP-1 cells were imaged successfully via a Confocal Laser Scanning Microscope (CLSM) in a concentration-dependent manner.
Collapse
Affiliation(s)
- Anithadevi Sekar
- Department of Chemistry, Madras Christian College, affiliated to University of Madras, Tambaram, Chennai, Tamil Nadu 600 059 India
| | - Rakhi Yadav
- Department of Chemistry, Madras Christian College, affiliated to University of Madras, Tambaram, Chennai, Tamil Nadu 600 059 India
| | - Pandian Kannaiyan
- Department of Inorganic Chemistry, University of Madras, Guindy Campus, Chennai, Tamil Nadu 600 025 India
| | - Ganesh Munuswamy-Ramanujam
- Molecular Biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine, SRM-IST, Kattankulathur, Tamil Nadu 603 203 India
| |
Collapse
|
23
|
van de Loosdrecht MM, Abelmann L, Ten Haken B. Experimental comparison of four nonlinear magnetic detection methods and considerations on clinical usability. Biomed Phys Eng Express 2020; 7. [PMID: 34037534 DOI: 10.1088/2057-1976/abce90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/27/2020] [Indexed: 11/12/2022]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are promising for clinical applications, because they have a characteristic nonlinear magnetic response when an external magnetic field is applied. This nonlinearity enables the distinct detection of SPIONs and makes measurements less sensitive to the human body and surgical steel instruments. In clinical applications, only a limited field strength for the magnetic detection is allowed. The signal to noise ratios (SNRs) of four nonlinear magnetic detection methods are compared. These methods include differential magnetometry and three variations of magnetic particle spectroscopy: frequency mixing, second harmonic detection and third harmonic detection. All methods were implemented on the same hardware and experimentally compared for various field strengths. To make the comparison fair, the same power was supplied to the excitation coil each time. In general, the SNR increases with increasing field strength. The SNR per drive field of all methods stabilizes or even decreases for field strengths above 6 mT. The second harmonic detection has the best SNR and the most room for improvement.
Collapse
Affiliation(s)
- M M van de Loosdrecht
- Magnetic Detection and Imaging, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | | | - B Ten Haken
- Magnetic Detection and Imaging, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
24
|
Liu R, Gao Y, Liu N, Suo Y. Nanoparticles loading porphyrin sensitizers in improvement of photodynamic therapy for ovarian cancer. Photodiagnosis Photodyn Ther 2020; 33:102156. [PMID: 33352314 DOI: 10.1016/j.pdpdt.2020.102156] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/15/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ovarian cancer, the malignant tumor with the highest mortality rate in gynecological tumors, leads to a poor prognosis due to tumor metastasis. At present, the main treatment for ovarian cancer is the combination of cytoreduction surgery and chemotherapy. But the surgery is insufficient to solve the extensive transfer of tumor in the abdominal cavity and a large proportion of ovarian cancer cases have shown resistance to chemotherapy. Photodynamic therapy (PDT) is a viable treatment option for a wide range of applications, especially in malignant tumors. Porphyrin sensitizers, as the most widely used photosensitive agents, have the following advantages: short photosensitive period and high singlet oxygen production. However, most studies have found that it is difficult to achieve high loading rates of photosensitive agents, thus effective concentration in target tissue is suboptimal and the lethal ability is greatly reduced. In this article, we review several studies that nanoparticles loading porphyrin sensitizers for photodynamic therapy of ovarian cancer. METHODS We collected relevant literature from PUBMED and reviewed their research content. RESULTS The application of nanotechnology to PDT in ovarian cancer can reduce the non-specific toxicity of photosensitive agents and increase stability and delivery efficiency. CONCLUSIONS The combination with nanotechnology can cover the shortcomings of photodynamic therapy, but the specific efficacy still needs a large number of experiments to prove.
Collapse
Affiliation(s)
- Rui Liu
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Yanxia Gao
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Nannan Liu
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| | - Yuping Suo
- Obstetrics and Gynaecology, Shanxi Provincial Peoples Hospital, Taiyuan, China.
| |
Collapse
|
25
|
Campu A, Focsan M, Lerouge F, Borlan R, Tie L, Rugina D, Astilean S. ICG-loaded gold nano-bipyramids with NIR activatable dual PTT-PDT therapeutic potential in melanoma cells. Colloids Surf B Biointerfaces 2020; 194:111213. [PMID: 32622254 DOI: 10.1016/j.colsurfb.2020.111213] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/12/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022]
Abstract
A great amount of effort is directed towards the progress of cancer treatment approaches aspiring to develop non-invasive, targeted and highly efficient therapies. In this context, Photothermal (PTT) and Photodynamic (PDT) Therapies were proven as promising. This work aims to integrate the therapeutic activities of two near-infrared (NIR) photoactive biomaterials - gold nano-bipyramids (AuBPs) and Indocyanine Green (ICG) - into one single targeted hybrid nanosystem able to operate as dual PTT-PDT agent with higher efficiency compared with each one alone. Firstly, different aspect ratio' AuBPs were systematically investigated in water solution for their intrinsic ability to efficiently generate toxic reactive oxygen species, namely oxygen singlet (1O2), under NIR laser irradiation, as this effect is less investigated in literature. Interestingly, the photodynamic activity of AuBPs measured by monitoring the photooxidation of 9,10-Anthracenediyl-bis(methylene)dimalonic acid (ABDA) - a well-known 1O2 sensor, is important, counting for 30 % decrease in ABDA optical absorbance for the most active AuBPs, well-correlating with the previously determined photothermal conversion efficiency. Furthermore, ICG was successfully grafted onto the Poly-lactic acid (PLA) coating of plasmonic nanoparticles and, consequently, the as-designed fully integrated hybrid nanosystem shows improved PTT-PDT performance in solution. Specifically, by triggering simultaneous PTT-PDT activities, the 1O2 amount is doubled, while the heating monitoring shows higher and faster increase in temperature compared to AuBPs alone. Finally, the efficiency of the combined PTT-PDT therapeutic activity was validated in vitro against B16-F10 cell line by covalent conjugation of the nanosystem with Folic Acid, which ensures the cellular recognition by overexpression of folate receptor.
Collapse
Affiliation(s)
- Andreea Campu
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, Cluj-Napoca 400271, Romania; Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu No. 1, Cluj-Napoca 400084, Romania.
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, Cluj-Napoca 400271, Romania.
| | - Frederic Lerouge
- Ecole Normale Superiéure de Lyon, CNRS, Université Lyon 1, Laboratoire de Chimie UMR 5182, 46, allée d'Italie, F-69364, Lyon Cedex 07, France.
| | - Raluca Borlan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, Cluj-Napoca 400271, Romania; Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu No. 1, Cluj-Napoca 400084, Romania.
| | - Leopold Tie
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, Cluj-Napoca 400271, Romania; Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu No. 1, Cluj-Napoca 400084, Romania.
| | - Dumitrita Rugina
- Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăştur Str. 3-5, Cluj-Napoca 400372, Romania.
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, Treboniu Laurean No.42, Cluj-Napoca 400271, Romania; Biomolecular Physics Department, Faculty of Physics, Babes-Bolyai University, M Kogalniceanu No. 1, Cluj-Napoca 400084, Romania.
| |
Collapse
|
26
|
UCNP-based Photoluminescent Nanomedicines for Targeted Imaging and Theranostics of Cancer. Molecules 2020; 25:molecules25184302. [PMID: 32961731 PMCID: PMC7571190 DOI: 10.3390/molecules25184302] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/22/2022] Open
Abstract
Theranostic approach is currently among the fastest growing trends in cancer treatment. It implies the creation of multifunctional agents for simultaneous precise diagnosis and targeted impact on tumor cells. A new type of theranostic complexes was created based on NaYF4: Yb,Tm upconversion nanoparticles coated with polyethylene glycol and functionalized with the HER2-specific recombinant targeted toxin DARPin-LoPE. The obtained agents bind to HER2-overexpressing human breast adenocarcinoma cells and demonstrate selective cytotoxicity against this type of cancer cells. Using fluorescent human breast adenocarcinoma xenograft models, the possibility of intravital visualization of the UCNP-based complexes biodistribution and accumulation in tumor was demonstrated.
Collapse
|
27
|
Dong L, Zhang X, Cai L, Zuo F, Zhao M, Wang Q, Zhang S, Xu K, Li J. Targeted MRI and chemotherapy of ovarian cancer with clinic available nano-drug based nanoprobe. Biomed Pharmacother 2020; 130:110585. [PMID: 32771892 DOI: 10.1016/j.biopha.2020.110585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/17/2020] [Accepted: 07/25/2020] [Indexed: 10/23/2022] Open
Abstract
Cancer is the leading cause of death worldwide, and chemotherapy, as its main treatment, has side effects in clinical application due to lack of targeting selectivity to tumor tissues. Theranostic nanomaterials have shown wonderful functions for the diagnosis and therapy of disease benefitting from the controllability of nanomaterials. However, there is still little available for clinical transformation due to the uncertain biocompatibility. It is urgent to develop nanoprobes possessing bright transformation potentials. This study reports a facile biomineralization route to synthesize the theranostic nanoprobe using the clinic available nano-drug (trademark Abraxane). Further profiting from the binding ability of albumin to metal cations, we successfully prepared biocompatible nanoprobe, BSA-Gd2O3/PTX@Anti-HE4 mAb, for the targeted magnetic resonance imaging and chemotherapy of ovarian carcinoma. The obtained nanoprobe has the advantages of uniform particle size, good dispersibility and favorable stability. In vivo and in vitro experiment results showed that the nanoprobe can realize targeted magnetic resonance imaging and chemotherapy of ovarian carcinoma. Such a novel multifunctional nanoprobe based on clinic nano-drug might be promising for clinic transformation.
Collapse
Affiliation(s)
- Lina Dong
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiuli Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China
| | - Lulu Cai
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Fengmei Zuo
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Mingming Zhao
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Shuai Zhang
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Kai Xu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China.
| | - Jingjing Li
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, China; School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
28
|
Rositch AF, Loffredo C, Bourlon MT, Pearlman PC, Adebamowo C. Creative Approaches to Global Cancer Research and Control. JCO Glob Oncol 2020; 6:4-7. [PMID: 32716656 PMCID: PMC7846070 DOI: 10.1200/go.20.00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Anne F Rositch
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Christopher Loffredo
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC
| | - Maria T Bourlon
- Hemato-Oncology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Paul C Pearlman
- National Cancer Institute Center for Global Health, Rockville, MD
| | - Clement Adebamowo
- Institute of Human Virology, Department of Epidemiology and Public Health, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD.,Institute of Human Virology, Abuja, Nigeria.,Center for Bioethics and Research, Ibadan, Nigeria
| |
Collapse
|
29
|
Guryev EL, Smyshlyaeva AS, Shilyagina NY, Shanwar S, Kostyuk AB, Shulga AA, Konovalova EV, Zvyagin AV, Deyev SM, Petrov RV. Multifunctional Complexes Based on Photoluminescent Upconversion Nanoparticles for Theranostics of the HER2-Positive Tumors. DOKL BIOCHEM BIOPHYS 2020; 491:73-76. [PMID: 32483755 DOI: 10.1134/s160767292002009x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/12/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022]
Abstract
Combining diagnostic and therapeutic functions in one agent is a promising strategy in the development of personalized approaches to the treatment of cancer. The opportunity to combine diagnostics and therapy appeared with the development of nanobiotechnologies and was realized in the concept of theranostics. To date, a number of promising agents based on nanomaterials capable of diagnosing, targeted therapeutic effects, and monitoring the response of tumor cells were obtained within the approach of theranostics. In this work, a new type of theranostic complexes based on upconversion nanoparticles coated with polyethylene glycol and functionalized with the DARPin-LoPE recombinant targeted toxin was developed. Selective binding of complexes to human breast adenocarcinoma cells overexpressing the HER2 receptor and specific toxicity to them were shown.
Collapse
Affiliation(s)
- E L Guryev
- Lobachevsky State University of Nizhny Novgorod, 603105, Nizhny Novgorod, Russia
| | - A S Smyshlyaeva
- Lobachevsky State University of Nizhny Novgorod, 603105, Nizhny Novgorod, Russia
| | - N Yu Shilyagina
- Lobachevsky State University of Nizhny Novgorod, 603105, Nizhny Novgorod, Russia
| | - S Shanwar
- Lobachevsky State University of Nizhny Novgorod, 603105, Nizhny Novgorod, Russia
| | - A B Kostyuk
- Lobachevsky State University of Nizhny Novgorod, 603105, Nizhny Novgorod, Russia
| | - A A Shulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - E V Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| | - A V Zvyagin
- Lobachevsky State University of Nizhny Novgorod, 603105, Nizhny Novgorod, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.,Sechenov First Moscow State Medical University, 119146, Moscow, Russia
| | - S M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia.
| | - R V Petrov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Moscow, Russia
| |
Collapse
|
30
|
Chitosan Nanoparticles for Therapy and Theranostics of Hepatocellular Carcinoma (HCC) and Liver-Targeting. NANOMATERIALS 2020; 10:nano10050870. [PMID: 32365938 PMCID: PMC7279387 DOI: 10.3390/nano10050870] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/24/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022]
Abstract
Chitosan nanoparticles are well-known delivery systems widely used as polymeric carriers in the field of nanomedicine. Chitosan is a carbohydrate of natural origin: it is a biodegradable, biocompatible, mucoadhesive, polycationic polymer and it is endowed with penetration enhancer properties. Furthermore, it can be easily derivatized. Hepatocellular carcinoma (HCC) represents a remarkable health problem because current therapies, that include surgery, liver transplantation, trans-arterial embolization, chemoembolization and chemotherapy, present significant limitations due to the high risk of recurrence, to a lack of drug selectivity and to other serious side effects. Therefore, there is the need for new therapeutic strategies and for improving the liver-targeting to HCC. Nanomedicine consists in the use of nanoscale carriers as delivery systems to target and deliver drugs and/or diagnostic agents to specific organs or tissues. Chitosan and its derivatives can be successfully used in the preparation of nanoparticles that, for their peculiar surface-properties, can specifically interact with liver tumor, by passive and active targeting. This review concerns the use of chitosan nanoparticles for the therapy and theranostics of HCC and liver-targeting.
Collapse
|
31
|
Pilapong C, Phatruengdet T, Krungchanuchat S. Autophagic stress; a new cellular response to nanoparticles. Could it be a new strategy for inhibition of liver cancer cell invasion and metastasis? NANOSCALE 2020; 12:6556-6561. [PMID: 32159197 DOI: 10.1039/c9nr10131d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We herein report a new biological consequence from a unique interaction between nanoparticles of ferric-tannic complexes (Fe-TA NPs) and liver cancer cells (HepG2.2.15). The Fe-TA NPs were found to accumulate into the cells via specific cellular uptake mechanisms and thereafter disturbed cellular autophagy and cellular pH homeostasis, which led the cells to undergo autophagic stress and eventual death. According to biophysical analysis, the cells undergoing autophagic stress were found to lose their capability of attachment, migration, and movement. Similarly, KEGG analysis demonstrated the down-regulation of TGF-beta indicating that the autophagic stress is capable of reducing cancer cell invasion. Therefore, the Fe-TA NPs could be considered beneficial as a new pharmaceutical nanoplatform for liver cancer treatment via induction of autophagic stress.
Collapse
Affiliation(s)
- Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand. and AMS Cancer Research Unit, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand and Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thipjutha Phatruengdet
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Saowalak Krungchanuchat
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
32
|
Jin C, Wang K, Oppong-Gyebi A, Hu J. Application of Nanotechnology in Cancer Diagnosis and Therapy - A Mini-Review. Int J Med Sci 2020; 17:2964-2973. [PMID: 33173417 PMCID: PMC7646098 DOI: 10.7150/ijms.49801] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/03/2020] [Indexed: 12/30/2022] Open
Abstract
Cancer is a leading cause of death and poor quality of life globally. Even though several strategies are devised to reduce deaths, reduce chronic pain and improve the quality of life, there remains a shortfall in the adequacies of these cancer therapies. Among the cardinal steps towards ensuring optimal cancer treatment are early detection of cancer cells and drug application with high specificity to reduce toxicities. Due to increased systemic toxicities and refractoriness with conventional cancer diagnostic and therapeutic tools, other strategies including nanotechnology are being employed to improve diagnosis and mitigate disease severity. Over the years, immunotherapeutic agents based on nanotechnology have been used for several cancer types to reduce the invasiveness of cancerous cells while sparing healthy cells at the target site. Nanomaterials including carbon nanotubes, polymeric micelles and liposomes have been used in cancer drug design where they have shown considerable pharmacokinetic and pharmacodynamic benefits in cancer diagnosis and treatment. In this review, we outline the commonly used nanomaterials which are employed in cancer diagnosis and therapy. We have highlighted the suitability of these nanomaterials for cancer management based on their physicochemical and biological properties. We further reviewed the challenges that are associated with the various nanomaterials which limit their uses and hamper their translatability into the clinical setting in certain cancer types.
Collapse
Affiliation(s)
- Cancan Jin
- Department of Oncology, Affiliated Dongyang People's Hospital of Wenzhou Medical University, Dongyang, Zhejiang 322100,China
| | - Kankai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Anthony Oppong-Gyebi
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| | - Jiangnan Hu
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas 76107, USA
| |
Collapse
|