1
|
Zhang X, Tang Y, Wang J, Yang M, Jiang J, Xue H, Wang Y, Zhang J, Wang X. Heat stress enhances the expression of METTL3 to mediate N6-methyladenosine modification of SOS2 and NLRP3 inflammasome activation in boar Sertoli cells. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137432. [PMID: 39884044 DOI: 10.1016/j.jhazmat.2025.137432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Heat stress negatively affects pig production by disrupting the immune homeostasis of Sertoli cells (SCs), which compromises sperm quality, culminating in male infertility. Herein, we aimed to study the mechanism by which the NLRP3 inflammasome is activated by heat stress through N6-methyladenosine (m6A) modification regulation in SCs. Initially, it was found that heat stress (44°C, 30 min) markedly activated ERK1/2 signaling, which subsequently promoted NLRP3 inflammasome activation and inflammatory cytokine release from SCs. Then, using an m6A dot-blot assay, m6A sequencing, and methylated RNA immunoprecipitation, we found that heat stress augmented the level of m6A modification in SCs, and METTL3 augmented the m6A modification of mRNA encoding SOS Ras/Rho guanine nucleotide exchange factor 2 (SOS2), a key activator of the ERK pathway. Furthermore, YTHDF1 recognized and bound to the m6A-modified SOS2 mRNA to enhance its translation efficiency, ultimately triggering ERK1/2 signaling activation. In vivo experiments demonstrated that heat stress-induced decline in semen quality in mice was associated with elevated levels of m6A modifications in the testis and NLRP3 inflammasome activation. However, the damage caused by heat stress could be attenuated by intraperitoneal injection of S-Adenosylhomocysteine (SAH), a specific methyltransferase inhibitor. Our results emphasize the critical roles of m6A in regulating NLRP3 inflammasome activation under heat stress, identifying a novel therapeutic avenue to address heat stress.
Collapse
Affiliation(s)
- Xuhua Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China
| | - Yan Tang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China
| | - Jinxuan Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China
| | - Mengyu Yang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China
| | - Jing Jiang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China
| | - Hongyan Xue
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China
| | - Yi Wang
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jiaojiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China.
| | - Xianzhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Beibei, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Wang F, Zhao H, Mou Q, Du ZQ, Yang CX. Metabolite of esculetin plays an important role in cytotoxic effects induced by chloroquine on porcine immature Sertoli cells. Toxicol In Vitro 2024; 101:105941. [PMID: 39278285 DOI: 10.1016/j.tiv.2024.105941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/18/2024]
Abstract
Chloroquine (CQ) is widely used in the therapy against malarial, tumor and recently the COVID-19 pandemic, as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway. We previously reported that CQ (20 μM, 36 h) could reprogram transcriptome, and impair multiple signaling pathways vital to porcine immature Sertoli cells (iSCs). However, whether CQ treatment could affect the metabolomic compositions of porcine iSCs remains unclear. Here, we showed that CQ (20 μM, 36 h) treatment of porcine iSCs induced significant changes of 63 metabolites (11 up and 52 down) by the metabolomics method, which were involved in different metabolic pathways. Caffeic acid and esculetin, the top two up-regulated metabolites, were validated by ELISA. The combined analysis of metabolomics and transcriptome showed caffeic acid and esculetin to be highly correlated with multiple differentially expressed genes (DEGs), including Ndrg1, S100a8, Sqstm1, S100a12, S100a9, Ill1, Lif, Ntn4 and Peg10. Furthermore, esculetin treatment (53 nM, 36 h) significantly decreased the viability and proliferation, suppressed the mitochondrial function, whereas promoted the apoptosis of porcine iSCs, similar to those by CQ treatment (20 μM, 36 h). Collectively, our results showed that CQ treatment induces metabolic changes, and its effect on porcine iSCs could be partially mediated by esculetin.
Collapse
Affiliation(s)
- Fang Wang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, Hubei, China
| | - Han Zhao
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, Hubei, China
| | - Qiao Mou
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, Hubei, China
| | - Zhi-Qiang Du
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, Hubei, China.
| | - Cai-Xia Yang
- College of Animal Science and Technology, Yangtze University, Jingzhou 434025, Hubei, China.
| |
Collapse
|
3
|
Cinone M, Albrizio M, Guaricci AC, Lacitignola L, Desantis S. Testicular expression of heat SHOCK proteins 60, 70, and 90 in cryptorchid horses. Theriogenology 2024; 217:83-91. [PMID: 38262223 DOI: 10.1016/j.theriogenology.2024.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/25/2024]
Abstract
Heat shock proteins are the most evolutionarily conserved protein families induced by stressors including hyperthermia. In the context of pathologies of the male reproductive tract, cryptorchidism is the most common genital defect that compromises the reproductive potential of the male because it induces an increase in intratesticular temperature. In equine species, cryptorchidism affects almost 9 % of newborns and few studies have been carried out on the molecular aspects of the retained testis. In this study, the expression pattern of HSP60, 70, and 90 in abdominal and inguinal testes, in their contralateral descended normally testes, and in testes of normal horses were investigated by Western blot and immunohistochemistry. The histomorphological investigation of retained and scrotal testes was also investigated. The seminiferous epithelium of the retained testes showed a vacuolized appearance and displayed a completely blocked spermatogenesis for lacking meiotic and spermiogenetic cells. On the contrary, the contralateral scrotal testes did not show morphological damage and the seminiferous epithelium displayed all phases of the spermatogenetic cycle as in the normal testes. The morphology of Leydig cells was not affected by the cryptorchid state. Western blot and immunohistochemistry evidenced that equine testis (both scrotal and retained) expresses the three investigated HSPs. More in detail, the Western blot evidenced that HSP70 is the more expressed chaperone and that together with HSP90 it is highly expressed in the retained gonad (P < 0.05). The immunohistochemistry revealed the presence of the three HSPs in the spermatogonia of normal and cryptorchid testes. Spermatogonia of retained testes showed the lowest expression of HSP60 and the highest expression of HSP90. Spermatocytes, spermatids of scrotal testes, and the Sertoli cells of retained and scrotal testes did not display HSP60 whereas expressed HSP70 and HSP90. These two proteins were also localized in the nucleus of the premeiotic cells. The Leydig cells displayed the three HSPs with the higher immunostaining of HSP70 and 90 in the cryptorchid testes. The results indicate that the heat stress condition occurring in the cryptorchid testis influences the expression of HSPs.
Collapse
Affiliation(s)
- Mario Cinone
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy
| | - Maria Albrizio
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy
| | - Antonio Ciro Guaricci
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy
| | - Luca Lacitignola
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy
| | - Salvatore Desantis
- Department of Precision and Regenerative Medicine and Jonian Area (DiMePRe-J), University of Bari Aldo Moro, S.P. 62 Km 3, 70010, Valenzano, (BA), Italy.
| |
Collapse
|
4
|
Khan MZ, Khan A, Chen W, Chai W, Wang C. Advancements in Genetic Biomarkers and Exogenous Antioxidant Supplementation for Safeguarding Mammalian Cells against Heat-Induced Oxidative Stress and Apoptosis. Antioxidants (Basel) 2024; 13:258. [PMID: 38539792 PMCID: PMC10967571 DOI: 10.3390/antiox13030258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 11/11/2024] Open
Abstract
Heat stress represents a pervasive global concern with far-reaching implications for the reproductive efficiency of both animal and human populations. An extensive body of published research on heat stress effects utilizes controlled experimental environments to expose cells and tissues to heat stress and its disruptive influence on the physiological aspects of reproductive phenotypic traits, encompassing parameters such as sperm quality, sperm motility, viability, and overall competence. Beyond these immediate effects, heat stress has been linked to embryo losses, compromised oocyte development, and even infertility across diverse species. One of the primary mechanisms underlying these adverse reproductive outcomes is the elevation of reactive oxygen species (ROS) levels precipitating oxidative stress and apoptosis within mammalian reproductive cells. Oxidative stress and apoptosis are recognized as pivotal biological factors through which heat stress exerts its disruptive impact on both male and female reproductive cells. In a concerted effort to mitigate the detrimental consequences of heat stress, supplementation with antioxidants, both in natural and synthetic forms, has been explored as a potential intervention strategy. Furthermore, reproductive cells possess inherent self-protective mechanisms that come into play during episodes of heat stress, aiding in their survival. This comprehensive review delves into the multifaceted effects of heat stress on reproductive phenotypic traits and elucidates the intricate molecular mechanisms underpinning oxidative stress and apoptosis in reproductive cells, which compromise their normal function. Additionally, we provide a succinct overview of potential antioxidant interventions and highlight the genetic biomarkers within reproductive cells that possess self-protective capabilities, collectively offering promising avenues for ameliorating the negative impact of heat stress by restraining apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Adnan Khan
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 511464, China
| | - Wenting Chen
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Wenqiong Chai
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
5
|
Siddiqui SH, Khan M, Park J, Lee J, Choe H, Shim K, Kang D. COPA3 peptide supplementation alleviates the heat stress of chicken fibroblasts. Front Vet Sci 2023; 10:985040. [PMID: 36908511 PMCID: PMC9998527 DOI: 10.3389/fvets.2023.985040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/07/2023] [Indexed: 03/14/2023] Open
Abstract
Heat stress inhibits cellular proliferation and differentiation through the production of reactive oxygen species. Under stress conditions, antioxidant drugs promote stable cellular function by reducing the stress level. We sought to demonstrate 9-mer disulfide dimer peptide (COPA3) supplementation stabilizes fibroblast proliferation and differentiation even under heat stress conditions. In our study, fibroblasts were assigned to two different groups based on the temperature, like 38°C group presented as Control - and 43°C group presented as Heat Stress-. Each group was subdivided into two groups depending upon COPA3 treatment, like 38°C + COPA3 group symbolized Control+ and the 43°C + COPA3 group symbolized as Heat Stress+. Heat stress was observed to decrease the fibroblast viability and function and resulted in alterations in the fibroblast shape and cytoskeleton structure. In contrast, COPA3 stabilized the fibroblast viability, shape, and function. Moreover, heat stress and COPA3 were found to have opposite actions with respect to energy production, which facilitates the stabilization of cellular functions by increasing the heat tolerance capacity. The gene expression levels of antioxidant and heat shock proteins were higher after heat stress. Additionally, heat stress promotes the mitogen-activated protein kinase/ extracellular signal-regulated kinase-nuclear factor erythroid 2-related factor 2 (MAPK/ERK-Nrf2). COPA3 maintained the MAPK/ERK-Nrf2 gene expressions that promote stable fibroblast proliferation, and differentiation as well as suppress apoptosis. These findings suggest that COPA3 supplementation increases the heat tolerance capacity, viability, and functional activity of fibroblasts.
Collapse
Affiliation(s)
- Sharif Hasan Siddiqui
- Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, United States.,Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Mousumee Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jinryong Park
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea.,Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea.,3D Tissue Culture Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jeongeun Lee
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hosung Choe
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kwanseob Shim
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea.,Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Darae Kang
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
6
|
Deng CC, Zhang JP, Huo YN, Xue HY, Wang W, Zhang JJ, Wang XZ. Melatonin alleviates the heat stress-induced impairment of Sertoli cells by reprogramming glucose metabolism. J Pineal Res 2022; 73:e12819. [PMID: 35906194 DOI: 10.1111/jpi.12819] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Sertoli cells (SCs) provide structural and nutritional support for developing germ cells. Normal glucose metabolism of SCs is necessary for spermatogenesis. Melatonin could alleviate the effects of heat stress on spermatogenesis. However, the influences of heat stress on glucose metabolism in SCs remain unclear, and the potential protective mechanisms of melatonin on SCs need more exploration. In this study, boar SCs were treated at 43°C for 30 min, and different concentrations of melatonin were added to protect SCs from heat stress-induced impairment. These results showed that heat stress-induced oxidative stress caused cell apoptosis, inhibited the pentose phosphate pathway, and decreased the ATP content. Furthermore, heat stress increased the expressions of glucose intake- and glycolytic-related enzymes, which enhanced the glycolysis activity to compensate for the energy deficit. Melatonin relieved heat stress-induced oxidative stress and apoptosis by activating the Kelch-like ECH-associated protein 1 (KEAP1)/NF-E2-related factor 2 signaling pathway to increase the capacity of antioxidants. In addition, melatonin enhanced heat-shock protein 90 (HSP90) expression through melatonin receptor 1B (MTNR1B), thereby stabilizing hypoxia-inducible factor-1α (HIF-1α). Activation of the HIF-1α signaling pathway enhanced glycolysis, promoted the pentose phosphate pathway, and increased cell viability. Our results suggest that melatonin reprograms glucose metabolism in SCs through the MTNR1B-HSP90-HIF-1α axis and provides a theoretical basis for preventing heat stress injury.
Collapse
Affiliation(s)
- Cheng-Chen Deng
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Chongqing, Beibei, People's Republic of China
| | - Ji-Pan Zhang
- College of Animal Science and Technology, Southwest University, Chongqing, People's Republic of China
| | - Yuan-Nan Huo
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Chongqing, Beibei, People's Republic of China
| | - Hong-Yan Xue
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Chongqing, Beibei, People's Republic of China
| | - Wenxiu Wang
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, Shandong, People's Republic of China
| | - Jiao-Jiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Chongqing, Beibei, People's Republic of China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicine, Southwest University, Chongqing, Beibei, People's Republic of China
| |
Collapse
|
7
|
Effects of dietary L-citrulline supplementation on nitric oxide synthesis, immune responses and mitochondrial energetics of broilers during heat stress. J Therm Biol 2022; 105:103227. [DOI: 10.1016/j.jtherbio.2022.103227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 12/28/2021] [Accepted: 03/15/2022] [Indexed: 11/15/2022]
|
8
|
Orozco CA, González-Giraldo Y, Bonilla DA, Forero DA. An in silico analysis of genome-wide expression profiles of the effects of exhaustive exercise identifies heat shock proteins as the key players. Meta Gene 2022. [DOI: 10.1016/j.mgene.2022.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Li H, Cong X, Sui J, Jiang Z, Fu K, Huan Y, Cao R, Tian W, Feng Y. Baicalin enhances the thermotolerance of mouse blastocysts by activating the ERK1/2 signaling pathway and preventing mitochondrial dysfunction. Theriogenology 2022; 178:85-94. [PMID: 34808561 DOI: 10.1016/j.theriogenology.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 10/19/2022]
Abstract
Heat stress causes oxidative damage and induces excessive cell apoptosis and thus affects the development and/or even causes the death of preimplantation embryos. The effects of baicalin on the developmental competence of heat-stressed mouse embryos were investigated in this experiment. Two-cell embryos were cultured in the presence of baicalin and subjected to heat stress (42 °C for 1 h) at their blastocyst stage followed by continuous culture at 37 °C until examination. The results showed that heat stress (H group) increased reactive oxygen species (ROS) production, apoptosis and even embryo death, along with reductions in both mitochondrial activity and membrane potential (ΔΨm). Both heat stress (H group) and inhibition of the ERK1/2 signaling pathway (U group) led to significantly reduced expression levels of the genes c-fos, AP-1 and ERK2, and the phosphorylation of ERK1/2 and c-Fos, along with significantly increased c-Jun mRNA expression and phosphorylation levels. These negative effects of heat stress on the ERK1/2 signaling pathway were neutralized by baicalin treatment. To explore the signal transduction mechanism of baicalin in improving embryonic tolerance to heat stress, mitochondrial quality and apoptosis rate in the mouse blastocysts were also examined. Baicalin was found to up-regulate the expression of mtDNA and TFAM mRNA, increased mitochondria activity and ΔΨm, and improved the cellular mitochondria quality of mouse blastocysts undergoing heat stress. Moreover, baicalin decreased Bax transcript abundance in blastocyst, along with an increase in the blastocyst hatching rate, which were negatively affected by heat stress. Our findings suggest that baicalin improves the developmental capacity and quality of heat-stressed mouse embryos via a mechanism whereby mitochondrial quality is improved by activating the ERK1/2 signaling pathway and inducing anti-cellular apoptosis.
Collapse
Affiliation(s)
- Huatao Li
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Xia Cong
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Junxia Sui
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Zhongling Jiang
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Kaiqiang Fu
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Yanjun Huan
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Rongfeng Cao
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Wenru Tian
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| | - Yanni Feng
- Laboratory of Animal Reproductive Physiology and Disease, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
10
|
He C, Sun J, Yang D, He W, Wang J, Qin D, Zhang H, Cai H, Liu Y, Li N, Hua J, Peng S. Nrf2 activation mediates the protection of mouse Sertoli Cells damage under acute heat stress conditions. Theriogenology 2022; 177:183-194. [PMID: 34715543 DOI: 10.1016/j.theriogenology.2021.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023]
Abstract
Heat stress is known to negatively impact the reproductive process of livestock, which inevitably leads to a decline in animal fertility. Nuclear factor E2-related factor 2 (Nrf2) is an inducible transcription factor, which is essential for maintaining redox signal transmission against oxidative stress. However, there is no reliable research on the response mechanism of Sertoli Cells (SCs) against heat stress and the activation of Nrf2 when SCs are exposed to heat stress. Here, we used primary mouse SCs and SCs line TM4, along with Nrf2 specific inhibitor to determine the reaction mechanism of SCs to maintain intracellular redox homeostasis and self-survival by activating Nrf2. We found that acute heat stress only affected the vitality of SCs and the expression of functional molecules (tight junction-associated proteins and lactate dehydrogenase A [LDHA]) but did not cause cell apoptosis. When Nrf2 was inhibited, more cell death occurred in TM4 cells post heat stress treatment, along with a greater decrease in cell viability and a significant increase in intracellular ROS levels. Our study clarified for the first time the protective effect of Nrf2 activation on heat stress-induced SCs damage. It explained the possible reasons or mechanisms involved in the survival of SCs, the critical protective cells in the testis, which were not affected by heat stress. This study further improved the response mechanism of SCs in the reproductive injury caused by a high-temperature environment.
Collapse
Affiliation(s)
- Chen He
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Jing Sun
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Donghui Yang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Wenlai He
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Jingyi Wang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Dezhe Qin
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Huimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Hui Cai
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Yundie Liu
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Na Li
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China
| | - Jinlian Hua
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China.
| | - Sha Peng
- College of Veterinary Medicine, Northwest A&F University, Shaanxi Centre of Stem Cells Engineering & Technology, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
11
|
Mou Q, Yang YW, Chen L, Fang T, Yao YC, Du ZQ, Yang CX. Melatonin mitigates Chloroquine-induced defects in porcine immature Sertoli cells. Theriogenology 2022; 177:1-10. [PMID: 34653791 DOI: 10.1016/j.theriogenology.2021.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Chloroquine (CQ) could function as a lysosomotropic agent to inhibit the endolysosomal trafficking in the autophagy pathway, and is widely used on malarial, tumor and recently COVID-19. However, the effect of CQ treatment on porcine immature Sertoli cells (iSCs) remains unclear. Here we showed that CQ could reduce iSC viability in a dose-dependent manner. CQ treatment (20 μM) on iSCs for 36h could elevate oxidative stress, damage mitochondrial function and promote apoptosis, which could be partially rescued by melatonin (MT) (10 nM). Transcriptome profiling identified 1611 differentially expressed genes (DEGs) (776 up- and 835 down-regulated) (20 μM CQ vs. DMSO), mainly involved in MAPK cascade, cell proliferation/apoptosis, HIF-1, PI3K-Akt and lysosome signaling pathways. In contrast, only 467 (224 up- and 243 down-regulated) DEGs (CQ + MT vs. DMSO) could be found after MT (10 nM) addition, enriched in cell cycle, regulation of apoptotic process, lysosome and reproduction pathways. Therefore, the partial rescue effects of MT on CQ treatment were confirmed by multiple assays (cell viability, ROS level, mitochondrial function, apoptosis, and mRNA levels of selected genes). Collectively, CQ treatment could impair porcine iSC viability by deranging the signaling pathways related to apoptosis and autophagy, which could be partially rescued by MT supplementation.
Collapse
Affiliation(s)
- Qiao Mou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yu-Wei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Lu Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yu-Chang Yao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Cai-Xia Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China; College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
12
|
Gan L, Huang S, Hu Y, Zhang J, Wang X. Heat treatment reduced the expression of miR-7-5p to facilitate insulin-stimulated lactate secretion by targeting IRS2 in boar Sertoli cells. Theriogenology 2021; 180:161-170. [PMID: 34973648 DOI: 10.1016/j.theriogenology.2021.12.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 12/06/2021] [Accepted: 12/26/2021] [Indexed: 12/26/2022]
Abstract
Insulin dysfunction of diabetes mellitus (DM) disorders the glucose metabolism in Sertoli cells (SCs), resulting in the impairment of spermatogenesis.Insulin signaling system in Sertoli cells (SCs) plays an important role in regulating lactate secretion. Heat treatment could increase the lactate secretion of boar SCs, but whether heat treatment participates in lactate secretion by improving the sensitivity of insulin is unknown. In the current study, the primary SCs from 21-day-old boar were employed to treat with 100 nM insulin for 24 h or heat treatment (43 °C, 30 min). Heat treatment strengthened the effect of insulin on the effect of lactate secretion. In addition, heat treatment increased the expression of insulin-induced insulin receptor substrate 2 (IRS2), but reduced the expression of miR-7-5p. Using dual luciferase reporter assay and Western blot, the study found that IRS2 is a potential target gene of miR-7-5p. Heat treatment also enhanced the Phosphorylation of insulin-stimulated PI3K/Akt, and increased lactate secretion by promoting the expression of Glucose Transporter 3 (GLUT3), Lactate Dehydrogenase-A (LDHA) and monocarboxylate transporter 1 (MCT1). Furthermore, miR-7-5p inhibitor could partly mimic the effects of heat treatment on lactate production of SCs, indicating that heat treatment improves insulin sensitivity by regulating the expression of miR-7-5p/IRS2/PI3K/Akt. These results reveal a novel miRNA-mediated mechanism of heat treatment on the regulation of lactate metabolism production, and suggest that targeting miR-7-5p is a probably therapeutic method to insulin dysfunction-induced metabolic diseases.
Collapse
Affiliation(s)
- Lu Gan
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China
| | - Sha Huang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China
| | - Yu Hu
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China
| | - JiaoJiao Zhang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China
| | - XianZhong Wang
- Chongqing Key Laboratory of Forage & Herbivore, College of Veterinary Medicnie, Southwest University, Beibei, Chongqing, 400715, PR China.
| |
Collapse
|
13
|
Yang CX, Chen L, Yang YW, Mou Q, Du ZQ. Acute heat stress reduces viability but increases lactate secretion of porcine immature Sertoli cells through transcriptome reprogramming. Theriogenology 2021; 173:183-192. [PMID: 34392171 DOI: 10.1016/j.theriogenology.2021.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 10/20/2022]
Abstract
Sertoli cells, important constituents of the somatic niche, supports the growth and development of spermatogonia. Heat stress (HS), among multiple intrinsic and external factors, can induce physiological and biochemical changes in Sertoli cells. However, the underlying molecular mechanism remains largely unclear. Here, we showed that acute heat stress (43 °C, 0.5 h) could reduce cell viability, promote apoptosis, and increase the lactate production of porcine immature Sertoli cells (iSCs) cultured in vitro. Then, transcriptome sequencing identified 126 immediately and 3372 prolonged responded differentially expressed genes (DEGs) after acute heat stress (43 °C, 0.5 h) (HS0.5), and 36 h recovery culture following heat stress (HS0.5-R36), respectively. Enrichment analyses found different signaling pathways: immediate changes including cell response to heat, regulation of cellular response to stress, heat shock protein binding, chaperon-mediated protein folding, and sterol biosynthetic process, but prolonged changes mainly involving cell cycle, regulation of apoptotic process/cell proliferation, reproductive process, P53, PI3K-Akt and Glycolysis/Gluconeogenesis. Furthermore, transcriptional patterns of 9 DEGs (Dnajb1, Traf6, Insig1, Gadd45g, Hdac6, Fkbp4, Serpine1, Pfkp and Galm), and 6 heat shock proteins (HSPs) (Hspa6, Hspb1, Hspd1, HSP90aa1, HSP90ab1 and Hsph1) were validated, as well as the protein pattern of HSP90AA1 via immunostaining and western blot. Taken together, heat stress could initiate immediate changes of heat shock-related genes, and reprogram transcriptome and signaling pathways affecting the viability, apoptosis and metabolite production of pig iSCs.
Collapse
Affiliation(s)
- Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China.
| | - Lu Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Yu-Wei Yang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Qiao Mou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, Heilongjiang, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
14
|
Schwab M, Thunborg K, Azimzadeh O, von Toerne C, Werner C, Shevtsov M, Di Genio T, Zdralevic M, Pouyssegur J, Renner K, Kreutz M, Multhoff G. Targeting Cancer Metabolism Breaks Radioresistance by Impairing the Stress Response. Cancers (Basel) 2021; 13:3762. [PMID: 34359663 PMCID: PMC8345170 DOI: 10.3390/cancers13153762] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/21/2022] Open
Abstract
The heightened energetic demand increases lactate dehydrogenase (LDH) activity, the corresponding oncometabolite lactate, expression of heat shock proteins (HSPs) and thereby promotes therapy resistance in many malignant tumor cell types. Therefore, we assessed the coregulation of LDH and the heat shock response with respect to radiation resistance in different tumor cells (B16F10 murine melanoma and LS174T human colorectal adenocarcinoma). The inhibition of LDH activity by oxamate or GNE-140, glucose deprivation and LDHA/B double knockout (LDH-/-) in B16F10 and LS174T cells significantly diminish tumor growth; ROS production and the cytosolic expression of different HSPs, including Hsp90, Hsp70 and Hsp27 concomitant with a reduction of heat shock factor 1 (HSF1)/pHSF1. An altered lipid metabolism mediated by a LDHA/B double knockout results in a decreased presence of the Hsp70-anchoring glycosphingolipid Gb3 on the cell surface of tumor cells, which, in turn, reduces the membrane Hsp70 density and increases the extracellular Hsp70 levels. Vice versa, elevated extracellular lactate/pyruvate concentrations increase the membrane Hsp70 expression in wildtype tumor cells. Functionally, an inhibition of LDH causes a generalized reduction of cytosolic and membrane-bound HSPs in tumor cells and significantly increases the radiosensitivity, which is associated with a G2/M arrest. We demonstrate that targeting of the lactate/pyruvate metabolism breaks the radioresistance by impairing the stress response.
Collapse
Affiliation(s)
- Melissa Schwab
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.S.); (K.T.); (C.W.); (M.S.); (T.D.G.)
| | - Katharina Thunborg
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.S.); (K.T.); (C.W.); (M.S.); (T.D.G.)
| | - Omid Azimzadeh
- German Research Center for Environmental Health, Institute of Radiation Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
- Section Radiation Biology, Federal Office for Radiation Protection (BfS), 85764 Neuherberg, Germany
| | - Christine von Toerne
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Caroline Werner
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.S.); (K.T.); (C.W.); (M.S.); (T.D.G.)
| | - Maxim Shevtsov
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.S.); (K.T.); (C.W.); (M.S.); (T.D.G.)
- Institute of Cytology, Institute of Russian Academy of Sciences (RAS), 194064 St. Petersburg, Russia
- Department of Biotechnology, Pavlov First Saint Petersburg State Medical University, 197022 St. Petersburg, Russia
| | - Tommaso Di Genio
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.S.); (K.T.); (C.W.); (M.S.); (T.D.G.)
| | - Masa Zdralevic
- Faculty of Medicine, University of Montenegro, Kruševac, 81000 Podgorica, Montenegro;
| | - Jacques Pouyssegur
- Institute for Research on Cancer and Aging, University Côte d’Azur, CNRS, INSERM, Centre Antoine Lacassagne, 06107 Nice, France;
- Department of Medical Biology, Centre Scientifique de Monaco (CSM), 98000 Monaco, Monaco
| | - Kathrin Renner
- Department of Internal Medicine III, University of Regensburg, 93053 Regensburg, Germany; (K.R.); (M.K.)
- Center for Interventional Immunology, Department of Internal Medicine III, University of Regensburg (RCI), 93053 Regensburg, Germany
| | - Marina Kreutz
- Department of Internal Medicine III, University of Regensburg, 93053 Regensburg, Germany; (K.R.); (M.K.)
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.S.); (K.T.); (C.W.); (M.S.); (T.D.G.)
- Department of Radiation Oncology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany
| |
Collapse
|
15
|
Responses and coping methods of different testicular cell types to heat stress: overview and perspectives. Biosci Rep 2021; 41:228844. [PMID: 34060622 PMCID: PMC8209165 DOI: 10.1042/bsr20210443] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 01/27/2023] Open
Abstract
To facilitate temperature adjustments, the testicles are located outside the body cavity. In most mammals, the temperature of the testes is lower than the body temperature to ensure the normal progression of spermatogenesis. Rising temperatures affect spermatogenesis and eventually lead to a decline in male fertility or even infertility. However, the testes are composed of different cell types, including spermatogonial stem cells (SSCs), spermatocytes, spermatozoa, Leydig cells, and Sertoli cells, which have different cellular responses to heat stress. Recent studies have shown that using different drugs can relieve heat stress-induced reproductive damage by regulating different signaling pathways. Here, we review the mechanisms by which heat stress damages different cells in testes and possible treatments.
Collapse
|
16
|
Ascorbic acid promotes the reproductive function of porcine immature Sertoli cells through transcriptome reprogramming. Theriogenology 2020; 158:309-320. [PMID: 33007716 PMCID: PMC7524525 DOI: 10.1016/j.theriogenology.2020.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/18/2020] [Accepted: 09/14/2020] [Indexed: 12/31/2022]
Abstract
Vitamin C (ascorbic acid, AA) can regulate antioxidation and affect many cellular processes. However, the effect of AA on the reproduction of male animals remains less explored. Here, we showed that by supplementing exogenous AA to porcine immature Sertoli cells (iSCs), AA could promote the proliferation, suppress apoptosis, and decrease the global nucleic acid methylation (5 mC and m6A) levels of iSCs. After we profiled mRNA and long non-coding RNA (lncRNA) expression by transcriptome sequencing on iSCs (treated by 250 μM AA for 36 h), 1232 mRNAs and 937 lncRNAs were identified to be differentially expressed (DE). Gene enrichment analysis found multiple significantly enriched biological pathways, including oxidoreductase activity, cell proliferation and apoptosis, regulation of hormone level, regulation of catalytic activity, developmental process, ATP metabolism and reproductive process. Specifically, for the reproductive process, 49 up- and 36 down-regulated DE mRNAs (including highly expressed genes, such as Tfcp2l1, Hmgcs1, Mmp7, Fndc3a, and Zfp36l1) are involved. Moreover, AA supplementation could promote the secretion of anti-müllerian hormone, inhibin B and lactate, and enhance the activity of lactate dehydrogenase as well. Taken together, AA could promote the reproductive function of pig iSCs, potentially through reprogramming the global transcriptome, and elevating hormone secretion and metabolite production.
AA could promote the proliferation, suppress apoptosis, and decrease the global nucleic acid mthylation levels of iSCs. AA treatment changed mRNA and lncRNA profiles of iSCs. AA treatment significantly disturbed the expression of mRNAs (such as Tfcp2l1, Hmgcs1, Mmp7, Fndc3a, and Zfp36l1) involved in reproductive process. AA supplement could promote the secretion of anti-mullerian hormone, inhibin B and lactate, and the activity of lactate dehydrogenase as well.
Collapse
|
17
|
Lian Y, Hu Y, Gan L, Huo YN, Luo HY, Wang XZ. Ssc-novel-miR-106-5p reduces lipopolysaccharide-induced inflammatory response in porcine endometrial epithelial cells by inhibiting the expression of the target gene mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Reprod Fertil Dev 2019; 31:1616-1627. [PMID: 31242957 DOI: 10.1071/rd19097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/12/2019] [Indexed: 12/26/2022] Open
Abstract
As an important gram-negative bacterial outer membrane component, lipopolysaccharide (LPS) plays an important role in bacterial-induced endometritis in sows. However, how LPS induces endometritis is unclear. We stimulated sow endometrial epithelial cells (EECs) with LPS and detected cell viability and tumour necrosis factor-α (TNF-α) and interleukin-1 (IL-1) secretion. LPS affected EEC viability and TNF-α and IL-1 secretion in a dose-dependent manner. LPS induced differential expression in 10 of 393 miRNAs in the EECs (downregulated, nine; upregulated, one). MicroRNA (miRNA) high-throughput sequencing of the LPS-induced EECs plus bioinformatics analysis and the dual-luciferase reporter system revealed a novel miRNA target gene: mitogen-activated protein kinase kinase kinase 14 (MAP3K14). Ssc-novel-miR-106-5p mimic, inhibitor and the nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκBα) phosphorylation inhibitor Bay11-7085 were used to detect EEC nuclear factor-κB phosphorylation levels (p-NF-κB) and TNF-α and IL-1 secretion. MiR-106-5p mimic downregulated MAP3K14 mRNA and protein expression levels, inhibited p-NF-κB levels and decreased IL-1 and TNF-α secretion, whereas miR-106-5p inhibitor had the opposite effect. Bay11-7085 inhibited p-NF-κB expression and TNF-α and IL-1 secretion. These results suggest that LPS downregulates ssc-novel-miR-106-5p expression in sow EECs to increase MAP3K14 expression, which increases p-NF-κB to promote IL-1 and TNF-α secretion.
Collapse
Affiliation(s)
- Yu Lian
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Yu Hu
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Lu Gan
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Yuan-Nan Huo
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Hong-Yan Luo
- College of Resource and Environment, Southwest University, Beibei, Chongqing 400716, P. R. China
| | - Xian-Zhong Wang
- Chongqing Key Laboratory of Forage and Herbivore, College of Animal Science and Technology, Southwest University, Beibei, Chongqing 400716, P. R. China; and Corresponding author.
| |
Collapse
|