1
|
Hakime RG, Nagano LFP, Brassesco MS. ROCK2 Downregulation in Pediatric Medulloblastoma Increases Migration and Predicts the Involvement of SHH Non-canonical Signaling. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2025; 98:3-19. [PMID: 40165809 PMCID: PMC11899262 DOI: 10.59249/qtvt7676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The participation of the Rho-associated protein kinases (ROCK1 and 2) in the regulation of actin cytoskeleton organization, cell adhesion, motility, and gene expression has been extensively investigated in many tumors of different histology. However, their pathogenic roles in medulloblastoma (MB) remain understudied, demanding a deeper appreciation of their participation in cancer cell dissemination and tumor progression. Herein, we show that ROCK2 is downregulated in MB tumor samples and functionally increases migration of cell lines belonging to the SHH subgroup. A comprehensive comparative bioinformatic scrutiny of differentially expressed genes within a list of ROCK2 candidate substrates, uncovered a network of 21 dysregulated genes from which DYPSL3 (dihydropyrimidinase-related protein 3) denoted a strong positive correlation. Enrichment analysis revealed SHH/RHOA/ROCK2/DYPSL3 as top hub genes and the intersection between two biological processes of most importance in MB: actin cytoskeleton remodeling and neuron development. Of note, evidence shows that both ROCK2 and DYPSL3, interact with RHOA and in many tumor types they act as tumor suppressors, mitigating cell spreading. Alternatively, their impaired activity leads to undifferentiated phenotypes and inappropriate cytoskeletal dynamics affecting cell shape, attachment to the extracellular matrix, and cell movement. In parallel, cell motility is considered a prototypical non-canonical response to SHH mediated by RHOA. Therefore, we propose a model in which the interplay between these pathways may lead to a perturbation of proper cytoskeletal dynamics that underpins cell migration.
Collapse
Affiliation(s)
- Rodrigo Guedes Hakime
- Department of Cell and Molecular Biology, Ribeirão
Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo,
Brazil
- Department of Pediatrics, Ribeirão Preto Medical
School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luís Fernando Peinado Nagano
- Department of Biology, Faculty of Philosophy, Sciences
and Letters at Ribeirão Preto, University of São Paulo, Brazil
| | - María Sol Brassesco
- Department of Pediatrics, Ribeirão Preto Medical
School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
2
|
Kramer M, Criswell A, Marzette K, Cutcliffe E, Sewell-Loftin MK. Strain and hyaluronic acid interact to regulate ovarian cancer cell proliferation, migration, and drug resistance. MECHANOBIOLOGY IN MEDICINE 2024; 2:100094. [PMID: 40395220 PMCID: PMC12082308 DOI: 10.1016/j.mbm.2024.100094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 05/22/2025]
Abstract
The ovarian tumor microenvironment plays a critical yet is poorly understood role in the regulation of cancer cell behaviors including proliferation, migration, and response to chemotherapy treatments. Ovarian cancer is the deadliest gynecological cancer, due to diagnosis at late stages of the disease and increased resistance to chemotherapies for recurrent disease. Understanding how the tumor microenvironment (TME) interacts with biomechanical forces to drive changes to ovarian cancer cell behaviors could elucidate novel treatment strategies for this patient population. Additionally, limitations in current preclinical models of the ovarian TME do not permit investigation of crosstalk between signaling pathways and mechanical forces. Our study focused on uncovering how strains and hyaluronic acid (HA) interact to signal through the CD44 receptor to alter ovarian cancer cell growth, migration, and response to a commonly used chemotherapy, paclitaxel. Using an advanced 3D in vitro model, we were able to identify how interactions of strain and HA as in the TME synergistically drive enhanced proliferation and migration in an ovarian tumor model line, while decreasing response to paclitaxel treatment. This study demonstrates the importance of elucidating how the mechanical forces present in the ovarian TME drive disease progression and response to treatment.
Collapse
Affiliation(s)
- Maranda Kramer
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Allyson Criswell
- Biomedical Sciences Program, Department of Clinical and Diagnostic Sciences, School of Health Professions, University of Alabama at Birmingham, USA
| | - Kamari Marzette
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emerson Cutcliffe
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mary Kathryn Sewell-Loftin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham AL 35233, USA
| |
Collapse
|
3
|
Ye Q, Li X, Gao W, Gao J, Zheng L, Zhang M, Yang F, Li H. Role of Rho-associated kinases and their inhibitor fasudil in neurodegenerative diseases. Front Neurosci 2024; 18:1481983. [PMID: 39628659 PMCID: PMC11613983 DOI: 10.3389/fnins.2024.1481983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are prevalent in the elderly. The pathogenesis of NDDs is complex, and currently, there is no cure available. With the increase in aging population, over 20 million people are affected by common NDDs alone (Alzheimer's disease and Parkinson's disease). Therefore, NDDs have profound negative impacts on patients, their families, and society, making them a major global health concern. Rho-associated kinases (ROCKs) belong to the serine/threonine protein kinases family, which modulate diverse cellular processes (e.g., apoptosis). ROCKs may elevate the risk of various NDDs (including Huntington's disease, Parkinson's disease, and Alzheimer's disease) by disrupting synaptic plasticity and promoting inflammatory responses. Therefore, ROCK inhibitors have been regarded as ideal therapies for NDDs in recent years. Fasudil, one of the classic ROCK inhibitor, is a potential drug for treating NDDs, as it repairs nerve damage and promotes axonal regeneration. Thus, the current review summarizes the relationship between ROCKs and NDDs and the mechanism by which fasudil inhibits ROCKs to provide new ideas for the treatment of NDDs.
Collapse
Affiliation(s)
- Qiuyan Ye
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiangsu College of Nursing, Huaian, China
| | - Jiayue Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liping Zheng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Miaomiao Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fengge Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Honglin Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Xu QX, Guo L, Li Y, Wang ZW, Hu P, Yang GM, Pan Y. In silico screening-based discovery of benzamide derivatives as inhibitors of Rho-associated kinase-1 (ROCK1). J Biomol Struct Dyn 2024; 42:7467-7484. [PMID: 37668086 DOI: 10.1080/07391102.2023.2253918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 07/17/2023] [Indexed: 09/06/2023]
Abstract
As a pivotal node in modulating various cell behaviors, Rho-associated kinase-1 (ROCK1) has attracted significant attention as a promising therapeutic target in a variety of diseases. Benzamide has been widely reported as a ROCK1 inhibitors in recent years. To better understand its pharmacological properties and to explore its potential inhibitors, a series of ROCK1 inhibitors derived from N-methyl-4-(4-pyrazolidinyl) benzamides (MPBs) were investigated by using three-dimensional quantitative structure-activity relationship (3D-QSAR) models, pharmacophore models, molecular docking, and molecular dynamics (MD) simulation. The comparative Molecular Field Analysis (CoMFA) model (q2 = 0.616, R2 = 0.972, ONC = 4, and r2pred = 0.983) and the best Comparative Molecular Similarity Indices Analysis (CoMSIA) model (q2= 0.740, R2 = 0.982, ONC = 6, and r2pred = 0.824) exhibited reliable predictability with satisfactory validation parameters. In the subsequent virtual screening, VS03 and VS05 were identified to have superior predicted activities and higher docking scores, meanwhile they demonstrated to be reasonably stable in the binding pocket through MD simulations. These results provide a significant theoretical direction for the rational design and development of novel ROCK1 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Qi-Xuan Xu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Liang Guo
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhao-Wei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Po Hu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guang-Ming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Glotfelty EJ, Tovar-y-Romo LB, Hsueh SC, Tweedie D, Li Y, Harvey BK, Hoffer BJ, Karlsson TE, Olson L, Greig NH. The RhoA-ROCK1/ROCK2 Pathway Exacerbates Inflammatory Signaling in Immortalized and Primary Microglia. Cells 2023; 12:1367. [PMID: 37408199 PMCID: PMC10216802 DOI: 10.3390/cells12101367] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/07/2023] Open
Abstract
Neuroinflammation is a unifying factor among all acute central nervous system (CNS) injuries and chronic neurodegenerative disorders. Here, we used immortalized microglial (IMG) cells and primary microglia (PMg) to understand the roles of the GTPase Ras homolog gene family member A (RhoA) and its downstream targets Rho-associated coiled-coil-containing protein kinases 1 and 2 (ROCK1 and ROCK2) in neuroinflammation. We used a pan-kinase inhibitor (Y27632) and a ROCK1- and ROCK2-specific inhibitor (RKI1447) to mitigate a lipopolysaccharide (LPS) challenge. In both the IMG cells and PMg, each drug significantly inhibited pro-inflammatory protein production detected in media (TNF-α, IL-6, KC/GRO, and IL-12p70). In the IMG cells, this resulted from the inhibition of NF-κB nuclear translocation and the blocking of neuroinflammatory gene transcription (iNOS, TNF-α, and IL-6). Additionally, we demonstrated the ability of both compounds to block the dephosphorylation and activation of cofilin. In the IMG cells, RhoA activation with Nogo-P4 or narciclasine (Narc) exacerbated the inflammatory response to the LPS challenge. We utilized a siRNA approach to differentiate ROCK1 and ROCK2 activity during the LPS challenges and showed that the blockade of both proteins may mediate the anti-inflammatory effects of Y27632 and RKI1447. Using previously published data, we show that genes in the RhoA/ROCK signaling cascade are highly upregulated in the neurodegenerative microglia (MGnD) from APP/PS-1 transgenic Alzheimer's disease (AD) mice. In addition to illuminating the specific roles of RhoA/ROCK signaling in neuroinflammation, we demonstrate the utility of using IMG cells as a model for primary microglia in cellular studies.
Collapse
Affiliation(s)
- Elliot J. Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Luis B. Tovar-y-Romo
- Division of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Shih-Chang Hsueh
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Brandon K. Harvey
- Molecular Mechanisms of Cellular Stress and Inflammation Unit, Integrative Neuroscience Department, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Tobias E. Karlsson
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Nigel H. Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
6
|
Bachtler N, Torres S, Ortiz C, Schierwagen R, Tyc O, Hieber C, Berres ML, Meier C, Kraus N, Zeuzem S, Nijmeijer B, Pronk S, Trebicka J, Klein S. The non-selective Rho-kinase inhibitors Y-27632 and Y-33075 decrease contraction but increase migration in murine and human hepatic stellate cells. PLoS One 2023; 18:e0270288. [PMID: 36719899 PMCID: PMC9888688 DOI: 10.1371/journal.pone.0270288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The Rho-kinase ROCK II plays a major role in the activation of hepatic stellate cells (HSC), which are the key profibrotic and contractile cells contributing to the development of chronic liver disease. Inhibition of ROCK II ultimately blocks the phosphorylation of the myosin light chain (MLC) and thus inhibits stress fibre assembly and cell contraction. We investigated the effects of the ROCK inhibitors Y-33075 as well as Y-27632 in murine and human hepatic stellate cells. METHODS Primary isolated HSC from FVB/NJ mice and the immortalized human HSC line TWNT-4 were culture-activated and incubated with Y-27632 and Y-33075 (10nM to 10μM) for 24h. Protein expression levels were analyzed by Western Blots and transcriptional levels of pro-fibrotic markers and proliferative markers were evaluated using real-time qPCR. Migration was investigated by wound-healing assay. Proliferation was assessed by BrdU assay. Contraction of HSC was measured using 3D collagen matrices after incubation with Y-27632 or Y-33075 in different doses. RESULTS Both Rho-kinase inhibitors, Y-27632 and Y-33075, reduced contraction, fibrogenesis and proliferation in activated primary mouse HSC (FVB/NJ) and human HSC line (TWNT-4) significantly. Y-33075 demonstrated a 10-times increased potency compared to Y-27632. Surprisingly, both inhibitors mediated a substantial and unexpected increase in migration of HSC in FVB/NJ. CONCLUSION ROCK inhibition by the tested compounds decreased contraction but increased migration. Y-33075 proved more potent than Y27632 in the inhibition of contraction of HSCs and should be further evaluated in chronic liver disease.
Collapse
Affiliation(s)
- Nadine Bachtler
- Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
| | - Sandra Torres
- Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
| | - Cristina Ortiz
- Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
| | - Robert Schierwagen
- Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
| | - Olaf Tyc
- Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
| | - Christoph Hieber
- Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
| | - Marie-Luise Berres
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Caroline Meier
- Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
| | - Nico Kraus
- Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | - Jonel Trebicka
- Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Sabine Klein
- Department of Internal Medicine I, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Miller B, Sewell-Loftin MK. Mechanoregulation of Vascular Endothelial Growth Factor Receptor 2 in Angiogenesis. Front Cardiovasc Med 2022; 8:804934. [PMID: 35087885 PMCID: PMC8787114 DOI: 10.3389/fcvm.2021.804934] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
The endothelial cells that compose the vascular system in the body display a wide range of mechanotransductive behaviors and responses to biomechanical stimuli, which act in concert to control overall blood vessel structure and function. Such mechanosensitive activities allow blood vessels to constrict, dilate, grow, or remodel as needed during development as well as normal physiological functions, and the same processes can be dysregulated in various disease states. Mechanotransduction represents cellular responses to mechanical forces, translating such factors into chemical or electrical signals which alter the activation of various cell signaling pathways. Understanding how biomechanical forces drive vascular growth in healthy and diseased tissues could create new therapeutic strategies that would either enhance or halt these processes to assist with treatments of different diseases. In the cardiovascular system, new blood vessel formation from preexisting vasculature, in a process known as angiogenesis, is driven by vascular endothelial growth factor (VEGF) binding to VEGF receptor 2 (VEGFR-2) which promotes blood vessel development. However, physical forces such as shear stress, matrix stiffness, and interstitial flow are also major drivers and effectors of angiogenesis, and new research suggests that mechanical forces may regulate VEGFR-2 phosphorylation. In fact, VEGFR-2 activation has been linked to known mechanobiological agents including ERK/MAPK, c-Src, Rho/ROCK, and YAP/TAZ. In vascular disease states, endothelial cells can be subjected to altered mechanical stimuli which affect the pathways that control angiogenesis. Both normalizing and arresting angiogenesis associated with tumor growth have been strategies for anti-cancer treatments. In the field of regenerative medicine, harnessing biomechanical regulation of angiogenesis could enhance vascularization strategies for treating a variety of cardiovascular diseases, including ischemia or permit development of novel tissue engineering scaffolds. This review will focus on the impact of VEGFR-2 mechanosignaling in endothelial cells (ECs) and its interaction with other mechanotransductive pathways, as well as presenting a discussion on the relationship between VEGFR-2 activation and biomechanical forces in the extracellular matrix (ECM) that can help treat diseases with dysfunctional vascular growth.
Collapse
Affiliation(s)
- Bronte Miller
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mary Kathryn Sewell-Loftin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, United States.,O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
8
|
Mertsch S, Neumann I, Rose C, Schargus M, Geerling G, Schrader S. The effect of Rho Kinase inhibition on corneal nerve regeneration in vitro and in vivo. Ocul Surf 2021; 22:213-223. [PMID: 34419637 DOI: 10.1016/j.jtos.2021.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Impairment of corneal nerves can lead to neurotrophic keratopathy accompanied with severe ocular surface damage, which due to limited treatment options, can result in severe visual deterioration. This study evaluates a possible new treatment by enhancing the corneal nerve regeneration using a Rho Kinase inhibitor (Y27632). ROCK is known to play an important role in regulating cell morphology, adhesion and motility but little is known about its role in corneal nerve regeneration. METHODS Effects of ROCK inhibition on murine peripheral nerves was assessed in single cell- and wound healing assays as well as a 3D in vitro model. Furthermore, Sholl analysis evaluating neuronal branching and life-death assays evaluating toxicity of the inhibitor were performed. An in vivo mouse model was established, with monitoring weekly corneal nerve regrowth using confocal microscopy. Additionally, corneal nerve fiber length was evaluated by immunofluorescence staining. Underlying pathways were examined by qrtPCR. RESULTS ROCK inhibition leads to a significant enhancement of fiber growth in vitro. Sholl analysis revealed a higher degree of branching of treated fibers. Cytotoxicity assay showed no influence of Y27632 on cellular survival. In vivo measurement revealed significant enhanced regeneration after injury in the treated group. QrtPCR of trigeminal ganglia confirmed ROCK knock-down as well as altered pathways. CONCLUSION The inhibition of ROCK after corneal nerve injury resulted in an enhanced regrowth of fibers in vitro and in vivo. This might be a step towards a new therapeutic concept for the treatment of impaired corneal nerves in diseases such as neurotrophic keratopathy.
Collapse
Affiliation(s)
- Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany.
| | - Inga Neumann
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University, Germany
| | - Cosima Rose
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University, Germany
| | - Marc Schargus
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University, Germany; Department of Ophthalmology, Asklepios Hospital Nord-Heidberg, Hamburg, Germany
| | - Gerd Geerling
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, University Hospital Duesseldorf, Heinrich-Heine-University, Germany
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University Oldenburg, Germany
| |
Collapse
|
9
|
Rahmati S, O'Rielly DD, Li Q, Codner D, Dohey A, Jenkins K, Jurisica I, Gladman DD, Chandran V, Rahman P. Rho-GTPase pathways may differentiate treatment response to TNF-alpha and IL-17A inhibitors in psoriatic arthritis. Sci Rep 2020; 10:21703. [PMID: 33303908 PMCID: PMC7728744 DOI: 10.1038/s41598-020-78866-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Biological therapies have dramatically improved the therapeutic landscape of psoriatic arthritis (PsA); however, 40–50% of patients are primary non-responders with response rates declining significantly with each successive biological therapy. Therefore, there is a pressing need to develop a coherent strategy for effective initial and subsequent selection of biologic agents. We interrogated 40 PsA patients initiating either tumour necrosis factor inhibitors (TNFi) or interleukin-17A inhibitors (17Ai) for active PsA. Patients achieving low disease activity according to the Disease Activity Index for PsA (DAPSA) at 3 months were classified as responders. Baseline and 3-month CD4+ transcript profiling were performed, and novel signaling pathways were identified using a multi-omics profiling and integrative computational analysis approach. Using transcriptomic data at initiation of therapy, we identified over 100 differentially expressed genes (DEGs) that differentiated IL-17Ai response from non-response and TNFi response from non-response. Integration of cell-type-specific DEGs with protein–protein interactions and further comprehensive pathway enrichment analysis revealed several pathways. Rho GTPase signaling pathway exhibited a strong signal specific to IL-17Ai response and the genes, RAC1 and ROCKs, are supported by results from prior research. Our detailed network and pathway analyses have identified the rewiring of Rho GTPase pathways as potential markers of response to IL17Ai but not TNFi. These results need further verification.
Collapse
Affiliation(s)
- Sara Rahmati
- Krembil Research Institute, UHN, 5-KD405, Krembil Discovery Tower, 60 Leonard Ave, Toronto, M5T 2S8, Canada.,Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University, Suite 3M500, 300 Prince Philip Drive, St. John's, NL, A1B3V6, Canada
| | - Darren D O'Rielly
- Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University, Suite 3M500, 300 Prince Philip Drive, St. John's, NL, A1B3V6, Canada
| | - Quan Li
- Krembil Research Institute, UHN, 5-KD405, Krembil Discovery Tower, 60 Leonard Ave, Toronto, M5T 2S8, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G1L7, Canada
| | - Dianne Codner
- Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University, Suite 3M500, 300 Prince Philip Drive, St. John's, NL, A1B3V6, Canada.,Faculty of Medicine, 5M202 Craig L Dobbin Genetics Research Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B3V6, Canada
| | - Amanda Dohey
- Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University, Suite 3M500, 300 Prince Philip Drive, St. John's, NL, A1B3V6, Canada.,Faculty of Medicine, 5M203 Craig L Dobbin Genetics Research Centre, Memorial University, 300 Prince Philip Drive, St. John's, NL, A1B3V6, Canada
| | - Kari Jenkins
- Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University, Suite 3M500, 300 Prince Philip Drive, St. John's, NL, A1B3V6, Canada.,St. Clare's Mercy Hosptial, 154 LeMarchant Rd., St. John's, NL, A1C5B8, Canada
| | - Igor Jurisica
- Krembil Research Institute, UHN, 5-KD405, Krembil Discovery Tower, 60 Leonard Ave, Toronto, M5T 2S8, Canada.,University of Toronto, Toronto, Canada.,Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, Toronto Western Hospital, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada
| | - Dafna D Gladman
- Krembil Research Institute, UHN, 5-KD405, Krembil Discovery Tower, 60 Leonard Ave, Toronto, M5T 2S8, Canada.,University of Toronto, Toronto, Canada.,Toronto Western Hospital, 399 Bathurst Street, 1E410B, Toronto, M5T 2S8, Canada
| | - Vinod Chandran
- Krembil Research Institute, UHN, 5-KD405, Krembil Discovery Tower, 60 Leonard Ave, Toronto, M5T 2S8, Canada.,Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University, Suite 3M500, 300 Prince Philip Drive, St. John's, NL, A1B3V6, Canada.,University of Toronto, Toronto, Canada.,Toronto Western Hospital, 399 Bathurst Street, 1E416, Toronto, M5T 2S8, Canada
| | - Proton Rahman
- Faculty of Medicine, Craig L Dobbin Genetics Research Centre, Memorial University, Suite 3M500, 300 Prince Philip Drive, St. John's, NL, A1B3V6, Canada. .,St. Clare's Mercy Hosptial, 154 LeMarchant Rd., St. John's, NL, A1C5B8, Canada.
| |
Collapse
|
10
|
Cui Y, Cole S, Pepper J, Otero JJ, Winter JO. Hyaluronic acid induces ROCK-dependent amoeboid migration in glioblastoma cells. Biomater Sci 2020; 8:4821-4831. [PMID: 32749402 PMCID: PMC7473492 DOI: 10.1039/d0bm00505c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and deadly adult brain tumor, primarily because of its high infiltrative capacity and development of resistance to therapy. Although GBM cells are typically believed to migrate via mesenchymal (e.g., fibroblast-like) migration modes, amoeboid (e.g., leucocyte-like) migration modes have been identified and may constitute a salvage pathway. However, the mesenchymal to amoeboid transition (MAT) process in GB is not well characterized, most likely because most culture models induce MAT via pharmacological or genetic inhibition conditions that are far from physiological. In this study, we examined the ability of hyaluronic acid (HA) content in three-dimensional collagen (Col) hydrogels to induce MAT in U87 GBM cells. HA and Col are naturally-occurring components of the brain extracellular matrix (ECM). In pure Col gels, U87 cells displayed primarily mesenchymal behaviors, including elongated cell morphology, clustered actin and integrin expression, and crawling migration behaviors. Whereas an increasing population of cells displaying amoeboid behaviors, including rounded morphology, cortical actin expression, low/no integrin expression, and squeezing or gliding motility, were observed with increasing HA content (0.1-0.2 wt% in Col). Consistent with amoeboid migration, these behaviors were abrogated by ROCK inhibition with the non-specific small molecule inhibitor Y27632. Toward identification of histological MAT classification criteria, we also examined the correlation between cell and nuclear aspect ratio (AR) in Col and Col-HA gels, finding that nuclear AR has a small variance and is not correlated to cell AR in HA-rich gels. These results suggest that HA may regulate GBM cell motility in a ROCK-dependent manner.
Collapse
Affiliation(s)
- Yixiao Cui
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | | | | | | | | |
Collapse
|
11
|
de Sousa GR, Vieira GM, das Chagas PF, Pezuk JA, Brassesco MS. Should we keep rocking? Portraits from targeting Rho kinases in cancer. Pharmacol Res 2020; 160:105093. [PMID: 32726671 DOI: 10.1016/j.phrs.2020.105093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 12/12/2022]
Abstract
Cancer targeted therapy, either alone or in combination with conventional chemotherapy, could allow the survival of patients with neoplasms currently considered incurable. In recent years, the dysregulation of the Rho-associated coiled-coil kinases (ROCK1 and ROCK2) has been associated with increased metastasis and poorer patient survival in several tumor types, and due to their essential roles in regulating the cytoskeleton, have gained popularity and progressively been researched as targets for the development of novel anti-cancer drugs. Nevertheless, in a pediatric scenario, the influence of both isoforms on prognosis remains a controversial issue. In this review, we summarize the functions of ROCKs, compile their roles in human cancer and their value as prognostic factors in both, adult and pediatric cancer. Moreover, we provide the up-to-date advances on their pharmacological inhibition in pre-clinical models and clinical trials. Alternatively, we highlight and discuss detrimental effects of ROCK inhibition provoked not only by the action on off-targets, but most importantly, by pro-survival effects on cancer stem cells, dormant cells, and circulating tumor cells, along with cell-context or microenvironment-dependent contradictory responses. Together these drawbacks represent a risk for cancer cell dissemination and metastasis after anti-ROCK intervention, a caveat that should concern scientists and clinicians.
Collapse
Affiliation(s)
| | | | | | | | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Brazil.
| |
Collapse
|
12
|
Wang J, Zhang B, Liu H, Wu Q, Gao P, Zou Y, Lan Y, Zhang Q. Hyperplasia suppressor gene inhibits the proliferation and metastasis of glioma cells by targeting rho family proteins. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2020; 13:1349-1360. [PMID: 32661470 PMCID: PMC7344015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
AIM To investigate the effect of the hyperplasia suppressor gene (HSG) on human glioma cell invasion and its possible mechanism. METHODS Human glioma U251 cells were infected with recombinant viral vectors carrying the HSG gene sequence (HSG overexpression group) and HSG interference sequence (HSG suppression group). The negative control group with no-load virus transcription and a blank control group with only PBS treatment were set up. CCK-8 assay, cell scratch healing test, transwell migration, and invasion test were used to detect the effect of HSG expression on proliferation, migration and invasion of U251 glioma cells. Cell immunofluorescence and cell adhesion test were used to analyze the effect of HSG expression on cytoskeleton formation and adhesion ability of U251 cells. Gene chip technology was employed to preliminarily explore the effect of HSG expression change on the inherent gene expression in U251 cells. The expression of Rho family key molecule mRNA and protein was detected by light quantitative PCR and western blot. RESULTS After 24 h of transcription with the recombinant virus vector, the cells showed a green color under an inverted fluorescence microscope. HSG expression increased in the HSG overexpression group (P < 0.01), and decreased in the HSG inhibition group (P < 0.01). Compared with the two control groups, the proliferation, scratch healing rate, migrating cell number, invasive cell number and adhesion cell number in the HSG overexpression group were markedly lower. After HSG overexpression, the morphology of U251 cells changed; filamentous pseudopods shortened and partially flaked. However, after HSG inhibition, the pseudopods grew toward both ends and were arranged axially. The overexpression of HSG inhibited the expression of rho family proteins (RhoA, Rock1, Rock2, Rac1, and Cdc42). CONCLUSION The overexpression of HSG inhibits the progression of glioma U251 cells by regulating the expression of rho family proteins.
Collapse
Affiliation(s)
- Juncheng Wang
- Department of Neurosurgery, People’s Hospital of Ningxia Hui Autonomous RegionYinchuan 750001, Ningxia, China
| | - Bin Zhang
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan 750001, Ningxia, China
- Ningxia Key Laboratory of Cerebrocranial Diseases, Ningxia Medical UniversityYinchuan 750001, Ningxia, China
| | - Haibo Liu
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan 750001, Ningxia, China
| | - Qiao Wu
- Department of Neurosurgery, Fuzhou First People’s HospitalFuzhoou 350000, Fujian, China
| | - Peng Gao
- Department of Neurosurgery, People’s Hospital of Ningxia Hui Autonomous RegionYinchuan 750001, Ningxia, China
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan 750001, Ningxia, China
| | - Yourui Zou
- Department of Neurosurgery, General Hospital of Ningxia Medical UniversityYinchuan 750001, Ningxia, China
| | - Yanping Lan
- Department of Neurosurgery, People’s Hospital of Ningxia Hui Autonomous RegionYinchuan 750001, Ningxia, China
| | - Qinghua Zhang
- Department of Neurosurgery, Xiehe Shenzhen Hospital of Huazhong University of Science and Technology (Nanshan Hospital)Shenzhen 518000, Guangdong, China
| |
Collapse
|
13
|
Li L, Jing L, Zhao J, Lv J, Yang W, Li W, Zhou L. Valsartan inhibits RhoA-ROCK2-MYL pathway in rat model of alcoholic cardiomyopathy. Exp Ther Med 2019; 18:4313-4321. [PMID: 31777538 PMCID: PMC6862588 DOI: 10.3892/etm.2019.8079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 11/01/2018] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate variations in the Ras homolog gene family, member A (RhoA)-Rho-associated protein kinase 2 (ROCK2)-myosin light chain (MYL) pathway in a rat model of alcoholic cardiomyopathy (ACM) and the role of angiotensin-converting enzyme inhibitor drugs. Rat models of ACM were established via alcoholic gavage + free access to alcohol. The structural and functional changes of the heart were analyzed by hematoxylin-eosin staining, Masson's trichrome staining, immunohistochemistry staining, western blotting and fluorescence quantitative polymerase chain reaction. A total of 16 weeks later, a decreased ejection fraction and left ventricular fractional shortening in the alcohol group compared with the control group were demonstrated resulting in an increased left ventricular end diastolic diameter. These adverse effects were ameliorated following treatment with valsartan. In addition, the alcohol group revealed a disorganized arrangement of myocardial filaments, which was improved upon treatment with valsartan. RhoA and ROCK2 protein expression significantly increased in myocardial cells in the alcohol compared with the control group. Following drug intervention with valsartan, expression of RhoA and ROCK2 proteins were inhibited in the alcohol group. Furthermore, significantly elevated RhoA and ROCK2 and decreased MYL protein and mRNA expression in the alcohol group was demonstrated compared with the control group. Administration of valsartan reversed the expression profile of RhoA, ROCK and MYL in ACM. Expression of RhoA and ROCK were elevated with downregulation of MYL resulting in heart failure. However, the angiotensin receptor antagonist diminished the expression of RhoA and ROCK and enhanced the expression of MYL. The results of the present study suggest a curative effect of valsartan in ACM.
Collapse
Affiliation(s)
- Luyifei Li
- Department of Internal Critical Illness, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Ling Jing
- Department of The Fourth Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Jiyi Zhao
- Department of The Fourth Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Jiachen Lv
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Wen Yang
- Department of The First Nephrology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Weimin Li
- Department of The Fifth Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Lijun Zhou
- Department of The Fourth Cardiovascular, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
14
|
Feng X, Zhang L, Nie S, Zhuang L, Wang W, Huang J, Yan X, Meng F. The Effect of Ras Homolog C/Rho-Associated Coiled-Protein Kinase (Rho/ROCK) Signaling Pathways on Proliferation and Apoptosis of Human Myeloma Cells. Med Sci Monit 2019; 25:7605-7616. [PMID: 31599230 PMCID: PMC6798802 DOI: 10.12659/msm.915998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to explore the impact of Ras homolog C/Rho-associated coiled-protein kinase (Rho/ROCK) signaling pathways intervention on biological characteristics of the human multiple myeloma cell lines RPMI-8226 and U266 cells, and to investigate the expression of RhoC, ROCK1, and ROCK2 in RPMI-8226 and U266 cells. MATERIAL AND METHODS RPMI8226 and U266 cell lines were treated by 5-aza-2-deoxycytidine (5-Aza-Dc), trichostatin A (TSA), RhoA inhibitor CCG-1423, Rac1 inhibitor NSC23766, and ROCK inhibitor fasudil. Cell proliferation was examined by Cell Counting Kit-8 (CCK-8) assay and clone formation. Cell apoptosis was examined by flow cytometry and TUNEL assay. The mRNA and protein expressions of RhoC, ROCK1, and ROCK2 were detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot, respectively. RESULTS CCG-1423, NSC23766, and fasudil could significantly inhibit the proliferation of RPMI8226 and U266 cells. The inhibitory effect was dose- and time-dependent within a certain concentration range (P<0.05). After treatment with CCG-1423, NSC23766, and fasudil for 24 hours, the apoptosis rates of RPMI8226 and U266 cells were significantly higher than those of the control group, which were dose-dependent (P<0.05). Compared with the control group, the mRNA and protein expressions of RhoC, ROCK1, and ROCK2 in RPMI8226 and U266 cells were significantly decreased with single 5-Aza-Dc or TSA treatment. However, the effects were obviously stronger after combined treatment of 5-Aza-CdR and TSA (P<0.05). CONCLUSIONS We found that 5-Aza-Dc and TSA can effectively decrease the mRNA and protein expressions of RhoC, ROCK1, and ROCK2. Furthermore, Rho and ROCK inhibitors significantly inhibit cell growth and induce cell apoptosis in the human multiple myeloma cell lines RPMI-8226 and U266.
Collapse
Affiliation(s)
- Xianqi Feng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Ling Zhang
- Department of Pediatrics, Laiwu People's Hospital, Laiwu, Shandong, China (mainland)
| | - Shumin Nie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Likun Zhuang
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Wei Wang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Junxia Huang
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Xueshen Yan
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| | - Fanjun Meng
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (mainland)
| |
Collapse
|
15
|
Pranatharthi A, Thomas P, Udayashankar AH, Bhavani C, Suresh SB, Krishna S, Thatte J, Srikantia N, Ross CR, Srivastava S. RhoC regulates radioresistance via crosstalk of ROCK2 with the DNA repair machinery in cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:392. [PMID: 31488179 PMCID: PMC6729006 DOI: 10.1186/s13046-019-1385-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/15/2019] [Indexed: 01/06/2023]
Abstract
Background Radioresistance remains a challenge to the successful treatment of various tumors. Intrinsic factors like alterations in signaling pathways regulate response to radiation. RhoC, which has been shown to modulate several tumor phenotypes has been investigated in this report for its role in radioresistance. In vitro and clinical sample-based studies have been performed to understand its contribution to radiation response in cervical cancer and this is the first report to establish the role of RhoC and its effector ROCK2 in cervical cancer radiation response. Methods Biochemical, transcriptomic and immunological approaches including flow cytometry and immunofluorescence were used to understand the role of RhoC and ROCK2. RhoC variants, siRNA and chemical inhibitors were used to alter the function of RhoC and ROCK2. Transcriptomic profiling was performed to understand the gene expression pattern of the cells. Live sorting using an intracellular antigen has been developed to isolate the cells for transcriptomic studies. Results Enhanced expression of RhoC conferred radioprotection on the tumor cells while inhibition of RhoC resulted in sensitization of cells to radiation. The RhoC overexpressing cells had a better DNA repair machinery as observed using transcriptomic analysis. Similarly, overexpression of ROCK2, protected tumor cells against radiation while its inhibition increased radiosensitivity in vitro. Further investigations revealed that ROCK2 inhibition abolished the radioresistance phenotype, conferred by RhoC on SiHa cells, confirming that it is a downstream effector of RhoC in this context. Additionally, transcriptional analysis of the live sorted ROCK2 high and ROCK2 low expressing SiHa cells revealed an upregulation of the DNA repair pathway proteins. Consequently, inhibition of ROCK2 resulted in reduced expression of pH2Ax and MRN complex proteins, critical to repair of double strand breaks. Clinical sample-based studies also demonstrated that ROCK2 inhibition sensitizes tumor cells to irradiation. Conclusions Our data primarily indicates that RhoC and ROCK2 signaling is important for the radioresistance phenotype in cervical cancer tumor cells and is regulated via association of ROCK2 with the proteins of DNA repair pathway involving pH2Ax, MRE11 and RAD50 proteins, partly offering insights into the mechanism of radioresistance in tumor cells. These findings highlight RhoC-ROCK2 signaling involvement in DNA repair and urge the need for development of these molecules as targets to alleviate the non-responsiveness of cervical cancer tumor cells to irradiation treatment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1385-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Annapurna Pranatharthi
- National Centre for Biological Sciences (NCBS), Bangalore, 560065, India.,Rajiv Gandhi University of Health Sciences, Bangalore, 560041, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Pavana Thomas
- School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India.,Translational and Molecular Biology Laboratory (TMBL), St. John's Research Institute (SJRI), Bangalore, 560034, India
| | - Avinash H Udayashankar
- Department of Radiation Oncology, St John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Chandra Bhavani
- Translational and Molecular Biology Laboratory (TMBL), St. John's Research Institute (SJRI), Bangalore, 560034, India
| | - Srinag Bangalore Suresh
- Rajiv Gandhi University of Health Sciences, Bangalore, 560041, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Sudhir Krishna
- National Centre for Biological Sciences (NCBS), Bangalore, 560065, India
| | - Jayashree Thatte
- National Centre for Biological Sciences (NCBS), Bangalore, 560065, India
| | - Nirmala Srikantia
- Department of Radiation Oncology, St John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Cecil R Ross
- Rajiv Gandhi University of Health Sciences, Bangalore, 560041, India.,Translational and Molecular Biology Laboratory (TMBL), Department of Medicine, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India
| | - Sweta Srivastava
- Translational and Molecular Biology Laboratory (TMBL), Department of Transfusion Medicine and Immunohematology, St. John's Medical College Hospital (SJMCH), Bangalore, 560034, India. .,School of Integrative Health Sciences, The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, 560064, India.
| |
Collapse
|
16
|
Roberto GM, Lira RC, Delsin LE, Vieira GM, Silva MO, Hakime RG, Yamashita ME, Engel EE, Scrideli CA, Tone LG, Brassesco MS. microRNA-138-5p as a Worse Prognosis Biomarker in Pediatric, Adolescent, and Young Adult Osteosarcoma. Pathol Oncol Res 2019; 26:877-883. [PMID: 30864107 DOI: 10.1007/s12253-019-00633-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/05/2019] [Indexed: 02/04/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor with two peaks of incidence, in early adolescence and the elderly. Patients affected with this malignancy often present metastatic disease at diagnosis, and despite multimodality therapy, survival has not improved substantially over the past 3 decades. Recently, miR-138-5p, proposed as a crucial intracellular mediator of invasion, has been recognized to target the Rho-associated coiled-coil containing protein kinase 2 (ROCK2). Dysregulation of ROCK1 and ROCK2 was also described in OS, being associated to higher metastasis incidence and worse prognosis. Nonetheless, the specific roles of miR-138-5p in pediatric and young adult OS and its ability to modulate these kinases remain to be established. Thus, in the present study, the expression levels miR-138-5p were evaluated in a consecutive cohort of exclusively pediatric and young adult primary OS samples. In contrast to previous reports that included adult tissues, our results showed upregulation of miR-138-5p associated with reduced event-free survival and relapsed cases. In parallel, ROCK1 mRNA levels were significantly reduced in tumor samples and negatively correlated with miR-138-5p. Similar correlations were observed after studying the profiles of ROCK1 and ROCK2 by immunohistochemistry. Our data present miR-138-5p as a consistent prognostic factor in pediatric and young adult OS, reinforcing its participation in the post-transcriptional regulation of ROCK kinases.
Collapse
Affiliation(s)
| | | | - Lara Elis Delsin
- Department of Genetics, University of São Paulo, São Paulo, Brazil
| | | | | | - Rodrigo Guedes Hakime
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System of Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Mauricio Eiji Yamashita
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Edgard Eduard Engel
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | | | - María Sol Brassesco
- Department of Biomechanics, Medicine and Rehabilitation of the Locomotor System of Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil. .,Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900. Bairro Monte Alegre, Ribeirão Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
17
|
Mertsch S, Schlicht K, Melkonyan H, Schlatt S, Thanos S. snRPN controls the ability of neurons to regenerate axons. Restor Neurol Neurosci 2018; 36:31-43. [PMID: 29439367 DOI: 10.3233/rnn-170780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Retinal ganglion cells (RGCs) of mammals lose the ability to regenerate injured axons during postnatal maturation, but little is known about the underlying molecular mechanisms. OBJECTIVE It remains of particular importance to understand the mechanisms of axonal regeneration to develop new therapeutic approaches for nerve injuries. METHODS Retinas from newborn to adult monkeys (Callithrix jacchus)1 were obtained immediately after death and cultured in vitro. Growths of axons were monitored using microscopy and time-lapse video cinematography. Immunohistochemistry, Western blotting, qRT-PCR, and genomics were performed to characterize molecules associated with axonal regeneration and growth. A genomic screen was performed by using retinal explants versus native and non-regenerative explants obtained from eye cadavers on the day of birth, and hybridizing the mRNA with cross-reacting cDNA on conventional human microarrays. Followed the genomic screen, siRNA experiments were conducted to identify the functional involvement of identified candidates. RESULTS Neuron-specific human ribonucleoprotein N (snRPN) was found to be a potential regulator of impaired axonal regeneration during neuronal maturation in these animals. In particular, up-regulation of snRPN was observed during retinal maturation, coinciding with a decline in regenerative ability. Axon regeneration was reactivated in snRPN-knockout retinal ex vivo explants of adult monkey. CONCLUSION These results suggest that coordinated snRPN-driven activities within the neuron-specific ribonucleoprotein complex regulate the regenerative ability of RGCs in primates, thereby highlighting a potential new role for snRPN within neurons and the possibility of novel postinjury therapies.
Collapse
Affiliation(s)
- Sonja Mertsch
- Institute of Experimental Ophthalmology and DFG-Excellence Center, Cells in Motion (CiM, area C.4), School of Medicine, University of Münster, Münster, Germany.,Department of Ophthalmology, Laboratory of Experimental Ophthalmology, University Clinic Duesseldorf, Duesseldorf, Germany
| | - Katrin Schlicht
- Institute of Experimental Ophthalmology and DFG-Excellence Center, Cells in Motion (CiM, area C.4), School of Medicine, University of Münster, Münster, Germany
| | - Harutyun Melkonyan
- Institute of Experimental Ophthalmology and DFG-Excellence Center, Cells in Motion (CiM, area C.4), School of Medicine, University of Münster, Münster, Germany
| | - Stefan Schlatt
- Institute of Regenerative Medicine (CeRA) and DFG-Excellence Center, Cells in Motion (CiM, area A.2), School of Medicine, University of Münster, Münster, Germany
| | - Solon Thanos
- Institute of Experimental Ophthalmology and DFG-Excellence Center, Cells in Motion (CiM, area C.4), School of Medicine, University of Münster, Münster, Germany
| |
Collapse
|
18
|
Vieira GM, Roberto GM, Lira RC, Engel EE, Tone LG, Brassesco MS. Prognostic value and functional role of ROCK2 in pediatric Ewing sarcoma. Oncol Lett 2018; 15:2296-2304. [PMID: 29434937 PMCID: PMC5777092 DOI: 10.3892/ol.2017.7571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/25/2017] [Indexed: 11/23/2022] Open
Abstract
Ewing's sarcoma (EWS) is a highly aggressive bone cancer that affects children and adolescents. Despite advances in multimodal management, 5-year event-free survival rates for patients presenting with metastases at diagnosis remain at 25%. As key regulators of actin organization, the Rho-associated coiled-coil containing protein kinases, ROCK1 and ROCK2, have been associated with cancer dissemination and poorer prognosis. Recently, in vitro data indicating ROCK2 as a molecular target for the treatment of EWS has been presented. Nonetheless, a deeper exploration of the contribution of this kinase dysregulation in EWS is still necessary. In this regard, the present study aimed to evaluate the expression of ROCK1 and ROCK2 in 23 pediatric tumor samples and to verify the prospect of using their pharmacological inhibition through functional assays. Our results showed positive immunostaining for ROCK1 and ROCK2 in the majority samples (75 and 65%, respectively). A significantly increased risk of incomplete remission in patients with positive immunostaining for ROCK2 was found (P=0.026), though no correlations with other prognostic features (huvos classification, FLI1/EWS status, relapse, metastasis or death) were observed. Associations with survival were merely suggestive. Apparent protein expression of both kinases was also found in EWS cell lines (SK-ES-1 and RD-ES). Treatments with selective ROCK inhibitors did not alter cell viability or migration in vitro. However, a significant increase in invasion was observed after treatment with SR3677 (ROCK2 inhibitor) and hydroxyfasudil (pan-inhibitor). Consequently, even though the majority of EWS samples included in our study showed positivity for ROCK1 and ROCK2, the lack of significant associations with prognosis and absence of appropriate responses to their inhibition in vitro does not support their prospective use as therapeutic targets for the treatment of this metastatic tumor. Larger cohort studies might provide more evidence on whether there is a specific role of ROCK kinases in EWS physiopathology.
Collapse
Affiliation(s)
- Gabriela Maciel Vieira
- Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Gabriela Molinari Roberto
- Regional Blood Center, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Régia Caroline Lira
- Department of Biomechanics, Medicine and Rehabilitation of The Locomotor System, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Edgard Eduard Engel
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Luiz Gonzaga Tone
- Department of Pediatrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
19
|
Kassianidou E, Hughes JH, Kumar S. Activation of ROCK and MLCK tunes regional stress fiber formation and mechanics via preferential myosin light chain phosphorylation. Mol Biol Cell 2017; 28:3832-3843. [PMID: 29046396 PMCID: PMC5739298 DOI: 10.1091/mbc.e17-06-0401] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/10/2017] [Accepted: 10/12/2017] [Indexed: 01/21/2023] Open
Abstract
Graded induction of regulatory light chain (RLC) activators MLCK and ROCK were used to explore the relationship between RLC phosphorylation and actin-myosin stress fiber viscoelasticity. MLCK controls peripheral stress fiber mechanics by monophosphorylation of RLC, whereas ROCK acts on central stress fibers via diphosphorylation. The assembly and mechanics of actomyosin stress fibers (SFs) depend on myosin regulatory light chain (RLC) phosphorylation, which is driven by myosin light chain kinase (MLCK) and Rho-associated kinase (ROCK). Although previous work suggests that MLCK and ROCK control distinct pools of cellular SFs, it remains unclear how these kinases differ in their regulation of RLC phosphorylation or how phosphorylation influences individual SF mechanics. Here, we combine genetic approaches with biophysical tools to explore relationships between kinase activity, RLC phosphorylation, SF localization, and SF mechanics. We show that graded MLCK overexpression increases RLC monophosphorylation (p-RLC) in a graded manner and that this p-RLC localizes to peripheral SFs. Conversely, graded ROCK overexpression preferentially increases RLC diphosphorylation (pp-RLC), with pp-RLC localizing to central SFs. Interrogation of single SFs with subcellular laser ablation reveals that MLCK and ROCK quantitatively regulate the viscoelastic properties of peripheral and central SFs, respectively. The effects of MLCK and ROCK on single-SF mechanics may be correspondingly phenocopied by overexpression of mono- and diphosphomimetic RLC mutants. Our results point to a model in which MLCK and ROCK regulate peripheral and central SF viscoelastic properties through mono- and diphosphorylation of RLC, offering new quantitative connections between kinase activity, RLC phosphorylation, and SF viscoelasticity.
Collapse
Affiliation(s)
- Elena Kassianidou
- Department of Bioengineering.,UC Berkeley-UCSF Graduate Program in Bioengineering, and
| | - Jasmine H Hughes
- Department of Bioengineering.,UC Berkeley-UCSF Graduate Program in Bioengineering, and
| | - Sanjay Kumar
- Department of Bioengineering .,UC Berkeley-UCSF Graduate Program in Bioengineering, and.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
20
|
Sewell-Loftin MK, Bayer SVH, Crist E, Hughes T, Joison SM, Longmore GD, George SC. Cancer-associated fibroblasts support vascular growth through mechanical force. Sci Rep 2017; 7:12574. [PMID: 28974764 PMCID: PMC5626692 DOI: 10.1038/s41598-017-13006-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/14/2017] [Indexed: 01/24/2023] Open
Abstract
The role of cancer-associated fibroblasts (CAFs) as regulators of tumor progression, specifically vascular growth, has only recently been described. CAFs are thought to be more mechanically active but how this trait may alter the tumor microenvironment is poorly understood. We hypothesized that enhanced mechanical activity of CAFs, as regulated by the Rho/ROCK pathway, contributes to increased blood vessel growth. Using a 3D in vitro tissue model of vasculogenesis, we observed increased vascularization in the presence of breast cancer CAFs compared to normal breast fibroblasts. Further studies indicated this phenomenon was not simply a result of enhanced soluble signaling factors, including vascular endothelial growth factor (VEGF), and that CAFs generated significantly larger deformations in 3D gels compared to normal fibroblasts. Inhibition of the mechanotransductive pathways abrogated the ability of CAFs to deform the matrix and suppressed vascularization. Finally, utilizing magnetic microbeads to mechanically stimulate mechanically-inhibited CAFs showed partial rescue of vascularization. Our studies demonstrate enhanced mechanical activity of CAFs may play a crucial and previously unappreciated role in the formation of tumor-associated vasculature which could possibly offer potential novel targets in future anti-cancer therapies.
Collapse
Affiliation(s)
- Mary Kathryn Sewell-Loftin
- Departments of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.,ICCE Institute at Washington University, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Samantha Van Hove Bayer
- Departments of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, 63130, USA.,ICCE Institute at Washington University, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Elizabeth Crist
- Departments of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Taylor Hughes
- Departments of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Sofia M Joison
- Departments of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Gregory D Longmore
- Departments of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO, 63130, USA.,Department of Medicine, Oncology Division, Washington University in St. Louis, St. Louis, MO, 63110, USA.,ICCE Institute at Washington University, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
21
|
Amaya CN, Mitchell DC, Bryan BA. Rho kinase proteins display aberrant upregulation in vascular tumors and contribute to vascular tumor growth. BMC Cancer 2017; 17:485. [PMID: 28709411 PMCID: PMC5513090 DOI: 10.1186/s12885-017-3470-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 07/02/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The serine/threonine protein kinases ROCK1 and 2 are key RhoA-mediated regulators of cell shape and cytoskeletal dynamics. These proteins perform multiple functions in vascular endothelial cell physiology and are attractive targets for cancer therapy based on their roles as oncogenes and metastatic promoters. Given their critical functions in both of these processes, we hypothesized that molecular targeting of ROCK proteins would be exceedingly effective against vascular tumors such as hemangiomas and angiosarcomas, which are neoplasms composed of aberrant endothelial cells. METHODS In this study, we compared ROCK1 and 2 protein expression in a large panel of benign and malignant vascular tumors to that of normal vasculature. We then utilized shRNA technology to knockdown the expression of ROCK1 and 2 in SVR tumor-forming vascular cells, and evaluated tumor size and proliferation rate in a xenograft model. Finally, we employed proteomics and metabolomics to assess how knockdown of the ROCK paralogs induced alterations in protein expression/phosphorylation and metabolite concentrations in the xenograft tumors. RESULTS Our findings revealed that ROCK1 was overexpressed in malignant vascular tumors such as hemangioendotheliomas and angiosarcomas, and ROCK2 was overexpressed in both benign and malignant vascular tumors including hemangiomas, hemangioendotheliomas, hemangiopericytomas, and angiosarcomas. shRNA-mediated knockdown of ROCK2, but not ROCK1, in xenograft vascular tumors significantly reduced tumor size and proliferative index compared to control tumors. Proteomics and metabolomics analysis of the xenograft tumors revealed both overlapping as well as unique roles for the ROCK paralogs in regulating signal transduction and metabolite concentrations. CONCLUSIONS Collectively, these data indicate that ROCK proteins are overexpressed in diverse vascular tumors and suggest that specific targeting of ROCK2 proteins may show efficacy against malignant vascular tumors.
Collapse
Affiliation(s)
- Clarissa N Amaya
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, Center of Excellence in Cancer Research, 5001 El Paso Drive, MSB1 Room 2111, El Paso, TX, 79905, USA
| | - Dianne C Mitchell
- Minerva Genetics, 5130 Gateway Blvd East, Suite 315, El Paso, TX, 79905, USA
| | - Brad A Bryan
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Paul L. Foster School of Medicine, Center of Excellence in Cancer Research, 5001 El Paso Drive, MSB1 Room 2111, El Paso, TX, 79905, USA. .,Minerva Genetics, 5130 Gateway Blvd East, Suite 315, El Paso, TX, 79905, USA.
| |
Collapse
|
22
|
The interplay between histone deacetylases and rho kinases is important for cancer and neurodegeneration. Cytokine Growth Factor Rev 2017; 37:29-45. [PMID: 28606734 DOI: 10.1016/j.cytogfr.2017.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/24/2022]
Abstract
Rho associated coiled-coil containing kinases (ROCKs) respond to defined extra- and intracellular stimuli to control cell migration, cell proliferation, and apoptosis. Histone deacetylases (HDACs) are epigenetic modifiers that regulate nuclear and cytoplasmic signaling through the deacetylation of histones and non-histone proteins. ROCK and HDAC functions are important compounds of basic and applied research interests. Recent evidence suggests a physiologically important interplay between HDACs and ROCKs in various cells and organisms. Here we summarize the crosstalk between these enzymatic families and its implications for cancer and neurodegeneration.
Collapse
|
23
|
Functions of Rho family of small GTPases and Rho-associated coiled-coil kinases in bone cells during differentiation and mineralization. Biochim Biophys Acta Gen Subj 2017; 1861:1009-1023. [PMID: 28188861 DOI: 10.1016/j.bbagen.2017.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Members of Rho-associated coiled-coil kinases (ROCKs) are effectors of Rho family of small GTPases. ROCKs have multiple functions that include regulation of cellular contraction and polarity, adhesion, motility, proliferation, apoptosis, differentiation, maturation and remodeling of the extracellular matrix (ECM). SCOPE OF THE REVIEW Here, we focus on the action of RhoA and RhoA effectors, ROCK1 and ROCK2, in cells related to tissue mineralization: mesenchymal stem cells, chondrocytes, preosteoblasts, osteoblasts, osteocytes, lining cells and osteoclasts. MAJOR CONCLUSIONS The activation of the RhoA/ROCK pathway promotes stress fiber formation and reduces chondrocyte and osteogenic differentiations, in contrast to that in mesenchymal stem cells which stimulated the osteogenic and the chondrogenic differentiation. The effects of Rac1 and Cdc42 in promoting chondrocyte hypertrophy and of Rac1, Rac2 and Cdc42 in osteoclast are discussed. In addition, members of the Rho family of GTPases such Rac1, Rac2, Rac3 and Cdc42, acting upstream of ROCK and/or other protein effectors, may compensate the actions of RhoA, affecting directly or indirectly the actions of ROCKs as well as other protein effectors. GENERAL SIGNIFICANCE ROCK activity can trigger cartilage degradation and affect bone formation, therefore these kinases may represent a possible therapeutic target to treat osteoarthritis and osseous diseases. Inhibition of Rho/ROCK activity in chondrocytes prevents cartilage degradation, stimulate mineralization of osteoblasts and facilitate bone formation around implanted metals. Treatment with osteoprotegerin results in a significant decrease in the expression of Rho GTPases, ROCK1 and ROCK2, reducing bone resorption. Inhibition of ROCK signaling increases osteoblast differentiation in a topography-dependent manner.
Collapse
|
24
|
Pinca RS, Manara MC, Chiadini V, Picci P, Zucchini C, Scotlandi K. Targeting ROCK2 rather than ROCK1 inhibits Ewing sarcoma malignancy. Oncol Rep 2017; 37:1387-1393. [PMID: 28112365 PMCID: PMC5364828 DOI: 10.3892/or.2017.5397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 06/29/2016] [Indexed: 12/01/2022] Open
Abstract
Understanding the molecular processes characterizing Ewing sarcoma (EWS) cell migration is crucial to highlight novel therapies for patients with disseminated disease. In this study we analyzed the role of ROCK kinases in the regulation of cell migration, growth and differentiation of EWS cells. Overexpression of ROCK promotes invasion and metastasis in many solid tumors. However, the effect of ROCK in EWS has not been extensively investigated. Expression of ROCK1 and ROCK2 was analyzed by western blotting in a representative panel of human EWS cell lines, in comparison with the parameters of in vitro malignancy. We investigated the effects of a ROCK2 specific inhibitor toward those of a pan-ROCK inhibitor on the growth, migration and differentiation of two EWS cell lines. ROCK2 but not ROCK1 expression was found to be associated with in vitro cell migration and anchorage-independent growth capabilities. Exposure of EWS cells to ROCK inhibitors significantly reduced migration and growth, while favoring morphology changes and neural differentiation. These effects were more striking when cells were specifically deprived of ROCK2 activity. Our findings lead to consider ROCK2, rather than ROCK1, as a possible molecular target for the treatment of EWS.
Collapse
Affiliation(s)
- Rosa Simona Pinca
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopedic Institute, I-40136 Bologna, Italy
| | - Maria Cristina Manara
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopedic Institute, I-40136 Bologna, Italy
| | - Valentina Chiadini
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopedic Institute, I-40136 Bologna, Italy
| | - Piero Picci
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopedic Institute, I-40136 Bologna, Italy
| | - Cinzia Zucchini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, I-40126 Bologna, Italy
| | - Katia Scotlandi
- CRS Development of Biomolecular Therapies, Experimental Oncology Laboratory, Rizzoli Orthopedic Institute, I-40136 Bologna, Italy
| |
Collapse
|
25
|
Croze RH, Thi WJ, Clegg DO. ROCK Inhibition Promotes Attachment, Proliferation, and Wound Closure in Human Embryonic Stem Cell-Derived Retinal Pigmented Epithelium. Transl Vis Sci Technol 2016; 5:7. [PMID: 27917311 PMCID: PMC5132148 DOI: 10.1167/tvst.5.6.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 10/10/2016] [Indexed: 12/27/2022] Open
Abstract
Purpose Nonexudative (dry) age-related macular degeneration (AMD), a leading cause of blindness in the elderly, is associated with the loss of retinal pigmented epithelium (RPE) cells and the development of geographic atrophy, which are areas devoid of RPE cells and photoreceptors. One possible treatment option would be to stimulate RPE attachment and proliferation to replace dying/dysfunctional RPE and bring about wound repair. Clinical trials are underway testing injections of RPE cells derived from pluripotent stem cells to determine their safety and efficacy in treating AMD. However, the factors regulating RPE responses to AMD-associated lesions are not well understood. Here, we use cell culture to investigate the role of RhoA coiled coil kinases (ROCKs) in human embryonic stem cell–derived RPE (hESC-RPE) attachment, proliferation, and wound closure. Methods H9 hESC were spontaneously differentiated into RPE cells. hESC-RPE cells were treated with a pan ROCK1/2 or a ROCK2 only inhibitor; attachment, and proliferation and cell size within an in vitro scratch assay were examined. Results Pharmacological inhibition of ROCKs promoted hESC-RPE attachment and proliferation, and increased the rate of closure of in vitro wounds. ROCK inhibition decreased phosphorylation of cofilin and myosin light chain, suggesting that regulation of the cytoskeleton underlies the mechanism of action of ROCK inhibition. Conclusions ROCK inhibition promotes attachment, proliferation, and wound closure in H9 hESC-RPE cells. ROCK isoforms may have different roles in wound healing. Translational Relevance Modulation of the ROCK-cytoskeletal axis has potential in stimulating wound repair in transplanted RPE cells and attachment in cellular therapies.
Collapse
Affiliation(s)
- Roxanne H Croze
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA, USA
| | - William J Thi
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Dennis O Clegg
- Center for Stem Cell Biology and Engineering, Neuroscience Research Institute, Department of Molecular, Cellular & Developmental Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
26
|
Yin M, Lu Q, Liu X, Wang T, Liu Y, Chen L. Silencing Drp1 inhibits glioma cells proliferation and invasion by RHOA/ ROCK1 pathway. Biochem Biophys Res Commun 2016; 478:663-8. [PMID: 27495873 DOI: 10.1016/j.bbrc.2016.08.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/01/2016] [Indexed: 01/08/2023]
Abstract
BACKGROUNDS Dynamin-related protein 1 (Drp1) is a newly discovered therapeutic target for tumor initiation, migration, proliferation, and chemosensitivity. In the present study, we aimed to examine the level of expression and distribution of DRP1 in glioma tissues and explore the concrete mechanism of DRP1 played in glioma. METHODS Expression of DRP1 in glioma tissues was determined by immunohistochemistry staining. The DRP1 gene was knocked down using small interfering RNA, and was overexpressed using plasmids in glioma cells. To assess changes in cell function, in vitro assays for invasion and growth were applied. Protein expression was tested by using Western-blot method. Variation of F-actin in cells was analyzed using immunofluorescence staining. Interactions between proteins were determined by co-immunoprecipitation. RESULTS The protein expression levels of DRP1 were significantly increased in glioma tissues compared to the normal brain tissues. Down-regulation of DRP1 decreased cell proliferation and invasion, and inhibited the formation of pseudopodias and microvillis. Moreover, a possible link between DRP1 and RHOA was confirmed when interactions between these two proteins were observed in the cells. CONCLUSIONS Our results demonstrated that silencing DRP1 regulated the cytoskeleton remodeling through inhibiting RHOA/ROCK1 pathway, and thus decreased the proliferation and invasion of glioma cells.
Collapse
Affiliation(s)
- Maojia Yin
- Department of Neurology, The Second Affiliated Hospital of Chong Qing Medical University, Number 76, LinJiang Road, YuZhong District, 400010, Chong Qing, China
| | - Qin Lu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, 310006, Hangzhou, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chong Qing Medical University, Number 76, LinJiang Road, YuZhong District, 400010, Chong Qing, China
| | - Teng Wang
- Department of Neurology, The Second Affiliated Hospital of Chong Qing Medical University, Number 76, LinJiang Road, YuZhong District, 400010, Chong Qing, China
| | - Ying Liu
- Department of Neurology, The Second Affiliated Hospital of Chong Qing Medical University, Number 76, LinJiang Road, YuZhong District, 400010, Chong Qing, China
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chong Qing Medical University, Number 76, LinJiang Road, YuZhong District, 400010, Chong Qing, China.
| |
Collapse
|
27
|
Bhandary L, Whipple RA, Vitolo MI, Charpentier MS, Boggs AE, Chakrabarti KR, Thompson KN, Martin SS. ROCK inhibition promotes microtentacles that enhance reattachment of breast cancer cells. Oncotarget 2016; 6:6251-66. [PMID: 25749040 PMCID: PMC4467435 DOI: 10.18632/oncotarget.3360] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 01/16/2023] Open
Abstract
The presence of circulating tumor cells (CTCs) in blood predicts poor patient outcome and CTC frequency is correlated with higher risk of metastasis. Recently discovered, novel microtubule-based structures, microtentacles, can enhance reattachment of CTCs to the vasculature. Microtentacles are highly dynamic membrane protrusions formed in detached cells and occur when physical forces generated by the outwardly expanding microtubules overcome the contractile force of the actin cortex. Rho-associated kinase (ROCK) is a major regulator of actomyosin contractility and Rho/ROCK over-activation is implicated in tumor metastasis. ROCK inhibitors are gaining popularity as potential cancer therapeutics based on their success in reducing adherent tumor cell migration and invasion. However, the effect of ROCK inhibition on detached cells in circulation is largely unknown. In this study, we use breast tumor cells in suspension to mimic detached CTCs and show that destabilizing the actin cortex through ROCK inhibition in suspended cells promotes the formation of microtentacles and enhances reattachment of cells from suspension. Conversely, increasing actomyosin contraction by Rho over-activation reduces microtentacle frequency and reattachment. Although ROCK inhibitors may be effective in reducing adherent tumor cell behavior, our results indicate that they could inadvertently increase metastatic potential of non-adherent CTCs by increasing their reattachment efficacy.
Collapse
Affiliation(s)
- Lekhana Bhandary
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Graduate Program in Molecular Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Rebecca A Whipple
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Michele I Vitolo
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Graduate Program in Molecular Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Department of Physiology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Monica S Charpentier
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Amanda E Boggs
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Kristi R Chakrabarti
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Graduate Program in Molecular Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Keyata N Thompson
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Stuart S Martin
- University of Maryland School of Medicine, Marlene and Stewart Greenebaum National Cancer Institute Cancer Center, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Graduate Program in Molecular Medicine, University of Maryland, School of Medicine, Baltimore, Maryland, USA.,Department of Physiology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Jerrell RJ, Parekh A. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2. Biomaterials 2016; 84:119-129. [PMID: 26826790 DOI: 10.1016/j.biomaterials.2016.01.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/17/2023]
Abstract
ROCK activity increases due to ECM rigidity in the tumor microenvironment and promotes a malignant phenotype via actomyosin contractility. Invasive migration is facilitated by actin-rich adhesive protrusions known as invadopodia that degrade the ECM. Invadopodia activity is dependent on matrix rigidity and contractile forces suggesting that mechanical factors may regulate these subcellular structures through ROCK-dependent actomyosin contractility. However, emerging evidence indicates that the ROCK1 and ROCK2 isoforms perform different functions in cells suggesting that alternative mechanisms may potentially regulate rigidity-dependent invadopodia activity. In this study, we found that matrix rigidity drives ROCK signaling in cancer cells but that ROCK1 and ROCK2 differentially regulate invadopodia activity through separate signaling pathways via contractile (NM II) and non-contractile (LIMK) mechanisms. These data suggest that the mechanical rigidity of the tumor microenvironment may drive ROCK signaling through distinct pathways to enhance the invasive migration required for cancer progression and metastasis.
Collapse
Affiliation(s)
- Rachel J Jerrell
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Aron Parekh
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
29
|
Kümper S, Mardakheh FK, McCarthy A, Yeo M, Stamp GW, Paul A, Worboys J, Sadok A, Jørgensen C, Guichard S, Marshall CJ. Rho-associated kinase (ROCK) function is essential for cell cycle progression, senescence and tumorigenesis. eLife 2016; 5:e12994. [PMID: 26765561 PMCID: PMC4798951 DOI: 10.7554/elife.12203] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/13/2016] [Indexed: 12/12/2022] Open
Abstract
Rho-associated kinases 1 and 2 (ROCK1/2) are Rho-GTPase effectors that control key aspects of the actin cytoskeleton, but their role in proliferation and cancer initiation or progression is not known. Here, we provide evidence that ROCK1 and ROCK2 act redundantly to maintain actomyosin contractility and cell proliferation and that their loss leads to cell-cycle arrest and cellular senescence. This phenotype arises from down-regulation of the essential cell-cycle proteins CyclinA, CKS1 and CDK1. Accordingly, while the loss of either Rock1 or Rock2 had no negative impact on tumorigenesis in mouse models of non-small cell lung cancer and melanoma, loss of both blocked tumor formation, as no tumors arise in which both Rock1 and Rock2 have been genetically deleted. Our results reveal an indispensable role for ROCK, yet redundant role for isoforms 1 and 2, in cell cycle progression and tumorigenesis, possibly through the maintenance of cellular contractility.
Collapse
Affiliation(s)
- Sandra Kümper
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Faraz K Mardakheh
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Afshan McCarthy
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Maggie Yeo
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Gordon W Stamp
- Experimental Pathology Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | - Angela Paul
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Jonathan Worboys
- Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Amine Sadok
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | - Claus Jørgensen
- Cancer Research UK Manchester Institute, Manchester, United Kingdom
| | - Sabrina Guichard
- Division of Cancer Biology, Institute of Cancer Research, London, United Kingdom
| | | |
Collapse
|
30
|
Wei L, Surma M, Shi S, Lambert-Cheatham N, Shi J. Novel Insights into the Roles of Rho Kinase in Cancer. Arch Immunol Ther Exp (Warsz) 2016; 64:259-78. [PMID: 26725045 PMCID: PMC4930737 DOI: 10.1007/s00005-015-0382-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/24/2015] [Indexed: 12/12/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) is a major downstream effector of the small GTPase RhoA. The ROCK family, consisting of ROCK1 and ROCK2, plays a central role in the organization of the actin cytoskeleton, and is involved in a wide range of fundamental cellular functions such as contraction, adhesion, migration, proliferation, and apoptosis. Since the discovery of effective inhibitors such as fasudil and Y27632, the biological roles of ROCK have been extensively explored in numerous diseases, including cancer. Accumulating evidence supports the concept that ROCK plays important roles in tumor development and progression through regulating many key cellular functions associated with malignancy, including tumorigenicity, tumor growth, metastasis, angiogenesis, tumor cell apoptosis/survival and chemoresistance as well. This review focuses on the new advances of the most recent 5 years from the studies on the roles of ROCK in cancer development and progression; the discussion is mainly focused on the potential value of ROCK inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Lei Wei
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA. .,Department of Cellular and Integrative Physiology, Indiana University, School of Medicine, 1044 West Walnut Street, R4-370, Indianapolis, IN, 46202-5225, USA.
| | - Michelle Surma
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Stephanie Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Nathan Lambert-Cheatham
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA
| | - Jianjian Shi
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University, School of Medicine, R4 Building, Room 332, 1044 West Walnut Street, Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
31
|
He M, Luo M, Chen S, Li K, Zheng M, Weng Y, Pi R, Liu A. Combined treatment of fasudil and glutamate decreased the viability of human glioblastoma cells by excitotoxicity through NMDAR in vitro. Int J Clin Exp Med 2015; 8:18434-18440. [PMID: 26770449 PMCID: PMC4694349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
Glioblastoma (GBM) is the most common brain tumor with high abilities of proliferation, migration and invasion. As is well-known, the peritumoral excitotoxic neuronal cell loss caused by glutamate, secreted by GBM cells, through activated N-methyl-D aspartate receptor (NMDAR) of neuronal cell. What's more, glutamate benefits the migration of GBM cells. However, the glutamate will not kill the GBM cells itself, which may be due to the deficiency of NMDAR. Fasudil, a ROCK inhibitor, was applied for subarachnoid hemorrhage (SAH) in clinic for many years. And it was found to be of potential to inhibit the proliferation, migration and invasion of GBM cells. In present study, we applied fasudil on the primary human GBM cells to further investigate the reduction of cell viability combined with glutamate. Combination treatment of glutamate and fasudil could significantly decrease the cell viability and elevate the level of LDH compared with fasudil treatment alone. What's more, MK-801, a NMDAR antagonist, could partially abolish this death caused by combination treatment. Further study found that the expression level of NMDAR-2B was elevated after treatment with fasudil in GBM cells. These results demonstrated fasudil could increase the expression level of NMDAR, which is necessary for glutamate to work. In a word, our research has provided a new sight of medicine combination in the treatment of GBM.
Collapse
Affiliation(s)
- Mingliang He
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, PR China
| | - Ming Luo
- Department of Radiation Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, PR China
| | - Shu Chen
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, PR China
| | - Kaishu Li
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, PR China
| | - Meiguang Zheng
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, PR China
| | - Yinlun Weng
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, PR China
| | - Rongbiao Pi
- Department of Pharmacology & Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen UniversityGuangzhou 510006, PR China
| | - Anmin Liu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen UniversityGuangzhou 510120, PR China
| |
Collapse
|
32
|
Wang P, Yang Y, Shao Q, Zhou W. Selective inhibition of ROCK kinase isoforms to promote neuroregeneration after brain surgery. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1463-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Chou YC, Chang MY, Wang MJ, Yu FS, Liu HC, Harnod T, Hung CH, Lee HT, Chung JG. PEITC inhibits human brain glioblastoma GBM 8401 cell migration and invasion through the inhibition of uPA, Rho A, and Ras with inhibition of MMP-2, -7 and -9 gene expression. Oncol Rep 2015; 34:2489-96. [PMID: 26352173 DOI: 10.3892/or.2015.4260] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/24/2015] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most aggressive primary brain malignancy, and the efficacy of multimodality treatments remains unsatisfactory. Phenethyl isothiocyanate (PEITC), one member of the isothiocyanate family, was found to inhibit the migration and invasion of many types of human cancer cells. In our previous study, PEITC induced the apoptosis of human brain glioblastoma GBM 8401 cells through the extrinsic and intrinsic signaling pathways. In the present study, we first investigated the effects of PEITC on the migration and invasion of GBM 8401 cells. PEITC decreased the migration of GBM 8401 cells in a dose-dependent manner as determined from scratch wound healing and Transwell migration assays. The percentage of inhibition ranged from 46.89 to 15.75%, and from 27.80 to 7.31% after a 48-h treatment of PEITC as determined from the Transwell migration assay and invasion assay, respectively. The western blot analysis indicated that PEITC decreased the levels of proteins associated with migration and invasion, Ras, uPA, RhoA, GRB2, p-p38, p-JNK, p-ERK, p65, SOS1, MMP-2, MMP-9 and MMP-13, in a dose-dependent manner. Real-time PCR analyses revealed that PEITC reduced the mRNA levels of MMP-2, MMP-7, MMP-9 and RhoA in a dose- and time-dependent manner. PEITC exhibited potent anticancer activities through the inhibition of migration and invasion in the GBM 8401 cells. Our findings elucidate the possible molecular mechanisms and signaling pathways of the anti-metastatic effects of PEITC on human brain glioblastoma cells, and PEITC may be considered as a therapeutic agent.
Collapse
Affiliation(s)
- Yu-Cheng Chou
- Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407, Taiwan, R.O.C
| | - Meng-Ya Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, R.O.C
| | - Mei-Jen Wang
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, R.O.C
| | - Fu-Shun Yu
- School of Dentistry, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Hsin-Chung Liu
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| | - Tomor Harnod
- Department of Neurosurgery, Buddhist Tzu Chi General Hospital and College of Medicine, Tzu Chi University, Hualien 970, Taiwan, R.O.C
| | - Chih-Huang Hung
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan, R.O.C
| | - Hsu-Tung Lee
- Division of Neurosurgical Oncology, Neurological Institute, Taichung Veterans General Hospital, Taichung 407, Taiwan, R.O.C
| | - Jing-Gung Chung
- Department of Biological Science and Technology, China Medical University, Taichung 404, Taiwan, R.O.C
| |
Collapse
|
34
|
Bond LM, Sellers JR, McKerracher L. Rho kinase as a target for cerebral vascular disorders. Future Med Chem 2015; 7:1039-53. [PMID: 26062400 PMCID: PMC4656981 DOI: 10.4155/fmc.15.45] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The development of novel pharmaceutical treatments for disorders of the cerebral vasculature is a serious unmet medical need. These vascular disorders are typified by a disruption in the delicate Rho signaling equilibrium within the blood vessel wall. In particular, Rho kinase overactivation in the smooth muscle and endothelial layers of the vessel wall results in cytoskeletal modifications that lead to reduced vascular integrity and abnormal vascular growth. Rho kinase is thus a promising target for the treatment of cerebral vascular disorders. Indeed, preclinical studies indicate that Rho kinase inhibition may reduce the formation/growth/rupture of both intracranial aneurysms and cerebral cavernous malformations.
Collapse
Affiliation(s)
- Lisa M Bond
- BioAxone BioSciences, Inc., 10 Rogers Street, Suite 101, Kendall Square, Cambridge, MA 02142, USA
- Laboratory of Molecular Physiology, National Heart, Lung & Blood Institute, Bethesda, MD 20892, USA
| | - James R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung & Blood Institute, Bethesda, MD 20892, USA
| | - Lisa McKerracher
- BioAxone BioSciences, Inc., 10 Rogers Street, Suite 101, Kendall Square, Cambridge, MA 02142, USA
| |
Collapse
|
35
|
Matsuoka T, Yashiro M. Rho/ROCK signaling in motility and metastasis of gastric cancer. World J Gastroenterol 2014; 20:13756-13766. [PMID: 25320513 PMCID: PMC4194559 DOI: 10.3748/wjg.v20.i38.13756] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 04/21/2014] [Accepted: 06/13/2014] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most frequent and lethal malignancies worldwide because of high frequency of metastasis. Tumor cell motility and invasion play fundamental roles in cancer metastasis. Recent studies have revealed that the Rho/Rho-associated protein kinases (ROCK) pathway plays a critical role in the regulation of cancer cell motility and invasion. In addition, the Rho/ROCK pathway plays important roles in invasion and metastasis on the basis of its predominant function of cell cytoskeletal regulation in gastric cancer. According to the current understanding of tumor motility, there are two modes of tumor cell movement: mesenchymal and amoeboid. In addition, cancer cell movement can be interchangeable between the mesenchymal and amoeboid movements under certain conditions. Control of cell motility through the actin cytoskeleton creates the potential for regulating tumor cell metastasis. In this review we discuss Rho GTPases and ROCK signaling and describe the mechanisms of Rho/ROCK activity with regard to motility and metastasis in gastric cancer. In addition, we provide an insight of the therapeutic potential of targeting the Rho/ROCK pathway.
Collapse
|