1
|
Gutman T, Tuller T. Computational Analysis of MDR1 Variants Predicts Effect on Cancer Cells via their Effect on mRNA Folding. PLoS Comput Biol 2024; 20:e1012685. [PMID: 39724131 DOI: 10.1371/journal.pcbi.1012685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
The P-glycoprotein efflux pump, encoded by the MDR1 gene, is an ATP-driven transporter capable of expelling a diverse array of compounds from cells. Overexpression of this protein is implicated in the multi-drug resistant phenotype observed in various cancers. Numerous studies have attempted to decipher the impact of genetic variants within MDR1 on P-glycoprotein expression, functional activity, and clinical outcomes in cancer patients. Among these, three specific single nucleotide polymorphisms-T1236C, T2677G, and T3435C - have been the focus of extensive research efforts, primarily through in vitro cell line models and clinical cohort analyses. However, the findings from these studies have been remarkably contradictory. In this study, we employ a computational, data-driven approach to systematically evaluate the effects of these three variants on principal stages of the gene expression process. Leveraging current knowledge of gene regulatory mechanisms, we elucidate potential mechanisms by which these variants could modulate P-glycoprotein levels and function. Our findings suggest that all three variants significantly change the mRNA folding in their vicinity. This change in mRNA structure is predicted to increase local translation elongation rates, but not to change the protein expression. Nonetheless, the increased translation rate near T3435C is predicted to affect the protein's co-translational folding trajectory in the region of the second ATP binding domain. This potentially impacts P-glycoprotein conformation and function. Our study demonstrates the value of computational approaches in elucidating the functional consequences of genetic variants. This framework provides new insights into the molecular mechanisms of MDR1 variants and their potential impact on cancer prognosis and treatment resistance. Furthermore, we introduce an approach which can be systematically applied to identify mutations potentially affecting mRNA folding in pathology. We demonstrate the utility of this approach on both ClinVar and TCGA and identify hundreds of disease related variants that modify mRNA folding at essential positions.
Collapse
MESH Headings
- Humans
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B/metabolism
- ATP Binding Cassette Transporter, Subfamily B/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Polymorphism, Single Nucleotide/genetics
- Neoplasms/genetics
- Neoplasms/metabolism
- Computational Biology
- RNA Folding/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Tal Gutman
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel
| | - Tamir Tuller
- Department of Biomedical Engineering, the Engineering Faculty, Tel Aviv University, Tel-Aviv, Israel
- The Sagol School of Neuroscience, Tel-Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Machova Polakova K, Albeer A, Polivkova V, Krutska M, Vlcanova K, Curik N, Fabarius A, Klamova H, Spiess B, Waller CF, Brümmendorf TH, Dengler J, Kunzmann V, Burchert A, Belohlavkova P, Mustjoki S, Faber E, Mayer J, Zackova D, Panayiotidis P, Richter J, Hjorth-Hansen H, Kamińska M, Płonka M, Szczepanek E, Szarejko M, Bober G, Hus I, Grzybowska-Izydorczyk O, Wasilewska E, Paczkowska E, Niesiobędzka-Krężel J, Giannopoulos K, Mahon FX, Sacha T, Saußele S, Pfirrmann M. The SNP rs460089 in the gene promoter of the drug transporter OCTN1 has prognostic value for treatment-free remission in chronic myeloid leukemia patients treated with imatinib. Leukemia 2024; 38:318-325. [PMID: 38129513 PMCID: PMC10844071 DOI: 10.1038/s41375-023-02109-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Membrane transporters are important determinants of drug bioavailability. Their expression and activity affect the intracellular drug concentration in leukemic cells impacting response to therapy. Pharmacogenomics represents genetic markers that reflect allele arrangement of genes encoding drug transporters associated with treatment response. In previous work, we identified SNP rs460089 located in the promotor of SLC22A4 gene encoding imatinib transporter OCTN1 as influential on response of patients with chronic myeloid leukemia treated with imatinib. Patients with rs460089-GC pharmacogenotype had significantly superior response to first-line imatinib treatment compared to patients with rs460089-GG. This study investigated whether pharmacogenotypes of rs460089 are associated with sustainability of treatment-free remission (TFR) in patients from the EUROpean Stop Kinase Inhibitor (EURO-SKI) trial. In the learning sample, 176 patients showed a significantly higher 6-month probability of molecular relapse free survival (MRFS) in patients with GC genotype (73%, 95% CI: 60-82%) compared to patients with GG (51%, 95% CI: 41-61%). Also over time, patients with GC genotype had significantly higher MRFS probabilities compared with patients with GG (HR: 0.474, 95% CI: 0.280-0.802, p = 0.0054). Both results were validated with data on 93 patients from the Polish STOP imatinib study. In multiple regression models, in addition to the investigated genotype, duration of TKI therapy (EURO-SKI trial) and duration of deep molecular response (Polish study) were identified as independent prognostic factors. The SNP rs460089 was found as an independent predictor of TFR.
Collapse
Affiliation(s)
| | - Ali Albeer
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Medizinische Fakultät, Ludwig-Maximilians-Universität, Munich, Germany
| | - Vaclava Polivkova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Monika Krutska
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- Institute of Clinical and Experimental Hematology, 1st Medicine Faculty, Charles University, Prague, Czech Republic
| | - Katerina Vlcanova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Nikola Curik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Alice Fabarius
- Department of Haematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Hana Klamova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Birgit Spiess
- Department of Haematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Cornelius F Waller
- UNIVERSITÄTSKLINIKUM FREIBURG Klinik für Innere Medizin I Schwerpunkt Hämatologie, Onkologie und Stammzelltransplantation, Freiburg, Germany
| | - Tim H Brümmendorf
- Universitätsklinikum RWTH Aachen and Center for Integrated Oncology Aachen-Bonn-Cologne-Düsseldorf (CIOABCD), Aachen, Germany
| | | | - Volker Kunzmann
- Universitätsklinikum Würzburg Medizinische Klinik und Poliklinik II, Würzburg, Germany
| | | | - Petra Belohlavkova
- 4th Department of Internal Medicine - Hematology, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Satu Mustjoki
- Translational Immunology Research Program and Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Edgar Faber
- Department of Hemato-oncology, Faculty Hospital and Faculty of Medicine and Dentistry, Palacký University, Olomouc, Olomouc, Czech Republic
| | - Jiri Mayer
- Internal Hematology and Oncology Clinic, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Daniela Zackova
- Internal Hematology and Oncology Clinic, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Johan Richter
- Dept. of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Henrik Hjorth-Hansen
- Department of Hematology, St Olavs Hospital, Trondheim, Norway
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Magdalena Kamińska
- Department of Hematology, Jagiellonian University Hospital, Kraków, Poland
| | - Magdalena Płonka
- Department of Hematology, Jagiellonian University Hospital, Kraków, Poland
| | | | - Monika Szarejko
- Hematology and Transplantology Department, Medical University of Gdańsk, Gdańsk, Poland
| | - Grażyna Bober
- Hematology and Bone Marrow Transplantation Department, Medical Silesian University, Katowice, Poland
| | - Iwona Hus
- Chair and Department of Hematooncology and Bone Marrow Transplantation Medical University of Lublin, Lublin, Poland
| | | | - Ewa Wasilewska
- Hematology Department, Medical University of Białystok, Białystok, Poland
| | - Edyta Paczkowska
- Department of General Pathology, Pomeranian Medical University, Szczecin, Poland
| | | | | | - Francois X Mahon
- Bergonie Institute Bordeaux, Inserm U1218 University of Bordeaux, Bordeaux, France
| | - Tomasz Sacha
- Department of Hematology, Jagiellonian University Hospital, Kraków, Poland
| | - Susanne Saußele
- Department of Haematology and Oncology, University Hospital Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Pfirrmann
- Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), Medizinische Fakultät, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
3
|
Sabri A, Omran MM, Azim SA, Abdelfattah R, Allam RM, Shouman SA. A Study to Explore the Role of IDH1 (R132) Mutation on Imatinib Toxicity and Effect of ABCG2/OCT1 Expression on N-Desmethyl Imatinib Plasma Level in Egyptian Chronic Myeloid Leukemia Patients. Drug Res (Stuttg) 2023; 73:146-155. [PMID: 36630991 DOI: 10.1055/a-1924-7746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Imatinib mesylate (IM) is the gold standard for treatment of Chronic Myeloid Leukemia (CML). This study aimed to gain more knowledge of the altered PK, pharmacogenetic factors, and gene expression leading to variable IM levels. Fifty patients with chronic phase-CML were enrolled in this study and divided as 25 responders and 25 non-responders (patients are directly recruited after response assessment). HPLC/MS/MS was used to determine trough and peak concentration of imatinib and N-desmethyl imatinib in the blood. PCR-RFLP technique was used to detect IDH1 gene mutation (R132). The median value of IM trough level was significantly higher, the P/T ratio was significantly lower and the α-1-acid glycoprotein (AGP) was significantly higher among responders compared to non-responders (P=0.007, 0.009 and 0.048, respectively). Higher N-desmethyl imatinib peak plasma concentration was observed with low mRNA expression of ABCG2 and OCT1 (P=0.01 and 0.037, respectively). IDH1 R132 gene mutation was associated with a significant increase in toxicities (P=0.028). In conclusion, IM trough level, P/T ratio and AGP was significantly higher in responders. In addition, ABCG2 and OCT1 gene expression may affect the interindividual PK variation. Although a prospective study with a larger patient population is necessary to validate these findings. IDH1 mutation is a predictor of increased toxicity with IM treatment.
Collapse
Affiliation(s)
- Alaa Sabri
- Egyptian Pharmaceutical Vigilance Center, Egyptian Drug Authority
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - S Abdel Azim
- Biochemistry Department, Faculty of Pharmacy, Cairo University
| | - Raafat Abdelfattah
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Rasha Mahmoud Allam
- Cancer Epidemiology and Biostatistics Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samia A Shouman
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
4
|
Association of ABCB1, ABCG2 drug transporter polymorphisms and smoking with disease risk and cytogenetic response to imatinib in chronic myeloid leukemia patients. Leuk Res 2023; 126:107021. [PMID: 36696828 DOI: 10.1016/j.leukres.2023.107021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Despite acceptable results of imatinib in the treatment of chronic myeloid leukemia (CML), some patients fail to acquire a complete cytogenetic response (CCyR), which may be caused by polymorphisms in the pharmacogenetic genes. The study aimed to evaluate the association of two polymorphisms in the ABCB1 and ABCG2 genes with cytogenetic response to imatinib and the risk of CML development. METHODS We genotyped ABCB1 (c .2677G/T/A) and ABCG2 (c .421C/A) polymorphisms by PCR-RFLP, T-ARMS-PCR methods in 111 patients with CML and 102 sex- and age-matched healthy subjects. CCyR was determined by standard chromosome banding analysis (CBA). RESULTS Analysis of polymorphisms showed significant association of ABCG2 c.421CA genotype (p < 0.0001; OR = 0. 17), and ABCG2c.421A allele (p < 0.0001; OR = 0.31) with decreased risk of CML. Moreover, ABCB1c.2677GT- ABCG2c.421CC combined genotype (p = 0.017; OR = 4.20) was associated with increased risk of CML. Analysis of the joint effect of SNP-smoking combination showed that smoker subjects with the ABCB1c.2677GG/GT (p = 0.001; OR = 15.96, p = 0.001; OR = 8.13, respectively) or ABCG2c.421CC genotypes (p = 0.001; OR = 5.82) had the increased risk of CML, while the risk of the CML in non-smokers carrying the ABCG2c.421CA (p < 0.0001; OR = 0. 18) genotype was strongly decreased compared with reference group. Regarding drug response, ABCG2c.421 CC/CA genotypes in the smoker patients were associated with an increased risk of resistance to imatinib (p < 0.0001; OR = 7.02, p = 0.018; OR = 4.67, respectively). CONCLUSION Our results suggest the impact of ABCG2c .421C/A polymorphism on CML development, and smoking may have a synergistic role in the risk of CML and resistance to imatinib.
Collapse
|
5
|
Estrada N, Zamora L, Ferrer-Marín F, Palomo L, García O, Vélez P, De la Fuente I, Sagüés M, Cabezón M, Cortés M, Vallansot RO, Senín-Magán MA, Boqué C, Xicoy B. Association between Germline Single-Nucleotide Variants in ADME Genes and Major Molecular Response to Imatinib in Chronic Myeloid Leukemia Patients. J Clin Med 2022; 11:jcm11206217. [PMID: 36294538 PMCID: PMC9604607 DOI: 10.3390/jcm11206217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
Imatinib is the most common first-line tyrosine kinase inhibitor (TKI) used to treat chronic-phase chronic myeloid leukemia (CP-CML). However, only a proportion of patients achieve major molecular response (MMR), so there is a need to find biological factors that aid the selection of the optimal therapeutic strategy (imatinib vs. more potent second-generation TKIs). The aim of this retrospective study was to understand the contribution of germline single-nucleotide variants (gSNVs) in the achievement of MMR with imatinib. In particular, a discovery cohort including 45 CP-CML patients was analyzed through the DMET array, which interrogates 1936 variants in 231 genes related to the absorption, distribution, metabolism and excretion (ADME) process. Variants statistically significant in the discovery cohort were then tested in an extended and independent cohort of 137 CP-CML patients. Finally, a total of 7 gSNVs (ABCG1-rs492338, ABCB11-rs496550, ABCB11-rs497692, CYP2D6-rs1135840, CYP11B1-rs7003319, MAT1A-rs4934027 and SLC22A1-rs628031) and one haplotype in the ABCB11 gene were significantly associated with the achievement of MMR with first-line imatinibtreatment. In conclusion, we identified a genetic signature of response to imatinib in CP-CML patients that could be useful in selecting those patients that may benefit from starting imatinib as first-line therapy, therefore avoiding the toxicity related to second-generation TKIs.
Collapse
Affiliation(s)
- Natalia Estrada
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Lurdes Zamora
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Correspondence:
| | - Francisca Ferrer-Marín
- Hospital General Universitario Morales Meseguer, CIBERER (CB15/00055), IMIB-Pascual Parrilla, UCAM, 30008 Murcia, Spain
| | - Laura Palomo
- MDS Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Experimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Olga García
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | | | | | | | - Marta Cabezón
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | | | | | | | | | - Blanca Xicoy
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| |
Collapse
|
6
|
Shriyan B, Mehta P, Patil A, Jadhav S, Kumar S, Puri AS, Govalkar R, Krishnamurthy MN, Punatar S, Gokarn A, Khattry N, Gota V. Role of ADME gene polymorphisms on imatinib disposition: results from a population pharmacokinetic study in chronic myeloid leukaemia. Eur J Clin Pharmacol 2022; 78:1321-1330. [PMID: 35652931 DOI: 10.1007/s00228-022-03345-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Imatinib is a substrate of CYP3A4, ABCB1 and ABCG2, and is known to have wide variability in pharmacokinetics (PK). At the same time, a clear relationship between drug levels and response also exists for imatinib in chronic myeloid leukaemia (CML). Therefore, pharmacogenetic-based dosing of imatinib is an attractive proposition. This study aims to characterize the population pharmacokinetics of imatinib in order to identify significant covariates including pharmacogenetic variants. METHODS Forty-nine patients with CML were enrolled in the study after being on imatinib for at least 4 consecutive weeks. Steady-state pharmacokinetic sampling was performed either in a sparse (4 samples each, n = 44) or intensive manner (9 samples each, n = 5). An additional pharmacogenetic sample was also collected from all patients. Plasma imatinib levels were estimated using a validated HPLC method. Pharmacogenetic variants were identified using the PharmacoScan array platform. Population pharmacokinetic analysis was carried out using NONMEM v7.2. Seven SNPs within CYP3A4, ABCB1 and ABCG2 genes were evaluated for covariate effect on the clearance of imatinib. RESULTS Imatinib PK was well characterized using a one-compartment model with zero-order absorption. The clearance and volume of distribution were found to be 10.2 L/h and 389 L respectively. Only SNP rs1128503 of the ABCB1 gene had a small but insignificant effect on imatinib clearance, with a 25% reduction in clearance observed in patients carrying the polymorphism. Twenty-three out of forty-nine patients (47%) carried the polymorphic allele, of whom 17 were heterozygous and six were homozygous. CONCLUSION Our study conclusively proves that genetic polymorphisms in the CYP3A4 and ABC family of transporters do not have any role in the personalized dosing of imatinib in CML.
Collapse
Affiliation(s)
- Bharati Shriyan
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Parsshava Mehta
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Anand Patil
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Shraddha Jadhav
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Sharath Kumar
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Apeksha S Puri
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India
| | - Ravina Govalkar
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.,Gahlot Institute of Pharmacy, Koparkhairane, Navi Mumbai, 400709, India
| | - Manjunath Nookala Krishnamurthy
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Sachin Punatar
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, 400012, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Anant Gokarn
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, 400012, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Navin Khattry
- Department of Medical Oncology, Tata Memorial Hospital, Mumbai, 400012, India.,Homi Bhabha National Institute, Mumbai, 400094, India
| | - Vikram Gota
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, 410210, India. .,Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
7
|
Baba SM, Pandith AA, Shah ZA, Geelani SA, Mir MM, Bhat JR, Bhat GM. Impact of ABCB1 Gene (C3435T/A2677G) Polymorphic Sequence Variations on the Outcome of Patients with Chronic Myeloid Leukemia and Acute Lymphoblastic Leukemia in Kashmiri Population: A Case-Control Study. Indian J Hematol Blood Transfus 2021; 37:21-29. [PMID: 33707832 DOI: 10.1007/s12288-020-01289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/06/2020] [Indexed: 11/30/2022] Open
Abstract
Inherited polymorphic sequence variations in drug transport genes like ABCB1 impact a portion of patients with hematologic malignancies that show intrinsic or acquire resistance to treatment. Keeping in view inter-individual sensitivities for such drugs, we through this case-control study tested whether ABCB1 C3435T and G2677T polymorphisms have any influence on the risk and treatment response in patients with chronic myeloid leukemia (CML) and B-acute lymphoblastic leukemia (B-ALL). Genotyping for ABCB1 polymorphisms was performed by polymerase chain reaction-restriction fragment length polymorphism in 100 CML and 80 B-ALL patients along with 100 age and gender matched healthy controls. ABCB1 C3435T and G2677T polymorphism showed no association with CML. Genotype distribution revealed significant higher frequency of TT genotype for both SNPs in B-ALL cases and associated with increased B-ALL risk (OR 2.5, p = 0.04 for 3435TT; OR 2.4, p = 0.04 for 2677TT). There was no significant difference in genotype frequency of 3435C > T and 2677G > T among resistant and responsive groups for the two leukemia types. Kaplan-Meier survival plots revealed significantly lower event free survival in CML and B-ALL patients that were carriers of 3435TT genotype (p < 0.05). Multivariate analysis considered 3435TT genotype as independent risk factor for imatinib resistance in CML cases (HR 6.24, p = 0.002) and increased relapse risk in B-ALL patients (HR 4.51, p = 0.03). The current study provides preliminary evidence of a significant association between variant TT genotype and increased B-ALL risk. Also, results suggest that ABCB1 3435TT genotype increases imatinib resistance in CML and influence therapeutic outcome in B-ALL.
Collapse
Affiliation(s)
- Shahid M Baba
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, J&K 190011 India
| | - Arshad A Pandith
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, J&K India
| | - Zafar A Shah
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, J&K 190011 India
| | - Sajad A Geelani
- Department of Clinical Hematology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, J&K India
| | - Mohammad Muzaffar Mir
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha, Kingdom of Saudi Arabia
| | - Javid Rasool Bhat
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, J&K India
| | - Gul Mohammad Bhat
- Department of Medical Oncology, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, J&K India
| |
Collapse
|
8
|
Louati N, Turki F, Mnif H, Frikha R. MDR1 gene polymorphisms and imatinib response in chronic myeloid leukemia: A meta-analysis. J Oncol Pharm Pract 2021; 28:39-48. [PMID: 33565361 DOI: 10.1177/1078155220981150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Our study aimed to investigate the association between multidrug resistance (MDR1) C1236T, C3435T and G2677T/A polymorphisms and the response to imatinib (IM) in chronic myeloid leukemia (CML). MATERIALS AND METHODS An electronic databases in PubMed, Embase, Web of Knowledge, Scopus and Cochrane were searched using combinations of keywords relating to MDR1 polymorphisms and the response to IM in CML. Studies retrieved from database searches were screened using strict inclusion and exclusion criteria. RESULTS In total, 37 studies were initially identified, and 17 studies, involving 4494 CML patients, were eventually included in this meta-analysis.Results of our study revealed significant association between MDR1 G2677T/A and C3435T polymorphisms and response to IM in Caucasian population under recessive model (T or A vs G; OR = 1.43,95%CI [1;06-1.93]; T vs C;OR = 1.13; 95%IC [0.79; 1.63]), dominant (T or A vs G; OR = 0.94; 95%CI [0.74-1.21]; T vs C; OR = 1.49; 95%CI [1.02-2.17]) and heterozygous models (T or A vs G; OR = 0.83; 95%CI [0.64; 1.09]; T vs C; OR = 1.52; 95%CI [1.01-2.28]); respectively. However, never significative association was found between IM response and the MDR1 C1236T polymorphism (OR = 1.25; 95%CI [0.46; 3.33]). CONCLUSION The MDR1 G2677T/A and C3435T polymorphisms might be a risk factor for resistance to IM in Caucasian CML patients.
Collapse
Affiliation(s)
- N Louati
- Blood Bank, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - F Turki
- Department of Medical Genetic, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - H Mnif
- Blood Bank, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| | - R Frikha
- Department of Medical Genetic, Faculty of Medicine of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
9
|
Petricciuolo M, Davidescu M, Fettucciari K, Gatticchi L, Brancorsini S, Roberti R, Corazzi L, Macchioni L. The efficacy of the anticancer 3-bromopyruvate is potentiated by antimycin and menadione by unbalancing mitochondrial ROS production and disposal in U118 glioblastoma cells. Heliyon 2020; 6:e05741. [PMID: 33364504 PMCID: PMC7753915 DOI: 10.1016/j.heliyon.2020.e05741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/06/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic reprogramming of tumour cells sustains cancer progression. Similar to other cancer cells, glioblastoma cells exhibit an increased glycolytic flow, which encourages the use of antiglycolytics as an effective complementary therapy. We used the antiglycolytic 3-bromopyruvate (3BP) as a metabolic modifier to treat U118 glioblastoma cells and investigated the toxic effects and the conditions to increase drug effectiveness at the lowest concentration. Cellular vitality was not affected by 3BP concentrations lower than 40 μM, although p-Akt dephosphorylation, p53 degradation, and ATP reduction occurred already at 30 μM 3BP. ROS generated in mitochondria were enhanced at 30 μM 3BP, possibly by unbalancing their generation and their disposal because of glutathione peroxidase inhibition. ROS triggered JNK and ERK phosphorylation, and cyt c release outside mitochondria, not accompanied by caspases-9 and -3 activation, probably due to 3BP-dependent alkylation of cysteine residues at caspase-9 catalytic site. To explore the possibility of sensitizing cells to 3BP treatment, we exploited 3BP effects on mitochondria by using 30 μM 3BP in association with antimycin A or menadione concentrations that in themselves exhibit poor toxicity. 3BP effect on cyt c release and cell vitality loss was potentiated due the greater oxidative stress induced by antimycin or menadione association with 3BP, supporting a preeminent role of mitochondrial ROS in 3BP toxicity. Indeed, the scavenger of mitochondrial superoxide MitoTEMPO counteracted 3BP-induced cyt c release and weakened the potentiating effect of 3BP/antimycin association. In conclusion, the biochemical mechanisms leading U118 glioblastoma cells to viability loss following 3BP treatment rely on mitochondrial ROS-dependent pathways. Their potentiation at low 3BP concentrations is consistent with the goal to minimize the toxic effect of the drug towards non-cancer cells.
Collapse
Affiliation(s)
- Maya Petricciuolo
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Magdalena Davidescu
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Katia Fettucciari
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Leonardo Gatticchi
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Stefano Brancorsini
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Rita Roberti
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Lanfranco Corazzi
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| | - Lara Macchioni
- Department of Experimental Medicine, University of Perugia, 06132, Perugia, Italy
| |
Collapse
|
10
|
Downregulation of MDR 1 gene contributes to tyrosine kinase inhibitor induce apoptosis and reduction in tumor metastasis: A gravity to space investigation. Int J Pharm 2020; 591:119993. [DOI: 10.1016/j.ijpharm.2020.119993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 01/10/2023]
|
11
|
Hodgman MW, Miller JB, Meurs TE, Kauwe JSK. CUBAP: an interactive web portal for analyzing codon usage biases across populations. Nucleic Acids Res 2020; 48:11030-11039. [PMID: 33045750 PMCID: PMC7641757 DOI: 10.1093/nar/gkaa863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/18/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Synonymous codon usage significantly impacts translational and transcriptional efficiency, gene expression, the secondary structure of both mRNA and proteins, and has been implicated in various diseases. However, population-specific differences in codon usage biases remain largely unexplored. Here, we present a web server, https://cubap.byu.edu, to facilitate analyses of codon usage biases across populations (CUBAP). Using the 1000 Genomes Project, we calculated and visually depict population-specific differences in codon frequencies, codon aversion, identical codon pairing, co-tRNA codon pairing, ramp sequences, and nucleotide composition in 17,634 genes. We found that codon pairing significantly differs between populations in 35.8% of genes, allowing us to successfully predict the place of origin for African and East Asian individuals with 98.8% and 100% accuracy, respectively. We also used CUBAP to identify a significant bias toward decreased CTG pairing in the immunity related GTPase M (IRGM) gene in East Asian and African populations, which may contribute to the decreased association of rs10065172 with Crohn's disease in those populations. CUBAP facilitates in-depth gene-specific and codon-specific visualization that will aid in analyzing candidate genes identified in genome-wide association studies, identifying functional implications of synonymous variants, predicting population-specific impacts of synonymous variants and categorizing genetic biases unique to certain populations.
Collapse
Affiliation(s)
- Matthew W Hodgman
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Justin B Miller
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Taylor E Meurs
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - John S K Kauwe
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
12
|
Mohammadi F, Shafiei M, Assad D, Rostami G, Hamid M, Foroughmand AM. Impact of ABCB1 Gene Polymorphisms and Smoking on the Susceptibility Risk of Chronic Myeloid Leukemia and Cytogenetic Response. IRANIAN BIOMEDICAL JOURNAL 2020; 25:54-61. [PMID: 33129240 PMCID: PMC7748114 DOI: 10.29252/ibj.25.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: IM, a strong and selective TKI, has been approved as the front line of treatment in CML patients. In spite of satisfactory results of imatinib in the treatment of patients with CML, patients with treatment failure or suboptimal response developed resistance that might be because of pharmacogenetic variants. This study attempted to evaluate the influence of ABCB1 gene polymorphisms and smoking on CML risk and resistance to imatinib. Methods: ABCB1 (c.1236C>T, c.3435C>T) polymorphisms were genotyped in 98 CML patients and 100 sex- and age-matched healthy subjects by PCR-RFLP method, followed by sequencing. The patients were evaluated for cytogenetic response by the standard chromosome banding analysis in regular intervals. Results: Our results showed that c.1236CC genotype was significantly associated with imatinib resistance (OR = 3.94; p = 0.038). Analysis of the joint of SNP-smoking combination showed that smokers with c.1236TT/CT and c.1236CC genotypes had the increased risk of CML (OR = 6.04; p = 0.00 and OR = 4.95, p = 0.005) and treatment failure (OR = 5.36, p = 0.001 and OR = 15.7, p = 0.002), respectively. Smokers with c.3435TT/CT and c.3435CC genotypes also displayed the elevated risk of CML development (OR = 6.01, p = 0 and OR = 4.36, p = 0.011) and IM resistance (OR = 5.61, p = 0.001 and OR = 13.58, p = 0.002), respectively. Conclusion: Our findings suggest that c.1236CC genotype has clinical importance in the prediction of treatment outcome with IM, and smoking could have a synergistic role in CML risk and IM resistance.
Collapse
Affiliation(s)
| | - Mohammad Shafiei
- Department of Biology, School of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Dlnya Assad
- Department of Biology, School of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Biotechnology and Biological Science Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Golale Rostami
- Department of Biology, College of Science, Sulaimani University, Sulaymanyah, Iraq
| | - Mohammad Hamid
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
13
|
Dai J, Yang L, Xu T, Si L, Cui C, Sheng X, Chi Z, Mao L, Lian B, Tang B, Bai X, Zhou L, Li S, Wang X, Yan X, Kong Y, Guo J. A Functional Synonymous Variant in PDGFRA Is Associated with Better Survival in Acral Melanoma. J Cancer 2020; 11:2945-2956. [PMID: 32226509 PMCID: PMC7086247 DOI: 10.7150/jca.43010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/18/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose: Polymorphisms of genes in the platelet-derived growth factor (PDGF) signaling pathway have been found to predict cutaneous melanoma (CM) survival, but their clinical effects in acral melanoma (AM) patients have not been explored. The aim of this study was to characterize the functional effect of the tag single-nucleotide polymorphism (SNP) rs2228230:C>T and assess its association with clinical outcomes in AM patients. Methods: The effect of rs2228230:C>T on mRNA structures and codon usage values were evaluated using in silico analyses. PDGF receptor alpha (PDGFRA) expression vectors with the rs2228230:C or rs2228230:T allele were constructed to evaluate the expression and signaling activity of PDGFRA. The expression of PDGFRA in AM samples was measured using in situ RNAscope hybridization and immunohistochemical staining. The association of the rs2228230 genotype with survival was analyzed in two independent AM cohorts. Results: In silico analyses indicated that the rs2228230:T allele increases the minimum free energy and reduces synonymous codon usage. The rs2228230:T allele decreased the expression of PDGFRA by reducing the stability of its mRNA and protein as well as the signaling activity of the MAPK and PI3K/AKT pathways. PDGFRA mRNA and protein expression was significantly reduced in AM tissues with the rs2228230:T allele. The progression-free survival and overall survival of AM patients with the rs2228230:T allele were significantly longer than those of patients with the CC genotype. Conclusion: Our study indicated that rs2228230:T can reduce the expression of PDGFRA and downstream signaling activity and is associated with better survival in AM patients.
Collapse
Affiliation(s)
- Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Lu Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China.,Department of Radiology, Peking University Shougang Hospital, Beijing 100144, China
| | - Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Chuanliang Cui
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xinan Sheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhihong Chi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Lili Mao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bin Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Bixia Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xue Bai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Li Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Siming Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xuan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Xieqiao Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Renal Cancer and Melanoma, Peking University Cancer Hospital and Institute, Beijing 100142, China
| |
Collapse
|
14
|
Rinaldi I, Nova R, Widyastuti R, Priambodo R, Instiaty I, Louisa M. Association between C1236T Genetic Variant of ABCB1 Gene and Molecular Response to Imatinib in Indonesian Chronic Myeloid Patients. Asian Pac J Cancer Prev 2019; 20:3331-3334. [PMID: 31759356 PMCID: PMC7063013 DOI: 10.31557/apjcp.2019.20.11.3331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/30/2022] Open
Abstract
Objective: Imatinib is the first-line drug used for the treatment of chronic myeloid leukemia (CML) patients due to high molecular response and overall survival rate. However, some patients develop resistance to imatinib even after attaining a response. Mutation in ABCB1 efflux transporters is one of the known mechanisms of resistance to imatinib in chronic myeloid leukemia patients. This study was aimed to investigate the association of ABCB1 C1236T polymorphism in Indonesian chronic myeloid patients with molecular response to imatinib treatment. Methods: We analyzed 120 samples from chronic myeloid leukemia patients in the chronic phase, who had been on imatinib treatment for at least 12 months. We analyzed the C1236T variant of the ABCB1 gene using PCR, followed by direct sequencing, and associate them with the achievement of major molecular response (MMR). Results: The major molecular response was achieved in 28% of patients. The frequencies of the SNPs were CC (40%), CT (46%), and TT (14%). Our result showed that there was a lack of association between polymorphism of ABCB1 C1236T and imatinib response in Indonesian patients, with OR = 0.646 (95% CI: 0.283, 1.471; p>0.05). Conclusion: There was no association between ABCB1 C1236T variants with the major molecular response in Indonesian chronic myeloid leukemia patients receiving imatinib treatment.
Collapse
Affiliation(s)
- Ikhwan Rinaldi
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Riki Nova
- Clinical Pharmacology Fellowship Program, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Reni Widyastuti
- Clinical Pharmacology Fellowship Program, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Rizky Priambodo
- Human Genetic Research Center, Indonesian Medical Education, and Research Institute, Jakarta Indonesia
| | - Instiaty Instiaty
- Department of Pharmacology and Therapeutics, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| | - Melva Louisa
- Department of Pharmacology and Therapeutics, Faculty of Medicine Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
15
|
Wang ZZ, Zhang YF, Huang WC, Wang XP, Ni XJ, Lu HY, Hu JQ, Deng SH, Zhu XQ, Xie HS, Chen HZ, Zhang M, Qiu C, Wen YG, Shang DW. Effects of Comedication and Genetic Factors on the Population Pharmacokinetics of Lamotrigine: A Prospective Analysis in Chinese Patients With Epilepsy. Front Pharmacol 2019; 10:832. [PMID: 31404235 PMCID: PMC6669232 DOI: 10.3389/fphar.2019.00832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
Lamotrigine (LTG) is a second-generation anti-epileptic drug widely used for focal and generalized seizures in adults and children, and as a first-line medication in pregnant women and women of childbearing age. However, LTG pharmacokinetics shows high inter-individual variability, thus potentially leading to therapeutic failure or side effects in patients. This prospective study aimed to establish a population pharmacokinetics model for LTG in Chinese patients with epilepsy and to investigate the effects of genetic variants in uridine diphosphate glucuronosyltransferase (UGT) 1A4, UGT2B7, MDR1, ABCG2, ABCC2, and SLC22A1, as well as non-genetic factors, on LTG pharmacokinetics. The study population consisted of 89 patients with epilepsy, with 419 concentrations of LTG. A nonlinear mixed effects model was implemented in NONMEM software. A one-compartment model with first-order input and first-order elimination was found to adequately characterize LTG concentration. The population estimates of the apparent volume of distribution (V/F) and apparent clearance (CL/F) were 12.7 L and 1.12 L/h, respectively. The use of valproic acid decreased CL/F by 38.5%, whereas the co-administration of rifampicin caused an increase in CL/F of 64.7%. The CL/F decreased by 52.5% in SLC22A1-1222AA carriers. Patients with the ABCG2-34AA genotype had a 42.0% decrease in V/F, whereas patients with the MDR1-2677TT and C3435TT genotypes had a 136% increase in V/F. No obvious genetic effect of UGT enzymes was found relative to the concentrations of LTG in Chinese patients. Recommended dose regimens for patients with different gene polymorphisms and comedications were estimated on the basis of Monte Carlo simulations and the established model. These findings should be valuable for developing individualized dosage regimens in adult and adolescent Chinese patients 13–65 years of age.
Collapse
Affiliation(s)
- Zhan-Zhang Wang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yue-Feng Zhang
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Wen-Can Huang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Department of Pharmacy, Guangzhou Bureau of Civil Affairs Psychiatric Hospital, Guangzhou, China
| | - Xi-Pei Wang
- Medical Research Center, Guangdong Province People's Hospital, Guangdong Academy of Medical Sciences, Cardiovascular Institute, Guangzhou, China
| | - Xiao-Jiao Ni
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Hao-Yang Lu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Jin-Qing Hu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Shu-Hua Deng
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Xiu-Qing Zhu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Huan-Shan Xie
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Hong-Zhen Chen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Ming Zhang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Chang Qiu
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Yu-Guan Wen
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - De-Wei Shang
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| |
Collapse
|
16
|
Azad NA, Shah ZA, Khan MS, Rasool R. No role of 3435C>T and 2677G>T ABCB1 (MDR1) gene single nucleotide polymorphisms in imatinib treatment response: A case control study on CML patients of Kashmir. Meta Gene 2019. [DOI: 10.1016/j.mgene.2018.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
17
|
Maia RC, Vasconcelos FC, Souza PS, Rumjanek VM. Towards Comprehension of the ABCB1/P-Glycoprotein Role in Chronic Myeloid Leukemia. Molecules 2018; 23:molecules23010119. [PMID: 29316665 PMCID: PMC6017716 DOI: 10.3390/molecules23010119] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/25/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Abstract: The introduction of imatinib (IM), a BCR-ABL1 tyrosine kinase inhibitor (TKI), has represented a significant advance in the first-line treatment of chronic myeloid leukemia (CML). However, approximately 30% of patients need to discontinue IM due to resistance or intolerance to this drug. Both resistance and intolerance have also been observed in treatment with the second-generation TKIs-dasatinib, nilotinib, and bosutinib-and the third-generation TKI-ponatinib. The mechanisms of resistance to TKIs may be BCR-ABL1-dependent and/or BCR-ABL1-independent. Although the role of efflux pump P-glycoprotein (Pgp), codified by the ABCB1 gene, is unquestionable in drug resistance of many neoplasms, a longstanding question exists about whether Pgp has a firm implication in TKI resistance in the clinical scenario. The goal of this review is to offer an overview of ABCB1/Pgp expression/activity/polymorphisms in CML. Understanding how interactions, associations, or cooperation between Pgp and other molecules-such as inhibitor apoptosis proteins, microRNAs, or microvesicles-impact IM resistance risk may be critical in evaluating the response to TKIs in CML patients. In addition, new non-TKI compounds may be necessary in order to overcome the resistance mediated by Pgp in CML.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/physiology
- Animals
- Drug Resistance, Neoplasm
- Genetic Predisposition to Disease
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Polymorphism, Single Nucleotide
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
Collapse
Affiliation(s)
- Raquel C Maia
- Laboratório de Hemato-Oncologia Celular e Molecular and Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 6° andar, CEP 20230-130 Rio de Janeiro, Brazil.
| | - Flavia C Vasconcelos
- Laboratório de Hemato-Oncologia Celular e Molecular and Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 6° andar, CEP 20230-130 Rio de Janeiro, Brazil.
| | - Paloma S Souza
- Laboratório de Hemato-Oncologia Celular e Molecular and Programa de Hemato-Oncologia Molecular, Instituto Nacional de Câncer (INCA), Praça da Cruz Vermelha, 23, 6° andar, CEP 20230-130 Rio de Janeiro, Brazil.
| | - Vivian M Rumjanek
- Laboratório de Imunologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro (UFRJ), Av. Carlos Chagas Filho, 373, Cidade Universitária, CEP 21941-902 Rio de Janeiro, Brazil.
| |
Collapse
|
18
|
Lussana F, Intermesoli T, Stefanoni P, Rambaldi A. Mechanisms of Resistance to Targeted Therapies in Chronic Myeloid Leukemia. Handb Exp Pharmacol 2018; 249:231-250. [PMID: 29242991 DOI: 10.1007/164_2017_81] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with newly diagnosed chronic myeloid leukemia (CML) usually received as first-line treatment a first- or second-generation tyrosine kinase inhibitor (TKI). Although initial responses are high, therapy fails in up to 40% of patients and initial response is lost within 2 years in approximately 25% of patients. In the last few years, intensive efforts have been spent to explain treatment failure, and different mechanisms of resistance have been identified, ranging from BCR-ABL1 kinase domain mutations to lack of adherence to therapy. In this review, we briefly summarize the clinical efficacy of approved TKIs and describe the main mechanisms of TKI resistance.
Collapse
Affiliation(s)
- Federico Lussana
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII Bergamo, Bergamo, Italy
| | - Tamara Intermesoli
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII Bergamo, Bergamo, Italy.
| | - Paola Stefanoni
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII Bergamo, Bergamo, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII Bergamo, Bergamo, Italy
- Department of Oncology and Hematology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
19
|
Verboom MC, Kloth JSL, Swen JJ, van der Straaten T, Bovée JVMG, Sleijfer S, Reyners AKL, Mathijssen RHJ, Guchelaar HJ, Steeghs N, Gelderblom H. Genetic polymorphisms in angiogenesis-related genes are associated with worse progression-free survival of patients with advanced gastrointestinal stromal tumours treated with imatinib. Eur J Cancer 2017; 86:226-232. [PMID: 29054076 DOI: 10.1016/j.ejca.2017.09.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Imatinib 400 mg per day is first-line therapy for patients with gastrointestinal stromal tumours (GISTs). Although clinical benefit is high, progression-free survival (PFS) is variable. This study explores the relationship of single nucleotide polymorphisms (SNPs) in genes related to imatinib pharmacokinetics and pharmacodynamics and PFS in imatinib-treated patients with advanced GIST. METHODS In 227 patients a pharmacogenetic pathway analysis was performed. Genotype data from 36 SNPs in 18 genes were tested in univariate analyses to investigate their relationship with PFS. Genetic variables which showed a trend (p < 0.1) were tested in a multivariate model, in which each singular SNP was added to clinicopathological factors. RESULTS In univariate analyses, PFS was associated with synchronous metastases (p = 0.0008) and the mutational status (p = 0.004). Associations with rs1870377 in KDR (additive model, p = 0.0009), rs1570360 in VEGFA (additive model, p = 0.053) and rs4149117 in SLCO1B3 (mutant dominant model, 0.027) were also found. In the multivariate model, significant associations and trends with shorter PFS were found for synchronous metastases (HR 1.94, p = 0.002), KIT exon 9 mutation (HR 2.45, p = 0.002) and the SNPs rs1870377 (AA genotype, HR 2.61, p = 0.015), rs1570360 (AA genotype, HR 2.02, p = 0.037) and rs4149117 (T allele, HR 0.62, p = 0.083). CONCLUSION In addition to KIT exon 9 mutation and synchronous metastases, SNPs in KDR, VEGFA and SLCO1B3 appear to be associated with PFS in patients with advanced GIST receiving 400-mg imatinib. If validated, specific SNPs may serve as predictive biomarkers to identify patients with an increased risk for progressive disease during imatinib therapy.
Collapse
Affiliation(s)
- Michiel C Verboom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Jacqueline S L Kloth
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tahar van der Straaten
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith V M G Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefan Sleijfer
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anna K L Reyners
- Department of Medical Oncology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Neeltje Steeghs
- Department of Medical Oncology, Antoni van Leeuwenhoek - Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
20
|
Molecular study of ABCB1 gene and its correlation with imatinib response in chronic myeloid leukemia. Cancer Chemother Pharmacol 2017; 80:829-839. [PMID: 28836054 DOI: 10.1007/s00280-017-3424-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/14/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE The introduction and success of imatinib mesylate have become a paradigm shift in chronic myeloid leukemia (CML) treatment. However, despite its high efficiency, resistance to imatinib has emerged as a significant problem, which may in part be caused by pharmacogenetic variability. Three single-nucleotide polymorphisms (C1236T, G2677T/A, C3435T) and/or mRNA expression changes of ABCB1 gene were demonstrated to be associated with inter-individual variability of imatinib response in CML patients. In this study, we aimed to examine whether genetic variations and/or altered expression of ABCB1 gene may influence response to imatinib. METHODS Sixty nine CML Tunisian patients, undergoing imatinib therapy, were enrolled in this study. These were divided into two groups: responders and non-responders to imatinib. The relative transcript expression levels of ABCB1 gene and the distribution of allele and genotype frequency of ABCB1 SNPs were compared between these two categories of patients. Linkage disequilibrium tests and haplotypes analysis were also studied. RESULTS Our results showed that the mRNA expression level of ABCB1 gene did not differ significantly between the two categories of patients. In addition, results obtained from ABCB1 polymorphisms study and their correlation with imatinib response showed that the optimal response rate to imatinib did not differ significantly between C1236T, G2677T/A or C3435T genotypes. However, haplotype analysis showed that the 1236C-2677A-3435C haplotype was observed only in imatinib non-responders' patients suggesting that CAC haplotype was linked to higher risk of imatinib resistance. CONCLUSION Furthermore, analyses of ABCB1 haplotypes should be taken into account to study the relationship between ABCB1 genotypes and imatinib efficacy.
Collapse
|
21
|
Patel AB, O'Hare T, Deininger MW. Mechanisms of Resistance to ABL Kinase Inhibition in Chronic Myeloid Leukemia and the Development of Next Generation ABL Kinase Inhibitors. Hematol Oncol Clin North Am 2017; 31:589-612. [PMID: 28673390 PMCID: PMC5505321 DOI: 10.1016/j.hoc.2017.04.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chronic myeloid leukemia is increasingly viewed as a chronic illness; most patients have a life expectancy close to that of the general population. Despite progress made using BCR-ABL1 tyrosine kinase inhibitors (TKIs), drug resistance via BCR-ABL1-dependent and BCR-ABL1-independent mechanisms continues to be an issue. BCR-ABL1-dependent resistance is primarily mediated through oncoprotein kinase domain mutations and usually results in overt resistance to TKIs. However, BCR-ABL1-independent resistance in the setting of effective BCR-ABL1 inhibition is recognized as a major contributor to minimal residual disease. Efforts to eradicate persistent leukemic stem cells have focused on combination therapy.
Collapse
MESH Headings
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Biological Availability
- Biomarkers
- Cell Survival/drug effects
- Cell Survival/genetics
- Dose-Response Relationship, Drug
- Drug Discovery
- Drug Resistance, Neoplasm/genetics
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/chemistry
- Fusion Proteins, bcr-abl/genetics
- Gene Expression Regulation, Leukemic/drug effects
- Humans
- Immunotherapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Models, Molecular
- Molecular Targeted Therapy
- Mutation
- Protein Kinase Inhibitors/chemistry
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Ami B Patel
- Department of Hematology and Oncology, Huntsman Cancer Institute, 2000 Circle of Hope Drive, The University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas O'Hare
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA
| | - Michael W Deininger
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, The University of Utah, 2000 Circle of Hope Drive, Salt Lake City, UT 84112, USA.
| |
Collapse
|
22
|
Ali MAM. Chronic Myeloid Leukemia in the Era of Tyrosine Kinase Inhibitors: An Evolving Paradigm of Molecularly Targeted Therapy. Mol Diagn Ther 2017; 20:315-33. [PMID: 27220498 DOI: 10.1007/s40291-016-0208-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm, characterized by the unrestrained expansion of pluripotent hematopoietic stem cells. CML was the first malignancy in which a unique chromosomal abnormality was identified and a pathophysiologic association was suggested. The hallmark of CML is a reciprocal chromosomal translocation between the long arms of chromosomes 9 and 22, t(9; 22)(q34; q11), creating a derivative 9q+ and a shortened 22q-. The latter, known as the Philadelphia (Ph) chromosome, harbors the breakpoint cluster region-abelson (BCR-ABL) fusion gene, encoding the constitutively active BCR-ABL tyrosine kinase that is necessary and sufficient for initiating CML. The successful implementation of tyrosine kinase inhibitors (TKIs) for the treatment of CML remains a flagship for molecularly targeted therapy in cancer. TKIs have changed the clinical course of CML; however, some patients nonetheless demonstrate primary or secondary resistance to such therapy and require an alternative therapeutic strategy. Therefore, the assessment of early response to treatment with TKIs has become an important tool in the clinical monitoring of CML patients. Although mutations in the BCR-ABL have proven to be the most prominent mechanism of resistance to TKIs, other mechanisms-either rendering the leukemic cells still dependent on BCR-ABL activity or supporting oncogenic properties of the leukemic cells independent of BCR-ABL signaling-have been identified. This article provides an overview of the current understanding of CML pathogenesis; recommendations for diagnostic tools, treatment strategies, and management guidelines; and highlights the BCR-ABL-dependent and -independent mechanisms that contribute to the development of resistance to TKIs.
Collapse
Affiliation(s)
- Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
23
|
Ankathil R. ABCB1 genetic variants in leukemias: current insights into treatment outcomes. Pharmgenomics Pers Med 2017; 10:169-181. [PMID: 28546766 PMCID: PMC5438075 DOI: 10.2147/pgpm.s105208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Despite improvements in treatment of different types of leukemia, not all patients respond optimally for a particular treatment. Some treatments will work better for some, while being harmful or ineffective for others. This is due to genetic variation in the form of single-nucleotide polymorphisms (SNPs) that affect gene expression or function and cause inherited interindividual differences in the metabolism and disposition of drugs. Drug transporters are one of the determinants governing the pharmacokinetic profile of chemotherapeutic drugs. The ABCB1 transporter gene transports a wide range of drugs, including drugs used in leukemia treatment. Polymorphisms in the ABCB1 gene do affect intrinsic resistance and pharmacokinetics of several drugs used in leukemia treatment protocols and thereby affect the efficacy of treatment and event-free survival. This review focuses on the impact of three commonly occurring SNPs (1236C>T, 2677G>T/A, and 3435C>T) of ABCB1 on treatment response of various types of leukemia. From the literature available, some of the genotypes and haplotypes of these SNPs have been found to be potential determinants of interindividual variability in drug disposition and pharmacologic response in different types of leukemia. However, due to inconsistencies in the results observed across the studies, additional studies, considering novel genomic methodologies, comprehensive definition of clinical phenotypes, adequate sample size, and uniformity in all the confounding factors, are warranted.
Collapse
Affiliation(s)
- Ravindran Ankathil
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
24
|
Jaruskova M, Curik N, Hercog R, Polivkova V, Motlova E, Benes V, Klamova H, Pecherkova P, Belohlavkova P, Vrbacky F, Machova Polakova K. Genotypes of SLC22A4 and SLC22A5 regulatory loci are predictive of the response of chronic myeloid leukemia patients to imatinib treatment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:55. [PMID: 28420426 PMCID: PMC5395939 DOI: 10.1186/s13046-017-0523-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 01/06/2023]
Abstract
Background Through high-throughput next-generation sequencing of promoters of solute carrier and ATP-binding cassette genes, which encode drug transporters, we aimed to identify SNPs associated with the response to imatinib administered for first-line treatment of patients with chronic myeloid leukemia. Methods In silico analysis using publicly available databases was done to select the SLC and ABC genes and their promoters for the next-generation sequencing. SNPs associated with the imatinib response were identified using Fisher’s exact probability tests and subjected to the linkage disequilibrium analyses with regulatory loci of concerned genes. We analyzed cumulative achievement of major molecular response and probability of event free survival in relation to identified SNP genotypes in 129 CML patients and performed multivariate analysis for determination of genotypes as independent predictors of outcome. Gene expression analysis of eight cell lines naturally carrying different genotypes was performed to outline an impact of genotypes on the gene expression. Results We observed significant differences in the frequencies of the rs460089-GC and rs460089-GG (SLC22A4) genotypes among rs2631365-TC (SLC22A5) genotype carriers that were associated with optimal and non-optimal responses, respectively. Loci rs460089 and rs2631365 were in highly significant linkage disequilibrium with 12 regulatory loci in introns of SLC22A4 and SLC22A5 encoding imatinib transporters. Genotype association analysis with the response to imatinib indicated that rs460089-GC carriers had a significantly higher probability of achieving a stable major molecular response (BCR-ABL1 transcript level below or equal to 0.1% in the international scale). In contrast, the rs460089-GG represented a risk factor for imatinib failure, which was significantly higher in rs460089-GG_rs2631365-TC carriers. Conclusions This exploratory study depicted potentially important genetic markers predicting outcome of imatinib treatment, which may be helpful for tailoring therapy in clinical practice. Electronic supplementary material The online version of this article (doi:10.1186/s13046-017-0523-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monika Jaruskova
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820, Prague, Czech Republic.,Institute of Clinical and Experimental Hematology, 1st Medicine Faculty, Charles University, Prague, Czech Republic
| | - Nikola Curik
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820, Prague, Czech Republic.,Institute of Pathophysiology, 1st Medicine Faculty, Charles University, Prague, Czech Republic
| | - Rajna Hercog
- European Molecular Biology Laboratory, Genomics Core Facility, Heidelberg, Germany
| | - Vaclava Polivkova
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820, Prague, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Eliska Motlova
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820, Prague, Czech Republic
| | - Vladimir Benes
- European Molecular Biology Laboratory, Genomics Core Facility, Heidelberg, Germany
| | - Hana Klamova
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820, Prague, Czech Republic.,Institute of Clinical and Experimental Hematology, 1st Medicine Faculty, Charles University, Prague, Czech Republic.,CELL, the Czech Leukemia Study Group for Life, Brno, Czech Republic
| | - Pavla Pecherkova
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820, Prague, Czech Republic
| | - Petra Belohlavkova
- CELL, the Czech Leukemia Study Group for Life, Brno, Czech Republic.,4th Department of Internal Medicine Hematology, Charles University Faculty Hospital and Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Filip Vrbacky
- 4th Department of Internal Medicine Hematology, Charles University Faculty Hospital and Faculty of Medicine, Hradec Kralove, Czech Republic
| | - Katerina Machova Polakova
- Institute of Hematology and Blood Transfusion, U Nemocnice 1, 12820, Prague, Czech Republic. .,Institute of Clinical and Experimental Hematology, 1st Medicine Faculty, Charles University, Prague, Czech Republic. .,CELL, the Czech Leukemia Study Group for Life, Brno, Czech Republic.
| |
Collapse
|
25
|
Harivenkatesh N, Kumar L, Bakhshi S, Sharma A, Kabra M, Velpandian T, Gogia A, Shastri SS, Biswas NR, Gupta YK. Influence of MDR1 and CYP3A5 genetic polymorphisms on trough levels and therapeutic response of imatinib in newly diagnosed patients with chronic myeloid leukemia. Pharmacol Res 2017; 120:138-145. [PMID: 28330783 DOI: 10.1016/j.phrs.2017.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
Polymorphisms in genes coding for imatinib transporters and metabolizing enzymes may affect imatinib pharmacokinetics and clinical response. Aim of this study was to assess the influence of polymorphisms in MDR1 and CYP3A5 genes on imatinib trough levels, cytogenetic and molecular response in patients with CML. Newly diagnosed patients with chronic-phase CML started on imatinib therapy were enrolled and followed up prospectively for 24 months. The following single nucleotide polymorphisms were genotyped; C1236T, C3435T, G2677T/A in MDR1 gene and A6986G in CYP3A5 gene. Genotyping was done using PCR-RFLP method and validated by direct gene sequencing. Trough levels of imatinib were measured using LC-MS/MS. Cytogenetic response was assessed by conventional bone-marrow cytogenetics. Molecular response was assessed by qRTPCR using international scale. A total of 173 patients were included, out of which 71 patients were imatinib responders, while 102 were non-responders. Marked inter-individual variability in trough levels of imatinib was seen. Patients with GG genotype for CYP3A5-A6986G (P=0.016) and TT genotype for MDR1-C3435T (P=0.013) polymorphisms had significantly higher trough levels of imatinib. Patients with AA genotype for CYP3A5-A6986G [RR=1.448, 95% CI (1.126, 1.860), P=0.029] and CC genotype for MDR1-C1236T [RR=1.397, 95% CI (1.066, 1.831), P=0.06] &MDR1-C3435T [RR=1.508, 95% CI (1.186, 1.917), P=0.018] polymorphisms were at high risk for failure of imatinib therapy. Patients with CGC haplotype for MDR1 polymorphisms had significantly lower imatinib trough levels and were at a higher risk of imatinib failure [RR=1.547, 95% CI (1.324, 1.808), P<0.001]. GG vs. non-GG genotype for CYP3A5-A6986G [adjusted OR: 0.246; 95% CI (0.116, 0.519); P<0.001] and TT vs. non-TT genotype for MDR1-C1236T [adjusted OR: 0.270; 95% CI (0.110, 0.659); P=0.004] &MDR1-C3435T [adjusted OR: 0.289; 95% CI (0.135, 0.615); P=0.001] polymorphisms were independent factors predicting imatinib response in multivariate analysis. To conclude, MDR1 and CYP3A5 genetic polymorphisms significantly influence plasma trough levels and therapeutic response of imatinib in patients with CML. Genotyping of these polymorphisms could be of value to individualize the therapy and optimize the clinical outcomes.
Collapse
Affiliation(s)
- Natarajan Harivenkatesh
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Lalit Kumar
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Atul Sharma
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Madhulika Kabra
- Department of Pediatrics (Genetics Unit), All India Institute of Medical Sciences, New Delhi 110029, India
| | - Thirumurthy Velpandian
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Ajay Gogia
- Department of Medical Oncology, Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Shivaram S Shastri
- Department of Pediatrics (Genetics Unit), All India Institute of Medical Sciences, New Delhi 110029, India
| | - Nihar Ranjan Biswas
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Yogendra Kumar Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
26
|
Nair D, Dhangar S, Shanmukhaiah C, Vundinti BR. Association of genetic polymorphisms of the ABCG2, ABCB1, SLCO1B3 genes and the response to Imatinib in chronic myeloid leukemia patients with chronic phase. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
27
|
Jiang ZP, Zhao XL, Takahashi N, Angelini S, Dubashi B, Sun L, Xu P. Trough concentration and ABCG2 polymorphism are better to predict imatinib response in chronic myeloid leukemia: a meta-analysis. Pharmacogenomics 2016; 18:35-56. [PMID: 27991849 DOI: 10.2217/pgs-2016-0103] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The present study aimed to conduct a series of meta-analyses to investigate the influence of imatinib trough concentration (C0), as well as ABCB1 and ABCG2 polymorphisms, on the clinical response in patients with chronic myeloid leukemia (CML). METHODS A literature search was conducted using the PubMed and Cochrane electronic databases to locate relevant papers from 2003 onward. Then, an initial meta-analysis of 14 studies involving 2184 patients was conducted to understand the effect of imatinib mesylate (IM) C0 on clinical outcome in CML patients. Subsequently, a series of meta-analyses were performed, including up to 23 studies with 2577 patients, on the effect of genetic polymorphisms of ABCB1 and ABCG2 on the clinical response to IM. RESULTS Meta-analysis revealed that patients who achieved a major molecular response (MMR) have a significantly higher IM C0 than those who failed to achieve an MMR. We also found that the patients who achieved a complete cytogenic response (CCyR) have a significantly higher IM C0 than those who did not achieve a CCyR. However, no significant difference in IM C0 was found between the complete molecular response and non-complete molecular response groups. Additional analysis showed that ABCG2 421 variant A allele was significantly associated with a higher rate of MMR and overall response, especially in Asian patients. Meta-analysis did not reveal a correlation between ABCB1 C3435T and C1236T polymorphisms with any clinical response to IM. However, the G2677T/A polymorphism could play a role in IM response in the recessive model. CONCLUSION This meta-analysis demonstrates that there was a significant correlation between the IM trough concentration and clinical responses, especially MMR and CCyR, in CML patients. Furthermore, we found that the probability of successful treatment was correlated with the ABCG2 C421A polymorphism, at least within the Asian population. We failed to determine an association between ABCB1 polymorphisms and IM response, although the G2677T/A polymorphism might be involved. However, further large-scale investigations using more sensitive genotyping methods would be required to confirm this.
Collapse
Affiliation(s)
- Zhi-Ping Jiang
- Laboratory of Clinical Pharmacology, Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, People's Republic of China
| | - Xie-Lan Zhao
- Laboratory of Clinical Pharmacology, Department of Hematology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan Province 410008, People's Republic of China
| | - Naoto Takahashi
- Department of Hematology, Nephrology, & Rheumatology, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita city, Akita 010-8543, Japan
| | - Sabrina Angelini
- Department of Pharmacology, University of Bologna, Bologna 40126, Italy
| | - Biswajit Dubashi
- Department of Medical Oncology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry 605 006, India
| | - Li Sun
- Clinical Pharmacy & Pharmacology Research Institute, the Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan Province 410011, People's Republic of China
| | - Ping Xu
- Clinical Pharmacy & Pharmacology Research Institute, the Second Xiangya Hospital, Central South University, 139 Renmin Middle Road, Changsha, Hunan Province 410011, People's Republic of China
| |
Collapse
|
28
|
Chen S, Sutiman N, Chowbay B. Pharmacogenetics of drug transporters in modulating imatinib disposition and treatment outcomes in chronic myeloid leukemia & gastrointestinal stromal tumor patients. Pharmacogenomics 2016; 17:1941-1955. [DOI: 10.2217/pgs-2016-0124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of imatinib in the treatment of BCR-ABL-positive chronic myeloid leukemia and gastrointestinal stromal tumors has significantly improved survival outcomes in patients afflicted by these malignancies. However, a substantial proportion of imatinib-treated patients still experience treatment failure. Suboptimal concentrations of imatinib have been postulated to contribute at least partially to the development of resistance against imatinib. Indeed, variations in the genes encoding drug transporters have been reported to markedly influence imatinib disposition and treatment outcomes in various populations. This review aims to consolidate and critically assess the studies conducted to date which have investigated the influence of pharmacogenetic variants in drug transporters on the disposition of imatinib and treatment outcomes in Asians and other populations.
Collapse
Affiliation(s)
- Sylvia Chen
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore
| | | | - Balram Chowbay
- Laboratory of Clinical Pharmacology, Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore
- SingHealth Clinical Pharmacology, Singapore
- Office of Clinical Sciences, Duke-NUS Medical School, Singapore
| |
Collapse
|
29
|
Neul C, Schaeffeler E, Sparreboom A, Laufer S, Schwab M, Nies AT. Impact of Membrane Drug Transporters on Resistance to Small-Molecule Tyrosine Kinase Inhibitors. Trends Pharmacol Sci 2016; 37:904-932. [PMID: 27659854 DOI: 10.1016/j.tips.2016.08.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/21/2022]
Abstract
Small-molecule inhibitors of tyrosine kinases (TKIs) are the mainstay of treatment for many malignancies and represent novel treatment options for other diseases such as idiopathic pulmonary fibrosis. Twenty-five TKIs are currently FDA-approved and >130 are being evaluated in clinical trials. Increasing evidence suggests that drug exposure of TKIs may significantly contribute to drug resistance, independently from somatic variation of TKI target genes. Membrane transport proteins may limit the amount of TKI reaching the target cells. This review highlights current knowledge on the basic and clinical pharmacology of membrane transporters involved in TKI disposition and their contribution to drug efficacy and adverse drug effects. In addition to non-genetic and epigenetic factors, genetic variants, particularly rare ones, in transporter genes are promising novel factors to explain interindividual variability in the response to TKI therapy.
Collapse
Affiliation(s)
- Claudia Neul
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| | - Alex Sparreboom
- Division of Pharmaceutics, College of Pharmacy, Ohio State University, Columbus, OH, USA
| | - Stefan Laufer
- Department of Pharmaceutical Chemistry, University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany; Department of Clinical Pharmacology, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital, Tübingen, Germany; Department of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany.
| | - Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, and University of Tübingen, Germany
| |
Collapse
|
30
|
Adeagbo BA, Bolaji OO, Olugbade TA, Durosinmi MA, Bolarinwa RA, Masimirembwa C. Influence of CYP3A5*3 and ABCB1 C3435T on clinical outcomes and trough plasma concentrations of imatinib in Nigerians with chronic myeloid leukaemia. J Clin Pharm Ther 2016; 41:546-51. [DOI: 10.1111/jcpt.12424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- B. A. Adeagbo
- Department of Pharmaceutical Chemistry; Obafemi Awolowo University; Ile-Ife Nigeria
| | - O. O. Bolaji
- Department of Pharmaceutical Chemistry; Obafemi Awolowo University; Ile-Ife Nigeria
| | - T. A. Olugbade
- Department of Pharmaceutical Chemistry; Obafemi Awolowo University; Ile-Ife Nigeria
| | - M. A. Durosinmi
- Department of Haematology & Immunology; Obafemi Awolowo University; Ile-Ife Nigeria
| | - R. A. Bolarinwa
- Department of Haematology & Immunology; Obafemi Awolowo University; Ile-Ife Nigeria
| | - C. Masimirembwa
- African Institute of Biomedical Science and Technology; Harare Zimbabwe
| |
Collapse
|
31
|
Ravegnini G, Sammarini G, Angelini S, Hrelia P. Pharmacogenetics of tyrosine kinase inhibitors in gastrointestinal stromal tumor and chronic myeloid leukemia. Expert Opin Drug Metab Toxicol 2016; 12:733-42. [DOI: 10.1080/17425255.2016.1184649] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Gloria Ravegnini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giulia Sammarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Sabrina Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Patrizia Hrelia
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
32
|
Wolking S, Schaeffeler E, Lerche H, Schwab M, Nies AT. Impact of Genetic Polymorphisms of ABCB1 (MDR1, P-Glycoprotein) on Drug Disposition and Potential Clinical Implications: Update of the Literature. Clin Pharmacokinet 2016; 54:709-35. [PMID: 25860377 DOI: 10.1007/s40262-015-0267-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
ATP-binding cassette transporter B1 (ABCB1; P-glycoprotein; multidrug resistance protein 1) is an adenosine triphosphate (ATP)-dependent efflux transporter located in the plasma membrane of many different cell types. Numerous structurally unrelated compounds, including drugs and environmental toxins, have been identified as substrates. ABCB1 limits the absorption of xenobiotics from the gut lumen, protects sensitive tissues (e.g. the brain, fetus and testes) from xenobiotics and is involved in biliary and renal secretion of its substrates. In recent years, a large number of polymorphisms of the ABCB1 [ATP-binding cassette, sub-family B (MDR/TAP), member 1] gene have been described. The variants 1236C>T (rs1128503, p.G412G), 2677G>T/A (rs2032582, p.A893S/T) and 3435C>T (rs1045642, p.I1145I) occur at high allele frequencies and create a common haplotype; therefore, they have been most widely studied. This review provides an overview of clinical studies published between 2002 and March 2015. In summary, the effect of ABCB1 variation on P-glycoprotein expression (messenger RNA and protein expression) and/or activity in various tissues (e.g. the liver, gut and heart) appears to be small. Although polymorphisms and haplotypes of ABCB1 have been associated with alterations in drug disposition and drug response, including adverse events with various ABCB1 substrates in different ethnic populations, the results have been majorly conflicting, with limited clinical relevance. Future research activities are warranted, considering a deep-sequencing approach, as well as well-designed clinical studies with appropriate sample sizes to elucidate the impact of rare ABCB1 variants and their potential consequences for effect sizes.
Collapse
Affiliation(s)
- Stefan Wolking
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Hoppe-Seyler Strasse 3, 72076, Tübingen, Germany
| | | | | | | | | |
Collapse
|
33
|
Yin G, Xiao Z, Ni Y, Qu X, Wu H, Lu H, Qian S, Chen L, Li J, Qiu H, Miao K. Association of MDR1 single-nucleotide polymorphisms and haplotype variants with multiple myeloma in Chinese Jiangsu Han population. Tumour Biol 2016; 37:9549-54. [DOI: 10.1007/s13277-015-4574-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023] Open
|
34
|
Lardo M, Castro M, Moiraghi B, Rojas F, Borda N, Rey JA, Lazarowski A. MDR1/ABCB1 gene polymorphisms in patients with chronic myeloid leukemia. Blood Res 2015; 50:154-9. [PMID: 26457282 PMCID: PMC4595581 DOI: 10.5045/br.2015.50.3.154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/27/2015] [Accepted: 08/14/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tyrosine kinase inhibitors (TKIs) are the recommended treatment for patients with chronic myeloid leukemia (CML). The MDR1/ABCB1 gene plays a role in resistance to a wide spectrum of drugs, including TKIs. However, the association of MDR1/ABCB1 gene polymorphisms (SNPs) such as C1236T, G2677T/A, and C3435T with the clinical therapeutic evolution of CML has been poorly studied. We investigated these gene polymorphisms in CML-patients treated with imatinib, nilotinib and/or dasatinib. METHODS ABCB1-SNPs were studied in 22 CML-patients in the chronic phase (CP) and 2 CML-patients in blast crisis (BC), all of whom were treated with TKIs, and compared with 25 healthy controls using nested-PCR and sequencing techniques. RESULTS Seventeen different haplotypes were identified: 7 only in controls, 6 only in CML-patients, and the remaining 4 in both groups. The distribution ratios of homozygous TT-variants present on each exon between controls and CML-patients were 2.9 for exon 12, and 0.32 for the other 2 exons. Heterozygous T-variants were observed in all controls (100%) and 75% of CML-patients. Wt-haplotype (CC-GG-CC) was observed in 6 CML-patients (25%). In this wt-group, two were treated with nilotinib and reached a major molecular response. The remaining 4 cases had either a minimal or null molecular response, or developed bone marrow aplasia. CONCLUSION Our results suggest that SNPs of the MDR1/ABCB1 gene could help to characterize the prognosis and the clinical-therapeutic evolution of CML-patients treated with TKIs. Wt-haplotype could be associated with a higher risk of developing CML, and a worse clinical-therapeutic evolution.
Collapse
Affiliation(s)
| | - Marcelo Castro
- División Gastroenterología Hospital de Clínicas "J. San Martin", Buenos Aires, Argentina
| | - Beatriz Moiraghi
- División Hematología, Hospital Municipal "Ramos Mejía", Buenos Aires, Argentina
| | - Francisca Rojas
- División Hematología, Hospital de Clínicas "J. San Martin", Facultad de Medicina-UBA, Buenos Aires, Argentina
| | | | - Jorge A Rey
- INFIBIOC-FFyB-UBA, Buenos Aires, Argentina. ; División Hemoterapia, Hospital de Clínicas "J. San Martin", Facultad de Medicina-UBA, Buenos Aires, Argentina
| | - Alberto Lazarowski
- INFIBIOC-FFyB-UBA, Buenos Aires, Argentina. ; Fundación Investigar, Buenos Aires, Argentina
| |
Collapse
|
35
|
Polillo M, Galimberti S, Baratè C, Petrini M, Danesi R, Di Paolo A. Pharmacogenetics of BCR/ABL Inhibitors in Chronic Myeloid Leukemia. Int J Mol Sci 2015; 16:22811-29. [PMID: 26402671 PMCID: PMC4613337 DOI: 10.3390/ijms160922811] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/11/2015] [Accepted: 09/14/2015] [Indexed: 01/29/2023] Open
Abstract
Chronic myeloid leukemia was the first haematological neoplasia that benefited from a targeted therapy with imatinib nearly 15 years ago. Since then, several studies have investigated the role of genes, their variants (i.e., polymorphisms) and their encoded proteins in the pharmacokinetics and pharmacodynamics of BCR-ABL1 tyrosine kinase activity inhibitors (TKIs). Transmembrane transporters seem to influence in a significant manner the disposition of TKIs, especially that of imatinib at both cellular and systemic levels. In particular, members of the ATP-binding cassette (ABC) family (namely ABCB1 and ABCG2) together with solute carrier (SLC) transporters (i.e., SLC22A1) are responsible for the differences in drug pharmacokinetics. In the case of the newer TKIs, such as nilotinib and dasatinib, the substrate affinity of these drugs for transporters is variable but lower than that measured for imatinib. In this scenario, the investigation of genetic variants as possible predictive markers has led to some discordant results. With the partial exception of imatinib, these discrepancies seem to limit the application of discovered biomarkers in the clinical settings. In order to overcome these issues, larger prospective confirmative trials are needed.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Biological Transport
- Drug Resistance, Neoplasm
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Pharmacogenetics
- Protein Kinase Inhibitors/pharmacokinetics
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Marialuisa Polillo
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Via Roma 57, 56126 Pisa, Italy.
| | - Claudia Baratè
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Via Roma 57, 56126 Pisa, Italy.
| | - Mario Petrini
- Department of Clinical and Experimental Medicine, Section of Hematology, University of Pisa, Via Roma 57, 56126 Pisa, Italy.
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Antonello Di Paolo
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
36
|
Zhao JJ, Wang D, Yao H, Sun DW, Li HY. CTLA-4 and MDR1 polymorphisms increase the risk for ulcerative colitis: A meta-analysis. World J Gastroenterol 2015; 21:10025-10040. [PMID: 26379408 PMCID: PMC4566373 DOI: 10.3748/wjg.v21.i34.10025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/26/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the correlations between cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and multi-drug resistance 1 (MDR1) genes polymorphisms with ulcerative colitis (UC) risk.
METHODS: PubMed, EMBASE, Web of Science, Cochrane Library, CBM databases, Springerlink, Wiley, EBSCO, Ovid, Wanfang database, VIP database, China National Knowledge Infrastructure, and Weipu Journal databases were exhaustively searched using combinations of keywords relating to CTLA-4, MDR1 and UC. The published studies were filtered using our stringent inclusion and exclusion criteria, the quality assessment for each eligible study was conducted using Critical Appraisal Skill Program and the resultant high-quality data from final selected studies were analyzed using Comprehensive Meta-analysis 2.0 (CMA 2.0) software. The correlations between SNPs of CTLA-4 gene, MDR1 gene and the risk of UC were evaluated by OR at 95%CI. Z test was carried out to evaluate the significance of overall effect values. Cochran’s Q-statistic and I2 tests were applied to quantify heterogeneity among studies. Funnel plots, classic fail-safe N and Egger’s linear regression test were inspected for indication of publication bias.
RESULTS: A total of 107 studies were initially retrieved and 12 studies were eventually selected for meta-analysis. These 12 case-control studies involved 1860 UC patients and 2663 healthy controls. Our major result revealed that single nucleotide polymorphisms (SNPs) of CTLA-4 gene rs3087243 G > A and rs231775 G > A may increase the risk of UC (rs3087243 G > A: allele model: OR = 1.365, 95%CI: 1.023-1.822, P = 0.035; dominant model: OR = 1.569, 95%CI: 1.269-1.940, P < 0.001; rs231775 G > A: allele model: OR = 1.583, 95%CI: = 1.306-1.918, P < 0.001; dominant model: OR = 1.805, 95%CI: 1.393-2.340, P < 0.001). In addition, based on our result, SNPs of MDR1 gene rs1045642 C > T might also confer a significant increases for the risk of UC (allele model: OR = 1.389, 95%CI: 1.214-1.590, P < 0.001; dominant model: OR = 1.518, 95%CI: 1.222-1.886, P < 0.001).
CONCLUSION: CTLA-4 gene rs3087243 G > A and rs231775 G > A, and MDR1 gene rs1045642 C > T might confer an increase for UC risk.
Collapse
|
37
|
Wang XW, Zhang YL, Xiong Y. Impact of ABCB1 single-nucleotide polymorphisms on treatment outcomes with salmeterol/fluticasone combination therapy for stable chronic obstructive pulmonary disease. Genet Test Mol Biomarkers 2015; 19:566-72. [PMID: 26327575 DOI: 10.1089/gtmb.2015.0108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES To investigate the relationship between ABCB1 single-nucleotide polymorphisms and the efficacy of salmeterol/fluticasone combination (SFC) inhalation therapy for stable chronic obstructive pulmonary disease (COPD) in a Chinese Han population. METHODS A total of 362 patients with stable COPD were recruited between July 2012 and March 2014. Based on the therapeutic effects of lung function improvement and COPD Assessment Test (CAT) scores, all patients were either placed into the effective group (n = 138) or the ineffective group (n = 224). Three common polymorphisms (rs1045642C > T, rs1128503C > T, and rs1202184A > G) in the ABCB1 gene were analyzed by polymerase chain reaction-restriction fragment length polymorphism in these patients. All data were analyzed by SPSS version 18.0 software. RESULTS The genotype and allele frequencies of the ABCB1 rs1045642C > T polymorphic locus were significantly different between the effective group and the ineffective group under the codominant, recessive, and allele models (all p < 0.05). Haplotype analysis of ABCB1 indicated that CTA (rs1045642C-rs1128503T-rs1202184A) haplotype frequencies in the effective group were significantly lower than the ineffective group (p = 0.022), but TCG (rs1045642T-rs1128503C-rs1202184G) haplotype frequencies in the effective group were significantly higher than the ineffective group (p = 0.048). Logistic regression analysis showed that smoking history and rs1045642 CT + CC/TT may be correlated with the efficacy of SFC inhalation therapy in stable COPD patients. CONCLUSION ABCB1 rs1045642C > T polymorphism and CTA/TCG haplotypes, as well as smoking history may influence the efficacy of SFC inhalation therapy in stable COPD patients in the Chinese Han population.
Collapse
Affiliation(s)
- Xin-Wei Wang
- 1 Department of Respiratory Diseases, Hubei Zhongshan Hospital , Wuhan, People's Republic of China
| | - Yan-Lin Zhang
- 2 Department of Internal Medicine, Wuhan Institute of Tuberculosis Prevention , Wuhan, People's Republic of China
| | - Ying Xiong
- 3 Department of Laboratory, Wuhan Union Hospital , Wuhan, People's Republic of China
| |
Collapse
|
38
|
Park SH, Park CJ, Kim DY, Lee BR, Kim YJ, Cho YU, Jang S. MRP1 and P-glycoprotein expression assays would be useful in the additional detection of treatment non-responders in CML patients without ABL1 mutation. Leuk Res 2015; 39:1109-16. [PMID: 26248945 DOI: 10.1016/j.leukres.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/09/2015] [Accepted: 07/10/2015] [Indexed: 11/25/2022]
Abstract
We evaluated the ability of the rhodamine-123 efflux assay, multidrug resistance-associated protein-1 (MRP1) expression assay and P-glycoprotein (Pgp) expression assay to discriminate chronic myelogenous leukemia (CML) patients who had failed treatment or were at risk of failure. Each assay was performed in blood samples from CML patients (n=224) treated with tyrosine kinase inhibitors, taken at diagnosis (n=14) and follow-up (n=210). Patient samples were categorized as optimal response (n=120), suboptimal response (n=54), and treatment failure (n=36). Treatment-failed patients had a significantly higher MRP1 expression (5.24% vs. 3.54%, P=0.006) and Pgp expression (5.25% vs. 3.48%, P=0.005) than responders. Both MRP1 (%) and Pgp (%) were highly specific (95.2% and 94.5%) and relatively accurate (83.0% and 82.5%) in the detection of treatment non-responders. Of treatment-failed patients, 41.2% had a positive result in at least one assay and of these patients without ABL1 kinase domain mutation, 51.9% were positive in at least one assay. However, the rhodamine-123 efflux assay failed to discriminate two patient groups. Thus, both MRP1 and Pgp expression assays could be useful for additional identification of treatment non-responders in CML patients without ABL1 mutation.
Collapse
Affiliation(s)
- Sang Hyuk Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea; Department of Laboratory Medicine, Pusan National University School of Medicine, Pusan National University Hospital, Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Chan-Jeoung Park
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea.
| | - Dae-Young Kim
- Department of Hematology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea.
| | - Bo-Ra Lee
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| | - Young Jin Kim
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| | - Young-Uk Cho
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| | - Seongsoo Jang
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
39
|
Ni Y, Xiao Z, Yin G, Fan L, Wang L, Zhu H, Wu H, Qian S, Xu W, Li J, Miao K. The single nucleotide polymorphism and haplotype analysis of MDR1 in Chinese diffuse large B cell lymphoma patients. Biomed Pharmacother 2015. [DOI: 10.1016/j.biopha.2015.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Ma CX, Sun YH, Wang HY. ABCB1 polymorphisms correlate with susceptibility to adult acute leukemia and response to high-dose methotrexate. Tumour Biol 2015; 36:7599-606. [PMID: 25921280 DOI: 10.1007/s13277-015-3403-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/26/2015] [Indexed: 12/14/2022] Open
Abstract
The aim of this study is to investigate the association of ABCB1 polymorphisms with susceptibility to adult acute leukemia, and the influence of ABCB1 polymorphisms on the efficacy of high-dose methotrexate (HDMTX). ABCB1 polymorphisms in 178 acute leukemia patients (case group) and 150 healthy subjects (control group) were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. All patients received HDMTX therapy. Correlation analysis was performed to explore the associations of ABCB1 polymorphisms with MTX concentration and efficacy of MTX therapy. All statistical analyses were conducted with SPSS 19.0 software. The frequency of TT genotype and T allele on ABCB1 3435C > T in case group were significantly higher than the control group (P < 0.05), while no statistical difference between the two groups was observed in genotypic distribution and allele frequencies of ABCB1 2677G > T/A (P > 0.05). Furthermore, 24-h MTX concentration of patients carrying TT and TA genotypes on 2677G > T/A was higher than carriers with other genotypes (P < 0.05), and 24-h MTX concentration of patients with TT and CT genotypes on 3435C > T was also apparently higher than carriers with CC genotype (P < 0.05). In addition, ABCB1 polymorphisms were connected with increased risk of liver dysfunction and infection (P < 0.05). Complete remission (CR) rate in patients carrying GG on 2677G > T/A was markedly lower than carriers with non-GG genotype (P < 0.05). ABCB1 3435C > T polymorphisms may be associated with susceptibility to acute leukemia, and ABCB1 polymorphisms might be a sensitive indicator for predicting efficacy of MTX therapy in the treatment of acute leukemia.
Collapse
Affiliation(s)
- Chuan-Xiang Ma
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261035, People's Republic of China
| | - Yong-Hong Sun
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, 261035, People's Republic of China
| | - Hai-Ying Wang
- Department of Hematology, The Affiliated Hospital of Weifang Medical University, No.2428, Yuhe Road, Kuiwen District, Weifang, Shandong, 261035, People's Republic of China.
| |
Collapse
|
41
|
Arpon DR, Gandhi MK, Martin JH. A new frontier in haematology - combining pharmacokinetic with pharmacodynamic factors to improve choice and dose of drug. Br J Clin Pharmacol 2015; 78:274-81. [PMID: 24433338 DOI: 10.1111/bcp.12318] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 10/31/2013] [Indexed: 12/14/2022] Open
Abstract
The issue of tailored dosing adjusted according to a range of patient-specific factors other than bodyweight or body surface area is of large and increasing clinical and financial concern. Even if it is known that dosing alterations are likely to be required for parameters such as body composition, gender and pharmacogenetics, the amount of dosing change is unknown. Thus, pharmacokinetically guided dosing is making a resurgence, particularly in areas of medicine where there are cost constraints or safety issues, such as in haematology medications. However, the evidence to support the behaviour is minimal, particularly when long-term outcomes are considered. In haematology, there are particular issues around efficacy, toxicity and overall cost. Newer targeted agents, such as the monoclonal antibody rituximab and the tyrosine kinase inhibitor imatinib, whilst clearly being highly effective, are dosed on a milligram per square metre (rituximab) or fixed dose basis (imatinib), regardless of body composition, tumour aspects or comorbidity. This review questions this practice and raises important clinical issues; specifically, the clinical potential for combined pharmacokinetically and pharmacodynamically guided dosing of new targeted agents in haematological malignancies. This pharmacokinetically and pharmacodynamically guided dosing is an emerging area of clinical pharmacology, driven predominantly by toxicity, efficacy and cost issues, but also because reasonable outcomes are being noted with more appropriately dosed older medications adjusted for patient-specific factors. Clinical trials to investigate the optimization of rituximab dose scheduling are required.
Collapse
Affiliation(s)
- David Rey Arpon
- School of Medicine, University of Queensland, Princess Alexandra Hospital Campus, Woolloongabba, Australia; Translational Research Institute, Woolloongabba, Queensland, Australia
| | | | | |
Collapse
|
42
|
Zu B, Li Y, Wang X, He D, Huang Z, Feng W. MDR1 gene polymorphisms and imatinib response in chronic myeloid leukemia: a meta-analysis. Pharmacogenomics 2014; 15:667-77. [PMID: 24798723 DOI: 10.2217/pgs.13.222] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MDR1 gene polymorphisms were demonstrated to be associated with interindividual variability of imatinib response for chronic myeloid leukemia (CML) patients in several studies; however, the results have been inconclusive. MATERIALS & METHODS To clarify the effect of common MDR1 variants on clinical response to imatinib, we performed a meta-analysis to quantify the accumulated information from genetic association studies. After a thorough search of the published literature, we undertook a meta-analysis to evaluate the effect of MDR1 C1236T, G2677T and C3435T polymorphisms on imatinib response. RESULTS Our pooled data showed a significant association between MDR1 C1236T polymorphism and the increasing risk of imatinib resistance in Asian CML patients. However, no significant association was found for the MDR1 G2677T or C3435T polymorphisms in an Asian CML population as well as a Caucasian CML population. CONCLUSION The synonymous MDR1 C1236T polymorphism might be a risk factor for nonoptimal clinical response to imatinib in Asian CML patients.
Collapse
Affiliation(s)
- Bailing Zu
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No. 1, Yixueyuan Road, Chongqing, 400016, PR China
| | | | | | | | | | | |
Collapse
|
43
|
Association of ABCG2 polymorphism with clinical efficacy of imatinib in patients with gastrointestinal stromal tumor. Cancer Chemother Pharmacol 2014; 75:173-82. [DOI: 10.1007/s00280-014-2630-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 11/14/2014] [Indexed: 12/29/2022]
|
44
|
Wu L, Xu J, Yuan W, Wu B, Wang H, Liu G, Wang X, Du J, Cai S. The reversal effects of 3-bromopyruvate on multidrug resistance in vitro and in vivo derived from human breast MCF-7/ADR cells. PLoS One 2014; 9:e112132. [PMID: 25372840 PMCID: PMC4221289 DOI: 10.1371/journal.pone.0112132] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/13/2014] [Indexed: 12/31/2022] Open
Abstract
Purpose P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. Methods The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer’s instructions. Results 3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds), paclitaxel (85 folds), daunorubicin (201 folds), and epirubicin (171 folds)] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates) in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied. Conclusion We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the intracellular level of ATP and HK-II bioactivity, the inhibition of ATPase activity, and the slight decrease in P-glycoprotein expression in MCF-7/ADR cells.
Collapse
Affiliation(s)
- Long Wu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun Xu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Weiqi Yuan
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Hao Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guang Zhou 510275, P. R. China
| | - Guangquan Liu
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xiaoxiong Wang
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Jun Du
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guang Zhou 510275, P. R. China
- * E-mail: (JD); (SHC)
| | - Shaohui Cai
- Department of Clinical Pharmacology, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
- * E-mail: (JD); (SHC)
| |
Collapse
|
45
|
Gandhi MD, Kaklamani VG. Predicting benefit from imatinib: are we close? Leuk Lymphoma 2014; 55:2421-2. [DOI: 10.3109/10428194.2014.909041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Mitul D. Gandhi
- Feinberg School of Medicine, Northwestern University,
Chicago, IL, USA
| | | |
Collapse
|
46
|
Ali MAM, Elsalakawy WA. ABCB1 haplotypes but not individual SNPs predict for optimal response/failure in Egyptian patients with chronic-phase chronic myeloid leukemia receiving imatinib mesylate. Med Oncol 2014; 31:279. [PMID: 25301112 DOI: 10.1007/s12032-014-0279-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022]
Abstract
Imatinib mesylate (IM) has so far been the standard of care for treating chronic myeloid leukemia (CML), but the initial striking efficacy of this drug has been overshadowed by the development of clinical resistance, which may in part be caused by pharmacogenetic variability. The ATP-binding cassette, subfamily B, member 1 (ABCB1) gene codes for P-glycoprotein (P-gp), a membrane-bound efflux transporter known to affect the pharmacokinetics of many drugs. IM is a substrate of the P-gp-mediated efflux. ABCB1 single nucleotide polymorphisms (SNPs) have been reported as modulators of ABCB1-mediated transport, affecting IM's bioavailability and consequently the treatment outcome of IM therapy. We aimed to examine the association between ABCB1 SNPs and the likelihood of achieving optimal response in IM-treated CML patients. Three ABCB1 SNPs (C1236T, G2677T, and C3435T) were genotyped in 100 Egyptian patients with CML undergoing IM therapy using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. The optimal response rate did not differ significantly between C1236T, G2677T, or C3435T genotypes (P > 0.05). Optimal response rate was significantly different among patients with the CGC, TTT, TGC, CGT, TGT, CTC, CTT, and TTC haplotypes (P = 0.023). The 1236T-2677G-3435T haplotype was significantly associated with lower probability of achieving optimal response (P = 0.001). ABCB1 SNPs haplotype analysis should be taken into account in an attempt to get clearer insights into who is likely to respond optimally to IM for identifying CML patients who may not respond optimally to standard-dose IM therapy and potentially need an individualized therapeutic approach.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/genetics
- Adult
- Aged
- Antineoplastic Agents/therapeutic use
- Benzamides/therapeutic use
- Cohort Studies
- Egypt/epidemiology
- Female
- Haplotypes/genetics
- Humans
- Imatinib Mesylate
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/epidemiology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Male
- Middle Aged
- Piperazines/therapeutic use
- Polymorphism, Single Nucleotide/genetics
- Predictive Value of Tests
- Pyrimidines/therapeutic use
- Retrospective Studies
- Treatment Failure
- Treatment Outcome
- Young Adult
Collapse
Affiliation(s)
- Mohamed A M Ali
- Department of Biochemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, 11566, Egypt,
| | | |
Collapse
|
47
|
Zheng Q, Wu H, Yu Q, Kim DHD, Lipton JH, Angelini S, Soverini S, Vivona D, Takahashi N, Cao J. ABCB1 polymorphisms predict imatinib response in chronic myeloid leukemia patients: a systematic review and meta-analysis. THE PHARMACOGENOMICS JOURNAL 2014; 15:127-34. [PMID: 25245580 DOI: 10.1038/tpj.2014.54] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/18/2014] [Accepted: 08/13/2014] [Indexed: 12/17/2022]
Abstract
Imatinib mesylate, a competitive tyrosine kinase inhibitor, is considered the first-line therapy drug for Ph+ chronic myeloid leukemia (CML). Three single-nucleotide polymorphisms (SNPs) in the ATP-binding cassette, subfamily B (MDR/TAP), member 1 gene (ABCB1/MDR1), c.1236C>T, c.2677G>T/A and c.3435C>T, have been shown to affect cellular transport/metabolism of imatinib. The associations between these SNPs and imatinib response in CML patients have been widely evaluated, but the results were inconsistent. To derive a conclusive assessment of the associations, we performed a meta-analysis by combining data from a total of 12 reports including 1826 patients. The results showed that the 2677G allele or 3435T allele predicted a worse response to imatinib in CML patients, whereas 1236CC genotype was associated with better response in CML patients from Asian region. In conclusion, this meta-analysis suggests that c.1236C>T, c.2677G>T/A and c.3435C>T can be served as predictive markers for the therapeutical use of imatinib in CML patients.
Collapse
Affiliation(s)
- Q Zheng
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H Wu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Q Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - D H Dennis Kim
- Chronic Myelogenous Leukemia Group, Princess Margaret Cancer Centre, University Health Network University of Toronto, Toronto, Ontario, Canada
| | - J H Lipton
- Chronic Myelogenous Leukemia Group, Princess Margaret Cancer Centre, University Health Network University of Toronto, Toronto, Ontario, Canada
| | - S Angelini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - S Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, Institute of Hematology, University of Bologna, Bologna, Italy
| | - D Vivona
- Departmento de Análises Clínicas e Toxicológicas da Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo, Brazil
| | - N Takahashi
- Department of Hematology, Nephrology, and Rheumatology, Akita University Graduate School of Medicine, Akita, Japan
| | - J Cao
- Clinical Research Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
48
|
Sałacka A, Bińczak-Kuleta A, Kaczmarczyk M, Hornowska I, Safranow K, Clark JSC. Possible association of ABCB1:c.3435T>C polymorphism with high-density-lipoprotein-cholesterol response to statin treatment--a pilot study. Bosn J Basic Med Sci 2014; 14:144-9. [PMID: 25172973 DOI: 10.17305/bjbms.2014.3.43] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 08/14/2014] [Accepted: 07/25/2014] [Indexed: 01/11/2023] Open
Abstract
The gene product ABCB1 (formerly MDR1 or P-glycoprotein) is hypothesized to be involved in cholesterol cellular trafficking, redistribution and intestinal re-absorption. Carriers of the ABCB1:3435T allele have previously been associated with decreases in ABCB1 mRNA and protein concentrations and have been correlated with changes in serum lipid concentrations. The aim of this study was to investigate possible association between the ABCB1:3435T>C polymorphism and changes in lipids in patients following statin treatment. Outpatients (n=130) were examined: 43 men (33%), 87 women (67%): treated with atorvastatin or simvastatin (all patients with equivalent dose of 20 or 40 mg/d simvastatin). Blood was taken for ABCB1:3435T>C genotyping, and before and after statin treatment for lipid concentration determination (total cholesterol, high-density-lipoprotein-cholesterol (HDL-C), triglycerides). Change (Δ) in lipid parameters, calculated as differences between measurements before and after treatment, were analyzed with multiple regression adjustments: gender, diabetes, age, body mass index, equivalent statin dose, length of treatment. Univariate and multivariate analyses showed significant differences in ΔHDL-C (univariate p=0.029; multivariate p=0.036) and %ΔHDL-C (univariate p=0.021; multivariate p=0.023) between patients with TT (-0.05 ± 0.13 g/l; -6.8% ± 20%; respectively) and CC+CT genotypes (0.004 ± 0.15 g/l; 4.1 ± 26%; respectively). Reduction of HDL-C in homozygous ABCB1:3435TT patients suggests this genotype could be associated with a reduction in the benefits of statin treatment.
Collapse
Affiliation(s)
- Anna Sałacka
- Department of Family Medicine, Pomeranian Medical University, Szczecin, Poland.
| | | | | | | | | | | |
Collapse
|
49
|
Delord M, Rousselot P, Cayuela JM, Sigaux F, Guilhot J, Preudhomme C, Guilhot F, Loiseau P, Raffoux E, Geromin D, Génin E, Calvo F, Bruzzoni-Giovanelli H. High imatinib dose overcomes insufficient response associated with ABCG2 haplotype in chronic myelogenous leukemia patients. Oncotarget 2014; 4:1582-91. [PMID: 24123600 PMCID: PMC3858547 DOI: 10.18632/oncotarget.1050] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Pharmacogenetic studies in chronic myelogenous leukemia (CML) typically use a candidate gene approach. In an alternative strategy, we analyzed the impact of single nucleotide polymorphisms (SNPs) in drug transporter genes on the molecular response to imatinib, using a DNA chip containing 857 SNPs covering 94 drug transporter genes. Two cohorts of CML patients treated with imatinib were evaluated: an exploratory cohort including 105 patients treated at 400 mg/d and a validation cohort including patients sampled from the 400 mg/d and 600 mg/d arms of the prospective SPIRIT trial (n=239). Twelve SNPs discriminating patients according to cumulative incidence of major molecular response (CI-MMR) were identified within the exploratory cohort. Three of them, all located within the ABCG2 gene, were validated in patients included in the 400 mg/d arm of the SPIRIT trial. We identified an ABCG2 haplotype (define as G-G, rs12505410 and rs2725252) as associated with significantly higher CI-MMR in patients treated at 400 mg/d. Interestingly, we found that patients carrying this ABCG2 "favorable" haplotype in the 400 mg arm reached similar CI-MMR rates that patients randomized in the imatinib 600 mg/d arm. Our results suggest that response to imatinib may be influenced by constitutive haplotypes in drug transporter genes. Lower response rates associated with "non- favorable" ABCG2 haplotypes may be overcome by increasing the imatinib daily dose up to 600 mg/d.
Collapse
Affiliation(s)
- Marc Delord
- Plateforme de Bioinformatique et Biostatistique, Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Corrêa S, Binato R, Du Rocher B, Ferreira G, Cappelletti P, Soares-Lima S, Pinto LF, Mencalha A, Abdelhay E. ABCB1 regulation through LRPPRC is influenced by the methylation status of the GC -100 box in its promoter. Epigenetics 2014; 9:1172-83. [PMID: 25089713 DOI: 10.4161/epi.29675] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
One of the potential mechanisms of imatinib mesylate (IM) resistance in chronic myeloid leukemia (CML) is increased level of P-glycoprotein (Pgp). Pgp is an efflux pump capable of activating the multidrug resistance (MDR) phenotype. The gene encoding Pgp (ABCB1) has several binding sites in its promoter region, along with CpG islands and GC boxes, involved in its epigenetic control. In previous work, we performed a proteomic study to identify proteins involved in IM cross-resistance in acute leukemia. Among these proteins, we identified LRPPRC as a potential regulator of ABCB1 transcription via an invMED1 binding site in ABCB1. Interestingly, this invMED1 binding site overlaps with the GC -100 box. In this work, we investigated the potential role of LRPPRC in the regulation of ABCB1 transcriptional activity in CML resistance. In addition, we evaluated the potential connection between this regulation and the methylation status of the ABCB1 promoter in its GC -100 box. Our results show that LRPPRC binds prominently to the ABCB1 promoter in Lucena cells, an IM-resistant cell line. Luciferase assays showed that ABCB1 transcription is positively regulated by LRPPRC upon its knockdown. Pyrosequencing analysis showed that the ABCB1 promoter is differentially methylated at its GC -100 box in K562 cells compared with Lucena cells, and in CML patients with different response to IM. Chromatin immunoprecipitation and Pgp expression after DNA demethylation treatment showed that LRPPRC binding is affected by the methylation status of ABCB1 GC -100 box. Taken together, our findings indicate that LRPPRC is a transcription factor related to ABCB1 expression and highlight the importance of epigenetic regulation in CML resistance.
Collapse
Affiliation(s)
- Stephany Corrêa
- Laboratório Célula-Tronco - CEMO; INCA; Rio de Janeiro, Brazil
| | - Renata Binato
- Laboratório Célula-Tronco - CEMO; INCA; Rio de Janeiro, Brazil
| | | | - Gerson Ferreira
- Laboratório Célula-Tronco - CEMO; INCA; Rio de Janeiro, Brazil
| | | | | | | | - André Mencalha
- Universidade do Estado do Rio de Janeiro; UERJ; Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Laboratório Célula-Tronco - CEMO; INCA; Rio de Janeiro, Brazil
| |
Collapse
|