1
|
Smail SW, Albarzinji N, Salih RH, Taha KO, Hirmiz SM, Ismael HM, Noori MF, Azeez SS, Janson C. Microbiome dysbiosis in SARS-CoV-2 infection: implication for pathophysiology and management strategies of COVID-19. Front Cell Infect Microbiol 2025; 15:1537456. [PMID: 40330025 PMCID: PMC12052750 DOI: 10.3389/fcimb.2025.1537456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/27/2025] [Indexed: 05/08/2025] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of coronavirus disease 2019 (COVID-19), in late 2019 initiated a global health crisis marked by widespread infection, significant mortality, and long-term health implications. While SARS-CoV-2 primarily targets the respiratory system, recent findings indicate that it also significantly disrupts the human microbiome, particularly the gut microbiota, contributing to disease severity, systemic inflammation, immune dysregulation, and increased susceptibility to secondary infections and chronic conditions. Dysbiosis, or microbial imbalance, exacerbates the clinical outcomes of COVID-19 and has been linked to long-COVID, a condition affecting a significant proportion of survivors and manifesting with over 200 symptoms across multiple organ systems. Despite the growing recognition of microbiome alterations in COVID-19, the precise mechanisms by which SARS-CoV-2 interacts with the microbiome and influences disease progression remain poorly understood. This narrative review investigates the impact of SARS-CoV-2 on host-microbiota dynamics and evaluates its implications in disease severity and for developing personalized therapeutic strategies for COVID-19. Furthermore, it highlights the dual role of the microbiome in modulating disease progression, and as a promising target for advancing diagnostic, prognostic, and therapeutic approaches in managing COVID-19.
Collapse
Affiliation(s)
- Shukur Wasman Smail
- College of Pharmacy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | | | - Rebaz Hamza Salih
- Department of Respiratory Medicine, PAR Private Hospital, Erbil, Kurdistan Region, Iraq
| | - Kalthum Othman Taha
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Sarah Mousa Hirmiz
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Hero M. Ismael
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Marwa Fateh Noori
- College of Pharmacy, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Sarkar Sardar Azeez
- Department of Medical Laboratory Technology, Soran Technical College, Erbil Polytechnic University, Erbil, Kurdistan Region, Iraq
| | - Christer Janson
- Department of Medical Science, Respiratory Medicine, and Allergology, Uppsala University and University Hospital, Uppsala, Sweden
| |
Collapse
|
2
|
Xie Y, Chen G, Wu W, Wen X, Lai M, Che L, Ran J. A bioinformatics approach combined with experimental validation analyzes the efficacy of azithromycin in treating SARS-CoV-2 infection in patients with IPF and COPD These authors contributed equally: Yining Xie, Guangshu Chen, and Weiling Wu. Sci Rep 2025; 15:10009. [PMID: 40122903 PMCID: PMC11930991 DOI: 10.1038/s41598-025-94801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
The swift transmission rate and unfavorable prognosis associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have prompted the pursuit of more effective therapeutic interventions. Azithromycin (AZM) has garnered significant attention for its distinctive pharmacological mechanisms in the treatment of SARS-CoV-2. This study aims to elucidate the biological rationale for employing AZM in patients with chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) who are infected with SARS-CoV-2. Genetic data about COVID-19, COPD, and IPF were independently obtained from the GeneCards database. And 40 drug targets about AZM were retrieved from the STITCH database. The analysis revealed that 311 DEGs were common among COPD, IPF, and COVID-19, and we further found eight genes that interacted with AZM targets. We conducted an analysis of hub genes and their corresponding signaling pathways in these patient cohorts. Additionally, we explored the inhibitory effects of AZM on these hub genes. AZM demonstrated a significant inhibitory effect on eight key genes, except for AR and IL-17 A. These findings suggest that AZM may serve as a promising therapeutic agent for patients with COPD and IPF and SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yining Xie
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
- Department of Endocrinology and Metabolism, The First People's Hospital of Zhaoqing, Zhaoqing, 526060, China
| | - Guangshu Chen
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Weiling Wu
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Xueman Wen
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Meizheng Lai
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China
| | - Li Che
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
| | - Jianmin Ran
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, 510220, China.
| |
Collapse
|
3
|
Islam MA, Ford Versypt AN. Mathematical modeling of impacts of patient differences on renin-angiotensin system and applications to COVID-19 lung fibrosis outcomes. Comput Biol Med 2025; 186:109631. [PMID: 39753028 PMCID: PMC11932320 DOI: 10.1016/j.compbiomed.2024.109631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 02/20/2025]
Abstract
Patient-specific premorbidity, age, and sex are significant heterogeneous factors that influence the severe manifestation of lung diseases, including COVID-19 fibrosis. The renin-angiotensin system (RAS) plays a prominent role in regulating the effects of these factors. Recent evidence shows patient-specific alterations of RAS peptide homeostasis concentrations with premorbidity and the expression level of angiotensin-converting enzyme 2 (ACE2) during COVID-19. However, conflicting evidence suggests decreases, increases, or no changes in RAS peptides after SARS-CoV-2 infection. A multiscale computational model was developed to quantify the systemic contribution of heterogeneous factors of RAS during COVID-19. Three submodels were connected-an agent-based model for in-host COVID-19 response in the lung tissue, a RAS dynamics model, and a fibrosis dynamics model to investigate the effects of patient-group-specific factors in the systemic alteration of RAS and collagen deposition in the lung. The model results indicated cell death due to inflammatory response as a major contributor to the reduction of ACE and ACE2. The model explained possible mechanisms for conflicting evidence of patient-group-specific changes in RAS peptides in previously published studies. RAS peptides decreased for all virtual patient groups with aging in both sexes. In contrast, large variations in the magnitude of reduction were observed between male and female virtual patients in the older and middle-aged groups. The patient-specific variations in homeostasis RAS peptide concentrations of SARS-CoV-2-negative patients affected the dynamics of RAS during infection. This model may find further applications in patient-specific calibrations of tissue models for acute and chronic lung diseases to develop personalized treatments.
Collapse
Affiliation(s)
- Mohammad Aminul Islam
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Ashlee N Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY, 14203, USA; Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14215, USA.
| |
Collapse
|
4
|
Abstract
Coronavirus disease 2019 (COVID-19) remains a health problem worldwide. The present study aimed to investigate the effect of blood pressure (BP) on the circadian pattern and prevalence of new-onset non-dipper hypertension in the post-COVID period in patients with known hypertension. This prospective single-center study included 722 patients hospitalized for COVID-19 infection. Ambulatory BP (ABP) data were collected during their initial hospitalization. The ABP data were reassessed 1 month after the patients were discharged. The results were compared with a healthy control group with known hypertension but without COVID-19 infection. After exclusion criteria were applied, the study included 187 patients with COVID-19 and 136 healthy hypertensive controls. Post-COVID ABP showed that patients with COVID-19 had significantly higher mean 24-h systolic and diastolic BP, mean nighttime systolic and diastolic BP, and mean daytime diastolic BP than the control group. In addition, new-onset non-dipper hypertension was significantly higher in patients with COVID-19. This study demonstrated for the first time that the circadian pattern is disturbed and a non-dipper pattern develops in individuals with known hypertension during the post-COVID period.
Collapse
Affiliation(s)
- Fatih Sivri
- Aydin Nazilli State Hospital, Nazilli, Turkey
| | - Ismail Türköz
- Department of Infectious Diseases, Dortyol State Hospital, Hatay, Turkey
| | - Mehtap Şencan
- Department of Infectious Diseases, Dortyol State Hospital, Hatay, Turkey
| | - Yahya Kemal İçen
- Department of Cardiology, Adana Health Practice and Research, Adana, Turkey
| | - Fatih Aksoy
- Department of Cardiology, Süleyman Demirel University, Isparta, Turkey
| | - Banu Öztürk Ceyhan
- Department Of Endocrine Diseases, Adnan Menderes University, Aydın, Turkey
| |
Collapse
|
5
|
Sabit H, Arneth B, Altrawy A, Ghazy A, Abdelazeem RM, Adel A, Abdel-Ghany S, Alqosaibi AI, Deloukas P, Taghiyev ZT. Genetic and Epigenetic Intersections in COVID-19-Associated Cardiovascular Disease: Emerging Insights and Future Directions. Biomedicines 2025; 13:485. [PMID: 40002898 PMCID: PMC11852909 DOI: 10.3390/biomedicines13020485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The intersection of COVID-19 and cardiovascular disease (CVD) has emerged as a significant area of research, particularly in understanding the impact of antiplatelet therapies like ticagrelor and clopidogrel. COVID-19 has been associated with acute cardiovascular complications, including myocardial infarction, thrombosis, and heart failure, exacerbated by the virus's ability to trigger widespread inflammation and endothelial dysfunction. MicroRNAs (miRNAs) play a critical role in regulating these processes by modulating the gene expressions involved in platelet function, inflammation, and vascular homeostasis. This study explores the potential of miRNAs such as miR-223 and miR-126 as biomarkers for predicting resistance or responsiveness to antiplatelet therapies in COVID-19 patients with cardiovascular disease. Identifying miRNA signatures linked to drug efficacy could optimize treatment strategies for patients at high risk of thrombotic events during COVID-19 infection. Moreover, understanding miRNA-mediated pathways offers new insights into how SARS-CoV-2 exacerbates CVD, particularly through mechanisms like cytokine storms and endothelial damage. The findings of this research could lead to personalized therapeutic approaches, improving patient outcomes and reducing mortality in COVID-19-associated cardiovascular events. With global implications, this study addresses the urgent need for effective management of CVD in the context of COVID-19, focusing on the integration of molecular biomarkers to enhance the precision of antiplatelet therapy.
Collapse
Affiliation(s)
- Hussein Sabit
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Afaf Altrawy
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Aysha Ghazy
- Department of Agri-Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Rawan M. Abdelazeem
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Amro Adel
- Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza P.O. Box 77, Egypt
| | - Amany I. Alqosaibi
- Department of Biology, College of Science, Imam Abdulrahman bin Faisal University, Dammam 31441, Saudi Arabia
| | - Panos Deloukas
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| | - Zulfugar T. Taghiyev
- Department of Cardiovascular Surgery, Hospital of the Universities of Giessen and Marburg (UKGM), Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
6
|
Krenn K, Kraft F, Mandroiu L, Tretter V, Reindl-Schwaighofer R, Clement T, Domenig O, Vossen MG, Riemann G, Poglitsch M, Ullrich R. Renin-angiotensin-aldosterone system activation in plasma as marker for prognosis in critically ill patients with COVID-19: a prospective exploratory study. Ann Intensive Care 2025; 15:10. [PMID: 39821855 PMCID: PMC11739446 DOI: 10.1186/s13613-025-01433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) associated with coronavirus infectious disease (COVID)-19 has been a challenge in intensive care medicine for the past three years. Dysregulation of the renin-angiotensin system (RAS) is linked to COVID-19, but also to non-COVID-19 ARDS. It is still unclear whether changes in the RAS are associated with prognosis of severe COVID-19. METHODS In this prospective exploratory study, blood samples of 94 patients with COVID-19 were taken within 48 h of admission to a medical ward or an ICU. In ICU patients, another blood sample was taken seven days later. Angiotensin (Ang) I-IV, Ang 1-7, Ang 1-5 and aldosterone concentrations were measured with liquid chromatography tandem mass spectrometry (LC-MS/MS) followed by calculation of markers for activities of renin (PRA-S) and ACE (ACE-S), alternative RAS activation (ALT-S) as well as the ratio of aldosterone to Ang II (AA2R). Angiotensin-converting enzyme (ACE) and ACE2 concentrations were measured by LC-MS/MS-based assays. All RAS parameters were evaluated as predictors of 28-day and 60-day survival using receiver operating characteristic and multivariate logistic regression analysis. RESULTS AA2R at inclusion was a predictor of 60-day survival for ICU patients with an AUROC of 0.73. Ang II and active ACE2 were inversely associated with survival (OR 0.07; 95%CI 0.01, 0.39 and OR 0.10; 95%CI 0.01, 0.63) while higher Ang 1-7 predicted favorable outcome (OR 6.8; 95%CI 1.5, 39.9). ICU patients showed higher concentrations of all measured angiotensin metabolites, PRA-S, ALT-S and active ACE2, and lower ACE-S and AA2R than patients in the medical ward at inclusion. After seven days in the ICU, Ang I, Ang II, Ang III and Ang IV concentrations decreased, while ACE and ACE2 levels increased. Ang I, PRA-S, Ang 1-7 and Ang 1-5 concentrations correlated with the SOFA score both at the time of inclusion and after seven days, and driving pressure after seven days. CONCLUSIONS AA2R at inclusion predicted 60-day survival with moderate sensitivity, revealing a dissociation between unchanged aldosterone and increased Ang II levels in the most severely ill COVID-19 patients. After adjustment for confounders, Ang 1-7 as the final metabolite of alternative RAS was predictive for survival.
Collapse
Affiliation(s)
- Katharina Krenn
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Felix Kraft
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria.
| | - Luana Mandroiu
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Verena Tretter
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Roman Reindl-Schwaighofer
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Theresa Clement
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
- Division of Nursing Science, Karl-Landsteiner University of Health Sciences, Krems, Austria
| | | | - Matthias G Vossen
- Department of Internal Medicine I, Clinical Division of Infectiology, Medical University of Vienna, Vienna, Austria
| | - Gregor Riemann
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | | | - Roman Ullrich
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Division of General Anaesthesia and Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
- Department of Anesthesiology and Intensive Care Medicine, AUVA Trauma Center, Vienna, Austria
| |
Collapse
|
7
|
Huang J, Fan Y, Wang Y, Liu J. The effects of enhanced external counter-pulsation on post-acute sequelae of COVID-19: A narrative review. Open Med (Wars) 2025; 20:20241067. [PMID: 39802655 PMCID: PMC11716443 DOI: 10.1515/med-2024-1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 01/16/2025] Open
Abstract
Some of the millions of patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have developed new sequelae after recovering from the initial disease, termed post-acute sequelae of coronavirus disease 2019 (PASC). One symptom is anxiety, which is likely due to three etiologies: brain structural changes, neuroendocrine disruption, and neurotransmitter alterations. This review provides an overview of the current literature on the pathophysiological pathways linking coronavirus disease 2019 to anxiety, as well as the possible mechanisms of action in which an increasingly scrutinized treatment method, enhanced external counter-pulsation (EECP), is able to alleviate anxiety. SARS-CoV-2 triggers increased inflammatory cytokine production, as well as oxidative stress; these processes contribute to the aforementioned three etiologies. The potential treatment approach of EECP, involving sequenced inflation and deflation of specifically-placed airbags, has become of increasing interest, as it has been found to alleviate PASC-associated anxiety by improving patient cardiovascular function. These functional improvements were achieved by EECP stimulating anti-inflammatory and pro-angiogenic processes, as well as improving endothelial cell function and coronary blood flow, partially via counteracting against the negative effects of SARS-CoV-2 infection on the renin-angiotensin-aldosterone system. Therefore, EECP could promote both psychosomatic and cardiac rehabilitation. Further research, though, is still needed to fully determine its benefits and mechanism of action.
Collapse
Affiliation(s)
- Jiecheng Huang
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
| | - Yuxuan Fan
- Department of Rehabilitation, Tongji Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai, China
| | - Yongshun Wang
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Cardiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Jingjin Liu
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, China
- Department of Cardiology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Department of Cardiology, Shenzhen Cardiovascular Minimally Invasive Medical Engineering Technology Research and Development Center, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Stem Cell Research and Clinical Transformation, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
- Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
8
|
Saha I, Banerjee O, Sarkar (Biswas) S, Mukherjee S. COVID-19 beyond the lungs: Unraveling its vascular impact and cardiovascular complications-mechanisms and therapeutic implications. Sci Prog 2025; 108:368504251322069. [PMID: 40091392 PMCID: PMC11912160 DOI: 10.1177/00368504251322069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
COVID-19, caused by severe acute respiratory syndrome corona virus 2 (SARS-CoV-2), is primarily a respiratory illness but significantly affects the cardiovascular system as well. After entering the body through the respiratory tract, the virus directly and indirectly disrupts the vascular system. Vascular endothelial cells (ECs), which express ACE2 and TMPRSS2, are targets for viral invasion. However, the predominant cause of widespread vascular damage is the "cytokine storm" induced by the immune response. This leads to EC activation, inflammation, neutrophil activation, and neutrophil-platelet aggregation, causing endothelial injury. Additionally, increased expression of plasminogen activator inhibitor-1 disrupts the balance between prothrombotic and fibrinolytic processes, while activation of the renin-angiotensin-aldosterone system adds oxidative stress to the vascular endothelium. In the heart, SARS-CoV-2 invades ECs, leading to apoptosis and pyroptosis, exacerbated by inflammation and elevated catecholamines. These factors contribute to arrhythmias, strokes, and myocardial infarction in severe cases of COVID-19. This narrative review aims to explore the mechanisms by which SARS-CoV-2 affects the cardiovascular system and to highlight the resulting complications. It also identifies research gaps and discusses potential therapeutic strategies to mitigate the cardiovascular impacts of COVID-19.
Collapse
Affiliation(s)
- Ishita Saha
- Department of Physiology, Medical College & Hospital, Kolkata, West Bengal, India
| | - Oly Banerjee
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Bara Kanthalia, West Bengal, India
| | | | - Sandip Mukherjee
- Department of Physiology, Serampore College, Hooghly, West Bengal, India
| |
Collapse
|
9
|
Singhal S, Rana G, Singh AK, Pal S, Thaledi S. Correlation of the cycle threshold value of SARS-CoV-2 by RT-PCR with biomarker levels in the prognosis of patients hospitalized with COVID-19. J Family Med Prim Care 2025; 14:390-394. [PMID: 39989576 PMCID: PMC11845007 DOI: 10.4103/jfmpc.jfmpc_1011_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/27/2024] [Accepted: 09/23/2024] [Indexed: 02/25/2025] Open
Abstract
Background and Objective The COVID-19 disease caused by SARS-CoV-2 was declared as pandemic by WHO soon after its emergence in 2019. This virus was known to cause serious clinical symptoms and severe illness. By using RT-PCR, which reports the cycle threshold value, the disease is diagnosed, whereas for the severity of the disease, biomarker levels, like IL-6, CRP, D-dimer, serum ferritin and serum procalcitonin, can be measured. We, thus, aimed to explore any potential correlation of the cycle threshold value and biomarker level with the outcome of COVID-19-positive hospitalized patients. Method Patients with the cycle threshold (Ct) value <35 were included in the study and their initial Ct values were noted. Different biochemical parameters, such as C-reactive protein (CRP), serum ferritin, D-dimer, Interleukin-6 and serum procalcitonin, were assessed for severity. They were classified according to Ct value into three groups: Group 1 >30.0, Group 2 20.0-30.0 and Group 3 <20.0. Results The study included 370 hospitalized COVID-19 patients with a mean age (mean ± SD) of 51.08 (16.58%) years and 250 (67.5%) males and 120 (32.4%) females. Comparison of data with outcome shows that IL-6, CRP amongst the biomarker and Ct value (deduced by RT-PCR test) were significantly correlated with the mortality (P value < 0.05). The ROC curve was also plotted for these parameters, which shows that IL-6, CRP, PCT and Ct value were better prognostic marker. Poor prognosis was found in Group 2 (Ct value 20.0-30.0) patients compared to Group 1 and Group 3. There was significant correlation (P value < 0.05) between Ct value and outcome of the patient. Interpretation and Conclusion This study depicts that low Ct value and elevated levels of IL-6 and CRP can be used as a screening tool to detect the mortality in COVID-19 patients as they are significantly correlated with the mortality.
Collapse
Affiliation(s)
- Shweta Singhal
- Department of Microbiology, Sarojini Naidu Medical College, Agra, Uttar Pradesh, India
- Department of Microbiology, Government Doon Medical College, Dehradun, Uttarakhand, India
| | - Geetika Rana
- Department of Microbiology, Government Doon Medical College, Dehradun, Uttarakhand, India
| | - Atul K. Singh
- Department of Anesthesia, Government Doon Medical College, Dehradun, Uttarakhand, India
| | - Shekhar Pal
- Department of Microbiology, Government Doon Medical College, Dehradun, Uttarakhand, India
| | - Shweta Thaledi
- Department of Microbiology, Government Doon Medical College, Dehradun, Uttarakhand, India
| |
Collapse
|
10
|
Arppo A, Barker H, Parkkila S. Bioinformatic characterization of ENPEP, the gene encoding a potential cofactor for SARS-CoV-2 infection. PLoS One 2024; 19:e0307731. [PMID: 39661628 PMCID: PMC11633960 DOI: 10.1371/journal.pone.0307731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/21/2024] [Indexed: 12/13/2024] Open
Abstract
Research on SARS-CoV-2, the viral pathogen that causes COVID-19, has identified angiotensin converting enzyme 2 (ACE2) as the primary viral receptor. Several genes that encode viral cofactors, such as TMPRSS2, NRP1, CTSL, and possibly KIM1, have since been discovered. Glutamyl aminopeptidase (APA), encoded by the gene ENPEP, is another cofactor candidate due to similarities in its biological role and high correlation with ACE2 and other human coronavirus receptors, such as aminopeptidase N (APN) and dipeptidyl peptidase 4 (DPP4). Recent studies have proposed a role for ENPEP as a viral receptor in humans, and ENPEP and ACE2 are both closely involved in the renin-angiotensin-aldosterone system proposed to play an important role in SARS-CoV-2 pathophysiology. We performed bioinformatic analyses using publicly available bulk (>17,000 samples from 49 distinct tissues) and single-cell (>2.5 million cells) RNA-Seq gene expression datasets to evaluate the expression and function of the ENPEP gene. We also investigated age- and sex-related changes in ENPEP expression. Overall, expression of ENPEP was highest in the small intestine enterocyte brush border and the kidney cortex. ENPEP is widely expressed in a subset of vascular smooth muscle cells (likely pericytes) in systemic vasculature, the heart, and the brain. ENPEP is expressed at low levels in the lower respiratory epithelium. In the lung, ENPEP is most highly expressed in para-alveolar fibroblasts. Single-cell data revealed ENPEP expression in a substantial fraction of ependymal cells, a finding not reported before in humans. Age increases ENPEP expression in skeletal muscle and the prostate, while decreasing it in the heart and aorta. Angiogenesis was found to be a central biological function associated with the ENPEP gene. Tissue-specific roles, such as protein digestion and fat metabolism, were also identified in the intestine. In the liver, the gene is linked to the complement system, a connection that has not yet been thoroughly investigated. Expression of ENPEP and ACE2 is strongly correlated in the small intestine and renal cortex. Both overall and in blood vessels, ENPEP and ACE2 have a stronger correlation than many other genes associated with SARS-CoV-2, such as TMPRSS2, CTSL, and NRP1. Possible interaction between glutamyl aminopeptidase and SARS-CoV-2 should be investigated experimentally.
Collapse
Affiliation(s)
- Antti Arppo
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Harlan Barker
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere University Hospital, Tampere, Finland
- Disease Networks Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
11
|
Healy J, Youssef AM, Sawant S, Orchard JJ, Rehan R, Van Vuuren R, Orchard JW, Semsarian C, Puranik R. Trends in Sudden Unexpected Deaths in an Australian Population: Impact of the COVID-19 Pandemic. Heart Lung Circ 2024; 33:1693-1698. [PMID: 39389859 DOI: 10.1016/j.hlc.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND & AIM SARS-CoV-2 infection is associated with increased cardiovascular (CV) morbidity and mortality, manifesting as increased adverse outcomes in the first 30 days, extending to 12 months. This study aimed to investigate trends in sudden unexpected deaths between 2018 and 2022, with a focus on CV deaths. METHOD A retrospective analysis was performed on autopsy reports (n=9,330) obtained from New South Wales Coroners Court, Australia, specifically targeting cases of unexplained deaths that occurred between 2018 and 2022. Statistical analysis was conducted using chi-square tests and a post hoc analysis with Bonferroni correction, as well as analysis of variance with multiple comparisons. RESULTS There were 349 (18.3%) CV deaths in 2018, 346 (18.0%) in 2019, 338 (17.5%) in 2020, 395 (21.9%) in 2021, and (23.4%) 413 in 2022 (p=0.0002). Among CV deaths, the number of deaths from sudden arrhythmic death syndrome were 25 (7.2%) in 2018, 26 (7.5%) in 2019, 18 (5.3%) in 2020, 52 (13.2%) in 2021, and 80 (19.4%) in 2022 (p=0.0001). Atherosclerosis was the most common cause of death among all CV categories; there were 196 (56.2%) atherosclerosis deaths in 2018, 207 (59.8%) in 2019, 192 (56.8%) in 2020, 221 (56.0%) in 2021, and 197 (47.7%) in 2022 (p=0.43). The average age of death from sudden arrhythmic death syndrome (42.8±19.1 years) across 2018-2022 was younger than atherosclerosis (56.2±12.4 years) and total groups (53.1±15.1 years) (p<0.001). Males comprised 76% of all CV deaths from 2018 to 2022 (p<0.0001). CONCLUSIONS Compared with pre-pandemic data, a noteworthy increase in CV deaths was observed in occurrence with the escalation in COVID-19 cases in Australia. This may be attributed to direct or indirect factors, such as lifestyle modifications, disrupted access to routine cardiac care, or COVID-19 infection-triggered CV deaths.
Collapse
Affiliation(s)
- James Healy
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Andrew M Youssef
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Sonia Sawant
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jessica J Orchard
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Rajan Rehan
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | | | - John W Orchard
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Christopher Semsarian
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia
| | - Rajesh Puranik
- Department of Cardiology, Royal Prince Alfred Hospital, Sydney, NSW, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Abbaszadeh H, Kabiri-Rad H, Mohammadi F, Zangoie S, Rajabi-Moghaddam M, Ghafari S, Ziaee M, Javanmard D, Miri-Moghaddam E. The Association Between Genetic Variants in ACE1and ACE2 Genes with Susceptibility to COVID-19 Infection. Biochem Genet 2024; 62:4679-4692. [PMID: 38349438 DOI: 10.1007/s10528-024-10722-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/28/2024] [Indexed: 03/27/2024]
Abstract
Angiotensin-converting enzyme 2 (ACE2) receptors facilitate the entry of the causative virus severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) into target cells. Some ACE gene variants have been suggested to be involved in COVID-19 pathogenesis. So, the aim was to assess the association between ACE1 rs4646994 and ACE2 rs2285666 genes polymorphisms and the susceptibility and severity of COVID-19. This case-control study was conducted on 197 patients with COVID-19 and 197 healthy controls. ACE-1 insertion/deletion (I/D) (rs4646994) and ACE2 rs2285666 genes polymorphisms were determined by the amplification refractory mutation system- polymerase chain reaction (ARMS-PCR) technique. The DD genotype of ACE1 I/D polymorphism was associated with increased susceptibility to COVID-19 infection (p = 0.012), whereas the ID genotype of this polymorphism was associated with decreased susceptibility (p = 0.003) (significance level = 0.017). There was no significant association in allele and genotype distribution of ACE2 rs2285666 polymorphism between cases and controls. The ACE1 I/D polymorphism may be considered as a risk factor for COVID-19 susceptibility.
Collapse
Affiliation(s)
- Hamid Abbaszadeh
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Hamid Kabiri-Rad
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariba Mohammadi
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Soheila Zangoie
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mahdieh Rajabi-Moghaddam
- Department of Pathology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Shokouh Ghafari
- Cellular and Molecular Research Center, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Masood Ziaee
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Davod Javanmard
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Ebrahim Miri-Moghaddam
- Department of Molecular Medicine, Faculty of Medicine, Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran, 9717853577.
| |
Collapse
|
13
|
Liu Y, Huang T, Yap NA, Lim K, Ju LA. Harnessing the power of bioprinting for the development of next-generation models of thrombosis. Bioact Mater 2024; 42:328-344. [PMID: 39295733 PMCID: PMC11408160 DOI: 10.1016/j.bioactmat.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Thrombosis, a leading cause of cardiovascular morbidity and mortality, involves the formation of blood clots within blood vessels. Current animal models and in vitro systems have limitations in recapitulating the complex human vasculature and hemodynamic conditions, limiting the research in understanding the mechanisms of thrombosis. Bioprinting has emerged as a promising approach to construct biomimetic vascular models that closely mimic the structural and mechanical properties of native blood vessels. This review discusses the key considerations for designing bioprinted vascular conduits for thrombosis studies, including the incorporation of key structural, biochemical and mechanical features, the selection of appropriate biomaterials and cell sources, and the challenges and future directions in the field. The advancements in bioprinting techniques, such as multi-material bioprinting and microfluidic integration, have enabled the development of physiologically relevant models of thrombosis. The future of bioprinted models of thrombosis lies in the integration of patient-specific data, real-time monitoring technologies, and advanced microfluidic platforms, paving the way for personalized medicine and targeted interventions. As the field of bioprinting continues to evolve, these advanced vascular models are expected to play an increasingly important role in unraveling the complexities of thrombosis and improving patient outcomes. The continued advancements in bioprinting technologies and the collaboration between researchers from various disciplines hold great promise for revolutionizing the field of thrombosis research.
Collapse
Affiliation(s)
- Yanyan Liu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Tao Huang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nicole Alexis Yap
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Khoon Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Darlington, NSW 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW 2042, Australia
| |
Collapse
|
14
|
Islam MA, Ford Versypt AN. Mathematical Modeling of Impacts of Patient Differences on Renin-Angiotensin System and Applications to COVID-19 Lung Fibrosis Outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2022.11.06.515367. [PMID: 36380760 PMCID: PMC9665336 DOI: 10.1101/2022.11.06.515367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Patient-specific premorbidity, age, and sex are significant heterogeneous factors that influence the severe manifestation of lung diseases, including COVID-19 fibrosis. The renin-angiotensin system (RAS) plays a prominent role in regulating the effects of these factors. Recent evidence shows patient-specific alterations of RAS homeostasis concentrations with premorbidity and the expression level of angiotensin-converting enzyme 2 (ACE2) during COVID-19. However, conflicting evidence suggests decreases, increases, or no changes in RAS peptides after SARS-CoV-2 infection. In addition, detailed mechanisms connecting the patient-specific conditions before infection to infection-induced RAS alterations are still unknown. Here, a multiscale computational model was developed to quantify the systemic contribution of heterogeneous factors of RAS during COVID-19. Three submodels were connected-an agent-based model for in-host COVID-19 response in the lung tissue, a RAS dynamics model, and a fibrosis dynamics model to investigate the effects of patient-group-specific factors in the systemic alteration of RAS and collagen deposition in the lung. The model results indicated cell death due to inflammatory response as a major contributor to the reduction of ACE and ACE2. In contrast, there were no significant changes in ACE2 dynamics due to viral-bound internalization of ACE2. The model explained possible mechanisms for conflicting evidence of patient-group-specific changes in RAS peptides in previously published studies. Simulated results were consistent with reported RAS peptide values for SARS-CoV-2-negative and SARS-CoV-2-positive patients. RAS peptides decreased for all virtual patient groups with aging in both sexes. In contrast, large variations in the magnitude of reduction were observed between male and female virtual patients in the older and middle-aged groups. The patient-specific variations in homeostasis RAS peptide concentrations of SARS-CoV-2-negative patients also affected the dynamics of RAS during infection. The model results also showed that feedback between RAS signaling and renin dynamics could restore ANGI homeostasis concentration but failed to restore homeostasis values of RAS peptides downstream of ANGI. In addition, the results showed that ACE2 variations with age and sex significantly altered the concentrations of RAS peptides and led to collagen deposition with slight variations depending on age and sex. This model may find further applications in patient-specific calibrations of tissue models for acute and chronic lung diseases to develop personalized treatments.
Collapse
|
15
|
Chen J, Hu Q, Zhong R, Li L, Kang Y, Chen L, Huang R, You J. Development and validation of nomogram models for severe and fatal COVID-19. Sci Rep 2024; 14:29146. [PMID: 39587251 PMCID: PMC11589750 DOI: 10.1038/s41598-024-80310-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) has exhibited escalating contagion and resistance to immunity, resulting in a surge in infections and severe cases. This study endeavors to formulate two nomogram predictive models aimed at discerning patients at heightened risk of severe and fatal outcomes upon hospital admission. The primary objective is to enhance clinical management protocols and mitigate the incidence of severe illness and mortality associated with COVID-19. METHODS 1600 patients diagnosed with COVID-19 and discharged from Fujian Provincial Hospital were chosen as the subjects of this study. These patients were categorized into three groups: mild group (n = 940), severe group (n = 433), and fatal group (n = 227). The patients were randomly divided into training and validation cohorts in a 7:3 ratio. COVID-19 symptoms were treated as dependent variables, and univariate regression analysis was conducted for the laboratory indicators. Risk factors with p-values greater than 0.05 in the univariate regression analysis were eliminated. The remaining risk factors were then analyzed using direct multiple regression analysis to establish an unadjusted model. Subsequently, risk factors with p-values greater than 0.05 were further removed. Clinical characteristics were added to the model as adjustment factors, and the method of multiple stepwise regression analysis was employed to derive the final fully adjusted model. The severe and fatal COVID-19 models were converted into nomograms, respectively. Receiver operating characteristic (ROC) curves were utilized to evaluate the discrimination of the nomogram models. Calibration was assessed using the Hosmer-Lemeshow test and calibration curves. Clinical benefit was evaluated by decision curve analysis. RESULTS Compared to the mild group, individuals in the severe COVID-19 group exhibited significant increases in age, neutrophil (NEU), and lactate dehydrogenase (LDH) levels, alongside notable decreases in lymphocyte (LYM) and albumin (ALB) levels. Nomogram model incorporating age, NEU, LDH, LYM, and ALB demonstrated efficacy in predicting the onset of severe COVID-19 (AUC = 0.771). Furthermore, history of cerebral infarction and cancer, LDH and ALB as risk factors for fatal COVID-19 cases compared to the severe group. The nomogram model comprising these factors was capable of early identification of COVID-19 fatalities (AUC = 0.748). CONCLUSIONS Elevated age, NEU, and LDH levels, along with decreased LYM and albumin (ALB) levels, are risk factors for severe illness in hospitalized patients with COVID-19. A history of cerebral infarction and tumors, along with elevated LDH and decreased ALB levels, are risk factors for death in critically ill patients. The nomogram model based on these factors can effectively predict the risk of severe or fatal illness from COVID-19, thereby assisting clinicians in timely interventions to reduce the rates of severe illness and mortality among hospitalized patients. However, the model faces challenges in processing longitudinal data and specific points in time, indicating that there is room for improvement.
Collapse
Affiliation(s)
- Jiahao Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Qingfeng Hu
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Xianyou County, Putian, Fujian, China
| | - Ruifang Zhong
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Ling Li
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yanli Kang
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Liangyuan Chen
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Rongfu Huang
- Department of Clinical Laboratory, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Jianbin You
- Department of Clinical Laboratory, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
16
|
Kurmanova G, Zhanaev A, Kaldybek A, Abdrakhmanova B, Akparova A. Impact of the COVID-19 pandemic on the clinical features of patients with chronic obstructive pulmonary disease: an observational cross-sectional study. Monaldi Arch Chest Dis 2024. [PMID: 39569839 DOI: 10.4081/monaldi.2024.3128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
The presence of chronic obstructive pulmonary disease (COPD) and COVID-19 infection is a detrimental combination for patients and can cause negative clinical consequences. The investigation aimed to compare sociodemographic and clinical parameters of COPD individuals hospitalized for exacerbations before and at the end of the COVID-19 pandemic. An observational cross-sectional study including 222 patients with COPD was conducted in two stages: a survey and assessment of clinical and laboratory data of patients hospitalized from September 2022 to March 2023 (n=98) and processing of the medical histories of patients with COPD who received hospital treatment in 2017 and 2018 (n=124). A comparative analysis of patients who received inpatient treatment for COPD showed that the frequency of patients with Global Initiative for Chronic Obstructive Lung Disease (GOLD) I was half as high after the COVID-19 pandemic, whereas the individuals with GOLD IV were more frequent during the same period (p<0.05). Multiple regression analysis proved the effects of smoking status and previous COVID-19 infection on the health status of patients with COPD according to COPD Assessment Test data (p<0.05). There was an increase in the frequency of comorbid pathologies in the post-COVID period: hypertension, coronary heart disease, gastrointestinal diseases, anemia (p<0.05), and other diseases. This study highlights the significant influence of the COVID-19 infection on people with COPD, which manifested as impaired lung function and an increased incidence of comorbidities.
Collapse
Affiliation(s)
- Gaukhar Kurmanova
- Department of Clinical Subjects, Al-Farabi Kazakh National University, Almaty
| | - Almas Zhanaev
- Department of Pulmonology, City Clinical Hospital No. 1, Almaty
| | | | - Balkiya Abdrakhmanova
- Department of General Biology and Genomics, L.N. Gumilyov Eurasian National University, Astana
| | - Almira Akparova
- Department of Clinical Subjects, Al-Farabi Kazakh National University, Almaty
| |
Collapse
|
17
|
Lima EBDS, Carvalho AFS, Zaidan I, Monteiro AHA, Cardoso C, Lara ES, Carneiro FS, Oliveira LC, Resende F, Santos FRDS, Souza-Costa LP, Chaves IDM, Queiroz-Junior CM, Russo RC, Santos RAS, Tavares LP, Teixeira MM, Costa VV, Sousa LP. Angiotensin-(1-7) decreases inflammation and lung damage caused by betacoronavirus infection in mice. Inflamm Res 2024; 73:2009-2022. [PMID: 39292270 DOI: 10.1007/s00011-024-01948-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
OBJECTIVE Pro-resolving molecules, including the peptide Angiotensin-(1-7) [Ang-(1-7)], have potential adjunctive therapy for infections. Here we evaluate the actions of Ang-(1-7) in betacoronavirus infection in mice. METHODS C57BL/6J mice were infected intranasally with the murine betacoronavirus MHV-3 and K18-hACE2 mice were infected with SARS-CoV-2. Mice were treated with Ang-(1-7) (30 µg/mouse, i.p.) at 24-, 36-, and 48-hours post-infection (hpi) or at 24, 36, 48, 72, and 96 h. For lethality evaluation, one additional dose of Ang-(1-7) was given at 120 hpi. At 3- and 5-days post- infection (dpi) blood cells, inflammatory mediators, viral loads, and lung histopathology were evaluated. RESULTS Ang-(1-7) rescued lymphopenia in MHV-infected mice, and decreased airways leukocyte infiltration and lung damage at 3- and 5-dpi. The levels of pro-inflammatory cytokines and virus titers in lung and plasma were decreased by Ang-(1-7) during MHV infection. Ang-(1-7) improved lung function and increased survival rates in MHV-infected mice. Notably, Ang-(1-7) treatment during SARS-CoV-2 infection restored blood lymphocytes to baseline, decreased weight loss, virus titters and levels of inflammatory cytokines, resulting in improvement of pulmonary damage, clinical scores and lethality rates. CONCLUSION Ang-(1-7) protected mice from lung damage and death during betacoronavirus infections by modulating inflammation, hematological parameters and enhancing viral clearance.
Collapse
Affiliation(s)
- Erick Bryan de Sousa Lima
- Programa de Pós-graduação em Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
- Hospital das Clínicas da Universidade Federal de Minas Gerais/Ebserh, Belo Horizonte, Minas Gerais, Brazil
| | - Antônio Felipe S Carvalho
- Programa de Pós-graduação em Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
- Hospital das Clínicas da Universidade Federal de Minas Gerais/Ebserh, Belo Horizonte, Minas Gerais, Brazil
| | - Isabella Zaidan
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adelson Héric A Monteiro
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Camila Cardoso
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Edvaldo S Lara
- Programa de Pós-graduação em Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Fernanda S Carneiro
- Programa de Pós-graduação em Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Leonardo C Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Filipe Resende
- Programa de Pós-graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felipe Rocha da Silva Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz Pedro Souza-Costa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ian de Meira Chaves
- Programa de Pós-graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Programa de Pós-graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Remo C Russo
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Robson A S Santos
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, National Institute in Science and Technology in nanobiopharmaceutics, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana P Tavares
- Department of Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vivian V Costa
- Programa de Pós-graduação em Biologia Celular, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lirlândia P Sousa
- Programa de Pós-graduação em Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
18
|
Rahmani D, Jafari A, Kesharwani P, Sahebkar A. Molecular targets in SARS-CoV-2 infection: An update on repurposed drug candidates. Pathol Res Pract 2024; 263:155589. [PMID: 39276508 DOI: 10.1016/j.prp.2024.155589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
The 2019 widespread contagion of the human coronavirus novel type (SARS-CoV-2) led to a pandemic declaration by the World Health Organization. A daily increase in patient numbers has formed an urgent necessity to find suitable targets and treatment options for the novel coronavirus (COVID-19). Despite scientists' struggles to discover quick treatment solutions, few effective specific drugs are approved to control SARS-CoV-2 infections thoroughly. Drug repositioning or Drug repurposing and target-based approaches are promising strategies for facilitating the drug discovery process. Here, we review current in silico, in vitro, in vivo, and clinical updates regarding proposed drugs for prospective treatment options for COVID-19. Drug targets that can direct pharmaceutical sciences efforts to discover new drugs against SARS-CoV-2 are divided into two categories: Virus-based targets, for example, Spike glycoprotein and Nucleocapsid Protein, and host-based targets, for instance, inflammatory cytokines and cell receptors through which the virus infects the cell. A broad spectrum of drugs has been found to show anti-SARS-CoV-2 potential, including antiviral drugs and monoclonal antibodies, statins, anti-inflammatory agents, and herbal products.
Collapse
Affiliation(s)
- Dibachehr Rahmani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Abrard S, Coquet T, Riou J, Rineau E, Hersant J, Vincent A, Cordoval J, Jacquet-Lagrèze M, Allaouchiche B, Lukaszewicz AC, Henni S. DETECTION AND QUANTIFICATION OF MICROCIRCULATORY DYSFUNCTION IN SEVERE COVID-19 NOT REQUIRING MECHANICAL VENTILATION: A THREE-ARM COHORT STUDY. Shock 2024; 62:673-681. [PMID: 39158987 DOI: 10.1097/shk.0000000000002451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
ABSTRACT Aim: To identify and describe microcirculatory dysfunction (MD) in severe COVID-19 cases. Methods: This prospective, cohort study evaluated microvascular function in COVID-19 patients with acute respiratory failure not requiring mechanical ventilation and compared it with that of non-COVID-19 intensive care unit (ICU)-matched controls. A validation cohort included healthy, comorbidity-free patients. The primary outcome compared tissue oxygen resaturation slope (rStO 2 ) in COVID-19 patients and non-COVID ICU controls. rStO 2 was measured post a 3-min vaso-occlusive test during post-occlusive reactive hyperemia (PORH). Additionally, microvascular reactivity was assessed using perfusion index (PI) during PORH and laser speckle contrast imaging post iontophoresis with acetylcholine (ACH), sodium nitroprusside (SNP), and sublingual microcirculation. Results: Overall, 75 patients (25 per cohort) were included. COVID-19 patients exhibited greater severity than ICU controls, as indicated by their SOFA scores (4.0 [3.0; 4.0] vs. 1.0 [0; 1.0], P < 0.001) and PaO 2 /FiO 2 ratios (113 [82; 150] vs. 443 [348; 533], P < 0.001). No significant difference was observed in rStO 2 between the groups. COVID-19 patients showed longer time in reaching peak PI ( P = 0.025), reduced vasodilation with ACH and SNP ( P = 0.010 and P = 0.018, respectively), and increased microvascular density ( P = 0.019) compared to non-COVID-19 ICU controls. Conclusion: We observed evidence of MD in COVID-19 patients through various microcirculatory parameters. This study's reproducible multimodal approach facilitates acute MD detection across multiple clinical applications. Limitations included the observational design, limited statistical power, single-time microvascular measurements, varying illness severity among groups, and possible influences of treatments and vaccinations on MD. Trial registration : Clinical-Trials.gov (NCT04773899).
Collapse
Affiliation(s)
| | | | - Jérémie Riou
- Department of Biostatistics and Methodology, University Hospital of Angers, Angers, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Samet M, Mahdiabadi PR, Tajamolian M, Jelodar MG, Monshizadeh K, Javazm RR, Yazdi M, Abessi P, Hoseini SM. ABO gene polymorphism and COVID-19 severity: The impact on haematological complications, inflammatory markers, and lung lesions. Hum Immunol 2024; 85:111184. [PMID: 39566435 DOI: 10.1016/j.humimm.2024.111184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
PURPOSE The study aimed to investigate the connection between an intronic variant in the ABO gene (rs657152) and the severity of COVID-19 in terms of clinical symptoms, haematological complications, inflammatory markers, and lung lesions. METHODS After applying exclusion criteria, the study included 240 patients divided into 3 groups: 88 Outpatients, 84 Ward-hospitalized, and 68 ICU-admitted/failed patients. The tetra-ARMS PCR method was used to genotype ABO polymorphism in the patient. Paraclinical tests of patients at the time of admission (before receiving conventional treatments) included levels of C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), as well as a complete blood count (CBC). Also, the severity of lung lesions was evaluated based on the results of spiral computed tomography (CT) of the chest during admission. RESULTS The statistical analysis using the ANOVA test revealed significant differences in the mean values of allele frequencies (p-value = 0.0020) and genotype proportions (p-value = 0.0017) among clinical groups. The study also found a notable difference in ABO polymorphism across different levels of the inflammatory marker CRP, but not with the ESR levels. Furthermore, the study showed a significant difference in the distribution of lung lesion severity and ABO polymorphism among different clinical groups. CONCLUSION To conclude, our findings supported the substantial impact of ABO polymorphism rs657152 on the severity of COVID-19 in Iranian patients, specifically concerning haematological complications, inflammatory markers, and lung lesions. The study underscored the protective effect of the AC genotype and the detrimental impact of the CC genotype on clinical manifestations.
Collapse
Affiliation(s)
- Mohammad Samet
- Departments of Internal Medicine, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Parvane Raeesi Mahdiabadi
- Departments of Internal Medicine, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoud Tajamolian
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Gholinataj Jelodar
- Departments of Internal Medicine, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Kimia Monshizadeh
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Reza Rafiei Javazm
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehran Yazdi
- Departments of Internal Medicine, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Panteha Abessi
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Mehdi Hoseini
- Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
21
|
Liu Y, Zhang W, Sun M, Liang X, Wang L, Zhao J, Hou Y, Li H, Yang X. The severity assessment and nucleic acid turning-negative-time prediction in COVID-19 patients with COPD using a fused deep learning model. BMC Pulm Med 2024; 24:515. [PMID: 39402509 PMCID: PMC11476205 DOI: 10.1186/s12890-024-03333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Previous studies have shown that patients with pre-existing chronic obstructive pulmonary diseases (COPD) were more likely to be infected with coronavirus disease (COVID-19) and lead to more severe lung lesions. However, few studies have explored the severity and prognosis of COVID-19 patients with different phenotypes of COPD. PURPOSE The aim of this study is to investigate the value of the deep learning and radiomics features for the severity evaluation and the nucleic acid turning-negative time prediction in COVID-19 patients with COPD including two phenotypes of chronic bronchitis predominant patients and emphysema predominant patients. METHODS A total of 281 patients were retrospectively collected from Hohhot First Hospital between October 2022 and January 2023. They were divided to three groups: COVID-19 group of 95 patients, COVID-19 with emphysema group of 94 patients, COVID-19 with chronic bronchitis group of 92 patients. All patients underwent chest computed tomography (CT) scans and recorded clinical data. The U-net model was pretrained to segment the pulmonary involvement area on CT images and the severity of pneumonia were evaluated by the percentage of pulmonary involvement volume to lung volume. The 107 radiomics features were extracted by pyradiomics package. The Spearman method was employed to analyze the correlation of the data and visualize it through a heatmap. Then we establish a deep learning model (model 1) and a fusion model (model 2) combined deep learning with radiomics features to predict nucleic acid turning-negative time. RESULTS COVID-19 patients with emphysema was lowest in the lymphocyte count compared to COVID-19 patients and COVID-19 companied with chronic bronchitis, and they have the most extensive range of pulmonary inflammation. The lymphocyte count was significantly correlated with pulmonary involvement and the time for nucleic acid turning negative (r=-0.145, P < 0.05). Importantly, our results demonstrated that model 2 achieved an accuracy of 80.9% in predicting nucleic acid turning-negative time. CONCLUSION The pre-existing emphysema phenotype of COPD severely aggravated the pulmonary involvement of COVID-19 patients. Deep learning and radiomics features may provide more information to accurately predict the nucleic acid turning-negative time, which is expected to play an important role in clinical practice.
Collapse
Affiliation(s)
- Yanhui Liu
- Medical Imaging Department, Hohhot First Hospital, Inner Mongolia, P.R. China
| | - Wenxiu Zhang
- Institute of Research and Clinical Innovations, Neusoft Medical Systems Co., Ltd, Shanghai, P.R. China
| | - Mengzhou Sun
- Institute of Research and Clinical Innovations, Neusoft Medical Systems Co., Ltd, Beijing, P.R. China
| | - Xiaoyun Liang
- Institute of Research and Clinical Innovations, Neusoft Medical Systems Co., Ltd, Shanghai, P.R. China
| | - Lu Wang
- Medical Imaging Department, Hohhot First Hospital, Inner Mongolia, P.R. China
| | - Jiaqi Zhao
- Medical Imaging Department, Hohhot First Hospital, Inner Mongolia, P.R. China
| | - Yongquan Hou
- Respiratory and Critical Care Medicine Department, Hohhot First Hospital, Inner Mongolia, P.R. China
| | - Haina Li
- Medical Imaging Department, Hohhot First Hospital, Inner Mongolia, P.R. China
| | - Xiaoguang Yang
- Medical Imaging Department, Hohhot First Hospital, Inner Mongolia, P.R. China.
| |
Collapse
|
22
|
Creppy JR, Delache B, Lemaitre J, Horvat B, Vecellio L, Ducancel F. Administration of airborne pathogens in non-human primates. Inhal Toxicol 2024; 36:475-500. [PMID: 39388247 DOI: 10.1080/08958378.2024.2412685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
PURPOSE Airborne pathogen scan penetrate in human respiratory tract and can cause illness. The use of animal models to predict aerosol deposition and study respiratory disease pathophysiology is therefore important for research and a prerequisite to test and study the mechanism of action of treatment. NHPs are relevant animal species for inhalation studies because of their similarities with humans in terms of anatomical structure, respiratory parameters and immune system. MATERIALS AND METHODS The aim of this review is to provide an overview of the state of the art of pathogen aerosol studies performed in non-human primates (NHPs). Herein, we present and discuss the deposition of aerosolized bacteria and viruses. In this review, we present important advantages of using NHPs as model for inhalation studies. RESULTS We demonstrate that deposition in the respiratory tract is not only a function of aerosol size but also the technique of administration influences the biological activity and site of aerosol deposition. Finally, we observe an influence of a region of pathogen deposition in the respiratory tract on the development of the pathophysiological effect in NHPs. CONCLUSION The wide range of methods used for the delivery of pathogento NHP respiratory airways is associated with varying doses and deposition profiles in the airways.
Collapse
Affiliation(s)
- Justina R Creppy
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Benoit Delache
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Julien Lemaitre
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| | - Branka Horvat
- CIRI, Centre International de Recherche en Infectiologie, INSERM U1111, CNRS UMR5308, Université de Lyon, Lyon, France
| | - Laurent Vecellio
- Centre d'Étude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Frédéric Ducancel
- Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Université Paris-Saclay, Fontenay-aux-Roses, France
| |
Collapse
|
23
|
Tran KC, Asfar P, Cheng M, Demiselle J, Singer J, Lee T, Sweet D, Boyd J, Walley K, Haljan G, Sharif O, Geri G, Auchabie J, Quenot JP, Lee TC, Tsang J, Meziani F, Lamontagne F, Dubee V, Lasocki S, Ovakim D, Wood G, Turgeon A, Cohen Y, Lebas E, Goudelin M, Forrest D, Teale A, Mira JP, Fowler R, Daneman N, Adhikari NKJ, Gousseff M, Leroy P, Plantefeve G, Rispal P, Courtois R, Winston B, Reynolds S, Birks P, Bienvenu B, Tadie JM, Talarmin JP, Ansart S, Russell JA. Effects of Losartan on Patients Hospitalized for Acute COVID-19: A Randomized Controlled Trial. Clin Infect Dis 2024; 79:615-625. [PMID: 39325643 PMCID: PMC11426262 DOI: 10.1093/cid/ciae306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) down-regulates angiotensin-converting enzyme 2, potentially increasing angiotensin II. We hypothesized that losartan compared to usual care decreases mortality and is safe in patients hospitalized with coronavirus disease 2019 (COVID-19). We aimed to evaluate the effect of losartan versus usual care on 28-day mortality in patients hospitalized for acute COVID-19. METHODS Eligibility criteria included adults admitted for acute COVID-19. Exclusion criteria were hypotension, hyperkalemia, acute kidney injury, and use of angiotensin receptor blockers (ARBs) or angiotensin-converting enzyme inhibitors within 7 days. Participants were randomized to losartan 25-100 mg/day orally for the hospital duration or 3 months or the control arm (usual care) in 29 hospitals in Canada and France. The primary outcome was 28-day mortality. Secondary outcomes were hospital mortality, organ support, and serious adverse events (SAEs). RESULTS The trial was stopped early because of a serious safety concern with losartan. In 341 patients, any SAE and hypotension were significantly higher in the losartan versus usual care groups (any SAE: 39.8% vs 27.2%, respectively, P = .01; hypotension: 30.4% vs 15.3%, respectively, P < .001) in both ward and intensive care patients. The 28-day mortality did not differ between losartan (6.5%) versus usual care (5.9%) (odds ratio, 1.11 [95% confidence interval, .47-2.64]; P = .81), nor did organ dysfunction or secondary outcomes. CONCLUSIONS Caution is needed in deciding which patients to start or continue using ARBs in patients hospitalized with pneumonia to mitigate risk of hypotension, acute kidney injury, and other side effects. ARBs should not be added to care of patients hospitalized for acute COVID-19. CLINICAL TRIALS REGISTRATION NCT04606563.
Collapse
Affiliation(s)
- Karen C Tran
- Division of General Internal Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - Pierre Asfar
- Service de Médecine Intensive-Réanimation, Centre Hospitalier Universitaire d’Angers, Angers, France
| | - Matthew Cheng
- McGill’s Interdisciplinary Initiative in Infection and Immunity, Divisions of Infectious Diseases and Medical Microbiology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Julien Demiselle
- Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Joel Singer
- Centre for Health Evaluation and Outcome Science, St Paul's Hospital and University of British Columbia, Vancouver, Canada
| | - Terry Lee
- Centre for Health Evaluation and Outcome Science, St Paul's Hospital and University of British Columbia, Vancouver, Canada
| | - David Sweet
- Division of General Internal Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, Canada
| | - John Boyd
- Division of Critical Care Medicine, and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| | - Keith Walley
- Division of Critical Care Medicine, and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| | - Greg Haljan
- Department of Medicine and Critical Care Medicine, Surrey Memorial Hospital, British Columbia, Canada
| | - Omar Sharif
- Department of Medicine and Critical Care Medicine, Surrey Memorial Hospital, British Columbia, Canada
| | - Guillaume Geri
- Service de Médecine Intensive-Réanimation, Assistance Publique–Hôpitaux de Paris Ambroise Paré, Boulogne, France
| | - Johann Auchabie
- Service de Réanimation Polyvalente, Centre Hospitalier de Cholet
| | - Jean-Pierre Quenot
- Service de Médecine Intensive-Réanimation, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Todd C Lee
- McGill's Interdisciplinary Initiative in Infection and Immunity, McGill University Health Centre, Montreal, Quebec, Canada
| | - Jennifer Tsang
- Niagara Health, McMaster University, St Catherines, Ontario, Canada
| | - Ferhat Meziani
- Service de Médecine Intensive-Réanimation, Nouvel Hôpital Civil Strasbourg, Strasbourg, France
| | - Francois Lamontagne
- Centre Hospitalier Universitaire de Sherbrooke, University of Sherbrooke, Quebec, Canada
| | - Vincent Dubee
- Service de Maladies Infectieuses, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Sigismond Lasocki
- Service de Réanimation Chirurgicale, Centre Hospitalier Universitaire Angers, Angers, France
| | - Daniel Ovakim
- Royal Jubilee Hospital, Island Health, Victoria, British Columbia
| | - Gordon Wood
- Royal Jubilee Hospital, Island Health, Victoria, British Columbia
| | - Alexis Turgeon
- Department of Medicine, Centre Hospitalier Universitaire de Québec–Université Laval, Quebec, Canada
| | - Yves Cohen
- Service de Médecine Intensive-Réanimation, Assistance Publique–Hôpitaux de Paris Avicenne, Bobigny, France
| | - Eddy Lebas
- Service de Réanimation Polyvalente, Centre Hospitalier Bretagne-Atlantique, Vannes, France
| | - Marine Goudelin
- Service de Réanimation Polyvalente, Centre Hospitalier Universitaire Limoges, Limoges, France
| | - David Forrest
- Department of Medicine, Nanaimo Regional General Hospital, British Columbia, Canada
| | - Alastair Teale
- Department of Medicine, Nanaimo Regional General Hospital, British Columbia, Canada
| | - Jean-Paul Mira
- Service de Médecine Intensive-Réanimation, Assistance Publique-Hôpitaux de Paris, Cochin, France
| | - Robert Fowler
- Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Nick Daneman
- Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Neill K J Adhikari
- Critical Care Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Marie Gousseff
- Service de Médecine Interne–Maladies Infectieuses–Hématologie, Centre Hospitalier Bretagne-Atlantique, Vannes, France
| | - Pierre Leroy
- Service de médecine polyvalente et maladies infectieuses, Centre Hospitalier Melun, Melun, France
| | - Gaetan Plantefeve
- Service de Réanimation Polyvalente, Centre Hospitalier Argenteuil, France
| | - Patrick Rispal
- Department of Medicine, Service de médecine interne, Centre Hospitalier Agen, Agen, France
| | - Roxane Courtois
- Service de Médecine post-urgences–Maladies infectieuses, Centre Hospitalier de Cholet, Cholet, France
| | - Brent Winston
- Departments of Critical Care Medicine, Medicine, and Biochemistry and Molecular Biology, Foothills Medical Centre, University of Calgary, Alberta, Canada
| | - Steve Reynolds
- Critical Care Medicine, Royal Columbian Hospital, New Westminster, British Columbia, Canada
- Department of Medicine, Simon Fraser University, Surrey, British Columbia, Canada
| | - Peter Birks
- Critical Care Medicine, Royal Columbian Hospital, New Westminster, British Columbia, Canada
- Department of Medicine, Simon Fraser University, Surrey, British Columbia, Canada
| | - Boris Bienvenu
- Service de médecine interne, Hôpital St Joseph, Marseille, France
| | - Jean-Marc Tadie
- Service de Médecine Intensive-Réanimation et de Maladies Infectieuses, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Jean-Philippe Talarmin
- Service de médecine interne, maladies du sang et infectiologie, Centre Hospitalier de Quimper, Quimper, France
| | - Severine Ansart
- Service de Maladies Infectieuses, Centre Hospitalier Régional Universitaire Brest, Brest, France
| | - James A Russell
- Division of Critical Care Medicine, and Centre for Heart Lung Innovation, St Paul's Hospital, Vancouver, Canada
| |
Collapse
|
24
|
Ebrahim Babai M, Kabiri A, Movahedi M, Ghahiri A, Hajhashemi M, Dehghan M. Evaluation of the Relationship between Early Clinical Manifestations and Changes in Biochemical, Inflammatory, and Coagulation Parameters and the Prognosis of Pregnant Women with COVID-19 Admitted to the ICU. Adv Biomed Res 2024; 13:76. [PMID: 39512403 PMCID: PMC11542693 DOI: 10.4103/abr.abr_257_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2024] Open
Abstract
Background In the SARSCov2 virus epidemic, pregnant women are more susceptible to infectious diseases due to changes in biochemical parameters and are at higher risk of severe respiratory disease and pneumonia. This study aimed to evaluate the biochemical, inflammatory and coagulation parameters in pregnant women with severe disease conditions (as one of the high-risk groups) as well as prognosis and outcome. Materials and Methods This cross-sectional study was performed on 135 pregnant women with COVID-19 admitted to ICU. Demographic and clinical information and laboratory parameters of the patients were evaluated and recorded at the time of admission and in the next follow-up until discharge or death in addition to the outcome and also the pregnancy outcome. Results The mortality rate of pregnant women with COVID-19 was 9.6%. The mortality rate decreases with increasing Hb (OR (95% CI): 0.68 (0.47-0.99); P value = 0.043) and lymphocytes (OR (95% CI): 0.92 (0.85-0.96); P value = 0.028) and will increase significantly with increasing PT (OR (95% CI): 1.24 (1.01-1.51); P value = 0.037), INR (OR (95% CI): 1.89 (1.26-2.25); P value = 0.004), D-dimer (OR (95% CI): 1.68 (1.10-2.08); P value = 0.027), and LDH (OR (95% CI): 1.20 (1.01-1.61); P value = 0.010). Conclusion According to the results of the present study, inflammatory factors such as leukocytes, neutrophils, NLR, CRP have an increasing and lymphocytes have a decreasing trend, so that lymphocytopenia is more common in non-survivors. In addition, increase of PT, INR, D-dimer and LDH and decrease of Hb were significantly associated with increased chance of mortality. But fibrinogen, ferritin, ALT and AST were not significantly associated with mortality in these women.
Collapse
Affiliation(s)
- Mahtab Ebrahim Babai
- Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azita Kabiri
- Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Minoo Movahedi
- Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ataollah Ghahiri
- Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Hajhashemi
- Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Dehghan
- Department of Obstetrics and Gynecology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
25
|
Chen F, Jiang F, Ma J, Alghamdi MA, Zhu Y, Yong JWH. Intersecting planetary health: Exploring the impacts of environmental stressors on wildlife and human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116848. [PMID: 39116691 DOI: 10.1016/j.ecoenv.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
This comprehensive review articulates critical insights into the nexus of environmental stressors and their health impacts across diverse species, underscoring significant findings that reveal profound effects on both wildlife and human health systems. Central to our examination is the role of pollutants, climate variables, and pathogens in contributing to complex disease dynamics and physiological disruptions, with particular emphasis on immune and endocrine functions. This research brings to light emerging evidence on the severe implications of environmental pressures on a variety of taxa, including predatory mammals, raptorial birds, seabirds, fish, and humans, which are pivotal as indicators of broader ecosystem health and stability. We delve into the nuanced interplay between environmental degradation and zoonotic diseases, highlighting novel intersections that pose significant risks to biodiversity and human populations. The review critically evaluates current methodologies and advances in understanding the morphological, histopathological, and biochemical responses of these organisms to environmental stressors. We discuss the implications of our findings for conservation strategies, advocating for a more integrated approach that incorporates the dynamics of zoonoses and pollution control. This synthesis not only contributes to the academic discourse but also aims to influence policy by aligning with the Global Goals for Sustainable Development. It underscores the urgent need for sustainable interactions between humans and their environments, which are critical for preserving biodiversity and ensuring global health security. By presenting a detailed analysis of the interdependencies between environmental stressors and biological health, this review highlights significant gaps in current research and provides a foundation for future studies aimed at mitigating these pressing issues. Our study is significant as it proposes integrative and actionable strategies to address the challenges at the intersection of environmental change and public health, marking a crucial step forward in planetary health science.
Collapse
Affiliation(s)
- Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Feifei Jiang
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Jing Ma
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Mohammed A Alghamdi
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia.
| | - Yanfeng Zhu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221000, China.
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp 23456, Sweden.
| |
Collapse
|
26
|
Skeeters S, Bagale K, Stepanyuk G, Thieker D, Aguhob A, Chan KK, Dutzar B, Shalygin S, Shajahan A, Yang X, DaRosa PA, Frazier E, Sauer MM, Bogatzki L, Byrnes-Blake KA, Song Y, Azadi P, Tarcha E, Zhang L, Procko E. Modulation of the pharmacokinetics of soluble ACE2 decoy receptors through glycosylation. Mol Ther Methods Clin Dev 2024; 32:101301. [PMID: 39185275 PMCID: PMC11342882 DOI: 10.1016/j.omtm.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
The Spike of SARS-CoV-2 recognizes a transmembrane protease, angiotensin-converting enzyme 2 (ACE2), on host cells to initiate infection. Soluble derivatives of ACE2, in which Spike affinity is enhanced and the protein is fused to Fc of an immunoglobulin, are potent decoy receptors that reduce disease in animal models of COVID-19. Mutations were introduced into an ACE2 decoy receptor, including adding custom N-glycosylation sites and a cavity-filling substitution together with Fc modifications, which increased the decoy's catalytic activity and provided small to moderate enhancements of pharmacokinetics following intravenous and subcutaneous administration in humanized FcRn mice. Most prominently, sialylation of native glycans increases exposures by orders of magnitude, and the optimized decoy is therapeutically efficacious in a mouse COVID-19 model. Ultimately, an engineered and highly sialylated decoy receptor produced using methods suitable for manufacture of representative drug substance has high exposure with a 5- to 9-day half-life. Finally, peptide epitopes at mutated sites in the decoys generally have low binding to common HLA class II alleles and the predicted immunogenicity risk is low. Overall, glycosylation is a critical molecular attribute of ACE2 decoy receptors and modifications that combine tighter blocking of Spike with enhanced pharmacokinetics elevate this class of molecules as viable drug candidates.
Collapse
Affiliation(s)
| | - Kamal Bagale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | - Sergei Shalygin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | - Yifan Song
- Cyrus Biotechnology, Seattle, WA 98121, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erik Procko
- Cyrus Biotechnology, Seattle, WA 98121, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
27
|
Tahir A, Draxler A, Stelzer T, Blaschke A, Laky B, Széll M, Binar J, Bartak V, Bragagna L, Maqboul L, Herzog T, Thell R, Wagner KH. A comprehensive IDA and SWATH-DIA Lipidomics and Metabolomics dataset: SARS-CoV-2 case control study. Sci Data 2024; 11:998. [PMID: 39266559 PMCID: PMC11393081 DOI: 10.1038/s41597-024-03822-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
A significant hurdle in untargeted lipid/metabolomics research lies in the absence of reliable, cross-validated spectral libraries, leading to a considerable portion of LC-MS features being labeled as unknowns. Despite continuous advancement in annotation tools and libraries, it is important to safeguard, publish and share acquired data through public repositories. Embracing this trend of data sharing not only promotes efficient resource utilization but also paves the way for future repurposing and in-depth analysis; ultimately advancing our comprehension of Covid-19 and other diseases. In this work, we generated an extensive MS-dataset of 39 Covid-19 infected patients versus age- and gender-matched 39 healthy controls. We implemented state of the art acquisition techniques including IDA and SWATH-DIA to ensure a thorough insight in the lipidome and metabolome, ensuring a repurposable dataset.
Collapse
Affiliation(s)
- Ammar Tahir
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria.
- Section of Biomedical Sciences, Department of Health Sciences, FH Campus Wien, University of Applied Sciences, Vienna, Austria.
| | - Agnes Draxler
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
- Department of Health Sciences, FH Campus Wien, University of Applied Sciences, Vienna, Austria
| | - Tamara Stelzer
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
| | | | - Brenda Laky
- Medical University of Vienna, Vienna, Austria
- Austrian Society of Regenerative Medicine, Vienna, Austria
- Sigmund Freud University Vienna, Vienna, Austria
| | - Marton Széll
- Klinik Donaustadt, Emergency Department, Vienna, Austria
| | - Jessica Binar
- Section of Biomedical Sciences, Department of Health Sciences, FH Campus Wien, University of Applied Sciences, Vienna, Austria
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Viktoria Bartak
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Laura Bragagna
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Vienna, Austria
| | - Lina Maqboul
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
| | - Theresa Herzog
- Klinik Donaustadt, Emergency Department, Vienna, Austria
| | - Rainer Thell
- Klinik Donaustadt, Emergency Department, Vienna, Austria
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
- Research Platform Active Ageing, University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Da Silva Filho J, Herder V, Gibbins MP, Dos Reis MF, Melo GC, Haley MJ, Judice CC, Val FFA, Borba M, Tavella TA, de Sousa Sampaio V, Attipa C, McMonagle F, Wright D, de Lacerda MVG, Costa FTM, Couper KN, Marcelo Monteiro W, de Lima Ferreira LC, Moxon CA, Palmarini M, Marti M. A spatially resolved single-cell lung atlas integrated with clinical and blood signatures distinguishes COVID-19 disease trajectories. Sci Transl Med 2024; 16:eadk9149. [PMID: 39259811 DOI: 10.1126/scitranslmed.adk9149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/15/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024]
Abstract
COVID-19 is characterized by a broad range of symptoms and disease trajectories. Understanding the correlation between clinical biomarkers and lung pathology during acute COVID-19 is necessary to understand its diverse pathogenesis and inform more effective treatments. Here, we present an integrated analysis of longitudinal clinical parameters, peripheral blood markers, and lung pathology in 142 Brazilian patients hospitalized with COVID-19. We identified core clinical and peripheral blood signatures differentiating disease progression between patients who recovered from severe disease compared with those who succumbed to the disease. Signatures were heterogeneous among fatal cases yet clustered into two patient groups: "early death" (<15 days until death) and "late death" (>15 days). Progression to early death was characterized systemically and in lung histopathological samples by rapid endothelial and myeloid activation and the presence of thrombi associated with SARS-CoV-2+ macrophages. In contrast, progression to late death was associated with fibrosis, apoptosis, and SARS-CoV-2+ epithelial cells in postmortem lung tissue. In late death cases, cytotoxicity, interferon, and T helper 17 (TH17) signatures were only detectable in the peripheral blood after 2 weeks of hospitalization. Progression to recovery was associated with higher lymphocyte counts, TH2 responses, and anti-inflammatory-mediated responses. By integrating antemortem longitudinal blood signatures and spatial single-cell lung signatures from postmortem lung samples, we defined clinical parameters that could be used to help predict COVID-19 outcomes.
Collapse
Affiliation(s)
- João Da Silva Filho
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Institute of Parasitology Zurich (IPZ), VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Matthew P Gibbins
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Institute of Parasitology Zurich (IPZ), VetSuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Monique Freire Dos Reis
- Department of Education and Research, Oncology Control Centre of Amazonas State (FCECON), Manaus, Brazil
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Federal University of Amazonas, Manaus, Brazil
- Amazonas Oncology Control Center Foundation, Manaus, Brazil
| | | | - Michael J Haley
- Department of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Carla Cristina Judice
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
| | - Fernando Fonseca Almeida Val
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Mayla Borba
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Delphina Rinaldi Abdel Aziz Emergency Hospital (HPSDRA), Manaus, Brazil
| | - Tatyana Almeida Tavella
- Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, Brazil
- INSERM U1016, CNRS UMR8104, University of Paris Cité, Institut Cochin, Paris, France
| | | | - Charalampos Attipa
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Fiona McMonagle
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Glasgow Imaging Facility/School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Derek Wright
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Marcus Vinicius Guimaraes de Lacerda
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
- Instituto Leônidas e Maria Deane, Fiocruz, Manaus, Brazil
- University of Texas Medical Branch, Galveston, TX, USA
| | | | - Kevin N Couper
- Department of Immunology, Immunity to Infection and Respiratory Medicine, University of Manchester, Manchester, UK
| | - Wuelton Marcelo Monteiro
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Luiz Carlos de Lima Ferreira
- Postgraduate Program in Tropical Medicine, University of Amazonas State, Manaus, Brazil
- Tropical Medicine Foundation Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Christopher Alan Moxon
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- (C.A.M.)
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- (M.P.)
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, University of Glasgow, Glasgow, UK
- Institute of Parasitology Zurich (IPZ), VetSuisse Faculty, University of Zurich, Zurich, Switzerland
- (M.M.)
| |
Collapse
|
29
|
Ward B, Pyr Dit Ruys S, Balligand JL, Belkhir L, Cani PD, Collet JF, De Greef J, Dewulf JP, Gatto L, Haufroid V, Jodogne S, Kabamba B, Lingurski M, Yombi JC, Vertommen D, Elens L. Deep Plasma Proteomics with Data-Independent Acquisition: Clinical Study Protocol Optimization with a COVID-19 Cohort. J Proteome Res 2024; 23:3806-3822. [PMID: 39159935 PMCID: PMC11385417 DOI: 10.1021/acs.jproteome.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Plasma proteomics is a precious tool in human disease research but requires extensive sample preparation in order to perform in-depth analysis and biomarker discovery using traditional data-dependent acquisition (DDA). Here, we highlight the efficacy of combining moderate plasma prefractionation and data-independent acquisition (DIA) to significantly improve proteome coverage and depth while remaining cost-efficient. Using human plasma collected from a 20-patient COVID-19 cohort, our method utilizes commonly available solutions for depletion, sample preparation, and fractionation, followed by 3 liquid chromatography-mass spectrometry/MS (LC-MS/MS) injections for a 360 min total DIA run time. We detect 1321 proteins on average per patient and 2031 unique proteins across the cohort. Differential analysis further demonstrates the applicability of this method for plasma proteomic research and clinical biomarker identification, identifying hundreds of differentially abundant proteins at biological concentrations as low as 47 ng/L in human plasma. Data are available via ProteomeXchange with the identifier PXD047901. In summary, this study introduces a streamlined, cost-effective approach to deep plasma proteome analysis, expanding its utility beyond classical research environments and enabling larger-scale multiomics investigations in clinical settings. Our comparative analysis revealed that fractionation, whether the samples were pooled or separate postfractionation, significantly improved the number of proteins quantified. This underscores the value of fractionation in enhancing the depth of plasma proteome analysis, thereby offering a more comprehensive landscape for biomarker discovery in diseases such as COVID-19.
Collapse
Affiliation(s)
- Bradley Ward
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sébastien Pyr Dit Ruys
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jean-Luc Balligand
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Leïla Belkhir
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Patrice D Cani
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jean-François Collet
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Julien De Greef
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Joseph P Dewulf
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Laurent Gatto
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Vincent Haufroid
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Sébastien Jodogne
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Benoît Kabamba
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Maxime Lingurski
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Jean Cyr Yombi
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Didier Vertommen
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Laure Elens
- Integrated Pharmacometrics, Pharmacogenomics and Pharmacokinetics Group (PMGK), Louvain Drug Research Institute (LDRI), UCLouvain, Université Catholique de Louvain, 1200 Brussels, Belgium
| |
Collapse
|
30
|
Ji W, Zhu P, Wang Y, Zhang Y, Li Z, Yang H, Chen S, Jin Y, Duan G. The key mechanisms of multi-system responses triggered by central nervous system damage in hand, foot, and mouth disease severity. INFECTIOUS MEDICINE 2024; 3:100124. [PMID: 39314804 PMCID: PMC11417554 DOI: 10.1016/j.imj.2024.100124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/10/2024] [Accepted: 07/23/2024] [Indexed: 09/25/2024]
Abstract
Hand, foot, and mouth disease (HFMD) is a prevalent infectious affliction primarily affecting children, with a small portion of cases progressing to neurological complications. Notably, in a subset of severe HFMD cases, neurological manifestations may result in significant sequelae and pose a risk of mortality. We systematically conducted literature retrieval from the databases PubMed (1957-2023), Embase (1957-2023), and Web of Science (1957-2023), in addition to consulting authoritative guidelines. Subsequently, we rigorously selected the most relevant articles within the scope of this review for comprehensive analysis. It is widely recognized that the severity of HFMD is attributed to a multifaceted array of pathophysiological mechanisms. The implication of multi-system dysfunction appears to be perturbances of the human defense system; therefore, it contributes to the severity of HFMD. In this review, we provide an overview and analysis of recent insights into the molecular mechanisms contributing to the severity of HFMD, with a particular focus on cytokine release syndrome, the involvement of the renin-angiotensin system, regional immunity, endothelial dysfunction, catecholamine storm, viral invasion, and the molecular mechanisms of neurological damage. We speculate that the domino effect of diverse physiological systems, initiated by damage to the central nervous system, serve as the primary mechanisms governing the severity of HFMD. Simultaneously, we emphasize the knowledge gaps and research urgently required to delineate a quick roadmap for ongoing and essential studies on HFMD.
Collapse
Affiliation(s)
- Wangquan Ji
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Peiyu Zhu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuexia Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yu Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Zijie Li
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan province, China
| |
Collapse
|
31
|
Dos Santos Medeiros SMDFR, Sousa Lino BMN, Perez VP, Sousa ESS, Campana EH, Miyajima F, Carvalho-Silva WHV, Dejani NN, de Sousa Fernandes MS, Yagin FH, Al-Hashem F, Elkholi SM, Alyami H, Souto FO. Predictive biomarkers of mortality in patients with severe COVID-19 hospitalized in intensive care unit. Front Immunol 2024; 15:1416715. [PMID: 39281667 PMCID: PMC11401048 DOI: 10.3389/fimmu.2024.1416715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Objectives This study was performed to identify predictive markers of worse outcomes in patients with severe COVID-19 in an intensive care unit. Methods Sixty patients with severe COVID-19, hospitalized in the Intensive Care Unit (ICU) between March and July 2021, were stratified into two groups according to the outcome survivors and non-survivors. After admission to the ICU, blood samples were collected directly for biomarker analysis. Routine hematological and biochemical biomarkers, as well as serum levels of cytokines, chemokines, and immunoglobulins, were investigated. Results Lymphopenia, neutrophilia, and thrombocytopenia were more pronounced in non-surviving patients, while the levels of CRP, AST, creatinine, ferritin, AST, troponin I, urea, magnesium, and potassium were higher in the non-surviving group than the survival group. In addition, serum levels of IL-10, CCL2, CXCL9, and CXCL10 were significantly increased in patients who did not survive. These changes in the biomarkers evaluated were associated with increased mortality in patients with severe COVID-19. Conclusion The present study confirmed and expanded the validity of laboratory biomarkers as indicators of mortality in severe COVID-19.
Collapse
Affiliation(s)
- Sandrelli Meridiana de Fátima Ramos Dos Santos Medeiros
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
- Molecular Biology Laboratory (LABIMOL), Medical Sciences Center, Federal University of Paraíba (CCM/UFPB), João Pessoa, Paraíba, Brazil
| | | | - Vinícius Pietta Perez
- Molecular Biology Laboratory (LABIMOL), Medical Sciences Center, Federal University of Paraíba (CCM/UFPB), João Pessoa, Paraíba, Brazil
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba (CCS/UFPB), João Pessoa, Paraíba, Brazil
| | - Eduardo Sérgio Soares Sousa
- Molecular Biology Laboratory (LABIMOL), Medical Sciences Center, Federal University of Paraíba (CCM/UFPB), João Pessoa, Paraíba, Brazil
- Department of Obstetrics and Gynecology, Medical Sciences Center, Federal University of Paraíba (CCM/UFPB), João Pessoa, Paraíba, Brazil
| | - Eloiza Helena Campana
- Molecular Biology Laboratory (LABIMOL), Medical Sciences Center, Federal University of Paraíba (CCM/UFPB), João Pessoa, Paraíba, Brazil
- Department of Pharmaceutical Sciences, Health Sciences Center, Federal University of Paraíba (CCS/UFPB), João Pessoa, Paraíba, Brazil
| | | | | | - Naiara Naiana Dejani
- Molecular Biology Laboratory (LABIMOL), Medical Sciences Center, Federal University of Paraíba (CCM/UFPB), João Pessoa, Paraíba, Brazil
- Department of Physiology and Pathology, Health Sciences Center, Federal University of Paraíba (CCS/UFPB), João Pessoa, Paraíba, Brazil
| | | | - Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya, Türkiye
| | - Fahaid Al-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Safaa M Elkholi
- Department of Rehabilitation Sciences, College of Health and Rehabilitation Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hanan Alyami
- Department of Medical and Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fabrício Oliveira Souto
- Keizo Asami Institute (iLIKA), Federal University of Pernambuco (UFPE), Recife, Pernambuco, Brazil
| |
Collapse
|
32
|
Yan W, Bläsius F, Wahl T, Hildebrand F, Balmayor ER, Greven J, Horst K. Lactate dehydrogenase can be used for differential diagnosis to identify patients with severe polytrauma with or without chest injury-A retrospective study. PLoS One 2024; 19:e0308228. [PMID: 39088425 PMCID: PMC11293635 DOI: 10.1371/journal.pone.0308228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Chest injury is an important factor regarding the prognosis of patients with polytrauma (PT), and the rapid diagnosis of chest injury is of utmost importance. Therefore, the current study focused on patients' physiology and laboratory findings to quickly identify PT patients with chest injury. METHOD Data on 64 PT patients treated at a trauma center level I between June 2020 and August 2021 were retrospectively collected. The patients were divided into a PT group without chest injury (Group A) and a PT group including chest injury (Group B). The relationship between chest injury and the patients' baseline characteristics and biochemical markers was analyzed. RESULTS Heart rate, respiration rate, Sequential Organ Failure Assessment (SOFA) score, glutamate oxaloacetate aminotransferase (GOT), glutamate pyruvate transaminase (GPT), creatine kinase MB (CK-MB), leucocytes, hemoglobin (Hb), platelets, urine output, lactate, and lactate dehydrogenase (LDH) in groups A and B exhibited statistically significant differences at certain time points. Multifactorial analysis showed that blood LDH levels at admission were associated with chest injury (P = 0.039, CI 95% 1.001, 1.022). CONCLUSION LDH may be a promising indicator for screening for the presence of chest injury in patients with severe polytrauma.
Collapse
Affiliation(s)
- Weining Yan
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Felix Bläsius
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Tabea Wahl
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Elizabeth Rosado Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Johannes Greven
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Klemens Horst
- Department of Orthopaedics, Trauma and Reconstructive Surgery, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
33
|
AbuSaleh L, Ereqat S, Al-Jawabreh A, Nasereddin A. Genetic Polymorphisms of Angiotensin-Converting Enzyme 1 (ACE1) and ACE2 Associated With Severe Acute Respiratory Syndrome COVID-19 in the Palestinian Population. Cureus 2024; 16:e67670. [PMID: 39318909 PMCID: PMC11420599 DOI: 10.7759/cureus.67670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/26/2024] Open
Abstract
As a key enzyme of the renin-angiotensin system (RAS), angiotensin-converting enzyme 2 (ACE2) is a validated receptor for SARS-CoV-2, linking RAS to COVID-19. Functional ACE1/ACE2 gene polymorphisms likely cause an imbalance in the ACE1/ACE2 ratio, triggering RAS imbalance and may contribute to COVID-19 complications. This study aimed to investigate four single nucleotide polymorphisms (SNPs) of ACE1 and ACE2 genes, three for ACE1 (rs4343, rs4342, rs4341) and one for ACE2 (rs2285666), in patients with COVID-19 among the Palestinian population. A total of 130 blood samples were collected, including 50 negative controls without COVID-19 infection, 50 cases with COVID-19 infection but not hospitalized, and 30 patients with severe COVID-19 infection hospitalized in the intensive care unit. Fragments of the ACE1 and ACE2 genes, including the targeted SNPs, were amplified using multiplex PCR and subsequently genotyped by next-generation sequencing with specific virtual probes. Our results revealed that ACE2 rs2285666 GG genotype carriers were more prevalent in COVID-19 patients compared to the control group (P=0.049), while no statistical differences were observed in the distribution of ACE1 (rs4343, rs4342, rs4341) variants between COVID-19 patients and the control group. GA carriers of ACE2, rs2285666, among cases and ICU groups were at lower risk of getting COVID-19 infection (P=0.002 and P=0.013, respectively), and they were unlikely to develop fatigue (P=0.043), headache (P=0.007), loss of smell (P=0.028), and dyspnea (P=0.005). Age and comorbidities such as hypertension and coronary artery disease (CAD) were independent risk factors for COVID-19 disease. Symptoms of COVID-19 patients such as fatigue, headaches, runny noses, and loss of smell were significantly higher in non-hospitalized cases of COVID-19, while dyspnea was more frequent in the ICU patients. In conclusion, these findings indicate that the ACE2 rs2285666 GG genotype is associated with an increased risk of COVID-19 infection. This association suggests a potential genetic predisposition linked to the ACE2 gene, which may influence the susceptibility and severity of the disease.
Collapse
Affiliation(s)
- Lama AbuSaleh
- Biochemistry and Molecular Biology Department, Faculty of Medicine, Al-Quds University, Jerusalem, PSE
| | - Suheir Ereqat
- Biochemistry and Molecular Biology Department, Al-Quds University, Jerusalem, PSE
| | - Amer Al-Jawabreh
- Medical Laboratory Sciences Department, Faculty of Allied Health Sciences, Arab American University, Jerusalem, PSE
| | | |
Collapse
|
34
|
Cao Z, Gao J, Wu J, Zheng Y. The Impact of COVID-19 Infection on Abdominal Aortic Aneurysms: Mechanisms and Clinical Implications. Cardiovasc Ther 2024; 2024:7288798. [PMID: 39742024 PMCID: PMC11300061 DOI: 10.1155/2024/7288798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 01/03/2025] Open
Abstract
Background: The COVID-19 virus not only has significant pathogenicity but also influences the progression of many diseases, altering patient prognosis. Cardiovascular diseases, particularly aortic aneurysms, are among the most life-threatening conditions. Main Idea: COVID-19 infection is reported to accelerate the progression of abdominal aortic aneurysms (AAAs) and increase the risk of rupture; however, a comprehensive understanding of the underlying mechanisms remains elusive. This article primarily reviews the relevant foundational research, focusing on disruptions in the renin-angiotensin-aldosterone system (RAAS), immune system activation, and coagulation disorders. Furthermore, we summarize related clinical research, including the epidemiology of aortic aneurysms during the pandemic and specific case studies. Conclusion: COVID-19 infection can influence the onset and progression of aortic aneurysms by affecting the RAAS, triggering inflammation and immune dysregulation in the arterial wall, and inducing a hypercoagulation state. It is crucial to comprehensively understand the impact of pandemic viral infections on aortic diseases at the foundational and clinical levels, thereby identifying potential preventative or therapeutic approaches and preparing for potential future outbreaks.
Collapse
Affiliation(s)
- Zenghan Cao
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianhang Gao
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianqiang Wu
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Institute of Clinical MedicineNational Infrastructure for Translational MedicinePeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Complex Severe and Rare DiseasePeking Union Medical College Hospital, Beijing 100730, China
| | - Yuehong Zheng
- Department of Vascular SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
35
|
Wang H, Wu S, Pan D, Meng W, Hu L, Zhang H, Ning Y, Guo J, Gu Y. Causal relationships between COVID-19 and venous thromboembolism: A mendelian randomization analysis. Phlebology 2024:2683555241266659. [PMID: 39033375 DOI: 10.1177/02683555241266659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Objective: Observational studies show the correlation between COVID-19 and venous thromboembolism (VTE) risk. However, the causal effects remain uncertain. We aimed to explore the potential causal association between COVID-19 and VTE using Mendelian randomization (MR) design. Methods: Two-sample MR was used to evaluate the potential causality between COVID-19 and VTE by selecting single-nucleotide polymorphisms (SNPs) as instrumental variables (IVs) from genome-wide association studies (GWAS). The weighted median, MR-Egger, simple mode, and weighted mode were employed as supplementary methods for MR estimations, with the inverse-variance weighted (IVW) method serving as the principal analysis. In addition, we took sensitivity analyses, including Cochran's test, MR-Pleiotropy Residual Sum and Outlier (MR-PRESSO), and leave-one-out analysis to ensure that we obtained stable and reliable results. Results: Our study selected 26 COVID-19 severity, 31 COVID-19 hospitalization, and 13 COVID-19 susceptibility SNPs as instrumental variables. The IVW analysis results revealed that there was no causal relationship between COVID-19 severity, hospitalization, or susceptibility and VTE, with odds ratios of 0.974 (95%CI: 0.936-1.013, p = 0.19), 0.976 (95%CI: 0.918-1.039, p = 0.447), and 0.908 (95%CI: 0.775-1.065, p = 0.235), respectively. The IVW approach yielded consistent results with MR-Egger, Weighted Median simple mode, and weighted mode. MR-PRESSO and sensitivity analysis further confirmed the stability and consistency of the MR results. Conclusions: This study did not find evidence to support a causal relationship between COVID-19 and VTE at the genetic level. Further investigation is warranted to determine if the significant association reported in previous observational studies between the two is due to confounding factors.
Collapse
Affiliation(s)
- Hui Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sensen Wu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wenzhuo Meng
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lefan Hu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hanyu Zhang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yachan Ning
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jianming Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Daneshwar D, Lee Y, Nordin A. COVID-19 and Prostatitis: A Review of Current Evidence. Diseases 2024; 12:157. [PMID: 39057128 PMCID: PMC11276594 DOI: 10.3390/diseases12070157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 07/28/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19), a highly contagious viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a global health threat. The virus enters host cells by binding with angiotensin-converting enzyme 2 (ACE2), which is then facilitated by the protease activity of transmembrane serine protease 2 (TMPRSS2). It triggers a cytokine storm that eventually leads to cell apoptosis, tissue damage, and organ failure. Therefore, any organs in the human body that have both receptors are highly susceptible to COVID-19 infection, potentially resulting in multiple-organ failure. The prostate has been reported to express high levels of ACE2 and TMPRSS2. While there are limited studies regarding the association between COVID-19 and prostatitis, the possibility that SARS-CoV-2 could cause prostatitis cannot be denied. Thus, through this review, a better insight into the associations of SAR-CoV-2 can be provided.
Collapse
Affiliation(s)
- Datesh Daneshwar
- Urology Clinic, Prince Court Medical Centre, 39, Jalan Kia Peng, Kuala Lumpur 50450, Malaysia
| | - Yemin Lee
- MedCentral Consulting, International Youth Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Abid Nordin
- Graduate School of Medicine, KPJ Healthcare University, Nilai 71800, Negeri Sembilan, Malaysia;
| |
Collapse
|
37
|
Wu Q, Rafatian N, Wagner KT, Blamer J, Smith J, Okhovatian S, Aggarwal P, Wang EY, Banerjee A, Zhao Y, Nash TR, Lu RXZ, Portillo-Esquivel LE, Li CY, Kuzmanov U, Mandla S, Virlee E, Landau S, Lai BF, Gramolini AO, Liu C, Fleischer S, Veres T, Vunjak-Novakovic G, Zhang B, Mossman K, Broeckel U, Radisic M. SARS-CoV-2 pathogenesis in an angiotensin II-induced heart-on-a-chip disease model and extracellular vesicle screening. Proc Natl Acad Sci U S A 2024; 121:e2403581121. [PMID: 38968108 PMCID: PMC11253010 DOI: 10.1073/pnas.2403581121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/07/2024] Open
Abstract
Adverse cardiac outcomes in COVID-19 patients, particularly those with preexisting cardiac disease, motivate the development of human cell-based organ-on-a-chip models to recapitulate cardiac injury and dysfunction and for screening of cardioprotective therapeutics. Here, we developed a heart-on-a-chip model to study the pathogenesis of SARS-CoV-2 in healthy myocardium established from human induced pluripotent stem cell (iPSC)-derived cardiomyocytes and a cardiac dysfunction model, mimicking aspects of preexisting hypertensive disease induced by angiotensin II (Ang II). We recapitulated cytopathic features of SARS-CoV-2-induced cardiac damage, including progressively impaired contractile function and calcium handling, apoptosis, and sarcomere disarray. SARS-CoV-2 presence in Ang II-treated hearts-on-a-chip decreased contractile force with earlier onset of contractile dysfunction and profoundly enhanced inflammatory cytokines compared to SARS-CoV-2 alone. Toward the development of potential therapeutics, we evaluated the cardioprotective effects of extracellular vesicles (EVs) from human iPSC which alleviated the impairment of contractile force, decreased apoptosis, reduced the disruption of sarcomeric proteins, and enhanced beta-oxidation gene expression. Viral load was not affected by either Ang II or EV treatment. We identified MicroRNAs miR-20a-5p and miR-19a-3p as potential mediators of cardioprotective effects of these EVs.
Collapse
Affiliation(s)
- Qinghua Wu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Naimeh Rafatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Karl T. Wagner
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S 3E5, Canada
| | - Jacob Blamer
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Jacob Smith
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S 3E5, Canada
| | - Sargol Okhovatian
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Praful Aggarwal
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Erika Yan Wang
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Arinjay Banerjee
- Department of Medicine, McMaster University, Toronto, ONL8S 4L8, Canada
- Vaccine and Infectious Disease Organization, Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SKS7N 5E3, Canada
| | - Yimu Zhao
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| | - Trevor R. Nash
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| | - Rick Xing Ze Lu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | | | - Chen Yu Li
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S 3E5, Canada
| | - Uros Kuzmanov
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ONM5G 1M1, Canada
| | - Serena Mandla
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
| | - Elizabeth Virlee
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Shira Landau
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Benjamin Fook Lai
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
| | - Anthony O. Gramolini
- Department of Physiology, University of Toronto, Toronto, ONM5S 1A8, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, ONM5G 1M1, Canada
| | - Chuan Liu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ONM5S 3E1, Canada
| | - Sharon Fleischer
- Department of Biomedical Engineering, Columbia University, New York, NY10027
| | - Teodor Veres
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ONM5S 3G8, Canada
- Medical Devices Research Center, Life Sciences Division, National Research Council Canada, Montreal, QCH4P 2R2, Canada
| | - Gordana Vunjak-Novakovic
- Department of Biomedical Engineering, Columbia University, New York, NY10027
- Department of Medicine, Columbia University, New York, NY10032
| | - Boyang Zhang
- Department of Chemical Engineering, McMaster University, Hamilton, ONL8S 4L8, Canada
| | - Karen Mossman
- Department of Medicine, McMaster University, Toronto, ONL8S 4L8, Canada
| | - Ulrich Broeckel
- Department of Pediatrics, Section of Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ONM5S 3G9, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ONM5G 2C4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ONM5S 3E5, Canada
- Terrence Donnelly Centre for Cellular & Biomolecular Research, University of Toronto, Toronto, ONM5S 3E1, Canada
| |
Collapse
|
38
|
Uppal R, Saeed U, Uppal MR, Khan AA, Ahmad M, Piracha ZZ. SARS-CoV-2 clearance in term of Cycle Threshold (Ct) during first two waves of COVID-19 in Pakistan: a phenomenon of delayed viral clearance post-corticosteroid treatment. BRAZ J BIOL 2024; 84:e271452. [PMID: 38985057 DOI: 10.1590/1519-6984.271452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/11/2024] [Indexed: 07/11/2024] Open
Abstract
SARS-CoV-2 is recently emerged virus, which caused millions of deaths, all over the world. To tackle COVID-19 pandemic, there is an utmost need for in-depth analysis of viral replication. We aimed to examine viral load in SARS-CoV-2 patients during first two waves of COVID-19 in Pakistan. 225,615 suspected subjects from 75 different regions of Pakistan were selected in the study. SARS-CoV-2 RNAs were detected via real time PCR. During first wave (period of June-July, 2020) of COVID-19 the prevalence of SARS-CoV-2 was 20.38%. However, during second wave (period of November-December, 2020) of COVID-19, the rate of prevalence was 9.41%. During first wave of COVID-19 96.31% of participants remained PCR positive for 14 to 21 days, 3.39% of subjects showed positive results for 22 to 35 days, while delayed Ct values were observed among 0.26% of participants for 36 to 49 days. However, during second wave of COVID-19 89.31% of the subjects exhibited symptoms and showed real-time PCR positive results for 14 to 21 days, 9.42% showed positive results for 22 to 35 days, while significantly delayed Ct value results were observed among 1.026% of participants for 36 to 63 days (3.95 times higher than first wave). In contrast to first wave of COVID-19, the factors that were different in second wave were neither viral (different strains) nor host (same population). But treatment factors changed significantly. As during second wave besides azithromycin, corticosteroid dexamethasone consumption was increased consequently causing delayed Ct value negativity. This suggests that corticosteroid treatment might be linked with delayed Ct value or viral clearance. This study is crucial for re-considering effective therapeutic options against COVID-19.
Collapse
Affiliation(s)
- R Uppal
- Islamabad Diagnostic Center - IDC, Department of Research and Development, Islamabad, Pakistan
| | - U Saeed
- Foundation University Islamabad, Foundation University School of Health Sciences, Clinical and Biomedical Research Center, Islamabad, Pakistan
| | - M R Uppal
- Islamabad Diagnostic Center - IDC, Department of Research and Development, Islamabad, Pakistan
| | - A A Khan
- Islamabad Diagnostic Center - IDC, Department of Research and Development, Islamabad, Pakistan
| | - M Ahmad
- International Center of Medical Sciences Research - ICMSR, Austin, TX, United States of America
- Nishtar Medical College, Multan, Punjab, Pakistan
| | - Z Z Piracha
- International Center of Medical Sciences Research - ICMSR, Austin, TX, United States of America
- International Center of Medical Sciences Research - ICMSR, Islamabad, Pakistan
- International Center of Medical Sciences Research - ICMSR, Chadwell Heath, United Kingdom
| |
Collapse
|
39
|
Kim DM, Lawrence Panchali MJ, Kim CM, Lee DY, Seo JW, Kim DY, Yun NR. SARS-CoV-2 antigenemia and RNAemia in association with disease severity in patients with COVID-19. Sci Rep 2024; 14:14926. [PMID: 38942808 PMCID: PMC11213952 DOI: 10.1038/s41598-024-65489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, causes a spectrum of symptoms ranging from mild upper to severe lower respiratory tract infections. However, the dynamics of nucleocapsid (N) protein antigenemia and RNAemia are not fully understood. We conducted a cohort study involving 117 patients with clinically confirmed COVID-19, focusing on the kinetics of antigenemia and RNAemia and their association with various clinical characteristics. The patients had a median age of 66.0 years (52.0-79.0 years), with a gender distribution of 46.2% male and 53.8% female. Antigenemia reached 100% in fatal cases during the first week after admission. The sensitivity/specificity of antigenemia for diagnosis were 64.7%/73.0% at admission, 69.1%/100% in Week 1, and 66.3%/100% in Week 2. Additionally, the rates of antigenemia in asymptomatic patients were 27.3% upon admission and 22.0% in Week 1, respectively; however, no antigenemia was in samples collected in Week 2. Viral RNAemia was not detected in asymptomatic patients, but RNAemia viral loads were elevated in fatal cases. Kaplan-Meier survival curves demonstrated a higher mortality rate when antigenemia concentrations were elevated in the follow-up samples (P = 0.005). Our study provides a comprehensive analysis of the kinetics of viral N-protein antigenemia and RNAemia according to disease severity and clinical classification. Our findings suggest that highest concentrations of antigenemia in fatal cases occur in the first week after admission, indicating that early elevated antigenemia may serve as a marker of mortality risk.
Collapse
Affiliation(s)
- Dong-Min Kim
- Department of Internal Medicine, College of Medicine, Chosun University, 588 Seosuk-dong, Dong-gu, Gwangju, 501-717, Republic of Korea.
| | - Merlin Jayalal Lawrence Panchali
- Department of Internal Medicine, College of Medicine, Chosun University, 588 Seosuk-dong, Dong-gu, Gwangju, 501-717, Republic of Korea
| | - Choon-Mee Kim
- Premedical Science, College of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Da-Yeon Lee
- Department of Internal Medicine, College of Medicine, Chosun University, 588 Seosuk-dong, Dong-gu, Gwangju, 501-717, Republic of Korea
| | - Jun-Won Seo
- Department of Internal Medicine, College of Medicine, Chosun University, 588 Seosuk-dong, Dong-gu, Gwangju, 501-717, Republic of Korea
| | - Da Young Kim
- Department of Internal Medicine, College of Medicine, Chosun University, 588 Seosuk-dong, Dong-gu, Gwangju, 501-717, Republic of Korea
| | - Na Ra Yun
- Department of Internal Medicine, College of Medicine, Chosun University, 588 Seosuk-dong, Dong-gu, Gwangju, 501-717, Republic of Korea
| |
Collapse
|
40
|
Jasiczek J, Doroszko A, Trocha T, Trocha M. Role of the RAAS in mediating the pathophysiology of COVID-19. Pharmacol Rep 2024; 76:475-486. [PMID: 38652364 PMCID: PMC11126499 DOI: 10.1007/s43440-024-00596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
The renin-angiotensin-aldosterone system (RAAS) holds a position of paramount importance as enzymatic and endocrine homeostatic regulator concerning the water-electrolyte and acid-base balance. Nevertheless, its intricacy is influenced by the presence of various complementary angiotensins and their specific receptors, thereby modifying the primary RAAS actions. Angiotensin-converting enzyme 2 (ACE2) acts as a surface receptor for SARS-CoV-2, establishing an essential connection between RAAS and COVID-19 infection. Despite the recurring exploration of the RAAS impact on the trajectory of COVID-19 along with the successful resolution of many inquiries, its complete role in the genesis of delayed consequences encompassing long COVID and cardiovascular thrombotic outcomes during the post-COVID phase as well as post-vaccination, remains not fully comprehended. Particularly noteworthy is the involvement of the RAAS in the molecular mechanisms underpinning procoagulant processes throughout COVID-19. These processes significantly contribute to the pathogenesis of organ complications as well as determine clinical outcomes and are discussed in this manuscript.
Collapse
Affiliation(s)
- Jakub Jasiczek
- Department of Cardiology, Regional Specialist Hospital in Wrocław, Kamieńskiego 73a, Wrocław, 51-124, Poland
| | - Adrian Doroszko
- Department of Cardiology, 4th Military Hospital, Faculty of Medicine, Wroclaw University of Science and Technology, Weigla 5, Wrocław, 50-981, Poland
| | - Tymoteusz Trocha
- Faculty of Medicine, Wroclaw Medical University, Borowska 213, Wrocław, 50-556, Poland.
| | - Małgorzata Trocha
- Clinical Department of Diabetology and Internal Disease, Wroclaw Medical University, Borowska 213, Wrocław, 50-556, Poland
| |
Collapse
|
41
|
Bohra HR, Suthar OP, Rehana VR, Baskaran P, Nivedita A, Lakra PS, Raghav PR, Tandon A. Predictive ability of complete blood count, mean platelet ratio, mean platelet volume, and neutrophil/lymphocyte ratio for severe pneumonia among RT-PCR or radiologically proven COVID-19 patients. J Family Med Prim Care 2024; 13:1856-1862. [PMID: 38948551 PMCID: PMC11213453 DOI: 10.4103/jfmpc.jfmpc_1304_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 07/02/2024] Open
Abstract
Background Immuno-inflammatory markers related to white blood cells, and platelets are shown to be associated with COVID-19 infection, and considered to be independent markers for clinical outcomes and mortality. The present study aimed to study the predictive value of these hematologic parameters in progression of COVID-19 to severe pneumonia. Methods This was an analytical cross-sectional study conducted among RT-PCR or radiologically proven COVID-19 patients in a tertiary care hospital in Rajasthan. Semi-structured questionnaire was used to collect the epidemiological information of the patients with COVID-19. Complete blood count and other laboratory parameters were also studied among the patients. Results Mean age of participants in the study was 52 years, with about 70% being males. Cough and breathlessness were the most common symptoms among the patients. It was found that the parameters related to white blood cells were significantly different between patients with COVID-19 infection and severe pneumonia (except absolute monocyte count). NLR was significantly higher among those with severe pneumonia. In the univariate analysis, age (OR - 1.02), NLR (OR - 1.16), and albumin (OR - 0.45) were found to be significant predictors of progression to severe pneumonia. In the final model, adjusted for confounders, only NLR and albumin levels significantly predicted progression to severe pneumonia among COVID-19 patients. Conclusion The study consolidates the predictive ability of NLR for severe pneumonia. It is an important finding, as health facilities with limited access to laboratory investigations can rely on simple markers in routine practice to predict the progression of COVID-19 infection to severe pneumonia.
Collapse
Affiliation(s)
- Harishkumar R. Bohra
- Department of Pathology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
- Department of Pathology, Government Medical College (RAJMES), Pali, Rajasthan, India
| | - Om P. Suthar
- Department of Anesthesiology, Government Medical College (RJAMES), Pali, Rajasthan, India
| | - V R Rehana
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Pritish Baskaran
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - A Nivedita
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Prima Suchita Lakra
- Department of Pathology, All India Institute of Medical Sciences, Deoghar, Jharkhand, India
| | - Pankaja R. Raghav
- Department of Pathology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Ashwani Tandon
- Department of Pathology, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh, India
| |
Collapse
|
42
|
Shukla AK, Awasthi K, Usman K, Banerjee M. Role of renin-angiotensin system/angiotensin converting enzyme-2 mechanism and enhanced COVID-19 susceptibility in type 2 diabetes mellitus. World J Diabetes 2024; 15:606-622. [PMID: 38680697 PMCID: PMC11045416 DOI: 10.4239/wjd.v15.i4.606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a disease that caused a global pandemic and is caused by infection of severe acute respiratory syndrome coronavirus 2 virus. It has affected over 768 million people worldwide, resulting in approximately 6900000 deaths. High-risk groups, identified by the Centers for Disease Control and Prevention, include individuals with conditions like type 2 diabetes mellitus (T2DM), obesity, chronic lung disease, serious heart conditions, and chronic kidney disease. Research indicates that those with T2DM face a heightened susceptibility to COVID-19 and increased mortality compared to non-diabetic individuals. Examining the renin-angiotensin system (RAS), a vital regulator of blood pressure and pulmonary stability, reveals the significance of the angiotensin-converting enzyme (ACE) and ACE2 enzymes. ACE converts angiotensin-I to the vasoconstrictor angiotensin-II, while ACE2 counters this by converting angiotensin-II to angiotensin 1-7, a vasodilator. Reduced ACE2 expression, common in diabetes, intensifies RAS activity, contributing to conditions like inflammation and fibrosis. Although ACE inhibitors and angiotensin receptor blockers can be therapeutically beneficial by increasing ACE2 levels, concerns arise regarding the potential elevation of ACE2 receptors on cell membranes, potentially facilitating COVID-19 entry. This review explored the role of the RAS/ACE2 mechanism in amplifying severe acute respiratory syndrome coronavirus 2 infection and associated complications in T2DM. Potential treatment strategies, including recombinant human ACE2 therapy, broad-spectrum antiviral drugs, and epigenetic signature detection, are discussed as promising avenues in the battle against this pandemic.
Collapse
Affiliation(s)
- Ashwin Kumar Shukla
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Komal Awasthi
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| | - Kauser Usman
- Department of Medicine, King Georges’ Medical University, Lucknow 226003, Uttar Pradesh, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, Uttar Pradesh, India
- Institute of Advanced Molecular Genetics, and Infectious Diseases (IAMGID), University of Lucknow, Lucknow 226007, Uttar Pradesh, India
| |
Collapse
|
43
|
Ibrahim F, Natasha A, Yasmon A, Rizal CT, Fithriyah, Karuniawati A, Saharman YR, Sudarmono P. Evaluation of SARS-CoV-2 quantification from oropharyngeal swabs, nasopharyngeal swabs, and naso-oropharyngeal swabs: A cross-sectional study. Heliyon 2024; 10:e28647. [PMID: 38586376 PMCID: PMC10998208 DOI: 10.1016/j.heliyon.2024.e28647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
The current naso-oropharyngeal swab for SARS-CoV-2 detection faces several problems, such as waste issues and its use for quantitative studies. This study aimed to evaluate the total RNA and viral loads from different upper respiratory tract swabs types and whether SARS-CoV-2 quantification can use the current internal control for normalization. This cross-sectional study collected positive specimens with single oropharyngeal or nasopharyngeal swabs and naso-oropharyngeal swabs. The samples were extracted, tested with qualitative RT‒PCR, and then tested with quantitative RT‒PCR. The RNA eluate was measured for the total RNA concentration. The total RNA concentration, viral load, and RNaseP Ct values were collected and analysed statistically. The positive results came from 41 oropharyngeal swabs, 34 nasopharyngeal swabs, and 36 naso-oropharyngeal swabs. The total RNA increased significantly from oropharyngeal swabs to nasopharyngeal swabs to naso-oropharyngeal swabs. Significant differences in RNaseP Ct values between groups and their correlations with total RNA were found. In addition, the increase in the total RNA and the RNaseP Ct values were unrelated to the viral load. The physical features in the naso-oropharyngeal area and the swabbing procedures could affect the total RNA but not the viral load. However, since the virus particles could present inside and outside human cells, the increase in collected human cells may not always be followed by the viral load increase. Normalization using the RNaseP Ct value became unnecessary due to the factors mentioned above. Therefore, a careful approach is needed in viral load studies of swab specimens.
Collapse
Affiliation(s)
- Fera Ibrahim
- Department of Microbiology Faculty of Medicine Universitas Indonesia / Dr. Cipto Mangunkusumo Hospital, Pegangsaan Timur 16 Street, East Jakarta, 10430, Indonesia
| | - Augustine Natasha
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Andi Yasmon
- Department of Microbiology Faculty of Medicine Universitas Indonesia / Dr. Cipto Mangunkusumo Hospital, Pegangsaan Timur 16 Street, East Jakarta, 10430, Indonesia
| | - Chairunnisa Tawadhu Rizal
- Jakarta Health Laboratory Center, Ministry of Health, Percetakan Negara No.23B street, Central Jakarta, Indonesia
| | - Fithriyah
- Department of Microbiology Faculty of Medicine Universitas Indonesia / Dr. Cipto Mangunkusumo Hospital, Pegangsaan Timur 16 Street, East Jakarta, 10430, Indonesia
| | - Anis Karuniawati
- Department of Microbiology Faculty of Medicine Universitas Indonesia / Dr. Cipto Mangunkusumo Hospital, Pegangsaan Timur 16 Street, East Jakarta, 10430, Indonesia
| | - Yulia Rosa Saharman
- Department of Microbiology Faculty of Medicine Universitas Indonesia / Dr. Cipto Mangunkusumo Hospital, Pegangsaan Timur 16 Street, East Jakarta, 10430, Indonesia
| | - Pratiwi Sudarmono
- Department of Microbiology Faculty of Medicine Universitas Indonesia / Dr. Cipto Mangunkusumo Hospital, Pegangsaan Timur 16 Street, East Jakarta, 10430, Indonesia
| |
Collapse
|
44
|
Liao Y, Zhang Y, Li H, Hu H, Li M, Liao C. ACE2: the node connecting the lung cancer and COVID-19. Am J Cancer Res 2024; 14:1466-1481. [PMID: 38726281 PMCID: PMC11076241 DOI: 10.62347/xjve4569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/04/2024] [Indexed: 05/12/2024] Open
Abstract
Angiotensin-converting Enzyme 2 (ACE2) collaborates with Angiotensin (Ang) 1-7 and Mas receptors to establish the ACE2-Ang (1-7)-Mas receptor axis. ACE2 impacts lung function and can cause lung injury due to its inflammatory effects. Additionally, ACE2 contributes to pulmonary vasculature dysfunction, resulting in pulmonary hypertension. In addition, ACE2 is a receptor for coronavirus entry into host cells, leading to coronavirus infection. Lung cancer, one of the most common respiratory diseases worldwide, has a high rate of infection. Elevated levels of ACE2 in lung cancer patients, which increase the risk of SARS-CoV-2 infection and severe disease, have been demonstrated in clinical studies and by molecular mechanisms. The association between lung cancer and SARS-CoV-2 is closely linked to ACE2. This review examines the basic pathophysiological role of ACE2 in the lung, the long-term effects of SARS-CoV-2 infection on lung function, the development of pulmonary fibrosis, chronic inflammation in long-term COVID patients, and the clinical research and mechanisms underlying the increased susceptibility of lung cancer patients to the virus. Possible mechanisms of lung cancer in SARS-CoV-2-infected individuals and the potential role of ACE2 in this process are also explored in this review. The role of ACE2 as a therapeutic target in the novel coronavirus infection process is also summarized. This will help to inform prevention and treatment of long-term pulmonary complications in patients.
Collapse
Affiliation(s)
- Yan Liao
- School of Anesthesiology, Naval Medical UniversityShanghai 200433, China
| | - Ying Zhang
- Graduate School, Hebei North UniversityZhangjiakou 075000, Hebei, China
| | - Houfeng Li
- Graduate School, Hebei North UniversityZhangjiakou 075000, Hebei, China
| | - Huixiu Hu
- Graduate School, Hebei North UniversityZhangjiakou 075000, Hebei, China
| | - Mi Li
- School of Anesthesiology, Naval Medical UniversityShanghai 200433, China
| | - Chunhua Liao
- School of Anesthesiology, Naval Medical UniversityShanghai 200433, China
| |
Collapse
|
45
|
Wu W, Lu W, Hong D, Yu X, Xiong L. Association Between Hemoglobin-Albumin-Lymphocyte-Platelet Index and Mortality in Hospitalized COVID-19 Omicron BA.2 Infected Patients. Infect Drug Resist 2024; 17:1467-1476. [PMID: 38628242 PMCID: PMC11020245 DOI: 10.2147/idr.s451613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Background The hemoglobin-albumin-lymphocyte-platelet (HALP) index is a novel biomarker reflecting systemic inflammation and nutritional status which are important for coronavirus disease 2019 (COVID-19) mortality. However, the association between HALP and mortality in patients with COVID-19 has yet to be investigated. Methods A cohort of COVID-19 Omicron BA.2 infected patients admitted to the Shanghai Fourth People's Hospital, School of Medicine, Tongji University from April 12, 2022 to June 17, 2022 was retrospectively analyzed. Laboratory examinations on hospital admission, including hemoglobin, albumin, and lymphocyte and platelet, were collected. The association between baseline HALP and in-hospital poor overall survival (OS) was assessed using Kaplan-Meier curves, Cox regression models, interaction, and stratified analyses. Results A total of 2147 patients with COVID-19 Omicron BA.2 infection were included in the final analyses, and mortality in the hospital was 2.65%. Multivariate analysis indicated that low HALP index was independently associated with in-hospital mortality of COVID-19 patients [hazard ratio (HR) = 2.08; 95% confidence interval (CI) = 1.17-3.73]. Subgroup analysis demonstrated that low HALP index was an independent risk factor for in-hospital mortality in COVID-19 patients with age ≥70 (HR = 2.22, CI = 1.18-4.15) and severe cases (HR = 2.09, CI = 1.13-3.86). Conclusion HALP index is independently related to in-hospital poor OS for COVID-19 Omicron BA.2 infected patients, especially for age ≥70 and severe cases. HALP index on hospital admission is a useful candidate biomarker for identifying high risk of mortality in COVID-19 Omicron BA.2 infected patients.
Collapse
Affiliation(s)
- Wei Wu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, People’s Republic of China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
- Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Wenbin Lu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University/Second Military Medical University, PLA, Shanghai, 200433, People’s Republic of China
| | - Dongmei Hong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, People’s Republic of China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
- Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Xiya Yu
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, People’s Republic of China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
- Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Shanghai, 200434, People’s Republic of China
- Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
- Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
- Clinical Research Centre for Anesthesiology and Perioperative Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| |
Collapse
|
46
|
Ikiz F, Ak A. Investigation of the relationship between coagulation parameters and mortality in COVID-19 infection. BLOOD SCIENCE 2024; 6:e00191. [PMID: 38694496 PMCID: PMC11062700 DOI: 10.1097/bs9.0000000000000191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/07/2024] [Indexed: 05/04/2024] Open
Abstract
This study, which included patients over the age of 18 who were diagnosed with coronavirus disease 2019 (COVID-19) in the emergency clinic, aims to determine the relationship between coagulation parameters and mortality. Epidemiologic data such as age, gender, medical history, vital parameters at emergency department admission, clinical findings, coagulation parameters such as d-dimer, prothrombin time (PT), active partial thromboplastin time (aPTT), international normalized ration (INR), fibrinogen, and platelet were evaluated. Patients with positive computerized tomography (CT) findings and positive polymerase chain reaction (PCR) together were included in the study. It was revealed that d-dimer, fibrinogen, INR, and PT values were higher in the elderly group. It was shown that there was a significant relationship between hospitalization days (ward or intensive care unit) and d-dimer levels. It was observed that d-dimer, fibrinogen elevation was significantly associated with prognosis by increasing mortality, and that platelet and aPTT values were also associated with prognosis and were lower in the mortality group. On the other hand, in receiver operating characteristic (ROC) analysis, the sensitivity and specificity data were 80.3%/80.0% for d-dimer, 70.5%/72.2% for fibrinogen, 58.2%/59.4% for aPTT, and 59.7%/59.2% for platelet, respectively. The overall classification success was 88.6% and mortality prediction success was 37.7% in the regression model of some coagulation parameters (d-dimer, fibrinogen, aPTT, and platelet) which were effective on prognosis. In conclusion, it was determined that d-dimer, fibrinogen, aPTT, and platelet parameters were directly associated with mortality and when these coagulation parameters were used together with the clinical, vital, and demographic data of the patients, the success of mortality prediction increased significantly.
Collapse
Affiliation(s)
- Fatih Ikiz
- Department of Emergency Medicine, Beyhekim Training and Research Hospital, Selcuklu, Konya, Turkey
| | - Ahmet Ak
- Department of Emergency Medicine, Faculty of Medicine, Selcuk University, Selcuklu, Konya, Turkey
| |
Collapse
|
47
|
Jerah AA, Farasani A, Abu-Tawil HI, Kuriri H, Kuriri A, Alkhayrat M, Kariri K, Kariri SA, Abdelwahab SI. Evaluation of Biochemical Characteristics in a Retrospective Cohort of COVID-19 Patients. Cureus 2024; 16:e58889. [PMID: 38800147 PMCID: PMC11117081 DOI: 10.7759/cureus.58889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) has had a significant impact on global health and healthcare systems. This retrospective study aimed to assess the association between biochemical parameters and outcomes in COVID-19 patients in Jazan, Saudi Arabia. METHODS After establishing the inclusion criteria and obtaining ethical approval, data from 156 reverse transcriptase-polymerase chain reaction (RT-PCR)-confirmed COVID-19 patients were collected from electronic medical records from a general hospital in Samtah, Jazan, from April 2020 to October 2021. The collected data included patient demographics and liver, kidney, heart, and electrolyte function marker levels. Descriptive, inferential, and principal component analyses were conducted. RESULTS Survival rates varied according to age and body mass index (BMI). Statistical analysis demonstrated that the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), sodium (Na), potassium (K), blood urea nitrogen (BUN), creatinine (Cr), creatine kinase (CK), CK myocardial band (MB), and lactate dehydrogenase (LDH) were significantly higher (P < 0.05) than the reference values, as assessed using the one-sample t-test. Principal component analysis (PCA) also revealed an underlying pattern in the variation of these biochemical markers. These findings suggest that certain biochemical parameters may serve as useful indicators for monitoring the condition of COVID-19 patients. CONCLUSION This retrospective study in Jazan, Saudi Arabia highlights the association between biochemical parameters and outcomes in COVID-19 patients. Elevated levels of markers of liver, kidney, heart, and electrolyte function suggest organ damage and dysregulation. The pattern identified through PCA provides insights into disease severity. Monitoring these parameters may serve as valuable indicators for assessing COVID-19 patients. Further research is needed to validate these findings, explore their potential for personalized treatment strategies, and improve patient outcomes during the ongoing pandemic.
Collapse
Affiliation(s)
- Ahmed Ali Jerah
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, SAU
| | - Abdullah Farasani
- Biomedical Research Unit, Medical Research Center, Jazan University, Jazan, SAU
| | - Hisham I Abu-Tawil
- Department of Laboratory and Blood Bank, Prince Mohammed bin Nasser Hospital, Ministry of Health, Jazan, SAU
- Department of Clinical Laboratory and Blood Bank, King Faisal Medical City For Southern Regions, Abha, SAU
| | - Hadi Kuriri
- Department of Clinical Laboratory and Blood Bank, King Faisal Medical City For Southern Regions, Abha, SAU
- Department of Clinical Laboratory and Blood Bank, Samtah General Hospital, Samtah, SAU
| | - Anwar Kuriri
- Department of Medical Administration, Samtah General Hospital, Samtah, SAU
| | - Mansour Alkhayrat
- Department of Medical Administration, Samtah General Hospital, Samtah, SAU
| | - Kholood Kariri
- Department of Nursing Administration, Samtah General Hospital, Samtah, SAU
| | - Sami Ali Kariri
- Department of Pharmacy, Samtah General Hospital, Samtah, SAU
| | - Siddig I Abdelwahab
- Biomedical Research Unit, Medical Research Center, Jazan University, Jazan, SAU
| |
Collapse
|
48
|
Chakradhar A, Baron RM, Vera MP, Devarajan P, Chawla L, Hou PC. Plasma renin as a novel prognostic biomarker of sepsis-associated acute respiratory distress syndrome. Sci Rep 2024; 14:6667. [PMID: 38509149 PMCID: PMC10954703 DOI: 10.1038/s41598-024-56994-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
Sepsis-associated acute respiratory distress syndrome (ARDS) is a life-threatening condition in critical care medicine for which there is a substantial need for early prognostic biomarkers of outcome. The present study seeks to link plasma renin levels and 30-day mortality in sepsis-associated ARDS patients treated at our institution. The Registry of Critical Illness (RoCI) prospectively enrolled patients from the intensive care units (ICU) within a single academic medical center, and a convenience sample of patients with sepsis-associated ARDS was analyzed from this cohort. This study was approved by the Mass General Brigham Institutional Review Boards (IRB) as part of the RoCI, and all procedures performed were in accordance with the ethical standards of the institutional board. From April 2012 to February 2019, a cohort of 32 adult sepsis-associated ARDS patients with 500 µL of plasma samples available on Day 0 and Day 3 of their ICU stay were enrolled. Renin levels were measured twice, on Day 0 and Day 3 via the direct renin enzyme-linked immunosorbent assay (ELISA EIA-525) by DRG diagnostics. Day 0 and Day 3 renin were statistically evaluated via logistic regression to predict 30-day mortality. Direct renin levels of 64 samples were assayed from 32 sepsis-associated ARDS patients (50% male; mean ± SD, 55 ± 13.8 years old). The 30-day hospital mortality rate was 59.4%. Patients who died within 30 days of admission were more likely to have an elevated Day 3 Renin (Odds ratio [OR] = 6, 95% CI 1.25-28.84) and have received vasopressors (OR = 13.33, 95% CI 1.43-123.95). Adjusting for vasopressor use as a proxy for septic shock status, patients with an Elevated Day 3 Renin had a 6.85 (95% CI 1.07-43.75) greater odds of death than those with Low-Normal Day 3 Renin. Patients with sustained Elevated Renin levels from Day 0 to Day 3 had the highest risk of death in a 30-day window. In this study, we found that renin may be a novel biomarker that has prognostic value for patients with sepsis-associated ARDS. Future studies evaluating renin levels in patients with sepsis-associated ARDS are needed to validate these findings.
Collapse
Affiliation(s)
- Anjali Chakradhar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Rebecca M Baron
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mayra Pinilla Vera
- Division of Pulmonary Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Prasad Devarajan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lakhmir Chawla
- Silver Creek Pharmaceuticals, Inc., San Francisco, CA, USA
| | - Peter C Hou
- Division of Emergency Critical Care Medicine, Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
49
|
Prato M, Tiberti N, Mazzi C, Gobbi F, Piubelli C, Longoni SS. The Renin-Angiotensin System (RAS) in COVID-19 Disease: Where We Are 3 Years after the Beginning of the Pandemic. Microorganisms 2024; 12:583. [PMID: 38543635 PMCID: PMC10975343 DOI: 10.3390/microorganisms12030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 11/12/2024] Open
Abstract
The RAS is a hormonal system playing a pivotal role in the control of blood pressure and electrolyte homeostasis, the alteration of which is associated with different pathologies, including acute respiratory distress syndrome (ARDS). As such, it is not surprising that a number of studies have attempted to elucidate the role and balance of the renin-angiotensin system (RAS) in COVID-19. In this review article, we will describe the evidence collected regarding the two main enzymes of the RAS (i.e., ACE and ACE2) and their principal molecular products (i.e., AngII and Ang1-7) in SARS-CoV-2 infection, with the overarching goal of drawing conclusions on their possible role as clinical markers in association with disease severity, progression, and outcome. Moreover, we will bring into the picture new experimental data regarding the systemic activity of ACE and ACE2 as well as the concentration of AngII and Ang1-7 in a cohort of 47 COVID-19 patients hospitalized at the IRCCS Sacro Cuore-Don Calabria Hospital (Negrar, Italy) between March and April 2020. Finally, we will discuss the possibility of considering this systemic pathway as a clinical marker for COVID-19.
Collapse
Affiliation(s)
- Marco Prato
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Cristina Mazzi
- Centre for Clinical Research, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Federico Gobbi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, 37024 Verona, Italy
| |
Collapse
|
50
|
Yu L, Liu Y, Feng Y. Cardiac arrhythmia in COVID-19 patients. Ann Noninvasive Electrocardiol 2024; 29:e13105. [PMID: 38339786 PMCID: PMC10858328 DOI: 10.1111/anec.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 12/24/2023] [Indexed: 02/12/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) was first introduced in December 2019, which is known as severe acute respiratory syndrome caused by coronavirus-2 (SARS-CoV-2) that is a serious and life-threatening disease. Although pneumonia is the most common manifestation of COVID-19 and was initially introduced as a respiratory infection, in fact, the infection of COVID-19 is a subset of complications and damage to various organs. There are several reports of cardiac involvement with COVID-19. A wide range of cardiac complications may occur following COVID-19 infection, including systolic heart failure, myocarditis, pericarditis, atrial and ventricular arrhythmias, and thromboembolic events. There are various hypotheses about the pathophysiology of cardiovascular involvement by this virus. At the top of these hypotheses is the release of cytokines to the heart. Although there are other assumptions, considering that one of the causes of death in patients with COVID-19 is arrhythmia. It is necessary to know correctly about its pathophysiology and etiology. Therefore, in this study, we have reviewed the articles of recent years in the field of pathophysiology and etiology of arrhythmia in patients with COVID-19 infection. The purpose of this study was to provide a basis for a correct and more comprehensive understanding of the pathogenesis of arrhythmia in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Lei Yu
- Department of CardiologyJinan Third People's HospitalJinanChina
| | - Ying Liu
- Department of CardiologyShandong Second Provincial General HospitalJinanChina
| | - Yanjing Feng
- Department of CardiologyShandong Second Provincial General HospitalJinanChina
| |
Collapse
|