1
|
Zaman W, Ayaz A, Park S. Nanomaterials in Agriculture: A Pathway to Enhanced Plant Growth and Abiotic Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2025; 14:716. [PMID: 40094659 PMCID: PMC11901503 DOI: 10.3390/plants14050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Nanotechnology has emerged as a transformative field in agriculture, offering innovative solutions to enhance plant growth and resilience against abiotic stresses. This review explores the diverse applications of nanomaterials in agriculture, focusing on their role in promoting plant development and improving tolerance to drought, salinity, heavy metals, and temperature fluctuations. The method classifies nanomaterials commonly employed in plant sciences and examines their unique physicochemical properties that facilitate interactions with plants. Key mechanisms of nanomaterial uptake, transport, and influence on plants at the cellular and molecular levels are outlined, emphasizing their effects on nutrient absorption, photosynthetic efficiency, and overall biomass production. The molecular basis of stress tolerance is examined, highlighting nanomaterial-induced regulation of reactive oxygen species, antioxidant activity, gene expression, and hormonal balance. Furthermore, this review addresses the environmental and health implications of nanomaterials, emphasizing sustainable and eco-friendly approaches to mitigate potential risks. The integration of nanotechnology with precision agriculture and smart technologies promises to revolutionize agricultural practices. This review provides valuable insights into the future directions of nanomaterial R&D, paving the way for a more resilient and sustainable agricultural system.
Collapse
Affiliation(s)
- Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Asma Ayaz
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China;
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
2
|
Hassan AHA, Ahmed ES, Sheteiwy MS, Alhaj Hamoud Y, Okla MK, AlGarawi AM, Maridueña-Zavala MG, Alaraidh IA, Reyad AM, Abdelgawad H. Inoculation with Micromonospora sp. enhances carbohydrate and amino acid production, strengthening antioxidant metabolism to mitigate heat stress in wheat cultivars. FRONTIERS IN PLANT SCIENCE 2024; 15:1500894. [PMID: 39759234 PMCID: PMC11696539 DOI: 10.3389/fpls.2024.1500894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/15/2024] [Indexed: 01/07/2025]
Abstract
Introduction Heat stress caused by global warming adversely affects wheat yield through declining most nutritional quality attributes in grains, excluding grain protein content. Methods This research investigated the biochemical, physiological, and antioxidant responses of wheat plants under heat stress, focusing on the role of plant growth-promoting bacteria (Micromonospora sp.). Two wheat genotypes were studied: one heat-sensitive and one heat-tolerant, examining their responses to heat stress with and without bacterial inoculation. Results Under heat stress, the sensitive cultivar experienced significant reductions in photosynthesis rate, chlorophyll content, and RuBisCO activity (57-61%), while the tolerant cultivar had milder reductions (24-28%). Micromonospora sp. treatment notably improved these parameters in the sensitive cultivar (+48-78%), resulting in a substantial increase in biomass production (+43-53%), which was not seen in the tolerant cultivar. Additionally, oxidative stress markers (H2O2 and MDA) were elevated more in the sensitive cultivar (82% and 90% higher) compared to the tolerant one. Micromonospora sp. treatment effectively reduced these markers in the sensitive cultivar (-28% and -27%). Enhanced activity of antioxidant enzymes and ASC-GSH pathway enzymes was particularly evident in Micromonospora sp.-treated sensitive plants. Carbohydrate metabolism shifted, with increased soluble sugars and significant rises in sucrose content in Micromonospora sp.-treated plants under stress. Discussion The higher soluble sugar levels facilitated amino acid synthesis, contributing to biosynthesis of secondary metabolites, including flavonoids, polyphenols, and anthocyanins. This was reflected in increased activity of phenylalanine ammonia-lyase, cinnamate (CA) 4-hydroxylase, and chalcone synthase enzymes, indicating the activation of phenylpropanoid pathways. Overall, the findings suggest that Micromonospora sp. can mitigate heat stress effects by enhancing photosynthetic efficiency, antioxidant defense, and metabolic adaptations in heat-sensitive wheat cultivars.
Collapse
Affiliation(s)
- Abdelrahim H. A. Hassan
- School of Biotechnology, Nile University, Giza, Egypt
- Department of Food Safety and Technology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Enas Shaban Ahmed
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed S. Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Yousef Alhaj Hamoud
- The National Key Laboratory of Water Disaster Prevention, College of Hydrology and Water Resources, Hohai University, Nanjing, China
| | - Mohammad K. Okla
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Amal Mohamed AlGarawi
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Maria Gabriela Maridueña-Zavala
- Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Ibrahim A. Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M. Reyad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Hamada Abdelgawad
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Alam MW, Junaid PM, Gulzar Y, Abebe B, Awad M, Quazi SA. Advancing agriculture with functional NM: "pathways to sustainable and smart farming technologies". DISCOVER NANO 2024; 19:197. [PMID: 39636344 PMCID: PMC11621287 DOI: 10.1186/s11671-024-04144-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024]
Abstract
The integration of nanotechnology in agriculture offers a transformative approach to improving crop yields, resource efficiency, and ecological sustainability. This review highlights the application of functional NM, such as nano-formulated agrochemicals, nanosensors, and slow-release fertilizers, which enhance the effectiveness of fertilizers and pesticides while minimizing environmental impacts. By leveraging the unique properties of NM, agricultural practices can achieve better nutrient absorption, reduced chemical runoff, and improved water conservation. Innovations like nano-priming can enhance seed germination and drought resilience, while nanosensors enable precise monitoring of soil and crop health. Despite the promising commercial potential, significant challenges persist regarding the safety, ecological impact, and regulatory frameworks for nanomaterial use. This review emphasizes the need for comprehensive safety assessments and standardized risk evaluation protocols to ensure the responsible implementation of nanotechnology in agriculture.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Department of Physics, College of Science, King Faisal University, 31982, Al-Ahsa, Saudi Arabia.
| | - Pir Mohammad Junaid
- Department of Post Harvest Engineering and Technology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Yonis Gulzar
- Department of Management Information Systems, College of Business Administration, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
| | - Buzuayehu Abebe
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, P.O. Box: 1888, Adama, Ethiopia.
| | - Mohammed Awad
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON, Canada
| | - S A Quazi
- Bapumiya Sirajoddin Patel Arts, Commerce and Science College, Pimpalgaon Kale, Jalgaon Jamod Dist, Buldhana, Maharashtra, India
| |
Collapse
|
4
|
Mazhar MW, Ishtiaq M, Maqbool M, Mazher M, Amai S, Siddiqui MH, Bhatt R. Management of yield losses in Vigna radiata (L.) R. Wilczek crop caused by charcoal-rot disease through synergistic application of biochar and zinc oxide nanoparticles as boosting fertilizers and nanofungicides. BMC PLANT BIOLOGY 2024; 24:1099. [PMID: 39563266 PMCID: PMC11574982 DOI: 10.1186/s12870-024-05813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024]
Abstract
The mung bean crop (Vigna radiata (L.) R. Wilczek) is widely recognized as a key source of pulse food worldwide. However, this crop suffers substantial yield losses due to humid environments, particularly from infestations by the fungal pathogen Macrophomina phaseolina, which causes charcoal rot disease. This infestation results in significant agronomic losses, affecting both the crop's growth characteristics and overall yield. Previous research suggests that these losses can be mitigated through environmentally friendly soil amendments, such as biochar, as well as by applying various nanofungicides. This study aims to explore the potential of biochar and zinc oxide nanoparticles (ZnONPs) to reduce the severity of charcoal rot disease and enhance the agronomic traits and yield of mung bean plants affected by this disease. The experiment was conducted in triplicate, applying ZnONPs at three concentrations (5, 10, and 20 mg. L- 1) via foliar spraying, combined with two levels of biochar (20 g and 40 g per pot). Positive and negative control treatments were also included for comparison. The results demonstrated that applying 40 g of biochar per pot and 20 mg. L- 1 of foliar-applied ZnONPs increased the activities of the anti-oxidative defence enzymes. Additionally, this treatment strategy boosted the plants' disease resistance mechanisms, leading to lower mortality rates and reduced levels of malondialdehyde (MDA) and hydrogen peroxide (H₂O₂) by 61.7% and 49.23%. Moreover, the treatment positively impacted key growth parameters, increasing total chlorophyll content by 43%, plant height by 47%, and legume count per plant by 80.4%. The application of biochar and ZnONPs also improved seed protein content, reflecting an enhancement in nutritional quality. This study supports the use of biochar and ZnONPs as biostimulants to manage yield losses in mung bean crops affected by charcoal rot disease. The future prospects of using ZnONPs and biochar as treatments in agriculture are promising, as they offer innovative, eco-friendly solutions to enhance crop productivity, improve soil health, and reduce reliance on synthetic chemicals, paving the way for more sustainable and resilient agricultural systems.
Collapse
Grants
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
- RSP2024R194 The open access fund was supported by Researchers Supporting Project Number (RSP2024R194), King Saud University, Riyadh, Saudi Arabia.
Collapse
Affiliation(s)
- Muhammad Waqas Mazhar
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan.
- Department of Botany, Climate Change Research Centre, Herbarium and Biodiversity Conservation, Azad Jammu and Kashmir University of Bhimber (AJKUoB), Bhimber, 10040 (AJK), Pakistan.
| | - Mehwish Maqbool
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Mubsher Mazher
- Department of Botany, Mirpur University of Science and Technology, Mirpur, 10250, Pakistan
| | - Saud Amai
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rajan Bhatt
- PAU-Krishi Vigyan Kendra, Amritsar, Punjab, 143601, India
| |
Collapse
|
5
|
Javaid A, Hameed S, Li L, Zhang Z, Zhang B, -Rahman MU. Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? Funct Integr Genomics 2024; 24:216. [PMID: 39549144 PMCID: PMC11569009 DOI: 10.1007/s10142-024-01485-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/18/2024]
Abstract
At the dawn of new millennium, policy makers and researchers focused on sustainable agricultural growth, aiming for food security and enhanced food quality. Several emerging scientific innovations hold the promise to meet the future challenges. Nanotechnology presents a promising avenue to tackle the diverse challenges in agriculture. By leveraging nanomaterials, including nano fertilizers, pesticides, and sensors, it provides targeted delivery methods, enhancing efficacy in both crop production and protection. This integration of nanotechnology with agriculture introduces innovations like disease diagnostics, improved nutrient uptake in plants, and advanced delivery systems for agrochemicals. These precision-based approaches not only optimize resource utilization but also reduce environmental impact, aligning well with sustainability objectives. Concurrently, genetic innovations, including genome editing and advanced breeding techniques, enable the development of crops with improved yield, resilience, and nutritional content. The emergence of precision gene-editing technologies, exemplified by CRISPR/Cas9, can transform the realm of genetic modification and enabled precise manipulation of plant genomes while avoiding the incorporation of external DNAs. Integration of nanotechnology and genetic innovations in agriculture presents a transformative approach. Leveraging nanoparticles for targeted genetic modifications, nanosensors for early plant health monitoring, and precision nanomaterials for controlled delivery of inputs offers a sustainable pathway towards enhanced crop productivity, resource efficiency, and food safety throughout the agricultural lifecycle. This comprehensive review outlines the pivotal role of nanotechnology in precision agriculture, emphasizing soil health improvement, stress resilience against biotic and abiotic factors, environmental sustainability, and genetic engineering.
Collapse
Affiliation(s)
- Arzish Javaid
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan
| | - Sadaf Hameed
- Faculty of Science and Technology, University of Central Punjab, Lahore, 54000, Pakistan
| | - Lijie Li
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA
| | - Zhiyong Zhang
- School of Life Sciences, Henan Institute of Sciences and Technology, Xinxiang, 453003, Henan, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA.
| | - Mehboob-Ur -Rahman
- Plant Genomics and Molecular Breeding Laboratory, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE- C, PIEAS), Faisalabad, 38000, Punjab, Pakistan.
| |
Collapse
|
6
|
Uysal Y, Görkem Doğaroğlu Z, Çaylali Z, Karakulak DS. Rosemary-Mediated Green Synthesis of ZnO Nanoparticles and their Integration into Hydrogel Matrices: Evaluating Effects on Wheat Growth and Antibacterial Properties. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2400120. [PMID: 39545255 PMCID: PMC11557514 DOI: 10.1002/gch2.202400120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/19/2024] [Indexed: 11/17/2024]
Abstract
In this study, the impact of zinc oxide nanoparticles (ZnO-NPs) generated using rosemary extract, synthesized using environmentally friendly processes and integrated into a cross-linked polymer matrix, on growth performance of wheat is evaluated. Rosemary extract used as coating, stabilizing, and reducing agents in this green synthesis method. Fourier transform infrared spectroscopy analyses demonstrated the presence of phytochemical constituents of the plant extract that served as capping agents during the synthesis process. The nanoparticles are sprayed to the plant leaves. The effects of nanoparticles within the hydrogel on plant development are compared with the effects of nanoparticles in suspension. The percentage of seed germination is unaffected by either rosemary- or raw-ZnO-NPs; however, the root and shoot elongation are considerably impacted by the nanoparticle treatments. The threshold concentrations are determined as 3000 mg L-1 for rosemary-ZnO-NPs and 2000 mg L-1 for raw-ZnO-NPs. Additionally, antibacterial test results showed that the activity level on Escherichia coli is higher for rosemary-ZnO-NPs compared to raw-ZnO-NPs. The results of this research may provide guidance on how green synthesis methods and the use of nanoparticle-hydrogel composites in plant breeding can be used in future agricultural applications. This can be considered an important step in terms of agricultural innovations and sustainability.
Collapse
Affiliation(s)
- Yağmur Uysal
- Engineering FacultyEnvironmental Engineering DepartmentMersin UniversityMersinTurkey
| | | | - Zehranur Çaylali
- Engineering FacultyEnvironmental Engineering DepartmentMersin UniversityMersinTurkey
| | | |
Collapse
|
7
|
Singh A, Chauhan R, Rajput VD, Minkina T, Prasad R, Goel A. Exploring the insights of bioslurry-Nanoparticle amalgam for soil amelioration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58310-58323. [PMID: 39307866 DOI: 10.1007/s11356-024-35003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
In response to global agricultural challenges, this review examines the synergistic impact of bioslurry and biogenic nanoparticles on soil amelioration. Bioslurry, rich in N, P, K and beneficial microorganisms, combined with zinc oxide nanoparticles synthesized through eco-friendly methods, demonstrates remarkable soil improvement capabilities. Their synergistic effects include enhanced nutrient availability through increased soil enzymatic activities, improved soil structure via stable aggregate formation, stimulated microbial activity particularly beneficial groups, enhanced water retention due to increased organic matter and modified soil surface properties and reduced soil pH fluctuations. These mechanisms significantly impact soil physico-chemical properties including cation exchange capacity, electrical conductivity and nutrient dynamics. This review analyses these effects and their implications for sustainable agricultural practices, focusing on crop yield improvements, reduced chemical fertilizer dependence and enhanced plant stress tolerance. Knowledge gaps such as long-term nanoparticle accumulation effects and impacts on non-target organisms are identified. Future research directions include optimizing bioslurry-nanoparticle ratios for various soil types and developing "smart" nanoparticle-enabled biofertilizers with controlled release properties. This innovative approach contributes to environmentally friendly farming practices, potentially enhancing global food security and supporting sustainable agriculture transitions. The integration of bioslurry and biogenic nanoparticles presents a promising solution to soil degradation and agricultural sustainability challenges.
Collapse
Affiliation(s)
- Abhinav Singh
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India
| | - Ritika Chauhan
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, 344090, Russia
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Motihari, 845801, Bihar, India
| | - Arti Goel
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India.
| |
Collapse
|
8
|
Zhu Z, Zhang Y, Wang R, Dong Y, Wu J, Shao L. Zinc oxide nanoparticles disrupt the mammary epithelial barrier via Z-DNA binding protein 1-triggered PANoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116777. [PMID: 39053182 DOI: 10.1016/j.ecoenv.2024.116777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Lactation women, a highly concerned demographic in society, face health risks that deserve attention. Zinc oxide nanoparticles (ZnO NPs) are widely utilized in food and daily products due to their excellent physicochemical properties, leading to the potential exposure of lactating women to ZnO NPs. Hence, assessing the potential risks associated with ZnO NP exposure during lactation is critical. While studies have confirmed that exposure to ZnO NPs during lactation can induce toxic responses in multiple organs through blood circulation, the effects of lactational exposure on mammary tissue remain unclear. This research investigated the impairment of mammary tissue induced by ZnO NPs and its potential mechanisms. Through administering multiple injections of ZnO NPs into the tail vein of lactating ICR mice, our study revealed that ZnO NPs can deposit in the mammary tissues, downregulating key components of mammary epithelial barrier such as ZO-1, occludin, and claudin-3. In vivo, we also found that ZnO NPs can simultaneously induce apoptosis, necroptosis, and pyroptosis, called PANoptosis. Additionally, using EpH4-Ev cells to simulate an in vitro mammary epithelial barrier model, we observed that ZnO NPs effectively disrupted the integrity of mammary epithelial barrier and induced PANoptosis. Furthermore, we confirmed that PANoptosis was responsible for the mammary epithelial barrier disruption induced by ZnO NPs. Moreover, we identified that ZBP1 was the primary mechanism of ZnO NPs inducing PANoptosis. These discoveries are designed to enhance our comprehension of the mechanisms underlying mammary epithelial barrier disruption caused by ZnO NPs, and we aim to highlight the potential hazards associated with daily usage and therapeutic exposure to ZnO NPs during lactation.
Collapse
Affiliation(s)
- Zhenjun Zhu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yaqing Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Ruomeng Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Yijia Dong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China
| | - Junrong Wu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| | - Longquan Shao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
9
|
Fernández-Triana I, Rubilar O, Parada J, Fincheira P, Benavides-Mendoza A, Durán P, Fernández-Baldo M, Seabra AB, Tortella GR. Metal nanoparticles and pesticides under global climate change: Assessing the combined effects of multiple abiotic stressors on soil microbial ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173494. [PMID: 38810746 DOI: 10.1016/j.scitotenv.2024.173494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
The soil is a vital resource that hosts many microorganisms crucial in biogeochemical cycles and ecosystem health. However, human activities such as the use of metal nanoparticles (MNPs), pesticides and the impacts of global climate change (GCCh) can significantly affect soil microbial communities (SMC). For many years, pesticides and, more recently, nanoparticles have contributed to sustainable agriculture to ensure continuous food production to sustain the significant growth of the world population and, therefore, the demand for food. Pesticides have a recognized pest control capacity. On the other hand, nanoparticles have demonstrated a high ability to improve water and nutrient retention, promote plant growth, and control pests. However, it has been reported that their accumulation in agricultural soils can also adversely affect the environment and soil microbial health. In addition, climate change, with its variations in temperature and extreme water conditions, can lead to drought and increased soil salinity, modifying both soil conditions and the composition and function of microbial communities. Abiotic stressors can interact and synergistically or additively affect soil microorganisms, significantly impacting soil functioning and the capacity to provide ecosystem services. Therefore, this work reviewed the current scientific literature to understand how multiple stressors interact and affect the SMC. In addition, the importance of molecular tools such as metagenomics, metatranscriptomics, proteomics, or metabolomics in the study of the responses of SMC to exposure to multiple abiotic stressors was examined. Future research directions were also proposed, focusing on exploring the complex interactions between stressors and their long-term effects and developing strategies for sustainable soil management. These efforts will contribute to the preservation of soil health and the promotion of sustainable agricultural practices.
Collapse
Affiliation(s)
- I Fernández-Triana
- Doctoral Program in Science of Natural Resources, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - O Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
| | - J Parada
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - P Fincheira
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile
| | - A Benavides-Mendoza
- Departamento de Horticultura, Universidad Autónoma Agraria Antonio Narro, 25315 Saltillo, Mexico
| | - P Durán
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco, Chile
| | - Martín Fernández-Baldo
- Department of Animal and Plant Biology, University of Londrina, PR 445, km 380, CEP 86047-970 Londrina, PR, Brazil
| | - A B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Santo André, Brazil
| | - G R Tortella
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 4811230 Temuco, Chile; Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile.
| |
Collapse
|
10
|
Chen H, Song Y, Wang Y, Wang H, Ding Z, Fan K. Zno nanoparticles: improving photosynthesis, shoot development, and phyllosphere microbiome composition in tea plants. J Nanobiotechnology 2024; 22:389. [PMID: 38956645 PMCID: PMC11221027 DOI: 10.1186/s12951-024-02667-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Nanotechnology holds revolutionary potential in the field of agriculture, with zinc oxide nanoparticles (ZnO NPs) demonstrating advantages in promoting crop growth. Enhanced photosynthetic efficiency is closely linked to improved vigor and superior quality in tea plants, complemented by the beneficial role of phyllosphere microorganisms in maintaining plant health. However, the effects of ZnO NPs on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms have not been fully investigated. RESULTS This study investigated the photosynthetic physiological parameters of tea plants under the influence of ZnO NPs, the content of key photosynthetic enzymes such as RubisCO, chlorophyll content, chlorophyll fluorescence parameters, transcriptomic and extensive targeted metabolomic profiles of leaves and new shoots, mineral element composition in these tissues, and the epiphytic and endophytic microbial communities within the phyllosphere. The results indicated that ZnO NPs could enhance the photosynthesis of tea plants, upregulate the expression of some genes related to photosynthesis, increase the accumulation of photosynthetic products, promote the development of new shoots, and alter the content of various mineral elements in the leaves and new shoots of tea plants. Furthermore, the application of ZnO NPs was observed to favorably influence the microbial community structure within the phyllosphere of tea plants. This shift in microbial community dynamics suggests a potential for ZnO NPs to contribute to plant health and productivity by modulating the phyllosphere microbiome. CONCLUSION This study demonstrates that ZnO NPs have a positive impact on the photosynthesis of tea plants, the sprouting of new shoots, and the community of phyllosphere microorganisms, which can improve the growth condition of tea plants. These findings provide new scientific evidence for the application of ZnO NPs in sustainable agricultural development and contribute to advancing research in nanobiotechnology aimed at enhancing crop yield and quality.
Collapse
Affiliation(s)
- Hao Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yujie Song
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Huan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Kai Fan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
11
|
Singh A, Rajput VD, Lalotra S, Agrawal S, Ghazaryan K, Singh J, Minkina T, Rajput P, Mandzhieva S, Alexiou A. Zinc oxide nanoparticles influence on plant tolerance to salinity stress: insights into physiological, biochemical, and molecular responses. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:148. [PMID: 38578547 DOI: 10.1007/s10653-024-01921-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/18/2024] [Indexed: 04/06/2024]
Abstract
A slight variation in ecological milieu of plants, like drought, heavy metal toxicity, abrupt changes in temperature, flood, and salt stress disturbs the usual homeostasis or metabolism in plants. Among these stresses, salinity stress is particularly detrimental to the plants, leading to toxic effects and reduce crop productivity. In a saline environment, the accumulation of sodium and chloride ions up to toxic levels significantly correlates with intracellular osmotic pressure, and can result in morphological, physiological, and molecular alterations in plants. Increased soil salinity triggers salt stress signals that activate various cellular-subcellular mechanisms in plants to enable their survival in saline conditions. Plants can adapt saline conditions by maintaining ion homeostasis, activating osmotic stress pathways, modulating phytohormone signaling, regulating cytoskeleton dynamics, and maintaining cell wall integrity. To address ionic toxicity, researchers from diverse disciplines have explored novel approaches to support plant growth and enhance their resilience. One such approach is the application of nanoparticles as a foliar spray or seed priming agents positively improve the crop quality and yield by activating germination enzymes, maintaining reactive oxygen species homeostasis, promoting synthesis of compatible solutes, stimulating antioxidant defense mechanisms, and facilitating the formation of aquaporins in seeds and root cells for efficient water absorption under various abiotic stresses. Thus, the assessment mainly targets to provide an outline of the impact of salinity stress on plant metabolism and the resistance strategies employed by plants. Additionally, the review also summarized recent research efforts exploring the innovative applications of zinc oxide nanoparticles for reducing salt stress at biochemical, physiological, and molecular levels.
Collapse
Affiliation(s)
- Abhishek Singh
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia.
| | - Shivani Lalotra
- School of Agriculture, Lovely Professional University, Jalandhar, India
| | - Shreni Agrawal
- Department of Biotechnology, Parul Institute of Applied Science, Parul University, Vadodara, 391760, Gujarat, India
| | - Karen Ghazaryan
- Faculty of Biology, Yerevan State University, 0025, Yerevan, Armenia
| | - Jagpreet Singh
- University Centre for Research and Development, Chandigarh University, Mohali, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Priyadarshani Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
- AFNP Med, 1030, Vienna, Austria
| |
Collapse
|
12
|
Sepasi M, Iranbakhsh A, Saadatmand S, Ebadi M, Oraghi Ardebili Z. Silicon nanoparticles (SiNPs) stimulated secondary metabolism and mitigated toxicity of salinity stress in basil (Ocimum basilicum) by modulating gene expression: a sustainable approach for crop protection. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16485-16496. [PMID: 38319425 DOI: 10.1007/s11356-024-32260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
The underlying mechanisms through which silicon oxide nanoparticles (SiNPs) can confer salinity resistance to plants are poorly understood. This study explored the efficacy of supplementing nutrient solution with SiNPs (20-30 nm; 10 mg kg-1 soil) to stimulate metabolism and alleviate the risks associated with salinity (0.73 g kg-1 soil) in basil seedlings. For this purpose, variations in photosynthetic indices, proline osmoprotectant, antioxidant markers, phenylpropanoid metabolism, and transcriptional behaviors of genes were investigated. SiNPs increased shoot fresh weight (38%) and mitigated the risk associated with the salinity stress by 14%. SiNPs alleviated the inhibitory effects of salinity on the total chlorophyll concentration by 15%. The highest increase (twofold) in proline content was recorded in the SiNP-treated seedlings grown under salinity. The nano-supplement enhanced the activity of enzymatic antioxidants, including peroxidase (2.5-fold) and catalase (4.7-fold). SiNPs induced the expression of gamma-cadinene synthase (CDS) and caffeic acid O-methyltransferase (COMT) genes by 6.5- and 18.3-fold, respectively. SiNPs upregulated the eugenol synthase (EGS1) and fenchol synthase (FES) genes by six- and nine-fold, respectively. Salinity transcriptionally downregulated the geraniol synthase (GES) gene, while this gene displayed an upward trend in response to SiNPs by eight-fold. The nano-supplement transcriptionally stimulated the R-linalool synthase (LIS) gene by 3.3-fold. The terpinolene synthase (TES) gene displayed a similar trend to that of the GES gene. The highest expression (25-fold) of the phenylalanine ammonia-lyase (PAL) gene was recorded in seedlings supplemented with SiNPs. The physiological and molecular assessments demonstrated that employing SiNPs is a sustainable strategy for improving plant primary/secondary metabolism and crop protection.
Collapse
Affiliation(s)
- Maryam Sepasi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Sara Saadatmand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
13
|
Zhang F, Li S, Wang L, Li X. An Innovative Approach to Alleviate Zinc Oxide Nanoparticle Stress on Wheat through Nanobubble Irrigation. Int J Mol Sci 2024; 25:1896. [PMID: 38339174 PMCID: PMC10855730 DOI: 10.3390/ijms25031896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The extensive utilization of zinc oxide nanoparticles in consumer products and the industry has led to their substantial entry into the soil through air and surface runoff transportation, which causes ecotoxicity in agro-ecosystems and detrimental effects on crop production. Nanobubbles (diameter size < 1 µm) have many advantages, such as a high surface area, rapid mass transfer, and long retention time. In this study, wheat seedlings were irrigated with a 500 mg L-1 zinc oxide nanoparticle solution delivered in the form of nanobubble watering (nanobubble-ZnO-NPs). We found that nanobubble watering improved the growth and nutrient status of wheat exposed to zinc oxide nanoparticles, as evidenced by increased total foliar nitrogen and phosphorus, along with enhanced leaf dry mass per area. This effect can be attributed to nanobubbles disassembling zinc oxide aggregates formed due to soil organic carbon, thereby mitigating nutrient absorption limitations in plants. Furthermore, nanobubbles improved the capability of soil oxygen input, leading to increased root activity and glycolysis efficiency in wheat roots. This work provides valuable insights into the influence of nanobubble watering on soil quality and crop production and offers an innovative approach for agricultural irrigation that enhances the effectiveness and efficiency of water application.
Collapse
Affiliation(s)
- Feng Zhang
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuxin Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lichun Wang
- Key Laboratory of Crop Eco-Physiology and Farming System in the Northeastern, Institute of Agricultural Resources and Environment, Ministry of Agriculture and Rural Affair, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Xiangnan Li
- Key Laboratory of Black Soil Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; (F.Z.); (S.L.)
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Alsiary WA, Madany MMY, AbdElgawad H. The pleiotropic role of Salinicoccus bacteria in enhancing ROS homeostasis and detoxification metabolism in soybean and oat to cope with pollution of triclosan. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108327. [PMID: 38271860 DOI: 10.1016/j.plaphy.2023.108327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/28/2023] [Indexed: 01/27/2024]
Abstract
Triclosan has been extensively used as a preservative in cosmetics and personal care products. However, its accumulation represents a real environmental threat. Thus, its phytotoxic impact needs more consideration. Our study was conducted to highlight the phytotoxic effect of triclosan on the growth, ROS homeostasis, and detoxification metabolism of two different plant species i.e., legumes (Glycine max) and grass (Avena sativa). Moreover, we investigated the potentiality of plant growth-promoting bacteria (ST-PGPB) in mitigating the phytotoxic effect of triclosan. Triclosan induced biomass (fresh and dry weights) reduction in both plants, but to a higher extent in oats. This decline was associated with a noticeable increment in the oxidative damage (e.g., MDA and H2O2) and detoxification metabolites such as metallothionein (MTC), phytochelatins (PCs), and glutathione-S-transferase (GST). This elevation was associated with a remarkable reduction in both enzymatic and non-enzymatic antioxidants. On the other hand, the bioactive strain of ST-PGPB, Salinicoccus sp. JzA1 significantly alleviated the harmful effect of triclosan on both soybean and oat plants by enhancing their biomass, photosynthesis, as well as levels of minerals (K, Ca, P, Mn, and Zn). In parallel, a striking quenching in oxidative damage and an obvious improvement in non-enzymatic (polyphenols, tocopherols, flavonoids) and enzymatic antioxidants were observed. Furthermore, Salinicoccus sp. JzA1 augmented the detoxification metabolism by enhancing the levels of phytochelatins, metallothionein, and glutathione-S-transferase (GST) activity in a species-specific manner which is more apparent in soybean rather than in oat plants. To this end, stress mitigating impact of Salinicoccus sp. JzA1 provides a basis to improve the resilience of crop species under cosmetics and personal care products toxicity.
Collapse
Affiliation(s)
- Waleed A Alsiary
- Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21441, Saudi Arabia
| | - Mahmoud M Y Madany
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt; Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah 41411, Saudi Arabia.
| | - Hamada AbdElgawad
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
15
|
Wang C, Chen L, Xu J, Zhang L, Yang X, Zhang X, Zhang C, Gao P, Zhu L. Environmental behaviors and toxic mechanisms of engineered nanomaterials in soil. ENVIRONMENTAL RESEARCH 2024; 242:117820. [PMID: 38048867 DOI: 10.1016/j.envres.2023.117820] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Engineered nanomaterials (ENMs) are inevitably released into the environment with the exponential application of nanotechnology. Parts of ENMs eventually accumulate in the soil environment leading to potential adverse effects on soil ecology, crop production, and human health. Therefore, the safety application of ENMs on soil has been widely discussed in recent years. More detailed safety information and potential soil environmental risks are urgently needed. However, most of the studies on the environmental effects of metal-based ENMs have been limited to single-species experiments, ecosystem processes, or abiotic processes. The present review formulated the source and the behaviors of the ENMs in soil, and the potential effects of single and co-exposure ENMs on soil microorganisms, soil fauna, and plants were introduced. The toxicity mechanism of ENMs to soil organisms was also reviewed including oxidative stress, the release of toxic metal ions, and physical contact. Soil properties affect the transport, transformation, and toxicity of ENMs. Toxic mechanisms of ENMs include oxidative stress, ion release, and physical contact. Joint toxic effects occur through adsorption, photodegradation, and loading. Besides, future research should focus on the toxic effects of ENMs at the food chain levels, the effects of ENMs on plant whole-lifecycle, and the co-exposure and long-term toxicity effects. A fast and accurate toxicity evaluation system and model method are urgently needed to solve the current difficulties. It is of great significance for the sustainable development of ENMs to provide the theoretical basis for the ecological risk assessment and environmental management of ENMs.
Collapse
Affiliation(s)
- Chaoqi Wang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Le'an Chen
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Jiake Xu
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Lanlan Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqing Yang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Xiaokai Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Zhang
- School of Environment & Ecology, Jiangnan University, Wuxi, 214122, China.
| | - Peng Gao
- Department of Environmental and Occupational Health, and Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, United States
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian, 271018, China
| |
Collapse
|
16
|
Samuditha PS, Adassooriya NM, Salim N. Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:115-125. [PMID: 38293272 PMCID: PMC10825799 DOI: 10.3762/bjnano.15.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
The escalating release of zinc oxide nanoparticles (ZnO NPs) into the environment poses a substantial threat, potentially leading to increased concentrations of zinc (Zn) in the soil and subsequent phytotoxic effects. This study aimed to assess the effects of ZnO NPs on Raphanus sativus (R. sativus) concerning its tolerance levels, toxicity, and accumulation. ZnO NPs were synthesized by the wet chemical method and characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM). The effect of ZnO NPs (70 nm) on R. sativus grown in coir was evaluated. The application of 1,000 mg/L of ZnO NPs resulted in a significant increase (p < 0.05) in soluble protein content, carbohydrates, chlorophyll a (Chl-a), chlorophyll b (Chl-b), total chlorophylls, carotenoids, and antioxidants by 24.7%, 58.5%, 38.0%, 42.2%, 39.9%, 11.2%, and 7.7%, respectively. Interestingly, this dose had no impact on the indole acetic acid (IAA) content. Conversely, the use of 2,000 mg/L of ZnO NPs in the same medium led to a significant reduction (p < 0.05) in soluble protein content by 23.1%, accompanied by a notable increase in IAA by 31.1%, indicating potential toxicity. The use of atomic absorption spectroscopy confirmed the internalization of zinc in seedlings, with a statistically significant increase (p < 0.05). In control plants without ZnO NPs, Zn concentration was 0.36 mg/g, while at the highest ZnO NPs tested dose of 10,000 mg/L, it significantly rose to 1.76 mg/g, causing leaf chlorosis and stunted seedling growth. This suggests potential health risks related to Zn toxicity for consumers. Given the adverse effects on R. sativus at concentrations above 1000 mg/L, caution is advised in the application and release of ZnO NPs, highlighting the importance of responsible practices to mitigate harm to plant life and consumer health. The study demonstrated the tolerance of R. sativus to high Zn levels, classifying it as a Zn-tolerant species.
Collapse
Affiliation(s)
| | - Nadeesh Madusanka Adassooriya
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | - Nazeera Salim
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
17
|
Hussain M, Kaousar R, Haq SIU, Shan C, Wang G, Rafique N, Shizhou W, Lan Y. Zinc-oxide nanoparticles ameliorated the phytotoxic hazards of cadmium toxicity in maize plants by regulating primary metabolites and antioxidants activity. FRONTIERS IN PLANT SCIENCE 2024; 15:1346427. [PMID: 38304740 PMCID: PMC10830903 DOI: 10.3389/fpls.2024.1346427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Cadmium stress is a major threat to plant growth and survival worldwide. The current study aims to green synthesis, characterization, and application of zinc-oxide nanoparticles to alleviate cadmium stress in maize (Zea mays L.) plants. In this experiment, two cadmium levels (0, 0.6 mM) were applied to check the impact on plant growth attributes, chlorophyll contents, and concentration of various primary metabolites and antioxidants under exogenous treatment of zinc-oxide nanoparticles (25 and 50 mg L-1) in maize seedlings. Tissue sampling was made 21 days after the zinc-oxide nanoparticles application. Our results showed that applying cadmium significantly reduced total chlorophyll and carotenoid contents by 52.87% and 23.31% compared to non-stress. In comparison, it was increased by 53.23%, 68.49% and 9.73%, 37.53% with zinc-oxide nanoparticles 25, 50 mg L-1 application compared with cadmium stress conditions, respectively. At the same time, proline, superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase contents were enhanced in plants treated with cadmium compared to non-treated plants with no foliar application, while it was increased by 12.99 and 23.09%, 23.52 and 35.12%, 27.53 and 36.43%, 14.19 and 24.46%, 14.64 and 37.68% by applying 25 and 50 mg L-1 of zinc-oxide nanoparticles dosages, respectively. In addition, cadmium toxicity also enhanced stress indicators such as malondialdehyde, hydrogen peroxide, and non-enzymatic antioxidants in plant leaves. Overall, the exogenous application of zinc-oxide nanoparticles (25 and 50 mg L-1) significantly alleviated cadmium toxicity in maize. It provides the first evidence that zinc-oxide nanoparticles 25 ~ 50 mg L-1 can be a candidate agricultural strategy for mitigating cadmium stress in cadmium-polluted soils for safe agriculture practice.
Collapse
Affiliation(s)
- Mujahid Hussain
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Rehana Kaousar
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Syed Ijaz Ul Haq
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Changfeng Shan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Guobin Wang
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Nadia Rafique
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Wang Shizhou
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
| | - Yubin Lan
- College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, Shandong, China
- National Center for International Collaboration Research on Precision Agricultural Aviation Pesticides Spraying Technology (NPAAC), Ministry of Science and Technology, College of Electronics Engineering, South China Agricultural University, Guangzhou, China
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
18
|
Mehmood S, Ou W, Ahmed W, Bundschuh J, Rizwan M, Mahmood M, Sultan H, Alatalo JM, Elnahal ASM, Liu W, Li W. ZnO nanoparticles mediated by Azadirachta indica as nano fertilizer: Improvement in physiological and biochemical indices of Zea mays grown in Cr-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122755. [PMID: 37852317 DOI: 10.1016/j.envpol.2023.122755] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/06/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
The current investigation aimed at evaluating the impact of Azadirachta indica-mediated zinc oxide nanoparticles (Ai-ZnONPs) on the growth and biochemical characteristics of maize (sweet glutinous 3000) under exposure to 50 mg kg-1Ai-ZnONPs with Cr (VI) concentrations of 50 and 100 mg kg-1. The results indicate that plants exposed to Cr (VI) only experienced a decline in growth parameters. Conversely, the inclusion of Ai-ZnONPs caused a noteworthy increase in physiological traits. Specifically, shoot and root fresh weight increased by 28.02% and 16.51%, and 63.11% and 97.91%, respectively, when compared to Cr-50 and 100 treatments. Additionally, the SPAD chlorophyll of the shoot increased by 91.08% and 15.38% compared to Cr-50 and 100 treatments, respectively. Moreover, the antioxidant enzyme traits of plant shoot and root, such as superoxide dismutase (SOD 7.44% and 2.70%, and 4.45% and 3.53%), catalase (CAT 1.18% and 3.20%, and 5.03% and 5.78%), and peroxidase (POD 0.31% and 5.55%, and 4.72% and 3.61%), exhibited significant increases in Cr 50 and 100 treatments, respectively. The addition of Ai-ZnONPs to the soil also enhanced soil nutrient status and reduced Cr (VI) concentrations by 40.69% and 19.82% compared to Cr-50 and 100 treated soils. These findings suggest that Ai-ZnONPs can trigger the activation of biochemical pathways that enable biomass accumulation in meristematic cells. Further investigations are required to elucidate the mechanisms involved in growth promotion.
Collapse
Affiliation(s)
- Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Wenjie Ou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Jochen Bundschuh
- Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350, QLD, Australia
| | | | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China
| | - Haider Sultan
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Ahmed S M Elnahal
- Plant Pathology Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Wenjie Liu
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou, 570228, China; Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou, 570228, China.
| |
Collapse
|
19
|
Daniel AI, Keyster M, Klein A. Biogenic zinc oxide nanoparticles: A viable agricultural tool to control plant pathogenic fungi and its potential effects on soil and plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165483. [PMID: 37442458 DOI: 10.1016/j.scitotenv.2023.165483] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Fungal and bacterial pathogens represent some of the greatest challenges facing crop production globally and account for about 20-40 % crop losses annually. This review highlights the use of ZnO NPs as antimicrobial agents and explores their mechanisms of actions against disease causing plant fungal pathogens. The behavior of ZnO NPs in soil and their interactions with the soil components were also highlighted. The review discusses the potential effects of ZnO NPs on plants and their mechanisms of action on plants and how these mechanisms are related to their physicochemical properties. In addition, the reduction of ZnO NPs toxicity through surface modification and coating with silica is also addressed. Soil properties play a significant role in the dispersal, aggregation, stability, bioavailability, and transport of ZnO NPs and their release into the soil. The transport of ZnO NPs into the soil might influence soil components and, as a result, plant physiology. The harmful effects of ZnO NPs on plants and fungi are caused by a variety of processes, the most important of which is the formation of reactive oxygen species, lysosomal instability, DNA damage, and the reduction of oxidative stress by direct penetration/liberation of Zn2+ ions in plant/fungal cells. Based on these highlighted areas, this review concludes that ZnO NPs exhibit its antifungal activity via generations of reactive oxygen species, coupled with the inhibition of various metabolic pathways. Despite the numerous advantages of ZnO NPs, there is need to regulate its uses to minimize the harmful effects that may arise from its applications in the soil and plants.
Collapse
Affiliation(s)
- Augustine Innalegwu Daniel
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa; Department of Biochemistry, Federal University of Technology, P.M.B 65, Minna, Niger State, Nigeria.
| | - Marshall Keyster
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| | - Ashwil Klein
- Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville 7535, South Africa.
| |
Collapse
|
20
|
Mi K, Yuan X, Wang Q, Dun C, Wang R, Yang S, Yang Y, Zhang H, Zhang H. Zinc oxide nanoparticles enhanced rice yield, quality, and zinc content of edible grain fraction synergistically. FRONTIERS IN PLANT SCIENCE 2023; 14:1196201. [PMID: 37662145 PMCID: PMC10471986 DOI: 10.3389/fpls.2023.1196201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have been widely used in agriculture as a new type of Zn fertilizer, and many studies were conducted to evaluate the effect of ZnO NPs on plant growth. However, there are relatively few studies on the effects of application methods and appropriate dosages of ZnO NPs on rice yield, quality, grain Zn content, and distribution. Therefore, in the 2019 and 2020, field trials were conducted with six ZnO NPs basal application dosages of no ZnO NPs, 3.75 kg hm-2, 7.5 kg hm-2, 15 kg hm-2, 30 kg hm-2, and 60 kg hm-2, and the effects of ZnO NPs application on rice yield, quality, grain Zn content, and distribution were investigated. The results demonstrated that applying ZnO NPs in Zn-deficient soils (available Zn < 1.0 mg kg-1) increased rice grain yield by 3.24%-4.86% and 3.51%-5.12% in 2019 and 2020, respectively. In addition, ZnO NPs improved the quality of rice by increasing the head milling rate, reducing chalky grain percentage, and increasing the taste value and breakdown of rice. In terms of Zn accumulation in rice, ZnO NPs application significantly increased the Zn content in both milled rice and brown rice, compared with no Zn treatment, in 2019 and 2020, Zn content in milled rice significantly increased by 20.46%-41.09% and 18.11%-38.84%, respectively, and in brown rice significantly increased by 25.78%-48.30% and 20.86%-42.00%, respectively. However, the Zn fertilizer utilization gradually decreased with increasing ZnO NPs application dosage. From the perspective of yield, rice quality, Zn fertilizer utilization, and Zn accumulation, basal application of 7.5 kg-30 kg hm-2 ZnO NPs is beneficial for rice yield and quality improvement and rice Zn accumulation. This study effectively demonstrated that ZnO NPs could be a potential high-performed fertilizer for enhancing rice yield, quality, and zinc content of edible grain fraction synergistically.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Haipeng Zhang
- Jiangsu Key Laboratory of Crop Cultivation and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops/Innovation Center of Rice Cultivation Technology in Yangtze Valley, Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Karmous I, Vaidya S, Dimkpa C, Zuverza-Mena N, da Silva W, Barroso KA, Milagres J, Bharadwaj A, Abdelraheem W, White JC, Elmer WH. Biologically synthesized zinc and copper oxide nanoparticles using Cannabis sativa L. enhance soybean (Glycine max) defense against fusarium virguliforme. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105486. [PMID: 37532316 DOI: 10.1016/j.pestbp.2023.105486] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 08/04/2023]
Abstract
In this study, zinc and copper oxide nanoparticles (NPs) were synthesized using hemp (Cannabis sativa L.) leaves (ZnONP-HL and CuONP-HL), and their antifungal potential was assessed against Fusarium virguliforme in soybean (Glycine max L.). Hemp was selected because it is known to contain large quantities of secondary metabolites that can potentially enhance the reactivity of NPs through surface property modification. Synthesizing NPs with biologically derived materials allows to avoid the use of harsh and expensive synthetic reducing and capping agents. The ZnONP-HL and CuONP-HL showed average grain/crystallite size of 13.51 nm and 7.36 nm, respectively. The biologically synthesized NPs compared well with their chemically synthesized counterparts (ZnONP chem, and CuONP chem; 18.75 nm and 10.05 nm, respectively), confirming the stabilizing role of hemp-derived biomolecules. Analysis of the hemp leaf extract and functional groups that were associated with ZnONP-HL and CuONP-HL confirmed the presence of terpenes, flavonoids, and phenolic compounds. Biosynthesized NPs were applied on soybeans as bio-nano-fungicides against F. virguliforme via foliar treatments. ZnONP-HL and CuONP-HL at 200 μg/mL significantly (p < 0.05) increased (∼ 50%) soybean growth, compared to diseased controls. The NPs improved the nutrient (e.g., K, Ca, P) content and enhanced photosynthetic indicators of the plants by 100-200%. A 300% increase in the expression of soybean pathogenesis related GmPR genes encoding antifungal and defense proteins confirmed that the biosynthesized NPs enhanced disease resistance against the fungal phytopathogen. The findings from this study provide novel evidence of systemic suppression of fungal disease by nanobiopesticides, via promoting plant defense mechanisms.
Collapse
Affiliation(s)
- Ines Karmous
- The Connecticut Agricultural Experiment Station (CAES), CT, USA; The Higher Institute of Applied Biology of Medenine (ISBAM), University of Gabes, Tunisia; Faculty of Sciences of Bizerte (FSB), University of Carthage, Tunisia.
| | - Shital Vaidya
- The Connecticut Agricultural Experiment Station (CAES), CT, USA.
| | - Christian Dimkpa
- The Connecticut Agricultural Experiment Station (CAES), CT, USA.
| | | | | | | | - Juliana Milagres
- The Connecticut Agricultural Experiment Station (CAES), CT, USA.
| | - Anuja Bharadwaj
- The Connecticut Agricultural Experiment Station (CAES), CT, USA.
| | - Wael Abdelraheem
- Centers for Disease Control and Prevention (CDC/NIOSH/HELD/CBMB), Ohio, USA.
| | - Jason C White
- The Connecticut Agricultural Experiment Station (CAES), CT, USA.
| | - Wade H Elmer
- The Connecticut Agricultural Experiment Station (CAES), CT, USA.
| |
Collapse
|
22
|
Sharma A, Kumar S, Singh R. Formulation of Zinc oxide/Gum acacia nanocomposite as a novel slow-release fertilizer for enhancing Zn uptake and growth performance of Spinacia oleracea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107884. [PMID: 37451005 DOI: 10.1016/j.plaphy.2023.107884] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Zinc (Zn) deficiency has caused nutritional disorders in 17% of the world's population; thus, producing Zn-enriched plants as a dietary source is necessary. Recently, nanofertilizers have gained much attention as a substitute for conventional fertilizers; however, soil application of polymer-coated Zn-based nanofertilizer has not been explored much. The present study depicts the green synthesis of ZnO nanoparticles using Melia azedarach L. leaf extract, whose phytoconstituents have reducing abilities. The synthesized nanoparticles were combined with gum acacia (GA) to form a ZnOGA nanocomposite. The structural and morphological properties of ZnOGA were studied using XRD, FTIR, FESEM, and EDX. A pot experiment study was carried out with Spinacia oleracea L. at various doses (3, 5, and 10 mg/kg) of the synthesized ZnOGA to evaluate its effectiveness as a slow-release fertilizer and was compared with a commercial Zn fertilizer. The plant growth studies revealed a significant increase in the phyto-morphological traits of the plants fertilized with ZnOGA compared to commercial fertilizer. The plants also displayed significantly higher contents of protein (17-47%), phenols (25-60%), proline (82-94%), total soluble sugar (20-31%), DPPH activity (70-72%), and Zn uptake (91-106%). The doses of ZnOGA played an imperative role in determining the growth and productivity of the plant. Soil column studies showed that ZnOGA reduces Zn leaching by 52% compared to commercial Zn fertilizer. This study signifies the potential of ZnOGA to be applied as an eco-friendly and sustainable substitute for conventional Zn fertilizer minimizing Zn losses and Zn deficiency-related health problems in human populations.
Collapse
Affiliation(s)
- Avimanu Sharma
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Sanjeev Kumar
- Department of Geology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India
| | - Ritu Singh
- Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
23
|
Abo-EL-Sooud K, Abd-El Hakim YM, Hashem MM, El-Metwally AE, Hassan BA, El-Nour HH. Restorative effects of gallic acid against sub-chronic hepatic toxicity of co-exposure to zinc oxide nanoparticles and arsenic trioxide in male rats. Heliyon 2023; 9:e17326. [PMID: 37389053 PMCID: PMC10300221 DOI: 10.1016/j.heliyon.2023.e17326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Background and objectives This study aimed to assess the effect of zinc oxide nanoparticles (ZNPs) and/or arsenic trioxide (ATO) exposure on the liver of adult male Sprague Dawley rats. Moreover, the probable ameliorative impact of gallic acid (GA) against ZNPs and ATO-induced hepatotoxicity and the possible underlying mechanisms were evaluated. Methods Sixty male Sprague Dawley rats were distributed into six groups. The 1st and 2nd groups were orally given distilled water (1 ml/kg) and 20 mg GA/kg b. wt, respectively. The 3rd and 4th groups were orally given 100 mg ZNPs/kg b. wt and 8 mg ATO/kg b. wt, respectively. The 5th group was co-administered ZNPs and ATO at the doses mentioned above. The last one was co-administered ZNPs, ATO, and GA at the earlier described doses. All tested compounds were orally given once a day for 60 successive days. Then, serum levels of alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total, direct, indirect bilirubin, triglycerides, total cholesterol, HDL, VLDL, and LDL were estimated. The hepatic content of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) was evaluated. Moreover, Bcl-2 and Bax's reactive proteins were immunohistochemically detected, and Zn and As residual patterns in hepatic tissues were assessed. Results ZNPs, ATO, and ZNPs+ATO-exposed rats showed significantly (P < 0.001) elevated serum AST (219%, 233%, and 333%), ALT (300%, 400%, and 475%), ALP (169%, 205%, and 294%), and total bilirubin (42%, 68%, and 109%) compared to the control ones. On the other hand, a significantly (P < 0.001) declined SOD (58%, 49%, and 43%) and GPx (70%, 63%, and 56%) but increased MDA (133%, 150%, and 224%) was recorded in the hepatic tissues of ZNPs, ATO, and ZNPs+ATO exposed rats, respectively, relative to the control rats. Moreover, the hepatic tissues of the ZNPs, ATO, and ZNPs+ATO exposed rats showed a significant (P < 0.001) decrease in Bcl-2 (28%, 33%, and 23%) but elevation in Bax (217%, 267%, and 236%) immunoreactivities compared to the control rats. These findings were consistent with the microscopic alterations in the hepatic architecture and accumulation of Zn and As. Furthermore, a notable hyperlipidemic condition was recorded following ZNPs and/or ATO exposure. On the contrary, GA notably reduced hepatic enzymes compared to ZNPs+ATO-exposed rats. Additionally, GA markedly improved ZNPs+ATO-afforded liver tissue damage and apoptotic events. Conclusion Overall, GA oral dosing significantly mitigated the negative effects of ZNPs and ATO on the liver by improving the antioxidant defense system and controlling apoptotic changes.
Collapse
Affiliation(s)
- Khaled Abo-EL-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Yasmina M. Abd-El Hakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M.M. Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Abeer E. El-Metwally
- Pathology Department, Animal Reproduction Research Institute, Giza 3514805, Egypt
| | - Bayan A. Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt
| | - Hayat H.M. El-Nour
- Biology of Reproduction Department, Animal Reproduction Research Institute, Giza 3514805, Egypt
| |
Collapse
|
24
|
Di X, Fu Y, Xu Y, Zheng S, Huang Q, Sun Y. Assessment of CuO NPs on soil microbial community structure based on phospholipid fatty acid techniques and phytotoxicity of bok choy seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107657. [PMID: 36989987 DOI: 10.1016/j.plaphy.2023.107657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/26/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
In this study, a soil culture and a hydroponic experiment were conducted to assess the toxicology effects of copper oxide nanoparticles (CuO NPs) on soil microbial community structure and the growth of bok choy. Results showed CuO NPs had an inhibitory effect on soil microbial abundance, diversity, and activity, as well as the bok choy seedling growth, whereas CuO NPs at low concentrations did not significantly affect the soil microbial biomass or plant growth. In soil, CuO NPs at high dose (80 mg kg-1) significantly reduced the indexes of Simpson diversity, Shannon-Wiener diversity and Pielou evenness by 3.7%, 4.9% and 4.5%, respectively. In addition, CuO NPs at 20 and 80 mg kg-1 treatment significantly reduced soil enzymes (urease, alkaline phosphatase, dehydrogenase, and catalase) activities by 25.5%-58.9%. Further, CuO NPs at 20 mg L-1 significantly inhibited the growth of plant root by 33.8%, and catalase (CAT) activity by 17.9% in bok choy seedlings. The present study can provide a basis for a comprehensive evaluation of the toxicity effect of CuO NPs on soil microorganisms and phytotoxicity to bok choy seedlings.
Collapse
Affiliation(s)
- Xuerong Di
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China
| | - Yutong Fu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China
| | - Yingming Xu
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, MARA, Beijing, 100125, China
| | - Qingqing Huang
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China.
| | - Yuebing Sun
- Key Laboratory of Original Agro‒Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs (MARA), Agro‒Environmental Protection Institute, MARA/ Tianjin Key Laboratory of Agro‒Environment and Agro‒Product Safety, MARA, Tianjin, 300191, China.
| |
Collapse
|
25
|
Gangwar J, Kadanthottu Sebastian J, Puthukulangara Jaison J, Kurian JT. Nano-technological interventions in crop production-a review. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:93-107. [PMID: 36733843 PMCID: PMC9886790 DOI: 10.1007/s12298-022-01274-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/21/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Agricultural industry is facing huge crisis due to fast changing climate, decreased soil fertility, macro and micronutrient insufficiency, misuse of chemical fertilizers and pesticides, and heavy metal presence in soil. With exponential increase in world's population, food consumption has increased significantly. Maintaining the production to consumption ratio is a significant challenge due to shortage caused by various issues faced by agricultural industry even with the improved agricultural practices. Recent scientific evidence suggests that nanotechnology can positively impact the agriculture sector by reducing the harmful effects of farming operations on human health and nature, as well as improving food productivity and security. Farmers are combining improved agricultural practices like usage of fertilizers, pesticides etc. with nano-based materials to improve the efficiency and productivity of crops. Nano technology is also playing a significant role improving animal health products, food packaging materials, and nanosensors for detecting pathogens, toxins, and heavy metals in soil among others. The nanobased materials have improved the productivity twice with half the resources being utilized. Nanoparticles that are currently in use include titanium dioxide, zinc oxide, silicon oxide, magnesium oxide, gold, and silver used for increasing soil fertility and plant growth. Crop growth, yield, and productivity are improved by controlled release nanofertilizers. In this review we elaborate on the recent developments in the agricultural sector by the usage of nanomaterial based composites which has significantly improved the agricultural sector especially how nanoparticles play an important role in plant growth and soil fertility, in controlling plant diseases by the use of nanopesticides, nanoinsecticides, nanofertilizers, Nanoherbicides, nanobionics, nanobiosensors. The review also highlights the mechanism of migration of nanoparticles in plants and most importantly the effects of nanoparticles in causing plant and soil toxicity.
Collapse
Affiliation(s)
- Jaya Gangwar
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029 India
| | | | | | - Jissa Theresa Kurian
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029 India
| |
Collapse
|
26
|
Ali M, Parveen A, Malik Z, Kamran M, Saleem MH, Abbasi GH, Ahmad I, Ahmad S, Sathish M, Okla MK, Al-Amri SS, Alaraidh IA, Ali S. Zn alleviated salt toxicity in Solanum lycopersicum L. seedlings by reducing Na + transfer, improving gas exchange, defense system and Zn contents. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 186:52-63. [PMID: 35809436 DOI: 10.1016/j.plaphy.2022.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 05/28/2023]
Abstract
Soil secondary salinization is a serious menace that has significant influence on the sustainability of agriculture and threatens food security around the world. Zinc (Zn) as an essential plant nutrient associated with many physio-biochemical processes in plants and improve resistance against various abiotic stresses. The role of Zn in acclimation of Solanum lycopersicum L. challenged with salt stress is miserly understood. A hydroponic study was performed with two tomato varieties (Riogrande and Sungold) exposed to the salinity stress (0 mM and 160 mM NaCl) under two Zn concentrations (15 μM and 30 μM ZnSO4). The results revealed that salt stress exerted strongly negative impacts on root and shoot length, fresh and dry biomass, plant water relations, membrane stability, chlorophyll contents, Na+/K+ ratio along with inferior gas exchange attributes and activities of antioxidant enzymes. Moreover, Riogrande was found to be more resistant to salinity stress than Sungold. However, Zn supply significantly alleviated the hazardous effects of salinity by altering compatible solutes accumulation, photosynthetic activity, water relation, soluble sugar contents and providing antioxidant defense against salt stress. The salinity + Zn2 treatment more obviously enhanced RWC (19.0%), MSI (30.8%), SPAD value (17.8%), and activities of SOD (31.7%), POD (28.5%), APX (64.5%) and CAT (23.3%) in Riogrande than Sungold, compared with the corresponding salinity treatment alone. In addition, salinity + Zn2 treatment significantly (P > 0.05) ameliorated salinity stress due to the depreciation in Na+/K+ ratio by 63.3% and 40.8%, Na+ ion relocation from root to shoot by 10.4% and 6.4%, and thereby significantly reduced Na+ ion accumulation by 47.4% and 16.3% in the leaves of Riogrande and Sungold respectively, compared to the salinity treatment alone. Therefore, it was obvious that 30 μM Zn concentration was more effective to induce resistance against salinity stress than 15 μM Zn concentration. Conclusively, it can be reported that exogenous Zn application helps tomato plant to combat adverse saline conditions by modulating photosynthetic and antioxidant capacity along with reduced Na+ uptake at the root surface of tomato plant.
Collapse
Affiliation(s)
- Muhammad Ali
- Institute of Agro-Industry & Environment, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Aasma Parveen
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Muhammad Kamran
- School of Agriculture, Food and Wine, The University of Adelaide, South Australia, 5005, Australia.
| | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ghulam Hassan Abbasi
- Institute of Agro-Industry & Environment, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Ijaz Ahmad
- Institute of Agro-Industry & Environment, Faculty of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Salman Ahmad
- Agriculture Extension Department, Government of Punjab, Markaz Bahawalpur, 63100, Pakistan
| | - Manda Sathish
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Mohammad K Okla
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Saud S Al-Amri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Allama Iqbal Road, Faisalabad, 38000, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung City, 40402, Taiwan.
| |
Collapse
|
27
|
Hilal M, Han JI. Bi-functional carbon doped and decorated ZnO nanorods for enhanced pH monitoring of dairy milk and adsorption of hazardous dyes. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
EL-Saeid MH, BaQais A, Alshabanat M. Study of the Photocatalytic Degradation of Highly Abundant Pesticides in Agricultural Soils. Molecules 2022; 27:634. [PMID: 35163899 PMCID: PMC8840474 DOI: 10.3390/molecules27030634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Organic pesticides are major sources of soil pollution in agricultural lands. Most of these pesticides are persistent and tend to bio accumulate in humans upon consumption of contaminated plants. In this study, we investigate different natural soil samples that were collected from agricultural lands. The samples revealed the presence of 18 pesticides that belong to four different groups including organochlorines (OCP), organophosphorus (OPP), carbamates (Carb), and pyrethroids (Pyrth). The photocatalytic degradation of the five most abundant pesticides was studied in the presence and absence of 1% TiO2 or ZnO photocatalysts under UV irradiation at a wavelength of 306 nm. The five abundant pesticides were Atrazine (OCP), Chlorpyrifos methyl (OPP), Dimethoate (OPP), Heptachlor (OCP), and Methomyl (Carb). The results showed that photolysis of all pesticides was complete under UV radiation for irradiation times between 64-100 h. However, both photocatalysts enhanced photocatalytic degradation of the pesticides in comparison with photolysis. The pesticides were photocatalytically degraded completely within 20-24 h of irradiation. The TiO2 photocatalyst showed higher activity compared to ZnO. The organochlorine heptachlor, which is very toxic and persistent, was completely degraded within 30 h using TiO2 photocatalyst for the first time in soil. The mechanism of photocatalytic degradation of the pesticides was explained and the effects of different factors on the degradation process in the soil were discussed.
Collapse
Affiliation(s)
- Mohamed H. EL-Saeid
- Chromatographic Analysis Unit, Soil Science Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Amal BaQais
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Mashael Alshabanat
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| |
Collapse
|