1
|
Argun YA. Examination of heavy metal concentrations and their interaction with anthropogenic sources in Ermenek Dam Lake (Turquoise Lake). ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:58. [PMID: 39856361 PMCID: PMC11762206 DOI: 10.1007/s10653-025-02367-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
This study aims to determine the spatial distribution of heavy metal pollution in Ermenek Dam Lake, water quality assessment and pollution sources. For this purpose, samples were taken 6 times a year from 12 points determined in 2024. Physico-chemical parameters and heavy metals were analyzed in the study. Using the analysis results, indexes such as Water Quality Index and Heavy Metal Pollution Index were calculated. The results show that the lake water complies with TS 266 and WHO standards. The index results indicate that the lake water is at low pollution and risk level and is safe. The distribution and sources of heavy metals were examined using correlation analysis, Principal Component Analysis and Hierarchical Cluster Analysis. Correlation analyses showed that there were significant relationships between pH, temperature, conductivity, dissolved oxygen and TDS and heavy metals. PCA results revealed that Zn was positively correlated with temperature and pH, while Mn and Ni were inversely correlated. The alignment of Pb, Cu and Cd in the same direction showed that these parameters were affected by common sources. HCA results showed that Cr and Fe have similar transport and source properties, while Mn and Ni are affected by different sources. In general, it was determined that heavy metal pollution in lake water was at low levels and local concentrations were present. The study revealed the effects of anthropogenic activities on the lake ecosystem. The findings of the study provide a guiding basis for water quality management in similar hydrological systems.
Collapse
Affiliation(s)
- Yusuf Alparslan Argun
- Kazım Karabekir Vocational School, Waste Management Program, Karamanoğlu Mehmetbey University, Karaman, Turkey.
| |
Collapse
|
2
|
El-Batal AI, Ismail MA, Amin MA, El-Sayyad GS, Osman MS. Selenium nanoparticles induce growth and physiological tolerance of wastewater‑stressed carrot plants. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
AbstractClimate changes have a direct impact on agricultural lands through their impact on the rate of water levels in the oceans and seas, which leads to a decrease in the amount of water used in agriculture, and therefore the use of alternative sources of irrigation such as wastewater and overcoming its harmful effect on plants was one of the solutions to face this problem. In the present study, the impacts of the synthesized selenium nanoparticles (Se NPs) alone or in combination with glycine betaine and proline treatments on the growth, physiological, and yield attributes of wastewater irrigated carrot plants are investigated. Furthermore, to evaluate heavy metals uptake and accumulation in edible plant parts. The usage of wastewater to carrot plants significantly increased free proline contents, total phenols, superoxide dismutase, catalase, peroxidase, polyphenol oxidase, Malondialdehyde (MDA), and hydrogen peroxide (H2O2) throughout the two growth stages. While total soluble carbohydrate and soluble protein content in carrot shoots and roots were significantly reduced. Moreover, the concentrations of nickel (Ni), cadmium (Cd), lead (Pb), and cobalt (Co) in carrot plants were considerably higher than the recommended limits set by international organizations. Application of selenium nanoparticles alone or in combination with glycine betaine and proline reduced the contents of Ni, Cd, Pb, and Co; free proline; total phenols; superoxide dismutase; catalase; peroxidase; polyphenol oxidase; Malondialdehyde (MDA) and Hydrogen peroxide (H2O2) in carrot plants. However, morphological aspects, photosynthetic pigments, soluble carbohydrates, soluble protein, total phenol, and β-Carotene were enhanced in response to Se NPs application. As an outcome, this research revealed that Se NPs combined with glycine betaine and proline can be used as a strategy to minimize heavy metal stress caused by wastewater irrigation in carrot plants, consequently enhancing crop productivity and growth.
Collapse
|
3
|
Jiménez-Oyola S, Valverde-Armas PE, Romero-Crespo P, Capa D, Valdivieso A, Coronel-León J, Guzmán-Martínez F, Chavez E. Heavy metal(loid)s contamination in water and sediments in a mining area in Ecuador: a comprehensive assessment for drinking water quality and human health risk. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023:10.1007/s10653-023-01546-3. [PMID: 36997826 DOI: 10.1007/s10653-023-01546-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
Elevated heavy metal(loid)s concentrations in water lower its quality posing a threat to consumers. This study aims to assess the human health risk caused by heavy metal(loid)s in tap water in Santa Rosa city, Ecuador, and the ecological risk of stream water and sediments in the Santa Rosa River. Concentrations of As, Cd, Cr, Cu, Ni, Pb, and Zn were evaluated in tap waters, stream waters, and sediment samples during the rainy and dry seasons. The Metal Index (MI), Geo-accumulation Index (Igeo), Potential Ecological Risk Index (PERI), and the levels of carcinogenic (CR) and non-carcinogenic risk (HQ) were determined. The results revealed severe pollution levels, mainly in Los Gringos and El Panteon streams, both tributaries of the Santa Rosa River, the primary water source for Santa Rosa inhabitants. More than 20% of the surface water samples showed severe contamination (MI > 6), and 90% of the tap water samples presented a MI value between 1 and 4, which indicates slight to moderate pollution. Drinking water displayed high levels of As, with 83% of the tap water samples collected from households in the dry season above the recommended concentration set by the World Health Organization and Ecuadorian legislation. The Igeo-Cd in the sediment samples was significantly high (Igeo > 3), and the PERI showed very high ecological risk (PERI > 600), with Cd as the main pollutant. HQ and CR were above the safe exposure threshold, suggesting that residents are at risk from tap water consumption, with As being the primary concern.
Collapse
Affiliation(s)
- Samantha Jiménez-Oyola
- Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador.
| | - Priscila E Valverde-Armas
- Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Paola Romero-Crespo
- Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Diego Capa
- Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Abner Valdivieso
- Facultad de Ingeniería en Ciencias de la Tierra, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Jonathan Coronel-León
- Facultad de Ingeniería Mecánica y Ciencias de la Producción, Centro de Investigaciones Biotecnológicas del Ecuador, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km 30.5, Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Fredy Guzmán-Martínez
- Mexican Geological Survey (SGM), Boulevard Felipe Angeles, Km. 93.50-4, 42083, Pachuca, Hidalgo, Mexico
| | - Eduardo Chavez
- Facultad de Ciencias de la Vida, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| |
Collapse
|
4
|
Nasiruddin M, Islam ARMT, Siddique MAB, Hasanuzaman M, Hassan MM, Akbor MA, Hasan M, Islam MS, Khan R, Al Amin M, Pal SC, Idris AM, Kumar S. Distribution, sources, and pollution levels of toxic metal(loid)s in an urban river (Ichamati), Bangladesh using SOM and PMF modeling with GIS tool. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:20934-20958. [PMID: 36264457 DOI: 10.1007/s11356-022-23617-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Indexical assessment coupled with a self-organizing map (SOM) and positive matrix factorization (PMF) modeling of toxic metal(loid)s in sediment and water of the aquatic environment provides valuable information from the environmental management perspective. However, in northwest Bangladesh, indexical and modeling assessments of toxic metal(loid)s in surface water and sediment are still rare. Toxic metal(loid)s were measured in sediment and surface water from an urban polluted river (Ichamati) in northwest Bangladesh using an atomic absorption spectrophotometer to assess distribution, pollution levels, sources, and potential environmental risks to the aquatic environment. The mean concentrations (mg/kg) of metal(loid)s in water are as follows: Fe (871) > Mn (382) > Cr (72.4) > Zn (34.2) > Co (20.8) > Pb (17.6) > Ni (16.7) > Ag (14.9) > As (9.0) > Cu (5.63) > Cd (2.65), while in sediment, the concentration follows the order, Fe (18,725) > Mn (551) > Zn (213) > Cu (47.6) > Cr (30.2) > Ni (24.2) > Pb (23.8) > Co (9.61) > As (8.23) > Cd (0.80) > Ag (0.60). All metal concentrations were within standard guideline values except for Cr and Pb for water and Cd, Zn, Cu, Pb, and As for sediment. The outcomes of eco-environmental indices, including contamination and enrichment factors and geo-accumulation index, differed spatially, indicating that most of the sediment sites were moderately to highly polluted by Cd, Zn, and As. Cd and Zn content can trigger ecological risks. The positive matrix factorization (PMF) model recognized three probable sources of sediment, i.e., natural source (49.39%), industrial pollution (19.72%), and agricultural source (30.92%), and three possible sources of water, i.e., geogenic source (45.41%), industrial pollution (22.88%), and industrial point source (31.72%), respectively. SOM analysis identified four spatial patterns, e.g., Fe-Mn-Ag, Cd-Cu, Cr-Pb-As-Ni, and Zn-Co in water and three patterns, e.g., Mn-Co-Ni-Cr, Cd-Cu-Pb-Zn, and As-Fe-Ag in sediment. The spatial distribution of entropy water quality index values shows that the southwestern area possesses "poor" quality water. Overall, the levels of metal(loid) pollution in the investigated river surpassed a critical threshold, which might have serious consequences for the river's aquatic biota and human health in the long run.
Collapse
Affiliation(s)
- Md Nasiruddin
- Department of Chemistry, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Dhaka, Bangladesh
| | | | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Hasanuzaman
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh
| | - Md Mahedi Hassan
- Department of Chemistry, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, 8100, Dhaka, Bangladesh
| | - Md Ahedul Akbor
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mehedi Hasan
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka, 1205, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - Md Al Amin
- Department of Disaster Management, Begum Bekeya University, Rangpur, 5400, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, Bardhaman, 713104, West Bengal, India
| | - Abubakr Mustafa Idris
- Department of Chemistry, College of Science King Khalid University, Abha, 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, 62629, Saudi Arabia
| | - Satendra Kumar
- School of Geography, Earth Science and Environment, The University of the South Pacific, Laucala Campus, Private Bag, Suva, Fiji
| |
Collapse
|
5
|
Improvement of Ecological Risk Considering Heavy Metal in Soil and Groundwater Surrounding Electroplating Factories. Processes (Basel) 2022. [DOI: 10.3390/pr10071267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Heavy metals in groundwater and soil are toxic to humans. An accurate risk assessment of heavy metal contamination can aid in environmental security decision making. In this study, the improved ecological risk index (RI) is used to comprehensively investigate the influence of heavy metals in soil and groundwater within electroplating factories and their surrounding regions. In the non-overlapping area, the RI of soil and groundwater is computed individually, and in the overlapping area, the greater RI of soil and groundwater is employed. Two typical electroplating factories are used to examine the heavy metal distribution pattern. The heavy metal concentrations are compared between Factory A, which is in operation, and Factory B, which is no longer in operation, in order to analyze the heavy metal concentrations and associated ecological risks. Heavy metals continue to spread horizontally and vertically after Factory B was closed. Heavy metal concentrations in groundwater surrounding Factory B are substantially greater, and the maximum concentration exists deeper than in Factory A. Because Cr, Cu, and Hg in soil contribute significantly to the RI, the primary high RI region is observed at Factory A and the region to the southwest. The RI of Factory B demonstrates a broad, moderate risk zone in the west and southwest.
Collapse
|
6
|
Effects of Agriculture and Animal Husbandry on Heavy Metal Contamination in the Aquatic Environment and Human Health in Huangshui River Basin. WATER 2022. [DOI: 10.3390/w14040549] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Huangshui River (HSR) is the mother river of Qinghai province. Croplands and grasslands cover more than 76% of the total area, and highland agriculture and animal husbandry are the dominant industries. The use of pesticides, fertilizers, and feed additives increases the risk of heavy metal (HM) contamination. In this study, the concentration of HMs in the main stream and tributaries of HSR were investigated. The Positive Matrix Factorization model was used for source apportionment, and Health Risk Assessment method was used to assess the human health risks. To further analyze the effect of agriculture and animal husbandry on aquatic environment and human health, we considered agriculture and animal husbandry as two factors in the source apportionment process, defined the effect of the factors, established the calculation formula, and quantified the effects. The results show that the overall situation of aquatic environment in HSR is good; natural processes, traffic tail gas and atmospheric deposition, agricultural planting, industrial wastewater discharge, and animal husbandry are the main sources of HMs in the water. These HMs present noncarcinogenic and carcinogenic risks for infants. A total effect of agricultural and animal husbandry on HMs or HI in HSRB is approximately 20%, while on TCR is 40%. However, the effects of agriculture on the hazard quotient of arsenic, carcinogenic risk of nickel and lead, and that of animal husbandry on carcinogenic risk of cadmium were significant. This study can provide a theoretical basis for local managers of agriculture and animal husbandry to perform their work effectively.
Collapse
|
7
|
Peng H, Chen Y, Li J, Lu J. Energy information flow-based ecological risk transmission among communities within the heavy metals contaminated soil system. CHEMOSPHERE 2022; 287:132124. [PMID: 34523449 DOI: 10.1016/j.chemosphere.2021.132124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/17/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
An energy information flow-based ecological risk assessment framework (EIF-ERA) is developed for identifying ecological risk transmission rules among communities (i.e., vegetation E1, herbivorous animals E2, soil microorganisms E3, and carnivorous animals E4) within the heavy metals contaminated soil system. This framework is integrated with numerous techniques of carcinogenic risk evaluation, ecological risk assessment (ERA), and Monte Carlo simulation. Stepwise quadratic response surface analysis (SQRSA) is employed for reflecting the relation between contaminants' concentration and comprehensive risk. Two scenarios with respect to the environmental quality standards (scenarios 1) and carcinogenic risk reversion (scenarios 2) are merged into the EIF-ERA. A real-world mining area in Xinglong County in Chengde is selected to verify the developed framework's effectiveness. Results reveal that E3 is considered as the most sensitive community when contaminant interference occurs, and its 62.3% and 37.7% of comprehensive risk are contributed by initial and direct risks, respectively. Other communities can receive direct risk through control allocation (CA). Monte Carlo anlysis shows that there are 7.68% and 20.25% increase in the initial risk of Cd and Pb when their quantile statistics increase from 70% to 90%. Determination of an appropriate screening value is vital for contaminated mining soil remediation due to its inefficiency of remediation funds, especially when considering the trict standards of contaminants' concentration within scenarios 1. The surrogates obtained from the SQRSA display the relation of contaminant concentration and comprehensive risks with the adjusted R2 greater than 0.77. These findings can be in support of system design, risk assessment, and site remediation.
Collapse
Affiliation(s)
- He Peng
- School of Economics and Management, Hebei University of Technology, Tianjin, 300401, China
| | - Yizhong Chen
- School of Economics and Management, Hebei University of Technology, Tianjin, 300401, China.
| | - Jing Li
- Hebei Key Laboratory of Environmental Change and Ecological Construction, College of Resource and Environment Science, Hebei Normal University, Shijiazhuang, 050024, China
| | - Jingzhao Lu
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, China
| |
Collapse
|
8
|
Mauro M, Lazzara V, Arizza V, Luparello C, Ferrantelli V, Cammilleri G, Inguglia L, Vazzana M. Human Drug Pollution in the Aquatic System: The Biochemical Responses of Danio rerio Adults. BIOLOGY 2021; 10:biology10101064. [PMID: 34681162 PMCID: PMC8533377 DOI: 10.3390/biology10101064] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022]
Abstract
Simple Summary The release of medicinal products for human use in the aquatic environment is now a serious problem, and can be fatal for the organisms that live there. Danio rerio is a freshwater fish that provides the possibility to study the effects of these pollutants on the health of aquatic organisms. The results of the various existing scientific studies are scarce and conflicting. Here, we review the scientific studies that have analyzed these effects, highlighting that the impacts of drugs are evident in the biochemical responses of these animals. Abstract To date, drug pollution in aquatic systems is an urgent issue, and Danio rerio is a model organism to study the toxicological effects of environmental pollutants. The scientific literature has analyzed the effect of human drug pollution on the biochemical responses in the tissues of D. rerio adults. However, the information is still scarce and conflicting, making it difficult to understand its real impact. The scientific studies are not consistent with each other and, until now, no one has grouped their results to create a baseline of knowledge of the possible impacts. In this review, the analysis of literature data highlights that the effects of drugs on adult zebrafishes depend on various factors, such as the tissue analyzed, the drug concentration and the sex of the individuals. Furthermore, the most influenced biochemical responses concern enzymes (e.g., antioxidants and hydrolase enzymes) and total protein and hormonal levels. Pinpointing the situation to date would improve the understanding of the chronic effects of human drug pollution, helping both to reduce it in the aquatic systems and then to draw up regulations to control this type of pollution.
Collapse
Affiliation(s)
- Manuela Mauro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
- Correspondence: (M.M.); (V.F.)
| | - Valentina Lazzara
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Vincenzo Arizza
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Claudio Luparello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Vincenzo Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, 90129 Palermo, Italy;
- Correspondence: (M.M.); (V.F.)
| | - Gaetano Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, 90129 Palermo, Italy;
| | - Luigi Inguglia
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| | - Mirella Vazzana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90128 Palermo, Italy; (V.L.); (V.A.); (C.L.); (L.I.); (M.V.)
| |
Collapse
|