1
|
Liu J, Zhang J, Wang H, Fang C, Wei L, Chen J, Li M, Wu S, Zeng Q. Machine Learning Methods Based on Chest CT for Predicting the Risk of COVID-19-Associated Pulmonary Aspergillosis. Acad Radiol 2025:S1076-6332(25)00075-3. [PMID: 39934077 DOI: 10.1016/j.acra.2025.01.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025]
Abstract
RATIONALE AND OBJECTIVES To develop and validate a machine learning model based on chest CT and clinical risk factors to predict secondary aspergillus infection in hospitalized COVID-19 patients. MATERIALS AND METHODS This retrospective study included 291 COVID-19 patients with complete clinical data between December 2022 and March 2024, and some (n=82) of them developed secondary aspergillus infection after admission. Patients were divided into training (n=162), internal validation (n=69) and external validation (n=60) cohorts. The least absolute shrinkage and selection operator regression was applied to select the most significant image features extracted from chest CT. Univariate and multivariate logistic regression analyses were performed to develop a multifactorial model, which integrated chest CT with clinical risk factors, to predict secondary aspergillus infection in hospitalized COVID-19 patients. The performance of the constructed models was assessed with the receiver operating characteristic curve and the area under the curve (AUC). The clinical application value of the models was comprehensively evaluated using decision curve analysis (DCA). RESULTS Eleven radiomics features and seven clinical risk factors were selected to develop prediction models. The multifactorial model demonstrated a favorable predictive performance with the highest AUC values of 0.98 (95% CI, 0.96-1.00) in the training cohort, 0.98 (95% CI, 0.96-1.00) in the internal validation cohort, and 0.87 (95% CI, 0.75-0.99) in the external validation cohort, which was significantly superior to the models relied solely on chest CT or clinical risk factors. The calibration curves from Hosmer-Lemeshow tests showed that there were no significant differences in the training cohort (p=0.359) and internal validation cohort (p=0.941), suggesting the good performance of the multifactorial model. DCA indicated that the multifactorial model exhibited better performance than others. CONCLUSION The multifactorial model can serve as a reliable tool for predicting the risk of COVID-19-associated pulmonary aspergillosis.
Collapse
Affiliation(s)
- Jiahao Liu
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China (J.L., H.W., L.W., J.C., M.L., Q.Z.); Shandong First Medical University, Jinan, China (J.L., M.L., S.W.)
| | - Juntao Zhang
- GE Healthcare PDX GMS Medical Affairs, Shanghai, China (J.Z.)
| | - Huaizhen Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China (J.L., H.W., L.W., J.C., M.L., Q.Z.)
| | - Caiyun Fang
- Department of Radiology, Guang'anmen Hospital Jinan Hospital, Jinan, China (C.F.)
| | - Lingzhen Wei
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China (J.L., H.W., L.W., J.C., M.L., Q.Z.)
| | - Jinming Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China (J.L., H.W., L.W., J.C., M.L., Q.Z.)
| | - Meilin Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China (J.L., H.W., L.W., J.C., M.L., Q.Z.); Shandong First Medical University, Jinan, China (J.L., M.L., S.W.)
| | - Shuzhen Wu
- Shandong First Medical University, Jinan, China (J.L., M.L., S.W.); Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China (S.W.)
| | - Qingshi Zeng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China (J.L., H.W., L.W., J.C., M.L., Q.Z.).
| |
Collapse
|
2
|
Farahat IS, Sharafeldeen A, Ghazal M, Alghamdi NS, Mahmoud A, Connelly J, van Bogaert E, Zia H, Tahtouh T, Aladrousy W, Tolba AE, Elmougy S, El-Baz A. An AI-based novel system for predicting respiratory support in COVID-19 patients through CT imaging analysis. Sci Rep 2024; 14:851. [PMID: 38191606 PMCID: PMC10774502 DOI: 10.1038/s41598-023-51053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024] Open
Abstract
The proposed AI-based diagnostic system aims to predict the respiratory support required for COVID-19 patients by analyzing the correlation between COVID-19 lesions and the level of respiratory support provided to the patients. Computed tomography (CT) imaging will be used to analyze the three levels of respiratory support received by the patient: Level 0 (minimum support), Level 1 (non-invasive support such as soft oxygen), and Level 2 (invasive support such as mechanical ventilation). The system will begin by segmenting the COVID-19 lesions from the CT images and creating an appearance model for each lesion using a 2D, rotation-invariant, Markov-Gibbs random field (MGRF) model. Three MGRF-based models will be created, one for each level of respiratory support. This suggests that the system will be able to differentiate between different levels of severity in COVID-19 patients. The system will decide for each patient using a neural network-based fusion system, which combines the estimates of the Gibbs energy from the three MGRF-based models. The proposed system were assessed using 307 COVID-19-infected patients, achieving an accuracy of [Formula: see text], a sensitivity of [Formula: see text], and a specificity of [Formula: see text], indicating a high level of prediction accuracy.
Collapse
Affiliation(s)
- Ibrahim Shawky Farahat
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | | | - Mohammed Ghazal
- Electrical, Computer and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi, UAE
| | - Norah Saleh Alghamdi
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ali Mahmoud
- Department of Bioengineering, University of Louisville, Louisville, USA
| | - James Connelly
- Department of Radiology, University of Louisville, Louisville, USA
| | - Eric van Bogaert
- Department of Radiology, University of Louisville, Louisville, USA
| | - Huma Zia
- Electrical, Computer and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi, UAE
| | - Tania Tahtouh
- College of Health Sciences, Abu Dhabi University, Abu Dhabi, UAE
| | - Waleed Aladrousy
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Ahmed Elsaid Tolba
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
- The Higher Institute of Engineering and Automotive Technology and Energy, Kafr El Sheikh, Egypt
| | - Samir Elmougy
- Department of Computer Science, Faculty of Computers and Information, Mansoura University, Mansoura, Egypt
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, USA.
| |
Collapse
|
3
|
Vijayanandh T, Shenbagavalli A. A Hybrid Deep Neural Approach for Segmenting the COVID Affection Area from the Lungs X-Ray Images. NEW GENERATION COMPUTING 2023; 41:1-20. [PMID: 37362548 PMCID: PMC10184644 DOI: 10.1007/s00354-023-00222-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/04/2023] [Indexed: 06/28/2023]
Abstract
Nowadays, COVID severity prediction has attracted widely in medical research because of the disease severity. Hence, the image processing application is also utilized to analyze COVID severity identification using lungs X-ray images. Thus, several intelligent schemes were employed to detect the COVID-affected part of the lungs X-ray images. However, the traditional neural approaches reported less severity classification accuracy due to the image complexity score. So, the present study has presented a novel chimp-based Adaboost Severity Analysis (CbASA) implemented in the MATLAB environment. Hence, the lung's X-ray images are utilized to test the working performance of the designed model. All public imaging data sources contain more noisy features, so the noise features are removed in the initial hidden layer of the novel CbASA then the noise-free data is imported into the classification phase. Feature extraction, segmentation, and severity specification have been performed in the classification layer. Finally, the performance of the classification score has been measured and compared with other models. Subsequently, the presented novel CbASA has earned the finest classification outcome.
Collapse
Affiliation(s)
- T. Vijayanandh
- Department of Computer Science and Engineering, Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Chennai, Tamil Nadu 600062 India
| | - A. Shenbagavalli
- Department of Electronics and Communication Engineering, National Engineering College, Kovilpatti, Tamil Nadu 628503 India
| |
Collapse
|
4
|
Manav M, Goyal M, Kumar A. Role of Optimal Features Selection with Machine Learning Algorithms for Chest X-ray Image Analysis. J Med Phys 2023; 48:195-203. [PMID: 37576090 PMCID: PMC10419742 DOI: 10.4103/jmp.jmp_104_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction The objective of the present study is to classify chest X-ray (CXR) images into COVID-positive and normal categories with the optimal number of features extracted from the images. The successful optimal feature selection algorithm that can represent images and the classification algorithm with good classification ability has been determined as the result of experiments. Materials and Methods This study presented a framework for the automatic detection of COVID-19 from the CXR images. To enhance small details, textures, and contrast of the images, contrast limited adaptive histogram equalization was used. Features were extracted from the first-order statistics, Gray-Level Co-occurrence Matrix, Gray-Level Run Length Matrix, local binary pattern, Law's Texture Energy Measures, Discrete Wavelet Transform, and Zernikes' Moments using an image feature extraction tool "pyFeats. For the feature selection, three nature-inspired optimization algorithms, Grey Wolf Optimization, Particle Swarm Optimization (PSO), and Genetic Algorithm, were used. For classification, Random Forest classifier, K-Nearest Neighbour classifier, support vector machine (SVM) classifier, and light gradient boosting model classifier were used. Results and Discussion For all the feature selection methods, the SVM classifier gives the most accurate and precise result compared to other classification models. Furthermore, in feature selection methods, PSO gives the best result as compared to other methods for feature selection. Using the combination of the SVM classifier with the PSO method, it was observed that the accuracy, precision, recall, and F1-score were 100%. Conclusion The result of the study indicates that with optimal features with the best choice of the classifier algorithm, the most accurate computer-aided diagnosis of CXR can be achieved. The approach presented in this study with optimal features may be utilized as a complementary tool to assist the radiologist in the early diagnosis of disease and making a more accurate decision.
Collapse
Affiliation(s)
- Mohini Manav
- Department of Physics, GLA University, Mathura, Uttar Pradesh, India
- Department of Radiotherapy, S N Medical College, Agra, Uttar Pradesh, India
| | - Monika Goyal
- Department of Physics, GLA University, Mathura, Uttar Pradesh, India
| | - Anuj Kumar
- Department of Radiotherapy, S N Medical College, Agra, Uttar Pradesh, India
| |
Collapse
|
5
|
Betshrine Rachel R, Nehemiah KH, Marishanjunath C, Manoharan RMV. Diagnosis of Pulmonary Edema and covid-19 from CT slices using squirrel search algorithm, support vector machine and back propagation neural network. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2022. [DOI: 10.3233/jifs-222564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A Computer Aided Diagnosis (CAD) framework to diagnose Pulmonary Edema (PE) and covid-19 from the chest Computed Tomography (CT) slices have been developed and implemented in this work. The lung tissues have been segmented using Otsu’s thresholding method. The Regions of Interest (ROI) considered in this work were edema lesions and covid-19 lesions. For each ROI, the edema lesions and covid-19 lesions were elucidated by an expert radiologist, followed by texture and shape extraction. The extracted features were stored as feature vectors. The feature vectors were split into train and test set in the ratio of 80 : 20. A wrapper based feature selection approach using Squirrel Search Algorithm (SSA) with the Support Vector Machine (SVM) classifier’s accuracy as the fitness function was used to select the optimal features. The selected features were trained using the Back Propagation Neural Network (BPNN) classifier. This framework was tested on a real-time PE and covid-19 dataset. The BPNN classifier’s accuracy with SSA yielded 88.02%, whereas, without SSA it yielded 83.80%. Statistical analysis, namely Wilcoxon’s test, Kendall’s Rank Correlation Coefficient test and Mann Whitney U test were performed, which indicates that the proposed method has a significant impact on the accuracy, sensitivity and specificity of the novel dataset considered. Comparative experimentations of the proposed system with existing benchmark ML classifiers, namely Cat Boost, Ada Boost, XGBoost, RBF SVM, Poly SVM, Sigmoid SVM and Linear SVM classifiers demonstrate that the proposed system outperforms the benchmark classifiers’ results.
Collapse
Affiliation(s)
- R. Betshrine Rachel
- Ramanujan Computing Centre, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, India
| | - Khanna H. Nehemiah
- Ramanujan Computing Centre, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, India
| | - C.S. Marishanjunath
- Department of Information Science and Technology, College of Engineering Guindy, Anna University, Chennai, Tamil Nadu, India
| | | |
Collapse
|
6
|
Martínez JA, Alonso-Bernáldez M, Martínez-Urbistondo D, Vargas-Nuñez JA, Ramírez de Molina A, Dávalos A, Ramos-Lopez O. Machine learning insights concerning inflammatory and liver-related risk comorbidities in non-communicable and viral diseases. World J Gastroenterol 2022; 28:6230-6248. [PMID: 36504554 PMCID: PMC9730439 DOI: 10.3748/wjg.v28.i44.6230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/07/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
The liver is a key organ involved in a wide range of functions, whose damage can lead to chronic liver disease (CLD). CLD accounts for more than two million deaths worldwide, becoming a social and economic burden for most countries. Among the different factors that can cause CLD, alcohol abuse, viruses, drug treatments, and unhealthy dietary patterns top the list. These conditions prompt and perpetuate an inflammatory environment and oxidative stress imbalance that favor the development of hepatic fibrogenesis. High stages of fibrosis can eventually lead to cirrhosis or hepatocellular carcinoma (HCC). Despite the advances achieved in this field, new approaches are needed for the prevention, diagnosis, treatment, and prognosis of CLD. In this context, the scientific com-munity is using machine learning (ML) algorithms to integrate and process vast amounts of data with unprecedented performance. ML techniques allow the integration of anthropometric, genetic, clinical, biochemical, dietary, lifestyle and omics data, giving new insights to tackle CLD and bringing personalized medicine a step closer. This review summarizes the investigations where ML techniques have been applied to study new approaches that could be used in inflammatory-related, hepatitis viruses-induced, and coronavirus disease 2019-induced liver damage and enlighten the factors involved in CLD development.
Collapse
Affiliation(s)
- J Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health, Madrid Institute of Advanced Studies-Food Institute, Madrid 28049, Spain
| | - Marta Alonso-Bernáldez
- Precision Nutrition and Cardiometabolic Health, Madrid Institute of Advanced Studies-Food Institute, Madrid 28049, Spain
| | | | - Juan A Vargas-Nuñez
- Servicio de Medicina Interna, Hospital Universitario Puerta de Hierro Majadahonda, Madrid 28222, Majadahonda, Spain
| | - Ana Ramírez de Molina
- Molecular Oncology and Nutritional Genomics of Cancer, Madrid Institute of Advanced Studies-Food Institute, Madrid 28049, Spain
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, Madrid Institute of Advanced Studies-Food Institute, Madrid 28049, Spain
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico
| |
Collapse
|
7
|
San-Cristobal R, Martín-Hernández R, Ramos-Lopez O, Martinez-Urbistondo D, Micó V, Colmenarejo G, Villares Fernandez P, Daimiel L, Martínez JA. Longwise Cluster Analysis for the Prediction of COVID-19 Severity within 72 h of Admission: COVID-DATA-SAVE-LIFES Cohort. J Clin Med 2022; 11:3327. [PMID: 35743398 PMCID: PMC9224935 DOI: 10.3390/jcm11123327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 01/27/2023] Open
Abstract
The use of routine laboratory biomarkers plays a key role in decision making in the clinical practice of COVID-19, allowing the development of clinical screening tools for personalized treatments. This study performed a short-term longitudinal cluster from patients with COVID-19 based on biochemical measurements for the first 72 h after hospitalization. Clinical and biochemical variables from 1039 confirmed COVID-19 patients framed on the “COVID Data Save Lives” were grouped in 24-h blocks to perform a longitudinal k-means clustering algorithm to the trajectories. The final solution of the three clusters showed a strong association with different clinical severity outcomes (OR for death: Cluster A reference, Cluster B 12.83 CI: 6.11−30.54, and Cluster C 14.29 CI: 6.66−34.43; OR for ventilation: Cluster-B 2.22 CI: 1.64−3.01, and Cluster-C 1.71 CI: 1.08−2.76), improving the AUC of the models in terms of age, sex, oxygen concentration, and the Charlson Comorbidities Index (0.810 vs. 0.871 with p < 0.001 and 0.749 vs. 0.807 with p < 0.001, respectively). Patient diagnoses and prognoses remarkably diverged between the three clusters obtained, evidencing that data-driven technologies devised for the screening, analysis, prediction, and tracking of patients play a key role in the application of individualized management of the COVID-19 pandemics.
Collapse
Affiliation(s)
- Rodrigo San-Cristobal
- Precision Nutrition and Cardiometabolic Health Researh Program, Institute on Food and Health Sciences (Institute IMDEA Food), 28049 Madrid, Spain; (V.M.); (J.A.M.)
| | - Roberto Martín-Hernández
- Biostatistics & Bioinformatics Unit, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM + CSIS, 28049 Madrid, Spain; (R.M.-H.); (G.C.)
| | - Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana 22390, Baja California, Mexico;
| | - Diego Martinez-Urbistondo
- Internal Medicine Department, Hospital Universitario HM Sanchinarro, 28050 Madrid, Spain; (D.M.-U.); (P.V.F.)
| | - Víctor Micó
- Precision Nutrition and Cardiometabolic Health Researh Program, Institute on Food and Health Sciences (Institute IMDEA Food), 28049 Madrid, Spain; (V.M.); (J.A.M.)
| | - Gonzalo Colmenarejo
- Biostatistics & Bioinformatics Unit, Madrid Institute for Advanced Studies (IMDEA) Food, CEI UAM + CSIS, 28049 Madrid, Spain; (R.M.-H.); (G.C.)
| | - Paula Villares Fernandez
- Internal Medicine Department, Hospital Universitario HM Sanchinarro, 28050 Madrid, Spain; (D.M.-U.); (P.V.F.)
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, IMDEA Food Institute, CEI UAM + CSIC, 28049 Madrid, Spain;
| | - Jose Alfredo Martínez
- Precision Nutrition and Cardiometabolic Health Researh Program, Institute on Food and Health Sciences (Institute IMDEA Food), 28049 Madrid, Spain; (V.M.); (J.A.M.)
- CIBERobn Physiopathology of Obesity and Nutrition, Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|