1
|
Sinha K, Chakraborty S, Bardhan A, Saha R, Chakraborty S, Biswas S. A New Differential Gene Expression Based Simulated Annealing for Solving Gene Selection Problem: A Case Study on Eosinophilic Esophagitis and Few Other Gastro-intestinal Diseases. Biochem Genet 2024:10.1007/s10528-024-10987-z. [PMID: 39643769 DOI: 10.1007/s10528-024-10987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Identifying the set of genes collectively responsible for causing a disease from differential gene expression data is called gene selection problem. Though many complex methodologies have been applied to solve gene selection, formulated as an optimization problem, this study introduces a new simple, efficient, and biologically plausible solution procedure where the collective power of the targeted gene set to discriminate between diseased and normal gene expression profiles was focused. It uses Simulated Annealing to solve the underlying optimization problem and termed here as Differential Gene Expression Based Simulated Annealing (DGESA). The Ranked Variance (RV) method has been applied to prioritize genes to form reference set to compare with the outcome of DGESA. In a case study on Eosinophilic Esophagitis (EoE) and other gastrointestinal diseases, RV identified the top 40 high-variance genes, overlapping with disease-causing genes from DGESA. DGESA identified 40 gene pathways each for EoE, Crohn's Disease (CD), and Ulcerative Colitis (UC), with 10 genes for EoE, 8 for CD, and 7 for UC confirmed in literature. For EoE, confirmed genes include KRT79, CRISP2, IL36G, SPRR2B, SPRR2D, and SPRR2E. For CD, validated genes are NPDC1, SLC2A4RG, LGALS8, CDKN1A, XAF1, and CYBA. For UC, confirmed genes include TRAF3, BAG6, CCDC80, CDC42SE2, and HSPA9. RV and DGESA effectively elucidate molecular signatures in gastrointestinal diseases. Validating genes like SPRR2B, SPRR2D, SPRR2E, and STAT6 for EoE demonstrates DGESA's efficacy, highlighting potential targets for future research.
Collapse
Affiliation(s)
- Koushiki Sinha
- Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, Anandapur Rd, Uchhepota, Kolkata, West Bengal, 700150, India
| | - Sanchari Chakraborty
- Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, Anandapur Rd, Uchhepota, Kolkata, West Bengal, 700150, India
| | - Arohit Bardhan
- Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, Anandapur Rd, Uchhepota, Kolkata, West Bengal, 700150, India
| | - Riju Saha
- Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, Anandapur Rd, Uchhepota, Kolkata, West Bengal, 700150, India
| | - Srijan Chakraborty
- Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, Anandapur Rd, Uchhepota, Kolkata, West Bengal, 700150, India
| | - Surama Biswas
- Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, Anandapur Rd, Uchhepota, Kolkata, West Bengal, 700150, India.
| |
Collapse
|
2
|
Leow SS, Khoo JS, Lee WK, Hoh CC, Fairus S, Sambanthamurthi R, Hayes KC. RNA-Seq transcriptome profiling of Nile rat livers reveals novel insights on the anti-diabetic mechanisms of Water-Soluble Palm Fruit Extract. J Appl Genet 2024; 65:867-895. [PMID: 38890243 DOI: 10.1007/s13353-024-00880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Water-Soluble Palm Fruit Extract (WSPFE) has been shown to confer anti-diabetic effects in the Nile rat (NR) (Arvicanthis niloticus). Liquid and powder WSPFE both deterred diabetes onset in NRs fed a high-carbohydrate (hiCHO) diet, but the liquid form provided better protection. In this study, NRs were fed either a hiCHO diet or the same diet added with liquid or powder WSPFE. Following feeding of the diets for 8 weeks, random blood glucose levels were measured to categorize NRs as either diabetes-resistant or diabetes-susceptible, based on a cut-off value of 75 mg/dL. Livers were then obtained for Illumina HiSeq 4000 paired end RNA-sequencing (RNA-Seq) and the data were mapped to the reference genome. Consistent with physiological and biochemical parameters, the gene expression data obtained indicated that WSPFE was associated with protection against diabetes. Among hepatic genes upregulated by WSPFE versus controls, were genes related to insulin-like growth factor binding protein, leptin receptor, and processes of hepatic metabolism maintenance, while those downregulated were related to antigen binding, immunoglobulin receptor, inflammation- and cancer-related processes. WSPFE supplementation thus helped inhibit diabetes progression in NRs by increasing insulin sensitivity and reducing both the inflammatory effects of a hiCHO diet and the related DNA-damage compensatory mechanisms contributing to liver disease progression. In addition, the genetic permissiveness of susceptible NRs to develop diabetes was potentially associated with dysregulated compensatory mechanisms involving insulin signaling and oxidative stress over time. Further studies on other NR organs associated with diabetes and its complications are warranted.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Jia-Shiun Khoo
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Wei-Kang Lee
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Syed Fairus
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
- Academy of Sciences Malaysia, Level 20, West Wing, MATRADE Tower, Jalan Sultan Haji Ahmad Shah, Off Jalan Tuanku Abdul Halim, 50480, Kuala Lumpur, Malaysia
| | - K C Hayes
- Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
3
|
Poluan RH, Sudigyo D, Rahmawati G, Setiasari DW, Sesotyosari SL, Wardana T, Astuti I, Heriyanto DS, Indrasari SR, Herawati C, Afiahayati , Haryana SM. Transcriptome Related to Avoiding Immune Destruction in Nasopharyngeal Cancer in Indonesian Patients Using Next-Generation Sequencing. Asian Pac J Cancer Prev 2020; 21:2593-2601. [PMID: 32986357 PMCID: PMC7779461 DOI: 10.31557/apjcp.2020.21.9.2593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Objective: This study aims to obtain the transcriptomes profile associated with avoiding immune destruction from nasopharyngeal cancer patients in Indonesia using next-generation sequencing. Methods: The samples are divided into two types of samples; 1) biopsy of nasopharyngeal cancer tissue samples, 2) brushing tissue of people without nasopharyngeal cancer as control samples. The sequencing results were mapped (HISAT2) and quantified (HTSeq) for differential expression analysis using edgeR software. Transcripts data analyzed with Pantherdb and DAVID software to find genes related to the immune system and pathways related to immune destruction by cancer. Results: The differential expression results show that 2,046 genes that have a significant differential expression. The 90 genes expression has down-regulated and 1,956 genes expression up-regulated, there are 20 genes related to the immune system. The 20 genes related to the immune system by analyzing lionproject.net that directly related to hallmark avoiding immune destruction that genes are CXCL9/10/11. The gene expression of CXCL9/10/11 regulates PD-L1 expressions via the Jak/STAT signaling pathway. The interaction between the extracellular domain PD-1 and PD-L1 in cancer cells have avoiding immune destruction. Conclusion: The results of this study suggest that the gene expression of CXCL9/10/11 have up-regulated is related to avoiding immune destruction that can use as an early detection biomarker of nasopharyngeal cancer in Indonesian patients.
Collapse
Affiliation(s)
- Risky Hiskia Poluan
- Study Program of Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Digdo Sudigyo
- Study Program of Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Gisti Rahmawati
- Study Program of Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | | | - Tirta Wardana
- Universitas Jenderal Soedirman, Central Java, Indonesia
| | - Indwiani Astuti
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Didik Setyo Heriyanto
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sagung Rai Indrasari
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - - Afiahayati
- Department of Computer Science and Electronics, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sofia Mubarika Haryana
- Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
4
|
Liang T, Ye X, Liu Y, Qiu X, Li Z, Tian B, Yan D. FAM46B inhibits cell proliferation and cell cycle progression in prostate cancer through ubiquitination of β-catenin. Exp Mol Med 2018; 50:1-12. [PMID: 30532005 PMCID: PMC6288130 DOI: 10.1038/s12276-018-0184-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
FAM46B is a member of the family with sequence similarity 46. Little is known about the expression and functional role(s) of FAM46B in prostate cancer (PC). In this study, the expression of FAM46B expression in The Cancer Genome Atlas, GSE55945, and an independent hospital database was measured by bioinformatics and real-time PCR analysis. After PC cells were transfected with siRNA or a recombinant vector in the absence or presence of a β-catenin signaling inhibitor (XAV-939), the expression levels of FAM46B, C-myc, Cyclin D1, and β-catenin were measured by western blot and real-time PCR. Cell cycle progression and cell proliferation were measured by flow cytometry and the CCK-8 assay. The effects of FAM46B on tumor growth and protein expression in nude mice with PC tumor xenografts were also measured. Our results showed that FAM46B was downregulated but that β-catenin was upregulated in patients with PC. FAM46B silencing promoted cell proliferation and cell cycle progression in PC, which were abrogated by XAV-939. Moreover, FAM46B overexpression inhibited PC cell cycle progression and cell proliferation in vitro and tumor growth in vivo. FAM46B silencing promoted β-catenin protein expression through the inhibition of β-catenin ubiquitination. Our data clearly show that FAM46B inhibits cell proliferation and cell cycle progression in PC through ubiquitination of β-catenin. A little-studied protein may help in early diagnosis and treatment of prostate cancer (PC), one of the most common cancers in men. Because early-stage PC causes few symptoms, many patients are not diagnosed until later stages, when treatment options are limited. New methods for early diagnosis and treatment are actively sought. Proteins in the FAM46 family are known to be involved in many types of cancer. Dongliang Yan at Shanghai Sixth People’s Hospital East and co-workers investigated what role one protein in this family, FAM46B, might play in PC. Analysis of tumor samples showed that FAM46B levels were much lower in PC than in healthy tissues. These changes were linked to another tumor-associated protein, β-catenin. In further tests in mice, artificially increasing FAM46B levels decreased tumor size. These results could improve treatments for PC.
Collapse
Affiliation(s)
- Tao Liang
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Xuxiao Ye
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Yuanyuan Liu
- Department of Urology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, China
| | - Xinkai Qiu
- Department of Urology, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, China
| | - Zuowei Li
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Binqiang Tian
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China
| | - Dongliang Yan
- Department of Urology, Shanghai Sixth People's Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, 201306, China.
| |
Collapse
|
5
|
Burdelski C, Borcherding L, Kluth M, Hube-Magg C, Melling N, Simon R, Möller-Koop C, Weigand P, Minner S, Haese A, Michl HU, Tsourlakis MC, Jacobsen F, Hinsch A, Wittmer C, Lebok P, Steurer S, Izbicki JR, Sauter G, Krech T, Büscheck F, Clauditz T, Schlomm T, Wilczak W. Family with sequence similarity 13C (FAM13C) overexpression is an independent prognostic marker in prostate cancer. Oncotarget 2018; 8:31494-31508. [PMID: 28415558 PMCID: PMC5458224 DOI: 10.18632/oncotarget.16357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/08/2017] [Indexed: 11/28/2022] Open
Abstract
FAM13C, a gene with unknown function is included in several mRNA signatures for prostate cancer aggressiveness. To understand the impact of FAM13C on prognosis and its relationship to molecularly defined subsets, we analyzed FAM13C expression by immunohistochemistry on a tissue microarray containing 12,400 prostate cancer specimens. Results were compared to phenotype, ERG status, genomic deletions of 3p, 5q, 6q and PTEN, and biochemical recurrence. FAM13C was detectable in cell nuclei of cancerous and non-neoplastic prostate cells. 67.5% of 9,633 interpretable cancers showed FAM13C expression: strong in 28.3%, moderate in 24.6% and weak in 14.6%. Strong FAM13C expression was linked to advanced pT stage, high Gleason grade, positive lymph node status, and early biochemical recurrence (p < 0.0001 each). FAM13C expression was associated with TMPRSS2:ERG fusions. It was present in 85% of ERG positive but in only 54% of ERG negative cancers (p < 0.0001), and in 91.1% of PTEN deleted but in only 69.2% of PTEN non-deleted cancers (p < 0.0001). The prognostic role of FAM13C expression was independent of classical and quantitative Gleason grade, pT stage, pN stage, surgical margin status and preoperative PSA. In conclusion, the results of our study demonstrate that expression of FAM13C is an independent prognostic marker in prostate cancer. Finding FAM13C also in non-neoplastic prostate tissues highlights the importance of properly selecting cancer-rich areas for RNA-based FAM13C expression analysis.
Collapse
Affiliation(s)
- Christoph Burdelski
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Laura Borcherding
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Martina Kluth
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Claudia Hube-Magg
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Nathaniel Melling
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany.,General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Ronald Simon
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | | | - Philipp Weigand
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Sarah Minner
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Alexander Haese
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | - Hans Uwe Michl
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany
| | | | - Frank Jacobsen
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Andrea Hinsch
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Corinna Wittmer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Patrick Lebok
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Stefan Steurer
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Jakob R Izbicki
- General, Visceral and Thoracic Surgery Department and Clinic, University Medical Center Hamburg-Eppendorf, Germany
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Till Krech
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Franziska Büscheck
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| | - Thorsten Schlomm
- Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg- Eppendorf, Germany.,Department of Urology, Section for Translational Prostate Cancer Research, University Medical Center Hamburg-Eppendorf, Germany
| | - Waldemar Wilczak
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Germany
| |
Collapse
|
6
|
Qiu X, Huang Y, Zhou Y, Zheng F. Aberrant methylation of TRIM58 in hepatocellular carcinoma and its potential clinical implication. Oncol Rep 2016; 36:811-8. [DOI: 10.3892/or.2016.4871] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/15/2016] [Indexed: 11/06/2022] Open
|
7
|
Dong Y, Wang A. Aberrant DNA methylation in hepatocellular carcinoma tumor suppression (Review). Oncol Lett 2014; 8:963-968. [PMID: 25120642 PMCID: PMC4114628 DOI: 10.3892/ol.2014.2301] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 01/15/2014] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA methylation leads to altered gene expression, resulting in cancerous features. Numerous tumor suppressor genes are silenced by DNA methylation during hepatocarcinogenesis. Promoter CpG island hypermethylation is an important mechanism for inactivating tumor suppressor genes in hepatocellular carcinoma (HCC). Hypermethylation of CpG islands in the p16 (INK4a) and p15 (INK4b) promoters may increase the risk of developing HCC, particularly hepatitis B virus-related HCC. Environmental factors can lead to geographic variations in the methylation status of CpG islands. Aberrant DNA methylation of CpG islands is catalyzed by DNA methyltransferases (DNMTs). Thus, abnormal variations of DNMTs can contribute to hepatocarcinogenesis. In hepatitis-related HCC, microRNAs participate in hepatocarcinogenesis by directly targeting DNMTs, during which hepatitis B virus X acts as a regulator. DNA methylation may also contribute to HCC tumorigenesis by regulating the cell cycle. Based on the importance of DNA methylation in tumor suppression of HCC, certain DNA methylations may predict the risk of tumor development, tumor staging, patient survival and HCC recurrence.
Collapse
Affiliation(s)
- Youhong Dong
- Oncology Department, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Anping Wang
- Oncology Department, Xiangyang Hospital Affiliated to Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| |
Collapse
|
8
|
Anwar SL, Lehmann U. DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma. World J Gastroenterol 2014; 20:7894-7913. [PMID: 24976726 PMCID: PMC4069317 DOI: 10.3748/wjg.v20.i24.7894] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/24/2014] [Accepted: 03/06/2014] [Indexed: 02/06/2023] Open
Abstract
Epigenetic alterations have been identified as a major characteristic in human cancers. Advances in the field of epigenetics have contributed significantly in refining our knowledge of molecular mechanisms underlying malignant transformation. DNA methylation and microRNA expression are epigenetic mechanisms that are widely altered in human cancers including hepatocellular carcinoma (HCC), the third leading cause of cancer related mortality worldwide. Both DNA methylation and microRNA expression patterns are regulated in developmental stage specific-, cell type specific- and tissue-specific manner. The aberrations are inferred in the maintenance of cancer stem cells and in clonal cell evolution during carcinogenesis. The availability of genome-wide technologies for DNA methylation and microRNA profiling has revolutionized the field of epigenetics and led to the discovery of a number of epigenetically silenced microRNAs in cancerous cells and primary tissues. Dysregulation of these microRNAs affects several key signalling pathways in hepatocarcinogenesis suggesting that modulation of DNA methylation and/or microRNA expression can serve as new therapeutic targets for HCC. Accumulative evidence shows that aberrant DNA methylation of certain microRNA genes is an event specifically found in HCC which correlates with unfavorable outcomes. Therefore, it can potentially serve as a biomarker for detection as well as for prognosis, monitoring and predicting therapeutic responses in HCC.
Collapse
|
9
|
Liu WB, Han F, Du XH, Jiang X, Li YH, Liu Y, Chen HQ, Ao L, Cui ZH, Cao J, Liu JY. Epigenetic silencing of Aristaless-like homeobox-4, a potential tumor suppressor gene associated with lung cancer. Int J Cancer 2013; 134:1311-22. [PMID: 24037716 DOI: 10.1002/ijc.28472] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 01/10/2023]
Abstract
Using genome-wide methylation screening, we found Aristaless-like homeobox-4 (ALX4) preferentially methylated in lung cancer. ALX4 is a putative transcription factor that belongs to the family of paired-class homeoproteins involved in epithelial development. However, the role of ALX4 in tumorigenesis remains largely unclear. Here, we analyzed its epigenetic regulation, biological functions and related molecular mechanisms in lung cancer. CpG island methylation and expression of ALX4 were evaluated by methylation-specific polymerase chain reaction (PCR), bisulfite genomic sequencing, reverse-transcription PCR and Western blotting. ALX4 functions were determined by cell viability, colony formation, flow cytometry and in vivo tumorigenicity assays. ALX4 hypermethylation was detected in 55% (54/98) of primary lung cancers compared to none (0/20) of the normal lung tissue samples tested (p < 0.01). ALX4 was readily expressed in normal lung tissues with an unmethylated status, but downregulated or silenced in 90% (9/10) of lung cancer cell lines with a hypermethylation status. Demethylation experiments further confirmed that loss of ALX4 expression was regulated by CpG island hypermethylation. Re-expression of ALX4 in lung cancer cell lines suppressed cell viability, colony formation and migration, whereas it induced apoptosis and G1/S arrest and restrained the tumorigenicity in nude mice. These effects were associated with upregulation of proapoptotic proteins caspase-7, -8 and -9, and downregulation of Bcl-2. On the other hand, knockdown of ALX4 expression by siRNA increased cell viability and proliferation, whereas it inhibited apoptosis and cell cycle arrest. In conclusion, our results suggest that ALX4 is a novel putative tumor suppressor with epigenetic silencing in lung carcinogenesis.
Collapse
Affiliation(s)
- Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China; Key Laboratory of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu WB, Jiang X, Han F, Li YH, Chen HQ, Liu Y, Cao J, Liu JY. LHX6 acts as a novel potential tumour suppressor with epigenetic inactivation in lung cancer. Cell Death Dis 2013; 4:e882. [PMID: 24157876 PMCID: PMC3824675 DOI: 10.1038/cddis.2013.366] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 12/23/2022]
Abstract
LIM homeobox domain 6 (LHX6) is a putative transcriptional regulator that controls the differentiation and development of neural and lymphoid cells. However, the function of LHX6 in cancer development remains largely unclear. Recently, we found that LHX6 is hypermethylated in lung cancer. In this study, we analysed its epigenetic regulation, biological functions, and related molecular mechanisms in lung cancer. Methylation status was evaluated by methylation-specific PCR and bisulfite genomic sequencing. LHX6 mRNA levels were measured in relation to the methylation status. The effects of LHX6 expression on tumourigenesis were studied in vitro and in vivo. LHX6 was readily expressed in normal lung tissues without methylation, but was downregulated or silenced in lung cancer cell lines and tissues with hypermethylation status. Treatment of lung cancer cells with the demethylating agent 5-aza-2′-deoxycytidine restored LHX6 expression. Moreover, LHX6 hypermethylation was detected in 56% (52/93) of primary lung cancers compared with none (0/20) of the tested normal lung tissues. In lung cancer cell lines 95D and H358, forced expression of LHX6 suppressed cell viability, colony formation, and migration, induced apoptosis and G1/S arrest, and inhibited their tumorigenicity in nude mice. On the other hand, knockdown of LHX6 expression by RNA interference increased cell proliferation and inhibited apoptosis and cell cycle arrest. These effects were associated with upregulation of p21 and p53, and downregulation of Bcl-2, cyclinD1, c-myc, CD44, and MMP7. In conclusion, our results suggest that LHX6 is a putative tumour suppressor gene with epigenetic silencing in lung cancer.
Collapse
Affiliation(s)
- W-b Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|