1
|
Wang H, Ke X, Tang S, Ren K, Chen Q, Li C, Ran W, Ding C, Yang J, Luo J, Li J. Natural Underwater Bioadhesive Offering Cohesion Modulation via Hydrogen Bond Disruptor: A Highly Injectable and in Vivo Stable Remedy for Gastric Ulcer Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307628. [PMID: 38191883 DOI: 10.1002/smll.202307628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Injectable bioadhesives are attractive for managing gastric ulcers through minimally invasive procedures. However, the formidable challenge is to develop bioadhesives that exhibit high injectability, rapidly adhere to lesion tissues with fast gelation, provide reliable protection in the harsh gastric environment, and simultaneously ensure stringent standards of biocompatibility. Here, a natural bioadhesive with tunable cohesion is developed based on the facile and controllable gelation between silk fibroin and tannic acid. By incorporating a hydrogen bond disruptor (urea or guanidine hydrochloride), the inherent network within the bioadhesive is disturbed, inducing a transition to a fluidic state for smooth injection (injection force <5 N). Upon injection, the fluidic bioadhesive thoroughly wets tissues, while the rapid diffusion of the disruptor triggers instantaneous in situ gelation. This orchestrated process fosters the formed bioadhesive with durable wet tissue affinity and mechanical properties that harmonize with gastric tissues, thereby bestowing long-lasting protection for ulcer healing, as evidenced through in vitro and in vivo verification. Moreover, it can be conveniently stored (≥3 m) postdehydration. This work presents a promising strategy for designing highly injectable bioadhesives utilizing natural feedstocks, avoiding any safety risks associated with synthetic materials or nonphysiological gelation conditions, and offering the potential for minimally invasive application.
Collapse
Affiliation(s)
- Hao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, P. R. China
| | - Shuxian Tang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kai Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qi Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chichi Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenbin Ran
- Department of Gastroenterology, The Third People's Hospital of Chengdu, Chengdu, 610014, P. R. China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
2
|
Ullah I, Farooq AS, Naz I, Ahmad W, Ullah H, Sehar S, Nawaz A. Fabrication of Polymeric Hydrogels Containing Esomeprazole for Oral Delivery: In Vitro and In Vivo Pharmacokinetic Characterization. Polymers (Basel) 2023; 15:polym15071798. [PMID: 37050412 PMCID: PMC10097100 DOI: 10.3390/polym15071798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Hydrogel is one of the most interesting and excellent candidates for oral drug delivery. The current study focuses on formulation development of hydrogels for controlled oral delivery of esomeprazole. The hydrogels were prepared by solution casting method by dissolving polymers in Polyvinyl alcohol (PVA) solution. Calcium alginate, Hydroxyl propyl methylcellulose (HPMC), acrylic acid and chondroitin sulfate were used in the preparation of hydrogels. Fourier transform infrared (FTIR) analysis showed no incompatibilities between drug and excipients used in the preparation of formulations. The hydrogels were characterized for size and surface morphology. Drug encapsulation efficiency was measured by Ultraviolet-visible (UV-VIS) spectroscopy. In vitro release studies were carried out using dissolution apparatus. The formulated hydrogels were then compared with the marketed product in vivo using rabbits. The result indicates that prepared hydrogels have a uniform size with a porous surface. The esomeprazole encapsulation efficiency of the prepared hydrogels was found to be 83.1 ± 2.16%. The esomeprazole-loaded hydrogel formulations showed optimum and Pharmacopeial acceptable range swelling behavior. The release of esomeprazole is controlled for 24 h (85.43 ± 0.32% in 24 h). The swelling and release of drug results make the prepared hydrogels a potential candidate for the controlled delivery of esomeprazole. The release of the drug from prepared hydrogel followed the super case transport-2 mechanism. The in vivo studies showed that prepared hydrogel formulations showed controlled and prolonged release of esomeprazole as compared to drug solution and marketed product. The formulations were kept for stability studies; there was no significant change observed in physical parameters, i.e., (appearance, color change and grittiness) at 40 °C ± 2/75% ± RH. There was a negligible difference in the drug content observed after the stability study suggested that all the formulations are stable under the given conditions for 60 days. The current study provides a valuable perspective on the controlled release profile of Hydroxyl propyl methylcellulose (HPMC) and calcium alginate-based esomeprazole hydrogels.
Collapse
Affiliation(s)
- Irshad Ullah
- Department of Pharmacy, University of Swabi, Swabi 94640, Khyber Pakhtunkhwa, Pakistan
| | - Ayesha Shuja Farooq
- Department of Biochemistry, Science Unit, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
| | - Iffat Naz
- Department of Biology, Science Unit, Deanship of Educational Services, Qassim University, Buraydah 51452, Saudi Arabia
| | - Waqar Ahmad
- Department of Pharmacy, University of Swabi, Swabi 94640, Khyber Pakhtunkhwa, Pakistan
| | - Hidayat Ullah
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29220, Khyber Pakhtunkhwa, Pakistan
| | - Shama Sehar
- Department of Environmental Engineering, College of Engineering, University of Technology, Salmabad 18041, Bahrain
| | - Asif Nawaz
- Advanced Drug Delivery Lab, Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, Dera Ismail Khan 29050, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
3
|
Li L, Jing J, Yang S, Fang S, Liu W, Wang C, Li R, Liu T, Zheng L, Yang C. Bletilla striata Polysaccharide Nanoparticles Improved the Therapeutic Efficacy of Omeprazole on the Rat Gastric Ulcer Induced by Ethanol. Mol Pharm 2023; 20:1996-2008. [PMID: 36827081 DOI: 10.1021/acs.molpharmaceut.2c00922] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Gastric ulcers are a common clinical presentation affecting anyone, regardless of their age or gender. Nanoparticles (NPs) containing Bletilla striata polysaccharide (BSP) and omeprazole (OME) were investigated in the study for their therapeutic effect on gastric ulcers. Ethanol-induced gastric ulcers in rats (240 ± 30 g) were established. Our OME-BSP NPs were more stable than free OME in the acidic environment and can increase the absorption of OME in rat stomach, which was confirmed by in situ gastric absorption and distribution experiments. The extended blood circulation of OME-BSP NPs was also observed in rats with gastric ulcer. More importantly, OME-BSP NPs not only decreased the area of gastric ulcer and inhibited gastric acid secretion but also reversed gastric tissue damage and cell apoptosis, as revealed by HE and TUNEL staining. Subsequent SOD, MDA, PGE2, IL-6, and TNF-α tests further verified the superiority of OME-BSP NPs against rat gastric ulcer, which properly originated from superior antioxidant and anti-inflammatory effects. As a result, our OME-BSP NPs' drug delivery system improved the stability and absorption of OME in the rat stomach and achieved targeted treatment of gastric ulcers.
Collapse
Affiliation(s)
- Lisu Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jincheng Jing
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shanshan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shumei Fang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Wenting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Cong Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,School of Pharmacy, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ruixi Li
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Chang Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants/Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang 550004, Guizhou, China.,Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| |
Collapse
|
4
|
An S, Jeon EJ, Han SY, Jeon J, Lee MJ, Kim S, Shin M, Cho SW. pH-Universal Catechol-Amine Chemistry for Versatile Hyaluronic Acid Bioadhesives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202729. [PMID: 35989097 DOI: 10.1002/smll.202202729] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Catechol, a major mussel-inspired underwater adhesive moiety, has been used to develop functional adhesive hydrogels for biomedical applications. However, oxidative catechol chemistry for interpolymer crosslinking and adhesion is exclusively effective under alkaline conditions, with limited applications in non-alkaline conditions. To overcome this limitation, pH-universal catechol-amine chemistry to recapitulate naturally occurring biochemical events induced by pH variation in the mussel foot is suggested. Aldehyde moieties are introduced to hyaluronic acid (HA) by partial oxidation, which enables dual-mode catechol tethering to the HA via both stable amide and reactive secondary amine bonds. Because of the presence of additional reactive amine groups, the resultant aldehyde-modified HA conjugated with catechol (AH-CA) is effectively crosslinked in acidic and neutral pH conditions. The AH-CA hydrogel exhibits not only fast gelation via active crosslinking regardless of pH conditions, but also strong adhesion and excellent biocompatibility. The hydrogel enables rapid and robust wound sealing and hemostasis in neutral and alkaline conditions. The hydrogel also mediates effective therapeutic stem cell and drug delivery even in dynamic and harsh environments, such as a motile heart and acidic stomach. Therefore, the AH-CA hydrogel can serve as a versatile biomaterial in a wide range of pH conditions in vivo.
Collapse
Affiliation(s)
- Soohwan An
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun Je Jeon
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
| | - Seung Yeop Han
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jihoon Jeon
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Mi Jeong Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sooyeon Kim
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Mikyung Shin
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- CellArtgen Inc., Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
5
|
Dong Y, Wang L, Xia N, Yang Z, Zhang C, Pan C, Jin D, Zhang J, Majidi C, Zhang L. Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. SCIENCE ADVANCES 2022; 8:eabn8932. [PMID: 35731876 PMCID: PMC9217092 DOI: 10.1126/sciadv.abn8932] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Intelligent magnetic soft robots capable of programmable structural changes and multifunctionality modalities depend on material architectures and methods for controlling magnetization profiles. While some efforts have been made, there are still key challenges in achieving programmable magnetization profile and creating heterogeneous architectures. Here, we directly embed programmed magnetization patterns (magnetization modules) into the adhesive sticker layers to construct soft robots with programmable magnetization profiles and geometries and then integrate spatially distributed functional modules. Functional modules including temperature and ultraviolet light sensing particles, pH sensing sheets, oil sensing foams, positioning electronic component, circuit foils, and therapy patch films are integrated into soft robots. These test beds are used to explore multimodal robot locomotion and various applications related to environmental sensing and detection, circuit repairing, and gastric ulcer coating, respectively. This proposed approach to engineering modular soft material systems has the potential to expand the functionality, versatility, and adaptability of soft robots.
Collapse
Affiliation(s)
- Yue Dong
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Lu Wang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Zhengxin Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chong Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chengfeng Pan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Dongdong Jin
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Jiachen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Carmel Majidi
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Corresponding author. (L.Z.); (C.M.)
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- T Stone Robotics Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Corresponding author. (L.Z.); (C.M.)
| |
Collapse
|
6
|
Notario-Pérez F, Martín-Illana A, Cazorla-Luna R, Ruiz-Caro R, Veiga MD. Applications of Chitosan in Surgical and Post-Surgical Materials. Mar Drugs 2022; 20:md20060396. [PMID: 35736199 PMCID: PMC9228111 DOI: 10.3390/md20060396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
The continuous advances in surgical procedures require continuous research regarding materials with surgical applications. Biopolymers are widely studied since they usually provide a biocompatible, biodegradable, and non-toxic material. Among them, chitosan is a promising material for the development of formulations and devices with surgical applications due to its intrinsic bacteriostatic, fungistatic, hemostatic, and analgesic properties. A wide range of products has been manufactured with this polymer, including scaffolds, sponges, hydrogels, meshes, membranes, sutures, fibers, and nanoparticles. The growing interest of researchers in the use of chitosan-based materials for tissue regeneration is obvious due to extensive research in the application of chitosan for the regeneration of bone, nervous tissue, cartilage, and soft tissues. Chitosan can serve as a substance for the administration of cell-growth promoters, as well as a support for cellular growth. Another interesting application of chitosan is hemostasis control, with remarkable results in studies comparing the use of chitosan-based dressings with traditional cotton gauzes. In addition, chitosan-based or chitosan-coated surgical materials provide the formulation with antimicrobial activity that has been highly appreciated not only in dressings but also for surgical sutures or meshes.
Collapse
|
7
|
Wang Q, Xu Y, Xue R, Fan J, Yu H, Guan J, Wang H, Li M, Yu W, Xie Z, Qi R, Jia X, Han B. All-in-One Theranostic Platform Based on Hollow Microcapsules for Intragastric-Targeting Antiulcer Drug Delivery, CT Imaging, and Synergistically Healing Gastric Ulcer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104660. [PMID: 35132787 DOI: 10.1002/smll.202104660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Bismuth-containing therapies are suggested as first-line and rescue alternatives for gastric ulcer (GU) treatment and Helicobacter pylori eradication. The current treatment strategy is called quadruple therapy and includes proton pump inhibitors, bismuth, and two broad-band antibiotics. This fact may affect medication compliance, leading to a resistance rate of more than 25% to clarithromycin or metronidazole. To counter this, from the perspective of natural products, an intragastric-targeting all-in-one theranostic platform is established: a drug carrier microcapsule composed of multiple synergistic antiulcer drugs, including bismuth, gallotannin, and antibiotics is obtained (BiG@MCs), and the therapeutic effects of BiG@MCs in rodent models are further evaluated. The results show that the BiG@MCs are spherical with homogeneous particle size (3 ± 0.5 µm) and can be response-released to the acidic environment of the stomach (pH 2.0-3.0), preventing the premature release of the BiG@MCs in physiological conditions. It is worth noting that the bismuth component can be easily identified by computed tomography and other detection instruments, which provide the possibility for drug tracing. In summary, these results indicate that BiG@MCs provide a versatile intragastric-targeting drug delivery platform for GU therapeutics.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Yu Xu
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Rui Xue
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Jingmin Fan
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Hang Yu
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Jiawei Guan
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Hongzheng Wang
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Min Li
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Wei Yu
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| | - Zhiyong Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Rong Qi
- Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University Institute of Cardiovascular Sciences Peking University Health Science Center, 38 Xueyuan Rode, Beijing, 100191, P. R. China
| | - Xin Jia
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University School of Chemistry and Chemical Engineering, Shihezi, 832003, P. R. China
| | - Bo Han
- Key Laboratory of Xinjiang Endemic Phytomedicine Resources Ministry of Education, Shihezi University College of Pharmacy, Shihezi, 832003, P. R. China
| |
Collapse
|
8
|
Zielińska A, Eder P, Rannier L, Cardoso JC, Severino P, Silva AM, Souto EB. Hydrogels for modified-release drug delivery systems. Curr Pharm Des 2021; 28:609-618. [PMID: 34967292 DOI: 10.2174/1381612828666211230114755] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Hydrogels for the modified-release drug delivery systems is a continuously growing area of interest for the pharmaceutical industry. According to the global market, the use of polymers in this area is projected to reach $31.4 million by 2027. This review discusses the recent advances and perspectives of hydrogel in drug delivery systems for oral, parenteral, nasal, topical, and ophthalmic. The search strategy did in January 2021, and it conducted an extensive database to identify studies published from January 2010 to December 2020.We described the main characteristic of the polymers to obtain an ideal hydrogel for a specific route of administration and the formulations that was a highlight in the literature. It concluded that the hydrogels are a set useful to decrease the number of doses, side effects, promote adhesion of patient and enhances the bioavailability of the drugs improving the safety and efficacy of the treatment.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Lucas Rannier
- Institute of Technology and Research and University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Juliana C Cardoso
- Institute of Technology and Research and University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Patrícia Severino
- Institute of Technology and Research and University of Tiradentes, Aracaju, Sergipe, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Amélia M Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD); 5001-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-801 Vila Real, Portugal
| | - Eliana B Souto
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
9
|
Madhavikutty AS, Ohta S, Chandel AKS, Qi P, Ito T. Analysis of Endoscopic Injectability and Post-Ejection Dripping of Yield Stress Fluids: Laponite, Carbopol and Xanthan Gum. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2021; 54:500-511. [DOI: 10.1252/jcej.21we018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
| | - Seiichi Ohta
- Institute of Engineering Innovation, The University of Tokyo
| | | | - Pan Qi
- Center for Disease Biology and Integrative Medicine, The University of Tokyo
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo
| |
Collapse
|
10
|
Ding Y, Meng R, Yin H, Hou Z, Sun C, Liu W, Hao S, Pan Y, Wang B. Keratin-A6ACA NPs for gastric ulcer diagnosis and repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:66. [PMID: 34117951 PMCID: PMC8197711 DOI: 10.1007/s10856-021-06537-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
[Image: see text]
Collapse
Affiliation(s)
- Yi Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Haimeng Yin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Changfa Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wenjie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| | - Yun Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
- Department of Gastroenterology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
11
|
Cheng Z, Qing R, Hao S, Ding Y, Yin H, Zha G, Chen X, Ji J, Wang B. Fabrication of ulcer-adhesive oral keratin hydrogel for gastric ulcer healing in a rat. Regen Biomater 2021; 8:rbab008. [PMID: 33738122 PMCID: PMC7955710 DOI: 10.1093/rb/rbab008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 12/28/2022] Open
Abstract
Hydrogel has been used for in suit gastric ulcer therapy by stopping bleeding, separating from ulcer from gastric fluids and providing extracellular matrix scaffold for tissue regeneration, however, this treatment guided with endoscopic catheter in most cases. Here, we developed an oral keratin hydrogel to accelerate the ulcer healing without endoscopic guidance, which can specially adhere to the ulcer because of the high-viscosity gel formation on the wound surface in vivo. Approximately 50% of the ulcer-adhesive keratin hydrogel can resident in ethanol-treated rat stomach within 12 h, while approximately 18% of them maintained in health rat stomach in the same amount of time. Furthermore, Keratin hydrogels accelerated the ethanol-induced gastric ulcer healing by stopping the bleeding, preventing the epithelium cells from gastric acid damage, suppressing inflammation and promoting re-epithelization. The oral administration of keratin hydrogel in gastric ulcer treatment can enhance the patient compliance and reduce the gastroscopy complications. Our research findings reveal a promising biomaterial-based approach for treating gastrointestinal ulcers.
Collapse
Affiliation(s)
- Zhongjun Cheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.,Bijie Institute of Traditional Chinese Medicine, Bijie City, Guizhou Province 551700, China
| | - Rui Qing
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yi Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Haimeng Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - GuoDong Zha
- HEMOS (Chongqing) Bioscience Co., Ltd, Chongqing 402760, China
| | - Xiaoliang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Department of Nuclear Medicine, Institution of Chongqing Cancer, Chongqing 400030, China
| | - Jingou Ji
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
12
|
EGFR-conjugated hydrogel accelerates wound healing on ulcer-induced burn wounds by targeting collagen and inflammatory cells using photoimmunomodulatory inhibition. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111541. [PMID: 33255093 DOI: 10.1016/j.msec.2020.111541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/10/2020] [Accepted: 09/16/2020] [Indexed: 01/10/2023]
Abstract
In the present study, we fabricated an epidermal growth factor receptor (EGFR)-conjugated hydrogel to promote wound healing in cold restraint-induced gastric ulceration on burn wounds targeting collagen and inflammatory cells for the treatment of burns and gastric ulcers. Cytotoxicity and cell proliferation assays demonstrated good biocompatibility of hydrogel as a suitable extracellular matrix for targeted cells and support for regenerative cell growth. These findings were confirmed by staining methods. In vitro wound healing was confirmed cell migration in the targeted cells. The effect of the EGFR-H was investigated in cold restraint-induced gastric ulcers in rats, where the treatment was started immediately after ulcer induction. In the in vivo experiment, the EGFR-H demonstrated enhanced ulcer healing ability and less scarring compared to the hydrogel alone and controls. Thus, EGFR-H promotes healing of cold restraint-induced gastric ulcer via EGFR conjugated with a hydrogel. The present study demonstrates a novel pathway to fabricate hydrogels as suitable wound dressing biomaterials to improve deep partial thickness burn wound healing and prevent scar formation when aided by laser therapy.
Collapse
|
13
|
Xu X, Xia X, Zhang K, Rai A, Li Z, Zhao P, Wei K, Zou L, Yang B, Wong WK, Chiu PWY, Bian L. Bioadhesive hydrogels demonstrating pH-independent and ultrafast gelation promote gastric ulcer healing in pigs. Sci Transl Med 2020; 12:eaba8014. [PMID: 32848095 DOI: 10.1126/scitranslmed.aba8014] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/27/2020] [Indexed: 01/02/2025]
Abstract
Hydrogels are soft materials used in an array of biomedical applications. However, the in situ formation of hydrogels at target sites, particularly in dynamic in vivo environments, usually requires a prolonged gelation time and results in poor adhesion. These limitations cause considerable loss of both hydrogel mass and encapsulated therapeutic cargoes, thereby compromising treatment outcomes. Here, we report the development of a hydrogel based on thiourea-catechol reaction to enhance the bioadhesion. Compared with classical bioadhesive hydrogels, our hydrogels show enhanced mechanical properties, exceedingly short curing time, and pH-independent gelation with a much lower oxidant concentration. We further report the robust adhesion of our hydrogels to acidic gastric tissues and easy delivery to the porcine stomach via endoscopy. The delivered hydrogels adhered to ulcer sites in vivo for at least 48 hours. Hydrogel treatment of gastric ulcers in rodent and porcine models accelerated ulcer healing by suppressing inflammation and promoting re-epithelization and angiogenesis. The improved retention of proregenerative growth factors and reduced exposure to external catabolic factors after hydrogel application may contribute to the observed therapeutic outcomes. Our findings reveal a promising biomaterial-based approach for treating gastrointestinal diseases.
Collapse
Affiliation(s)
- Xiayi Xu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Xianfeng Xia
- Department of Endoscopy, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510000, China
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Kunyu Zhang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Aliza Rai
- Department of Surgery, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhuo Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Pengchao Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Kongchang Wei
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Li Zou
- Department of Orthpaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Wai-Ki Wong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Philip Wai-Yan Chiu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
- Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
- Department of Surgery, Institute of Digestive Disease, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong SAR 999077, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR 999077, China.
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
14
|
Development of chitosan/glycerophosphate/collagen thermo-sensitive hydrogel for endoscopic treatment of mucosectomy-induced ulcer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109870. [PMID: 31349408 DOI: 10.1016/j.msec.2019.109870] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022]
|
15
|
Zhang C, Gao F, Gan S, He Y, Chen Z, Liu X, Fu C, Qu Y, Zhang J. Chemical characterization and gastroprotective effect of an isolated polysaccharide fraction from Bletilla striata against ethanol-induced acute gastric ulcer. Food Chem Toxicol 2019; 131:110539. [PMID: 31158404 DOI: 10.1016/j.fct.2019.05.047] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/04/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
|
16
|
Bang B, Lee E, Maeng J, Kim K, Hwang JH, Hyon SH, Hyon W, Lee DH. Efficacy of a novel endoscopically deliverable muco-adhesive hemostatic powder in an acute gastric bleeding porcine model. PLoS One 2019; 14:e0216829. [PMID: 31185029 PMCID: PMC6559629 DOI: 10.1371/journal.pone.0216829] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
This study investigated the effectiveness of new hemostatic adhesive powder (UI-EWD) in a swine mode of acute gastric bleeding. Gastric ulcer bleeding was induced endoscopically at two locations in each of eight heparinized mini-pigs. UI-EWD and saline were sprayed endoscopically in the experimental (n = 5) and control groups (n = 3), respectively. The hemostatic effect and hydrogel persistence on ulcers were periodically evaluated endoscopically. Initial hemostasis was achieved successfully in all lesions in the experimental group. Follow-up endoscopy showed minor delayed bleeding in 10% at 6 hours in the experimental group, whereas re-bleeding was observed in 50% at 6 hours in the control group. UI-EWD gel persisted at 90%, 80%, and 50% of ulcer bases at 6, 18, and 42 hours post-application, respectively. This study suggests that muco-adhesive UI-EWD may be effective in the endoscopic treatment of active ulcer bleeding.
Collapse
Affiliation(s)
- ByoungWook Bang
- Division of Gastroenterology, Department of Internal Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Eunhye Lee
- Utah-Inha DDS and Advanced Therapeutics Research Center, Incheon, Republic of Korea
| | - JinHee Maeng
- Utah-Inha DDS and Advanced Therapeutics Research Center, Incheon, Republic of Korea
| | - Keunsu Kim
- Utah-Inha DDS and Advanced Therapeutics Research Center, Incheon, Republic of Korea
| | - Joo Ha Hwang
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Palo Alto, California, United States of America
| | | | - Woogi Hyon
- BMG Incorporated, Kyoto, Japan
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Don Haeng Lee
- Division of Gastroenterology, Department of Internal Medicine, Inha University College of Medicine, Incheon, Republic of Korea
- Utah-Inha DDS and Advanced Therapeutics Research Center, Incheon, Republic of Korea
- * E-mail:
| |
Collapse
|
17
|
CEGP-003 Spray Has a Similar Hemostatic Effect to Epinephrine Injection in Cases of Acute Upper Gastrointestinal Bleeding. Dig Dis Sci 2018; 63:3026-3032. [PMID: 30054842 DOI: 10.1007/s10620-018-5208-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Endoscopically applicable hemostatic agents have been demonstrated to have high initial hemostasis rates in cases of upper gastrointestinal bleeding (UGIB). AIMS The authors developed a new hemostatic powder (CEGP-003) and evaluated its hemostatic and ulcer healing effects in UGIB. METHODS Patients with peptic ulcer or post-endoscopic resection bleeding were randomly assigned to be treated by epinephrine injection or CEGP-003 spray. All patients were placed under observation for 3 days and underwent second-look endoscopy. The primary outcome was initial hemostasis rate, and the secondary outcomes were rebleeding rate and ulcer healing effect. RESULTS Seventy-two patients with UGIB were enrolled in this study. Causes of bleeding were peptic ulcer (15, 20.5%), post-endoscopic mucosal resection (11, 15.1%), and post-endoscopic submucosal dissection bleeding (47, 64.4%). Initial hemostasis was achieved in 89.2% (34/37) of patients in the epinephrine group and in 100% (35/35) in the CEGP-003 group (p = 0.115). Rebleeding occurred in 2.7% (1/37) and 8.6% (3/35) in the epinephrine and CEGP-003 groups, respectively (p = 0.35). Three days after endoscopic hemostasis, the ulcer healing effects of epinephrine and CEGP-003 were similar (p = 0.79). CONCLUSION This study shows that CEGP-003 spray has a hemostatic effect similar to epinephrine in terms of initial hemostasis and rebleeding rates. The authors consider CEGP-003 a potential therapeutic tool for UGIB as a definitive or bridge therapy and that it is particularly useful for oozing lesions after endoscopic resection.
Collapse
|
18
|
Lorenzo-Zúñiga V, Boix J, Moreno de Vega V, Bon I, Marín I, Bartolí R. Endoscopic shielding technique with a newly developed hydrogel to prevent thermal injury in two experimental models. Dig Endosc 2017; 29:702-711. [PMID: 28294423 DOI: 10.1111/den.12864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/07/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIM A newly developed hydrogel, applied through the endoscope as an endoscopic shielding technique (EndoSTech), is aimed to prevent deep thermal injury and to accelerate the healing process of colonic induced ulcers after therapeutic endoscopy. METHODS Lesions were performed in rats (n = 24) and pigs (n = 8). Rats were randomized to receive EndoSTech (eight rats each) with: saline (control), hyaluronic acid and product. In pigs, three ulcer sites were produced in each pig: endoscopic mucosal resection (EMR)-ulcer with prior saline injection (A; EMR-saline), EMR-saline plus EndoSTech with product (B; EMR-saline-P), and EMR with prior injection of product plus EndoSTech-P (C; EMR-P-P). At the end of the 14-day study, the same lesions were performed again in healthy mucosa to assess acute injury. Animals were sacrificed after 7 (rats) and 14 (pigs) days. Ulcers were macroscopically and histopathologically evaluated. Thermal injury (necrosis) was assessed with a 1-4 scale. RESULTS In rats, treatment with product improved mucosal healing comparing with saline and hyaluronic acid (70% vs 30.3% and 47.2%; P = 0.003), avoiding mortality (0% vs 50% and 25%; P = 0.038), and perforation (0% vs 100% and 33.3%; P = 0.02); respectively. In pigs, submucosal injection of product induced a marked trend towards a less deep thermal injury (C = 2.25-0.46 vs A and B = 2.75-0.46; P = 0.127). Mucosal healing rate was higher with product (B = 90.2-3.9%, C = 91.3-5.5% vs A = 73.1-12.6%; P = 0.002). CONCLUSIONS This new hydrogel demonstrates strong healing properties in preclinical models. In addition, submucosal injection of this product is able to avoid high thermal load of the gastrointestinal wall.
Collapse
Affiliation(s)
- Vicente Lorenzo-Zúñiga
- Endoscopy Unit, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Jaume Boix
- Endoscopy Unit, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Vicente Moreno de Vega
- Endoscopy Unit, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ignacio Bon
- Endoscopy Unit, Germans Trias i Pujol University Hospital, Barcelona, Spain.,Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain
| | - Ingrid Marín
- Endoscopy Unit, Germans Trias i Pujol University Hospital, Barcelona, Spain
| | - Ramón Bartolí
- Germans Trias i Pujol Research Institute (IGTP), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| |
Collapse
|
19
|
Bon I, Bartolí R, Lorenzo-Zúñiga V. Endoscopic shielding technique, a new method in therapeutic endoscopy. World J Gastroenterol 2017; 23:3761-3764. [PMID: 28638215 PMCID: PMC5467061 DOI: 10.3748/wjg.v23.i21.3761] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/21/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Prevention of late complications after large endoscopic resection is inefficient with current methods. Endoscopic shielding, as a simple and safe technique, has been proposed to improve the incidence of these events. Different methods, sheets or hydrogels, have showed proven efficacy in the prevention of late bleeding and perforation, as well as the improvement of tissue repair, in experimental models and in clinical practice.
Collapse
|
20
|
Mukherjee K, Kavalukas SL, Barbul A. Nutritional Aspects of Gastrointestinal Wound Healing. Adv Wound Care (New Rochelle) 2016; 5:507-515. [PMID: 27867755 DOI: 10.1089/wound.2015.0671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/23/2015] [Indexed: 02/07/2023] Open
Abstract
Significance: Although the wound healing cascade is similar in many tissues, in the gastrointestinal tract mucosal healing is critical for processes such as inflammatory bowel disease and ulcers and healing of the mucosa, submucosa, and serosal layers is needed for surgical anastomoses and for enterocutaneous fistula. Failure of wound healing can result in complications including infection, prolonged hospitalization, critical illness, organ failure, readmission, new or worsening enterocutaneous fistula, and even death. Recent Advances: Recent advances are relevant for the role of specific micronutrients, such as vitamin D, trace elements, and the interplay between molecules with pro- and antioxidant properties. Our understanding of the role of other small molecules, genes, proteins, and macronutrients is also rapidly changing. Recent work has elucidated relationships between oxidative stress, nutritional supplementation, and glucose metabolism. Thresholds have also been established to define adequate preoperative nutritional status. Critical Issues: Further work is needed to establish standards and definitions for measuring the extent of wound healing, particularly for inflammatory bowel disease and ulcers. In addition, a mounting body of evidence has determined the need for adequate preoperative nutritional supplementation for elective surgical procedures. Future Directions: A large portion of current work is restricted to model systems in rodents. Therefore, additional clinical and translational research is needed in this area to promote gastrointestinal wound healing in humans, particularly those suffering from critical illness, patients with enterocutaneous fistula, inflammatory bowel disease, and ulcers, and those undergoing surgical procedures.
Collapse
Affiliation(s)
- Kaushik Mukherjee
- Division of Trauma and Surgical Critical Care, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sandra L. Kavalukas
- Department of General Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Adrian Barbul
- Department of General Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
21
|
Esquirol Caussa J, Herrero Vila E. Factor de crecimiento epidérmico, innovación y seguridad. Med Clin (Barc) 2015; 145:305-12. [DOI: 10.1016/j.medcli.2014.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/06/2014] [Accepted: 09/18/2014] [Indexed: 11/24/2022]
|