1
|
Yang Y, Zhang C, Li H, He Q, Xie J, Liu H, Cui F, Lei Z, Qin X, Liu Y, Xu M, Huang S, Zhang X. A review of molecular interplay between inflammation and cancer: The role of lncRNAs in pathogenesis and therapeutic potential. Int J Biol Macromol 2025; 309:142824. [PMID: 40187457 DOI: 10.1016/j.ijbiomac.2025.142824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
The inflammatory microenvironment (IME) has been demonstrated to facilitate the initiation and progression of tumors throughout the inflammatory process. Simultaneously, cancer can initiate or intensify the inflammatory response, thereby promoting tumor progression. This review examines the dual role of long non-coding RNAs (lncRNAs) in the interplay between inflammation and cancer. LncRNA modulate inflammation-induced cancer by influencing the activation of signaling pathways (NF-κB, Wnt/β-catenin, mTOR, etc), microRNA (miRNA) sponging, protein interactions, interactions with immune cells, and encoding short peptides. In contrast, lncRNAs also impact cancer-induced inflammatory processes by regulating cytokine expression, mediating tumor-derived extracellular vesicles (EVs), modulating intracellular reactive oxygen species (ROS) levels, and facilitating metabolic reprogramming. Furthermore, the therapeutic potential of lncRNA and the challenges of clinical translation were explicitly discussed as well. Overall, this review aims to provide a comprehensive and systematic resource for future researchers investigating the impact of lncRNAs on inflammation and cancer.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Chuxi Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Huacui Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China; Tangshan Institute of Southwest Jiaotong University, Tangshan, China
| | - Qin He
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Jiang Xie
- Department of Pediatrics, The Third People's Hospital of Chengdu, Chengdu, China
| | - Hongmei Liu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Fenfang Cui
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Ziqin Lei
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Xiaoyan Qin
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Ying Liu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China
| | - Min Xu
- Department of Pharmacy, The Third People's Hospital of Chengdu, Chengdu, China.
| | - Shuai Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Xu Zhang
- Department of Pharmacy, Chengdu Integrated TCM & Western Medicine Hospital, Chengdu University of TCM, Chengdu, China.
| |
Collapse
|
2
|
Jiao K, Su P, Li Y. FGFR2 modulates the Akt/Nrf2/ARE signaling pathway to improve angiotensin II-induced hypertension-related endothelial dysfunction. Clin Exp Hypertens 2023; 45:2208777. [PMID: 37154169 DOI: 10.1080/10641963.2023.2208777] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
BACKGROUND Fibroblast growth factor receptor (FGFR)2 expression was decreased in hypertension patients while its role in hypertension was not explored. This experiment aimed to investigate the expression ofFGFR2 in angiotensin II (Ang II)-induced human umbilical vein endothelial cells (HUVECs) and the role of FGFR2 in improving AngII-induced hypertension-related endothelial dysfunction. METHODS AngII-induced HUVECs simulated the hypertension model in vitro. The expression of FGFR2 in Ang II-induced HUVECs and transfected HUVECswas detected by RT-qPCR and western blot. The viability, apoptosis, migration and tube formation ability of Ang II-induced HUVECs were analyzed by Methyl Thiazolyl Tetrazolium (MTT) assay, flow cytometry analysis, wound healing assay and tube formation assay.Detectionof lactate dehydrogenase (LDH), caspase 3, Nitric Oxide (NO) and oxidative stress levels was conducted by assay kits and reactive oxygen species (ROS) level was detected by DCFH-DA assay. The expression of apoptosis-related proteins, protein kinase B(Akt)/nuclear factor E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway-related proteins, phospho(p)-endothelial nitric oxide synthase (eNOS) and eNOS was determined by western blot. RESULTS The expression of FGFR2 was decreased in Ang II-induced HUVECs. FGFR2overexpression increased viability, suppressed apoptosis and oxidative stress, and improve endothelial dysfunction of AngII-induced HUVECs through activating the Akt/Nrf2/ARE signaling pathway. MK-2206 (Akt inhibitor) could weaken the effect of FGFR2overexpression to reduce viability, promote apoptosis and oxidative stress, and aggravate endothelial dysfunction of Ang II-inducedHUVECs. CONCLUSION Inconclusion, FGFR2activated the Akt/Nrf2/ARE signaling pathway to improve AngII-induced hypertension-related endothelial dysfunction.
Collapse
Affiliation(s)
- Kun Jiao
- Division 1, Department of Cardiology, Ordos Central Hospital, Inner Mongolia, China
| | - Ping Su
- Division 1, Department of Cardiology, Ordos Central Hospital, Inner Mongolia, China
| | - Yongling Li
- Division 1, Department of Cardiology, Ordos Central Hospital, Inner Mongolia, China
| |
Collapse
|
3
|
Bin Wang, Yuan C, Qie Y, Dang S. Long non-coding RNAs and pancreatic cancer: A multifaceted view. Biomed Pharmacother 2023; 167:115601. [PMID: 37774671 DOI: 10.1016/j.biopha.2023.115601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
Pancreatic cancer (PC) is a highly malignant disease with a 5-year survival rate of only 10%. Families with PC are at greater risk, as are type 2 diabetes, pancreatitis, and other factors. Insufficient early detection methods make this cancer have a poor prognosis. Additionally, the molecular mechanisms underlying PC development remain unclear. Increasing evidence suggests that long non-coding RNAs (lncRNAs) contribute to PC pathology,which may control gene expression by recruiting histone modification complexes to chromatin and interacting with proteins and RNAs. In recent studies, abnormal regulation of lncRNAs has been implicated in PC proliferation, metastasis, invasion, angiogenesis, apoptosis, and chemotherapy resistance suggesting potential clinical implications. The paper reviews the progress of lncRNA research in PC about diabetes mellitus, pancreatitis, cancer metastasis, tumor microenvironment regulation, and chemoresistance. Furthermore, lncRNAs may serve as potential therapeutic targets and biomarkers for PC diagnosis and prognosis. This will help improve PC patients' survival rate from a lncRNA perspective.
Collapse
Affiliation(s)
- Bin Wang
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Chang Yuan
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China
| | - Yinyin Qie
- General Surgery Department, Yixing People's Hospital, Wuxi, Jiangsu 214200, China
| | - Shengchun Dang
- General Surgery Department, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu 212000, China; Siyang Hospital, Suqian, Jiangsu 223700, China.
| |
Collapse
|
4
|
Deng J, Song Z, Li X, Shi H, Huang S, Tang L. Role of lncRNAs in acute pancreatitis: pathogenesis, diagnosis, and therapy. Front Genet 2023; 14:1257552. [PMID: 37842644 PMCID: PMC10569178 DOI: 10.3389/fgene.2023.1257552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal diseases characterized by an injury and inflammatory disorder of the pancreas with complicated pathological mechanisms. Long non-coding RNAs (lncRNAs) have been shown to play an important role in various physiological and pathological processes in humans, and they have emerged as potential biomarkers of diagnosis and therapeutic targets in various diseases. Recently, accumulating evidence has shown significant alterations in the expression of lncRNAs, which are involved in the pathogenesis of AP, such as premature trypsinogen activation, impaired autophagy, inflammatory response, and acinar cell death. Moreover, lncRNAs can be the direct target of AP treatment and show potential as biomarkers for the diagnosis. Thus, in this review, we focus on the role of lncRNAs in the pathogenesis, diagnosis, and therapy of AP and emphasize the future directions to study lncRNAs in AP, providing new insight into understanding the cellular and molecular mechanisms of AP and seeking novel biomarkers for the diagnosis and therapeutic targets to improve clinical management in the future.
Collapse
Affiliation(s)
- Jie Deng
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu, China
| | - Ziying Song
- Department of Emergency Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaolan Li
- Department of Pain Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Huiqing Shi
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu, China
| | - Shangqing Huang
- Department of General Surgery, Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Lijun Tang
- Department of General Surgery, Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
5
|
Li X, Qin H, Anwar A, Zhang X, Yu F, Tan Z, Tang Z. Molecular mechanism analysis of m6A modification-related lncRNA-miRNA-mRNA network in regulating autophagy in acute pancreatitis. Islets 2022; 14:184-199. [PMID: 36218109 PMCID: PMC9559333 DOI: 10.1080/19382014.2022.2132099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
This study aims to explore the molecular mechanism of N6-methyladenosine (m6A) modification-related long noncoding RNA (lncRNA)-microRNA (miRNA)-messenger RNA (mRNA) network in regulating autophagy and affecting the occurrence and development of acute pancreatitis (AP). RNA-seq datasets related to AP were obtained from Gene Expression Omnibus (GEO) database and merged after batch effect removal. lncRNAs significantly related to m6A in AP, namely candidate lncRNA, were screened by correlation analysis and differential expression analysis. In addition, candidate autophagy genes were screened through the multiple databases. Furthermore, the key pathways for autophagy to play a role in AP were determined by functional enrichment analysis. Finally, we predicted the miRNAs binding to genes and lncRNAs through TargetScan, miRDB and DIANA TOOLS databases and constructed two types of lncRNA-miRNA-mRNA regulatory networks mediated by upregulated and downregulated lncRNAs in AP. Nine lncRNAs related to m6A were differentially expressed in AP, and 21 candidate autophagy genes were obtained. Phosphoinositide 3-kinase (PI3K)-Akt signaling pathway and Forkhead box O (FoxO) signaling pathway might be the key pathways for autophagy to play a role in AP. Finally, we constructed a lncRNA-miRNA-mRNA regulatory network. An upregulated lncRNA competitively binds to 13 miRNAs to regulate 6 autophagy genes, and a lncRNA-miRNA-mRNA regulatory network in which 2 downregulated lncRNAs competitively bind to 7 miRNAs to regulate 2 autophagy genes. m6A modification-related lncRNA Pvt1, lncRNA Meg3 and lncRNA AW112010 may mediate the lncRNA-miRNA-mRNA network, thereby regulating autophagy to affect the development of AP.
Collapse
Affiliation(s)
- Xiang Li
- Critical Care Unit, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- Emergency Department (one), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Hong Qin
- Xiangya School of Public Health, Central South University, Changsha, P.R. China
| | - Ali Anwar
- Xiangya School of Public Health, Central South University, Changsha, P.R. China
- Food and Nutrition Society Gilgit Baltistan, Pakistan
| | - Xingwen Zhang
- Emergency Department (three), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Fang Yu
- Emergency Department (one), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Zheng Tan
- Emergency Department (one), Hunan Provincial People’s Hospital, Changsha, Hunan, P.R. China
| | - Zhanhong Tang
- Critical Care Unit, the First Affiliated Hospital of Guangxi Medical University, Nanning, P.R. China
- CONTACT Zhanhong Tang Critical Care Unit, the First Affiliated Hospital of Guangxi Medical University, No. 6, Shuangyong Road, Nanning530021, Guangxi, P.R. China
| |
Collapse
|
6
|
Ho TJ, Tsai PH, Hsieh CH, Lin JH, Lin YW, Wu JR, Chen HP. Role of Herbal Extracts of Catechu from Uncaria gambir in the Treatment of Chronic Diabetic Wounds. Pharmaceuticals (Basel) 2022; 16:ph16010066. [PMID: 36678562 PMCID: PMC9863412 DOI: 10.3390/ph16010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Catechu is a dried decoction from twigs with the leaves of Uncaria gambir. Its antioxidant, anti-inflammatory, and antimicrobial activities have been previously reported because of its high catechin and epicatechin content (>21%). It is also one of the components used in traditional Chinese herbal medicine, “Jinchuang Ointment,” which has excellent efficacy in treating chronic diabetic wounds. An in vivo zebrafish embryo platform and an in vitro cell-based tube formation assay were used to measure the angiogenic activity of catechu extracts. Interestingly, for the first time, catechu extracts stimulated angiogenic activity on both platforms. The expression of the IL-8 gene was induced in HMEC1 cells after treatment with catechu extracts for 1 h only. In contrast, the upregulation of FGFR2, FGFR3, NF-κB, STAT3, and vimentin persisted for 24 h. A summary of the possible mechanisms underlying the angiogenic activity of catechu extracts in HMEC1 cells is shown. Unexpectedly, catechu extracts inhibited the migration of HaCaT cells. These results can account for the intense blood flow flux in porcine excisional wound sites in our previous studies, which provides insights into the therapeutic activity of catechu extract in chronic diabetic wounds.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Pei-Hsuan Tsai
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chia-Ho Hsieh
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jung-Hsing Lin
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Yu-Wei Lin
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Jia-Ru Wu
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Correspondence: (J.-R.W.); (H.-P.C.); Tel.: +886-3-8561825 (ext. 17409) (J.-R.W.); +886-3-8565301 (ext. 2433) (H.-P.C.)
| | - Hao-Ping Chen
- Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien 97002, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: (J.-R.W.); (H.-P.C.); Tel.: +886-3-8561825 (ext. 17409) (J.-R.W.); +886-3-8565301 (ext. 2433) (H.-P.C.)
| |
Collapse
|
7
|
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol 2022; 13:1045501. [PMID: 36523500 PMCID: PMC9744949 DOI: 10.3389/fphar.2022.1045501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 10/13/2023] Open
Abstract
The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.
Collapse
Affiliation(s)
- Zining Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jialiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Deputy Chief Physician, Beijing, China
| | - Di Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Qian Jiao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jing Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Weilu Cui
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Yuqing Lou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Fan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Shanshan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Haixia Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Chief Physician, Beijing, China
| |
Collapse
|
8
|
Tang G, Yu C, Xiang K, Gao M, Liu Z, Yang B, Yang M, Zhao S. Inhibition of ANXA2 regulated by SRF attenuates the development of severe acute pancreatitis by inhibiting the NF-κB signaling pathway. Inflamm Res 2022; 71:1067-1078. [PMID: 35900381 DOI: 10.1007/s00011-022-01609-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory process of the pancreas resulting from biliary obstruction or alcohol consumption. Approximately, 10-20% of AP can evolve into severe AP (SAP). In this study, we sought to explore the physiological roles of the transcription factor serum response factor (SRF), annexin A2 (ANXA2), and nuclear factor-kappaB (NF-κB) in SAP. METHODS C57BL/6 mice and rat pancreatic acinar cells (AR42J) were used to establish an AP model in vivo and in vitro by cerulein with or without lipopolysaccharide (LPS). Production of pro-inflammatory cytokines (IL-1β and TNF-α) were examined by ELISA and immunoblotting analysis. Hematoxylin and eosin (HE) staining and TUNEL staining were performed to evaluate pathological changes in the course of AP. Apoptosis was examined by flow cytometric and immunoblotting analysis. Molecular interactions were tested by dual luciferase reporter, ChIP, and Co-IP assays. RESULTS ANXA2 was overexpressed in AP and correlated to the severity of AP. ANXA2 knockdown rescued pancreatic acinar cells against inflammation and apoptosis induced by cerulein with or without LPS. Mechanistic investigations revealed that SRF bound with the ANXA2 promoter region and repressed its expression. ANXA2 could activate the NF-κB signaling pathway by inducing the nuclear translocation of p50. SRF-mediated transcriptional repression of ANXA2-protected pancreatic acinar cells against AP-like injury through repressing the NF-κB signaling pathway. CONCLUSION Our study highlighted a regulatory network consisting of SRF, ANXA2, and NF-κB that was involved in AP progression, possibly providing some novel targets for treating SAP.
Collapse
Affiliation(s)
- Guanxiu Tang
- The Department of Gerontology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Can Yu
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Kaimin Xiang
- The Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Min Gao
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Zuoliang Liu
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Bingchang Yang
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Mingshi Yang
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Shangping Zhao
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
9
|
Downregulation of lncRNA NEAT1 Relieves Caerulein-Induced Cell Apoptosis and Inflammatory Injury in AR42J Cells Through Sponging miR-365a-3p in Acute Pancreatitis. Biochem Genet 2022; 60:2286-2298. [PMID: 35325441 DOI: 10.1007/s10528-022-10219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/09/2022] [Indexed: 11/02/2022]
Abstract
Mounting evidence suggests that long non-coding RNAs (lncRNAs) and microRNAs exert a critical regulatory role in acute pancreatitis. The present study aimed to explore the role of lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) in acute pancreatitis (AP) that was induced by caerulein in rat pancreatic acinar cells (AR42J). The potential target sites of lncRNA NEAT1 and miR-365a-3p were predicted using starBase and were confirmed using dual-luciferase reporter assay. Reverse transcription-quantitative polymerase chain reaction was performed to assess lncRNA NEAT1 and miR-365a-3p expression levels in AP induced by caerulein. Cell Counting Kit-8 and flow cytometry assays were performed to assess AR42J cell viability. Western blotting was performed to evaluate the expression of apoptosis-related proteins. Interleukin (IL)-1β, IL-6, and tumor necrosis factor-α levels were detected by ELISA. The results of the dual-luciferase reporter assay confirmed that miR-365a-3p could bind to NEAT1. LncRNA NEAT1 was upregulated in AR42J cells treated with 10 nmol/l caerulein, and miR-365a-3p was expressed at low levels in an AP model. Overexpression of miR-365a-3p suppressed the apoptosis and inflammatory response of AR42J cells induced by caerulein. Importantly, inhibition of lncRNA NEAT1 decreased apoptosis and inflammation in caerulein-treated AR42J cells, while these effects were reverted upon co-transfection with a miR-365a-3p inhibitor. In conclusion, lncRNA NEAT1 was involved in AP progression by sponging miR-365a-3p and may thus be a novel target for treating patients with AP.
Collapse
|
10
|
Wen X, He B, Tang X, Wang B, Chen Z. Emodin inhibits the progression of acute pancreatitis via regulation of lncRNA TUG1 and exosomal lncRNA TUG1. Mol Med Rep 2021; 24:785. [PMID: 34498715 PMCID: PMC8441981 DOI: 10.3892/mmr.2021.12425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Acute pancreatitis (AP) is one of the most frequent gastrointestinal diseases and has no specific treatment. It has been shown that dysfunction of pancreatic acinar cells can lead to AP progression. Emodin is a natural product, which can alleviate the symptoms of AP. However, the mechanism by which emodin regulates the function of pancreatic acinar cells remains unclear. Thus, the present study aimed to investigate the mechanism by which emodin modulates the function of pancreatic acinar cells. To mimic AP in vitro, pancreatic acinar cells were cotreated with caerulein and lipopolysaccharide (LPS). Exosomes were isolated using the ExoQuick precipitation kit. Western blot analysis, Nanosight Tracking analysis and transmission electron microscopy were performed to detect the efficiency of exosome separation. Gene expression was detected by reverse transcription‑quantitative PCR. The levels of IL‑1β and TNF‑α were detected by ELISA. The data indicated that emodin significantly decreased the levels of IL‑1β and TNF‑α in the supernatant samples derived from AR42J cells cotreated with caerulein and LPS. In addition, emodin significantly promoted the proliferation of AR42J cells cotreated with caerulein and LPS, and inhibited apoptosis, while the effect of emodin was reversed by long non‑coding (lnc)RNA taurine upregulated 1 (TUG1) overexpression. The expression level of TUG1 in AR42J cells or exosomes derived from AR42J cells was significantly increased following treatment of the cells with LPS and caerulein, while this effect was notably reversed by emodin treatment. In addition, exosomes derived from caerulein and LPS cotreated AR42J cells inhibited the differentiation and anti‑inflammatory function of regulatory T cells, while treatment of the cells with emodin significantly decreased this effect. In conclusion, the data indicated that emodin inhibited the induction of inflammation in AR42J cells by regulating the expression of cellular and exosomal lncRNA. Therefore, emodin may be used as a potential agent for the treatment of AP.
Collapse
Affiliation(s)
- Xiumei Wen
- Department of Gastroenterology, Liangzhu Hospital, Hangzhou, Zhejiang 311113, P.R. China
| | - Beihui He
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| | - Xing Tang
- Department of Emergency, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Bin Wang
- Department of Emergency, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, P.R. China
| | - Zhiyun Chen
- The Second Central Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
11
|
Zheng Y, Wang Y, Zhu X, Diao Y, Chen Y, Chen G. Circ_0038467 regulates lipopolysaccharide-mediated cell proliferation, apoptosis, and inflammatory response by miR-195-5p/TLR4 axis through NF-κB pathway in MRC-5 cells. Biosci Biotechnol Biochem 2021; 85:1639-1649. [PMID: 34021567 DOI: 10.1093/bbb/zbab092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/10/2021] [Indexed: 12/28/2022]
Abstract
Infantile pneumonia (IP) is an acute lower respiratory infection and brings a heavy burden to children health. Circular RNAs (circRNAs) participate in the regulation of pneumonia process. In this research, the effects of circ_0038467 in regulating lipopolysaccharide (LPS)-induced cell injury and underlying mechanism were revealed. Results showed that circ_0038467 expression and TLR4 protein level were upregulated, while miR-195-5p expression was downregulated in LPS-induced MRC-5 cells. Circ_0038467 silencing restored LPS-mediated inhibition on cell proliferation and promotion on apoptosis and inflammatory response. Additionally, circ_0038467 acted as a sponge of miR-195-5p, which was further revealed to target TLR4. MiR-195-5p inhibitor reversed circ_0038467 silencing-mediated influences under LPS treatment. Furthermore, LPS-activated NF-κB pathway was partly blocked by circ_0038467 silencing, which was restrained by TLR4 overexpression. Circ_0038467 silencing protected MRC-5 cells from LPS-induced injury by miR-195-5p/TLR4 axis through NF-κB pathway, providing a theoretical basis for circRNA-directed IP therapy.
Collapse
Affiliation(s)
- Yu Zheng
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyuan Wang
- Department of Respiratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiuli Zhu
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuqiao Diao
- Department of Pediatrics, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuqin Chen
- Department of Respiratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gang Chen
- Department of Respiratory, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Huang X, Pan M, Du P, Chen Y, Zhang C, Lu W, Lin J. Maternally expressed 3 protects the intestinal barrier from cardiac arrest-induced ischemia/reperfusion injury via miR-34a-3p/sirtuin 1/nuclear factor kappa B signaling. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:122. [PMID: 33569424 PMCID: PMC7867908 DOI: 10.21037/atm-20-6438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cardiac arrest (CA), a common disease with a high mortality rate, is a leading cause of ischemia/reperfusion (I/R)-induced dysfunction of the intestinal barrier. Long non-coding RNAs (lncRNAs) play crucial roles in multiple pathological processes. However, the effect of the lncRNA maternally expressed 3 (MEG3) on intestinal I/R injury and the intestinal barrier has not been fully determined. Therefore, this study aimed to investigate the function of MEG3 in CA-induced intestinal barrier dysfunction. METHODS The oxygen and glucose deprivation (OGD) model in the human colorectal adenocarcinoma Caco-2 cells and in vivo cardiac arrest-induced intestinal barrier dysfunction model in Sprague-Dawley (SD) rats were established. The effect and underlying mechanism of MEG3 on the intestinal barrier from cardiac arrest-induced ischemia/reperfusion injury were analyzed by methyl thiazolyl tetrazolium (MTT) assays, Annexin V-FITC/PI apoptosis detection kit, Terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) staining, quantitative polymerase chain reaction (qPCR) assays, Western blot analysis, luciferase reporter gene assays, transepithelial electrical resistance (TEER) measurements, immunofluorescence analysis, and enzyme-linked immunosorbent assay (ELISA) assays. RESULTS Interestingly, we found that MEG3 could protect Caco-2 cells from oxygen-glucose deprivation (OGD)/reoxygenation-induced I/R injury by modulating cell proliferation and apoptosis. Moreover, MEG3 relieved OGD-induced intestinal barrier dysfunction in vitro, as demonstrated by its significant rescue effect on transepithelial electrical resistance and the expression of tight junction proteins such as occludin and claudin-1 (CLDN1), which were impaired in OGD-treated Caco-2 cells. Mechanistically, MEG3 inhibited the expression of inflammatory factors including interleukin (IL)-1β, tumor necrosis factor (TNF)-α, interferon-gamma (IFN)-γ, inflammatory factors including interleukin (IL)-10, and transforming growth factor beta (TGFb)-1, as well as nuclear factor-kappa B (NF-κB) signaling. In response to OGD treatment in vitro, MEG3 also activated the expression of sirtuin 1 (SIRT1) by Caco-2 cells via sponging miR-34a-3p. Furthermore, MEG3 relieved CA-induced intestinal barrier dysfunction through NF-κB signaling in vivo. CONCLUSIONS LncRNA MEG3 can protect the intestinal barrier from cardiac arrest-induced I/R injury via miR-34a-3p/SIRT1/NF-κB signaling. This finding provides new insight into the mechanism by which MEG3 restores intestinal barrier function following I/R injury, presenting it as a potential therapeutic candidate or strategy in intestinal injury.
Collapse
Affiliation(s)
- Xianwei Huang
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Mandong Pan
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Penghui Du
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yinrong Chen
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Caixia Zhang
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wang Lu
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiyan Lin
- Emergency Department, The First Affiliated Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Karstensen KT, Schein A, Petri A, Bøgsted M, Dybkær K, Uchida S, Kauppinen S. Long Non-Coding RNAs in Diffuse Large B-Cell Lymphoma. Noncoding RNA 2020; 7:1. [PMID: 33379241 PMCID: PMC7838888 DOI: 10.3390/ncrna7010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults. Although significant progress has been made in recent years to treat DLBCL patients, 30%-40% of the patients eventually relapse or are refractory to first line treatment, calling for better therapeutic strategies for DLBCL. Long non-coding RNAs (lncRNAs) have emerged as a highly diverse group of non-protein coding transcripts with intriguing molecular functions in human disease, including cancer. Here, we review the current understanding of lncRNAs in the pathogenesis and progression of DLBCL to provide an overview of the field. As the current knowledge of lncRNAs in DLBCL is still in its infancy, we provide molecular signatures of lncRNAs in DLBCL cell lines to assist further lncRNA research in DLBCL.
Collapse
Affiliation(s)
- Kasper Thystrup Karstensen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Aleks Schein
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Martin Bøgsted
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (M.B.); (K.D.)
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Karen Dybkær
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (M.B.); (K.D.)
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| |
Collapse
|