1
|
Rachamalla M, Chinthada J, Kushwaha S, Putnala SK, Sahu C, Jena G, Niyogi S. Contemporary Comprehensive Review on Arsenic-Induced Male Reproductive Toxicity and Mechanisms of Phytonutrient Intervention. TOXICS 2022; 10:toxics10120744. [PMID: 36548577 PMCID: PMC9784647 DOI: 10.3390/toxics10120744] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 05/26/2023]
Abstract
Arsenic (As) is a poisonous metalloid that is toxic to both humans and animals. Drinking water contamination has been linked to the development of cancer (skin, lung, urinary bladder, and liver), as well as other disorders such as diabetes and cardiovascular, gastrointestinal, neurological, and developmental damage. According to epidemiological studies, As contributes to male infertility, sexual dysfunction, poor sperm quality, and developmental consequences such as low birth weight, spontaneous abortion, and small for gestational age (SGA). Arsenic exposure negatively affected male reproductive systems by lowering testicular and accessory organ weights, and sperm counts, increasing sperm abnormalities and causing apoptotic cell death in Leydig and Sertoli cells, which resulted in decreased testosterone synthesis. Furthermore, during male reproductive toxicity, several molecular signalling pathways, such as apoptosis, inflammation, and autophagy are involved. Phytonutrient intervention in arsenic-induced male reproductive toxicity in various species has received a lot of attention over the years. The current review provides an in-depth summary of the available literature on arsenic-induced male toxicity, as well as therapeutic approaches and future directions.
Collapse
Affiliation(s)
- Mahesh Rachamalla
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Joshi Chinthada
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Sapana Kushwaha
- Department of Pharmacology and Toxicology, Transit Campus, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow 226002, India
| | - Sravan Kumar Putnala
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar 160062, India
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
2
|
Nava-Rivera LE, Betancourt-Martínez ND, Lozoya-Martínez R, Carranza-Rosales P, Guzmán-Delgado NE, Carranza-Torres IE, Delgado-Aguirre H, Zambrano-Ortíz JO, Morán-Martínez J. Transgenerational effects in DNA methylation, genotoxicity and reproductive phenotype by chronic arsenic exposure. Sci Rep 2021; 11:8276. [PMID: 33859283 PMCID: PMC8050275 DOI: 10.1038/s41598-021-87677-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
An emerging concern is the influences of early life exposure to environmental toxicants on offspring characteristics in later life. Since recent evidence suggests a transgenerational transference of aberrant phenotypes from exposed-parents to non-exposed offspring related to adult-onset diseases including reproductive phenotype. The transgenerational potential of arsenic a well know genotoxic and epigenetic modifier agent has not been assessed in mammals until now. In this experimental study, we evaluated the transgenerational effects of arsenic in a rat model with chronic exposure to arsenic. Rats chronically exposed to arsenic in drinking water (1 mg As2O3/mL) (F0) were mated to produce the arsenic lineage (F1, F2, and F3). The arsenic toxic effects on were evaluated over the four generations by analyzing the DNA methylation percentage, genotoxicity in WBC and physical and reproductive parameters, including sperm quality parameters and histopathological evaluation of the gonads. Chronic exposure to arsenic caused genotoxic damage (F0-F3) different methylation patterns, alterations in physical and reproductive parameters, aberrant morphology in the ovaries (F0 and F1) and testicles (F1-F3), and a decrease in the quality of sperm (F0-F3, except F2). Parental chronic arsenic exposure causes transgenerational genotoxicity and changes in global DNA methylation which might be associated with reproductive defects in rats. Combined with recent studies reveal that disturbances in the early life of an individual can affect the health of later generations.
Collapse
Affiliation(s)
- Lydia Enith Nava-Rivera
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Nadia Denys Betancourt-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Rodrigo Lozoya-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Nancy Elena Guzmán-Delgado
- División de Investigación en Salud, Unidad Médica de Alta Especialidad, Hospital de Cardiología #34, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Irma Edith Carranza-Torres
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| | - Hector Delgado-Aguirre
- Laboratorio de Histocompatibilidad, Unidad Médica de Alta Especialidad (UMAE) # 71, Instituto Mexicano del Seguro Social, Torreón, Coahuila, Mexico
| | - José Omar Zambrano-Ortíz
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México
| | - Javier Morán-Martínez
- Departamento de Biología Celular y Ultraestructura, Centro de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Coahuila Unidad Torreón, Gregorio A. García No. 198 sur. Colonia centro, Torreón, Coahuila, CP 27000, México.
| |
Collapse
|
3
|
Sinha D, Prasad P. Health effects inflicted by chronic low-level arsenic contamination in groundwater: A global public health challenge. J Appl Toxicol 2019; 40:87-131. [PMID: 31273810 DOI: 10.1002/jat.3823] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023]
Abstract
Groundwater arsenic (As) contamination is a global public health concern. The high level of As exposure (100-1000 μg/L or even higher) through groundwater has been frequently associated with serious public health hazards, e.g., skin disorders, cardiovascular diseases, respiratory problems, complications of gastrointestinal tract, liver and splenic ailments, kidney and bladder disorders, reproductive failure, neurotoxicity and cancer. However, reviews on low-level As exposure and the imperative health effects are far less documented. The World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA) has set the permissible standard of As in drinking water at 10 μg/L. Considering the WHO and USEPA guidelines, most of the developed countries have established standards at or below this guideline. Worldwide many countries including India have millions of aquifers with low-level As contamination (≤50 μg/L). The exposed population of these areas might not show any As-related skin lesions (hallmark of As toxicity particularly in a population consuming As contaminated groundwater >300 μg/L) but might be subclinically affected. This review has attempted to encompass the wide range of health effects associated with chronic low-level As exposure ≤50 μg/L and the probable mechanisms that might provide a better insight regarding the underlying cause of these clinical manifestations. Therefore, there is an urgent need to create mass awareness about the health effects of chronic low-level As exposure and planning of proper mitigation strategies.
Collapse
Affiliation(s)
- Dona Sinha
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Priyanka Prasad
- Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
4
|
Li Y, Wang S, Nan Z, Zang F, Sun H, Zhang Q, Huang W, Bao L. Accumulation, fractionation and health risk assessment of fluoride and heavy metals in soil-crop systems in northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:307-314. [PMID: 30711597 DOI: 10.1016/j.scitotenv.2019.01.257] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Untreated industrial sewage and domestic wastewater irrigation has led to agricultural soil-crop system contamination by heavy metals and fluoride in Dongdagou and Xidagou stream basins, Baiyin city, China. A total of 36 pairs of soil and wheat samples (roots, stalks, leaves, husks, and grains) and 42 pairs of soil and maize samples (roots, stalk1, stalk2, stalk3, leaves, husks, corncobs and grains) were collected from Dongdagou and Xidagou stream basins to examine the accumulation, fractionation, correlation of heavy metals and F in soil-crop systems. Risks posed by heavy metals and F in this system to human health was also assessed. The total contents of F and heavy metals (Cd, Cu, Pb, Mn Zn, Cr and Ni), as well as the fraction distribution in soil, were determined. The total contents of F and heavy metals in crop tissues were also determined. The results indicated that the average contents of Cd, Cu, Pb, Mn Zn, F and Cr in Dongdagou and Xidagou stream basins exceeded the soil background value. Heavy metals and F more easily accumulated in the male inflorescence of maize. Correlation analysis showed that content of water soluble F positively were correlated with the contents of Cd, Cu, Pb, Mn Zn, Cr and Ni in exchangeable and carbonate fractions (P < 0.05). Stepwise discriminant analysis showed that the combined stresses of soil total Cu and Ni accounts for 100% effect on water soluble F accumulation in soil and crop roots. The hazard index indicated that noncancerous risk is likely to occur through maize grains and wheat grains consumption by children and adults.
Collapse
Affiliation(s)
- Yepu Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Shengli Wang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Zhongren Nan
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Fei Zang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Huiling Sun
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qian Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Wen Huang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lili Bao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
5
|
Udagawa O, Okamura K, Suzuki T, Nohara K. Arsenic Exposure and Reproductive Toxicity. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2019. [DOI: 10.1007/978-981-13-2565-6_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
6
|
Souza ACF, Marchesi SC, Ferraz RP, Lima GDDA, de Oliveira JA, Machado-Neves M. Effects of sodium arsenate and arsenite on male reproductive functions in Wistar rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2016; 79:274-286. [PMID: 27029432 DOI: 10.1080/15287394.2016.1150926] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Arsenic (As), in the form of trivalent arsenite or pentavalent arsenate, is a ubiquitous toxic compound naturally occurring in the environment. This study aimed to evaluate the impact of two different forms of inorganic As on reproductive parameters following oral exposure. Adult Wistar male rats were exposed to sodium arsenite or arsenate at concentrations of 0.01 mg/L or 10 mg/L for 56 d in drinking water. Sodium arsenite at both concentrations and sodium arsenate at 10 mg/L produced reduction in daily sperm production, in number of spermatids in the testis, and in sperm in the epididymal caput/corpus regions. Changes in epididymal morphometry were variable and region specific. Total and progressive sperm motility and sperm morphology did not differ markedly between controls and animals exposed to As. The body and reproductive organs weights, as well as testosterone concentration, remained unchanged among all groups. In conclusion, As exposure in drinking water over 56 d produced damage in male reproductive functions in adult rats, suggesting that fertility problems might occur. Therefore, additional studies need to be undertaken to investigate potential mechanisms underlying sodium arsenite- and arsenate-induced disturbances in fertility and reproductive performance.
Collapse
Affiliation(s)
| | - Sarah Cozzer Marchesi
- a Department of General Biology , Federal University of Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Rafael Penha Ferraz
- a Department of General Biology , Federal University of Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | | | - Juraci Alves de Oliveira
- a Department of General Biology , Federal University of Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| | - Mariana Machado-Neves
- a Department of General Biology , Federal University of Viçosa (UFV) , Viçosa , Minas Gerais , Brazil
| |
Collapse
|