1
|
Chen L, Jin J, Shao K, Xu Z, Lv L, Wu C, Wang Y. Mixture toxic mechanism of phoxim and prochloraz in the hook snout carp Opsariichthysbidens. CHEMOSPHERE 2024; 364:143217. [PMID: 39216554 DOI: 10.1016/j.chemosphere.2024.143217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Pesticides are usually found as mixtures in surface water bodies, even though their regulation in aquatic ecosystems is usually approached individually. In this context, this work aimed to investigate the enzymatic- and transcriptional-level responses after the mixture exposure of phoxim (PHX) and prochloraz (PRC) in the livers of hook snout carp Opsariichthys bidens. These data exhibited that co-exposure to PHX and PRC induced an acute synergistic impact on O. bidens. The activities of catalase (CAT), superoxide dismutase (SOD), carboxylesterase (CarE), and caspase3 varied significantly in most of the individual and combined challenges relative to basal values, indicating the activation of oxidative stress, detoxification dysfunction, as well as cell apoptosis. Besides, the transcriptional levels of five genes (gst, erα, mn-sod, cxcl-c1c, and il-8) exhibited more pronounced changes when subjected to combined pesticide exposure in contrast to the corresponding individual compounds. The findings revealed the manifestation of endocrine dysfunction and immune disruption. These results underscored the potential biochemical and molecular toxicity posed by the combination of PHX and PRC to O. bidens, thereby contributing to a deeper comprehension of the ecological toxicity of pesticide mixtures on aquatic organisms. Importantly, the concurrent presence of PHX and PRC might exacerbate hepatocellular damage in hook snout carps, potentially attributable to their synergistic toxic interactions. This study underscored the toxicological potency inherent in the co-occurrence of PHX and PRC in influencing fish development, thereby offering valuable insights for the risk assessment of pesticide mixtures and the safeguarding of aquatic organisms.
Collapse
Affiliation(s)
- Liping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jiansheng Jin
- Huzhou Agricultural Technology Extension Service Center, Zhejiang Province, 313000, China
| | - Kan Shao
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, 47405, USA
| | - Zhenlan Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Lu Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Changxin Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| | - Yanhua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China.
| |
Collapse
|
2
|
Qin LT, Lei YX, Liu M, Zeng HH, Liang YP, Mo LY. Toxic interactions at the physiological and biochemical levels of green algae under stress of mixtures of three azole fungicides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171771. [PMID: 38521260 DOI: 10.1016/j.scitotenv.2024.171771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Assessing the interactions between environmental pollutants and these mixtures is of paramount significance in understanding their negative effects on aquatic ecosystems. However, existing research often lacks comprehensive investigations into the physiological and biochemical mechanisms underlying these interactions. This study aimed to reveal the toxic mechanisms of cyproconazole (CYP), imazalil (IMA), and prochloraz (PRO) and corresponding these mixtures on Auxenochlorella pyrenoidosa by analyzing the interactions at physiological and biochemical levels. Higher concentrations of CYP, IMA, and PRO and these mixtures resulted in a reduction in chlorophyll (Chl) content and increased total protein (TP) suppression, and malondialdehyde (MDA) content exhibited a negative correlation with algal growth. The activity of catalase (CAT) and superoxide dismutase (SOD) decreased with increasing azole fungicides and their mixture concentrations, correlating positively with growth inhibition. Azole fungicides induced dose-dependent apoptosis in A. pyrenoidosa, with higher apoptosis rates indicative of greater pollutant toxicity. The results revealed concentration-dependent toxicity effects, with antagonistic interactions at low concentrations and synergistic effects at high concentrations within the CYP-IMA mixtures. These interactions were closely linked to the interactions observed in Chl-a, carotenoid (Car), CAT, and cellular apoptosis. The antagonistic effects of CYP-PRO mixtures on A. pyrenoidosa growth inhibition can be attributed to the antagonism observed in Chl-a, Chl-b, Car, TP, CAT, SOD, and cellular apoptosis. This study emphasized the importance of gaining a comprehensive understanding of the physiological and biochemical interactions within algal cells, which may help understand the potential mechanism of toxic interaction.
Collapse
Affiliation(s)
- Li-Tang Qin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yu-Xue Lei
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Min Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Hong-Hu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China
| | - Yan-Peng Liang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China.
| | - Ling-Yun Mo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541004, China; Technical Innovation Center of Mine Geological Environmental Restoration Engineering in Southern Karst Area, Nanjing, China.
| |
Collapse
|
3
|
Wang R, Yang X, Wang T, Kou R, Liu P, Huang Y, Chen C. Synergistic effects on oxidative stress, apoptosis and necrosis resulting from combined toxicity of three commonly used pesticides on HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115237. [PMID: 37451096 DOI: 10.1016/j.ecoenv.2023.115237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
The widespread use of pesticides performs a vital role in safeguarding crop yields and quality, providing the opportunity for multiple pesticides to co-exist, which poses a significant potential risk to human health. To assess the toxic effects caused by exposures to individual pesticides (chlorpyrifos, carbofuran and acetamiprid), binary combinations and ternary combinations, individual and combined exposure models were developed using HepG2 cells and the types of combined effects of pesticide mixtures were assessed using concentration addition (CA), independent action (IA) and combination index (CI) models, respectively, and the expression of biomarkers related to oxidative stress, apoptosis and cell necrosis was further examined. Our results showed that both individual pesticides and mixtures exerted toxic effects on HepG2 cells. The CI model indicated that the toxic effects of pesticide mixtures exhibited synergistic effects. The results of the lactate dehydrogenase (LDH) release and apoptosis assay revealed that the pesticide mixture increased the release of LDH and apoptosis levels. Moreover, our results also showed that individual pesticides and mixtures disrupted redox homeostasis and that pesticide mixtures produced more intense oxidative stress effects. In conclusion, we have illustrated the enhanced combined toxicity of pesticide mixtures by in-vitro experiments, which provides a theoretical basis and scientific basis for further toxicological studies.
Collapse
Affiliation(s)
- Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Xi Yang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, NO.12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Ruirui Kou
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Panpan Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Yueqing Huang
- Department of General Medicine, The Affliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Nanjing Medical University, Suzhou 215026, China.
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| |
Collapse
|
4
|
Liu XH, Pang X, Jin L, Pu DY, Wang ZJ, Zhang YG. Exposure to acute waterborne cadmium caused severe damage on lipid metabolism of freshwater fish, revealed by nuclear lipid droplet deposition in hepatocytes of rare minnow. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106433. [PMID: 36841070 DOI: 10.1016/j.aquatox.2023.106433] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 05/12/2023]
Abstract
Cadmium (Cd) is a widely distributed aquatic toxic heavy metal with the potential to disrupt fish metabolism; however, more research is needed to clarify the underlying mechanisms. In the present study, rare minnows (Gobiocypris rarus) were used to detect the effects of cadmium on freshwater fish lipid metabolism and its underlying mechanism by histopathological observation, measurement of serum and liver biochemical indexes, and analysis of gene expression in terms of lipid oxidation, synthesis and transport. Here, severe damage, such as cytoplasmic lipid droplet (LD) accumulation, ectopic deposition of LDs, and the appearance of nuclear LDs (nLDs), was detected after exposure to 2.0 mg/L or higher concentrations (2.5 and 2.8 mg/L CdCl2) for 96 h. Other damage included abnormal increases in rough endoplasmic reticulum (RER) lamellae in a fingerprint or concentric circle pattern and necrosis of hepatocytes, and which was observed in the livers of fish exposed to 2.0 mg/L CdCl2.. Both hepatic and serum lipids, such as triglycerides and total cholesterol, were significantly increased after exposure to 2.0 mg/L CdCl2, as was serum lipase (LPS). Hepatic lipase and lipoprotein lipase remained unchanged, in accordance with the unchanged hepatic mRNA transcripts of PPARɑ. Furthermore, the mRNA transcripts of both SCD and SQLE were significantly decreased. Moreover, hepatic and serum low-density and high-density lipoprotein cholesterol showed significant changes, which were accompanied by a significant increase and decrease in hepatic APOAI and APOB100 mRNA levels, respectively. All the results indicate the presence of severe damage to hepatic lipid metabolism and that disrupted lipid transport may play a key role in the accumulation of hepatic LDs. In addition, the hepatic nLDs of nonmammalian vertebrates and their location across the nuclear envelope are intriguing, suggesting that large-size nLDs are a common marker for severe liver damage.
Collapse
Affiliation(s)
- Xiao-Hong Liu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Xu Pang
- College of Fisheries, Institute of Three Gorges Ecological Fisheries of Chongqing, Southwest University, Chongqing 400715, China
| | - Li Jin
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - De-Yong Pu
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China
| | - Zhi-Jian Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| | - Yao-Guang Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University School of Life Sciences, Chongqing 400715, China.
| |
Collapse
|
5
|
Chen CZ, Li P, Liu L, Li ZH. Transcriptomic and proteomic analysis of Chinese rare minnow (Gobiocypris rarus) larvae in response to acute waterborne cadmium or mercury stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106134. [PMID: 35286993 DOI: 10.1016/j.aquatox.2022.106134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
In this study, Chinese rare minnow (Gobiocypris rarus) larvae were exposed to the control group, Cd concentrations (0.5 and 2.5 mg/L), and Hg concentrations (0.1 and 0.3 mg/L) for 96 h. Transcriptome analysis showed that 816 and 1599 significantly differentially expressed genes (DEGs) were identified in response to 2.5 mg/L Cd2+ and 0.3 mg/L Hg2+, respectively. Functional enrichment analysis revealed that DEGs were mostly associated with immune responses after Cd exposure, such as antigen processing and presentation, phagosome, apoptosis, and lysosome. Similarly, functional enrichment analysis showed that many pathways were mostly involved in metabolism after Hg exposure, such as glutathione metabolism and starch and sucrose metabolism. Results of two-dimensional electrophoresis (2-DE) showed that the abundance of 10 protein spots was significantly altered in the Cd2+ treatments. The proteomic analysis demonstrated that Cd toxicity might impair cytoskeletal and cell motility-related protein activity in the liver of G. rarus. Similarly, the abundance of 24 protein spots was significantly altered in the Hg2+ treatments. Hg toxicity regulates the expression of proteins belonging to several functional categories, including cytoskeleton, oxidative stress, digestive system, and energy metabolism. This study provides valuable relevant insight into the molecular mechanisms in response to Cd or Hg toxicity in aquatic organisms and will help screen for potential biomarkers to respond to Cd and Hg pollutants.
Collapse
Affiliation(s)
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
6
|
Chen Z, Wang X, Shi L, Liu Q, Gao Y, Chen W, Yang J, Yuan X, Feng J. Fabrication and Characterization of Prochloraz Nanoemulsion against Penicillium citrinum for the Postharvest Storage of Navel Oranges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13757-13766. [PMID: 34748347 DOI: 10.1021/acs.langmuir.1c02528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoemulsions have become extremely popular water-insoluble pesticide delivery systems in recent years. In this study, prochloraz nanoemulsions were obtained by selecting the mixing ratio of surfactants (6:1, 3:1, 2:1, 1:1, 1:2, 1:3, and 1:6), surfactant concentration, and shearing time. The optimal formula was 10 wt % prochloraz, 6 wt % surfactant (2 wt % CO-100 + 4 wt % CO-360) dissolved in 6 wt % hydrocarbon solvent (S-100A), and deionized water replenished to 100 wt %. This formula meets the quality index standards of the Food and Agriculture Organization. Compared with oil-in-water emulsion (EW), the prochloraz nanoemulsion exhibited higher antifungal activity against Penicillium citrinum in vitro (lower LC50 of 1.17 mg L-1) and in vivo (fewer lesions). In addition, the L02 cells treated with the nanoemulsion had a higher survival rate and lower apoptosis rate at the same concentration. Results showed that the toxicity of the prochloraz nanoemulsion on L02 cells was lower than that of EW. The findings provide an important method for developing an efficient, safe, and environment-friendly nanoemulsion for postharvest fruit storage.
Collapse
Affiliation(s)
- Zhiyang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xinlian Wang
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Liyin Shi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Qi Liu
- Medical College, Yangzhou University, Yangzhou 225009, China
| | - Yuan Gao
- Medical College, Yangzhou University, Yangzhou 225009, China
| | - Wang Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jinghan Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyong Yuan
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Jianguo Feng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
Touzout N, Mehallah H, Moralent R, Moulay M, Nemmiche S. Phytotoxic evaluation of neonicotinoid imidacloprid and cadmium alone and in combination on tomato (Solanum lycopersicum L.). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1126-1137. [PMID: 34085160 DOI: 10.1007/s10646-021-02421-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoids and heavy metals pollution exist simultaneously in agro ecosystem. However, little is known about their combined ecotoxicological effects on non-target crop plants. We have selected imidacloprid (IMI) and cadmium (Cd), applied alone and in combination, to evaluate their effect on growth, physiological and biochemical parameters of tomato. Results showed that the single application of contaminants (IMI and/or Cd) adversely affected both the growth and chlorophyll pigment, and Cd alone application was more phytotoxic than IMI. However, their combined action aggravated the inhibitory effect and indicate a synergistic effect, but it exerted antagonistic effects on chlorophyll pigment inhibition compared with IMI and Cd alone treatments. Both chemicals increased hydrogen peroxide level and generated lipid peroxidation, and the co-contamination exacerbates oxidative stress by their synergistic effect. Those results implicate that disturbance of cellular redox status is the plausible mechanism for IMI and Cd induced toxicity. In conclusion, the single or combined IMI and Cd cause negative effects on tomatoes.
Collapse
Affiliation(s)
- Nabil Touzout
- Faculty of Nature and Life Sciences, Department of Agronomy, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Hafidha Mehallah
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Radia Moralent
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
| | - Mohammed Moulay
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria
- Stem Cells Research Group, KFMRC, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - Saïd Nemmiche
- Faculty of Nature and Life Sciences, Department of Biology, University of Mostaganem, Mostaganem, 27000, Algeria.
| |
Collapse
|