1
|
Zhou YL, Wu J, Wang HL, Feng WW, Peng F, Zhang RQ, Yan HL, Liu J, Tan YZ, Peng C. Fuzi lizhong pills alter microbial community compositions and metabolite profiles in ulcerative colitis rat with spleen-kidney yang deficiency syndrome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118645. [PMID: 39089661 DOI: 10.1016/j.jep.2024.118645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/06/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic inflammatory bowel condition that is frequently related with Spleen-Kidney Yang Deficiency Syndrome (SKYD) in Chinese medicine. Fuzi Lizhong Pill (FLZP), a traditional medicine for SKYD, has been utilized in China for generations, although the exact mechanism by which it treats UC is unknown. AIM OF THE STUDY The goal of this study is to further understand FLZP's therapeutic mechanism in SKYD-associated UC. MATERIALS AND METHODS To investigate the impact of FLZP on SKYD-associated UC, we used a comprehensive method that included serum metabolomics and gut microbiota profiling. The chemical composition of FLZP was determined using mass spectrometry. UC rats with SKYD were induced and treated with FLZP. Serum metabolomics and 16S rRNA microbial community analysis were used to evaluate FLZP's effects on endogenous metabolites and gut microbiota, respectively. Correlation analysis investigated the association between metabolites and intestinal flora. A metabolic pathway analysis was undertaken to discover putative FLZP action mechanisms. RESULTS FLZP contains 109 components, including liquiritin (584.8176 μg/g), benzoylaconine (16.3087 μg/g), benzoylhypaconine (31.9583), and hypaconitine (8.1160 μg/g). FLZP predominantly regulated seven metabolites and eight metabolic pathways involved in amino acid and nucleotide metabolism, with an emphasis on energy metabolism and gastrointestinal digestion. FLZP also influenced intestinal flora variety, increasing probiotic abundance while decreasing pathogenic bacteria prevalence. An integrated investigation identified associations between changes in certain gut flora and energy metabolism, specifically the tricarboxylic acid (TCA) cycle. CONCLUSIONS FLZP successfully cures UC in SKYD rats by regulating amino acid and energy metabolism. Its positive effects may include altering microbiota composition and metabolite profiles in UC rats with SKYD. These findings shed light on FLZP's mode of action and its implications for UC management.
Collapse
Affiliation(s)
- Yin-Lin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Pharmacy Department, Zigong Traditional Chinese Medicine Hospital, 643011, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Liang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wu-Wen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610065, China.
| | - Ruo-Qi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hong-Ling Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yu-Zhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|