1
|
Li B, Niu H, Zhao X, Huang X, Ding Y, Dang K, Yang T, Chen Y, Ma J, Liu X, Zhang K, Xie H, Ding P. Targeted anti-cancer therapy: Co-delivery of VEGF siRNA and Phenethyl isothiocyanate (PEITC) via cRGD-modified lipid nanoparticles for enhanced anti-angiogenic efficacy. Asian J Pharm Sci 2024; 19:100891. [PMID: 38584690 PMCID: PMC10990863 DOI: 10.1016/j.ajps.2024.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/22/2024] [Accepted: 02/17/2024] [Indexed: 04/09/2024] Open
Abstract
Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvβ3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Bao Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haoran Niu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaoyun Zhao
- School of Life Science and Biopharmaceutics Shenyang Pharmaceutical University Shenyang 110016, China
| | - Xiaoyu Huang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yu Ding
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ke Dang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Tianzhi Yang
- Department of Basic Pharmaceutical Sciences School of Pharmacy Husson University Bangor, ME 04401, USA
| | - Yongfeng Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jizhuang Ma
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xiaohong Liu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Huichao Xie
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Pingtian Ding
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
2
|
Li M, Zhang F, Su Y, Zhou J, Wang W. Nanoparticles designed to regulate tumor microenvironment for cancer therapy. Life Sci 2018; 201:37-44. [PMID: 29577880 DOI: 10.1016/j.lfs.2018.03.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/12/2018] [Accepted: 03/21/2018] [Indexed: 02/08/2023]
Abstract
Increasing understanding in tumor pathology reveals that tumor microenvironment (TME), which supports tumor progression and poses barriers for available therapies, takes a great responsibility in inefficient treatment and poor prognosis. In recent years, the versatile nanotechnology employed in TME regulation has made great progress. The nanoparticles (NPs) can be tailored as needed to accurately target TME components by distinguishing healthy tissues from malignancy, and to regulate TME to promote tumor regression. Meanwhile, the emerging microRNAs (miRNAs) demonstrate great potentials for TME regulation, but are regrettably restricted by quick degradation. NPs systems enable the successful delivery of miRNA to TME without the limitation, expanding the application of nucleic acid drug. In this review, we summarized recent NPs-based strategies aiming at regulating TME in different ways, including anti-angiogenesis, extracellular matrix (ECM) remodeling, tumor-associated fibroblasts (TAFs) treatment and tumor-associated macrophages (TAMs) treatment, along with the miRNAs-loaded NPs for TME regulation. Catching and utilizing the features of TME for NPs design can contribute to reversing drug-resistance, optimized drug distribution, and eventually more efficient cancer therapy.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Fangrong Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yujie Su
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jianping Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
3
|
Gu G, Hu Q, Feng X, Gao X, Menglin J, Kang T, Jiang D, Song Q, Chen H, Chen J. PEG-PLA nanoparticles modified with APTEDB peptide for enhanced anti-angiogenic and anti-glioma therapy. Biomaterials 2014; 35:8215-26. [PMID: 24974009 DOI: 10.1016/j.biomaterials.2014.06.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/09/2014] [Indexed: 12/12/2022]
Abstract
Tumor neovasculature and tumor cells dual-targeting chemotherapy can not only destroy the tumor neovasculature, cut off the supply of nutrition and starve the tumor cells, but also directly kill tumor cells, holding great potential in overcoming the drawbacks of anti-angiogenic therapy only and improving the anti-glioma efficacy. In the present study, by taking advantage of the specific expression of fibronectin extra domain B (EDB) on both glioma neovasculature endothelial cells and glioma cells, we constructed EDB-targeted peptide APTEDB-modified PEG-PLA nanoparticles (APT-NP) for paclitaxel (PTX) loading to enable tumor neovasculature and tumor cells dual-targeting chemotherapy. PTX-loaded APT-NP showed satisfactory encapsulated efficiency, loading capacity and size distribution. In human umbilical vein endothelial cells, APT-NP exhibited significantly elevated cellular accumulation via energy-dependent, caveolae and lipid raft-involved endocytosis, and improved PTX-induced apoptosis therein. Both in vitro tube formation assay and in vivo matrigel angiogenesis analysis confirmed that APT-NP significantly improved the antiangiogenic ability of PTX. In U87MG cells, APT-NP showed elevated cellular internalization and also enhanced the cytotoxicity of the loaded PTX. Following intravenous administration, as shown by both in vivo live animal imaging and tissue distribution analysis, APT-NP achieved a much higher and specific accumulation within the glioma. As a result, APT-NP-PTX exhibited improved anti-glioma efficacy over unmodified nanoparticles and Taxol(®) in both subcutaneous and intracranial U87MG xenograft models. These findings collectively indicated that APTEDB-modified nanoparticles might serve as a promising nanocarrier for tumor cells and neovasculature dual-targeting chemotherapy and hold great potential in improving the efficacy anti-glioma therapy.
Collapse
Affiliation(s)
- Guangzhi Gu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China; Shanghai Institute for Food and Drug Control (SIFDC), 479 Futexi First Road, Shanghai 200131, PR China
| | - Quanyin Hu
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Xingye Feng
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Xiaoling Gao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Jiang Menglin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Ting Kang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Di Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China
| | - Qingxiang Song
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Hongzhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, PR China
| | - Jun Chen
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Lane 826, Zhangheng Road, Shanghai 201203, PR China.
| |
Collapse
|
4
|
Crokart N, Danhier F, Daugimont L, Gonçalves N, Jordan BF, Grégoire V, Feron O, Bouquet C, Gallez B, Préat V. Potentiation of radiotherapy by a localized antiangiogenic gene therapy. Radiother Oncol 2013; 107:252-8. [DOI: 10.1016/j.radonc.2013.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
|
5
|
Liu C, Liu F, Feng L, Li M, Zhang J, Zhang N. The targeted co-delivery of DNA and doxorubicin to tumor cells via multifunctional PEI-PEG based nanoparticles. Biomaterials 2013; 34:2547-64. [DOI: 10.1016/j.biomaterials.2012.12.038] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 12/30/2012] [Indexed: 12/13/2022]
|