1
|
Abdel-Karim SA, Serry FM, Elmasry EM, Hegazy WAH. Phenotypic and genotypic characteristics of macrolide, lacosamide, and streptogramin resistance in clinically resistant Streptococci and their correlation with reduced biocide susceptibility. BMC Med 2025; 23:281. [PMID: 40361106 PMCID: PMC12076902 DOI: 10.1186/s12916-025-04097-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Gram-positive Streptococci is a huge group of different species that are classified based on its hemolytic effect besides the C-substance in the cell wall. This study focuses on the investigation of the prevalence and genetic basis of resistance to macrolides, lincosamides, and streptogramins (MLS) in α- and β-hemolytic Streptococci. METHODS Streptococcal isolates were identified and their resistance was assessed to MLS antibiotics through phenotypic analysis and genotypic screening of resistance genes. Isolates were also tested for susceptibility to antiseptics/disinfectants. The correlation between high MLS antibiotic resistance and reduced susceptibility to biocides was assessed. Efflux pump activity in the most resistant isolates (to both MLS antibiotics and biocides) was investigated. RESULTS The susceptibility testing indicates an increasing resistance to MLS, particularly macrolides (erythromycin, azithromycin, and clarithromycin) and lincomycin. By screening the resistance, the most predominant phenotype is the constitutive (cMLS) one, while the erm genes, particularly ermB, are the most detected genotype. Furthermore, the esterase-encoding gene ereA is widely distributed in the streptococcal isolates. By evaluating the minimum inhibitory concentrations (MICs) to different biocides, there was a strong relation between the increased MIC values to both MLS antibiotics and tested biocides. This can be attributed mainly to the transferable ermB gene and the enhanced bacterial efflux. CONCLUSIONS A significant correlation exists between reduced biocide susceptibility and resistance to MLS antibiotics. Elevated efflux pump activity in MLS-resistant isolates suggests efflux mechanisms may contribute to dual resistance to antibiotics and biocides. However, cross-resistance is primarily driven by the horizontally transferable ermB gene, which confers resistance by targeting the 50S ribosomal subunit.
Collapse
Affiliation(s)
- Safaa A Abdel-Karim
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Fathy M Serry
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Eman M Elmasry
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
2
|
Ribeiro S, Alves K, Nourikyan J, Lavergne JP, de Bernard S, Buffat L. Identifying potential novel widespread determinants of bacterial pathogenicity using phylogenetic-based orthology analysis. Front Microbiol 2025; 16:1494490. [PMID: 40376455 PMCID: PMC12078273 DOI: 10.3389/fmicb.2025.1494490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/14/2025] [Indexed: 05/18/2025] Open
Abstract
Introduction The global rise in antibiotic resistance and emergence of new bacterial pathogens pose a significant threat to public health. Novel approaches to uncover potential novel diagnostic and therapeutic targets for these pathogens are needed. Methods In this study, we conducted a large-scale, phylogenetic-based orthology analysis (OA) to compare the proteomes of pathogenic to humans (HP) and non-pathogenic to humans (NHP) bacterial strains across 734 strains from 514 species and 91 families. Results Using a dedicated workflow, we identified 4,383 hierarchical orthologous groups (HOGs) significantly associated with the HP label, many of which are linked to critical factors such as stress tolerance, metabolic versatility, and antibiotic resistance. Both known virulence factors (VFs) and potential novel widespread pathogenicity determinants were uncovered, supported by both statistical testing and complementary protein domain analysis. Discussion By integrating curated strain-level pathogenicity annotations from BacSPaD with phylogeny-based OA, we introduce a novel approach and provide a novel resource for bacterial pathogenicity research.
Collapse
Affiliation(s)
- Sara Ribeiro
- AltraBio SAS, Lyon, France
- Molecular Microbiology and Structural Biochemistry, Université de Lyon, CNRS, Lyon, France
| | | | | | - Jean-Pierre Lavergne
- Molecular Microbiology and Structural Biochemistry, Université de Lyon, CNRS, Lyon, France
| | | | | |
Collapse
|
3
|
Nishioka K, Nakagawa M, Tanino Y, Nakaya T. Neisseria perflava isolated from a clinical sample reduces influenza virus replication in respiratory cells. J Oral Biosci 2025; 67:100665. [PMID: 40280275 DOI: 10.1016/j.job.2025.100665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
OBJECTIVES Various bacteria are present in the oral cavity and constitute the oral microbiota. Although the oral microbiota has been analyzed using next-generation sequencing, few studies have investigated whether specific commensal bacteria directly affect immune responses to infections. Here, we focused on Neisseria species present in the oral cavity and investigated their effects on respiratory cells infected with several viruses. METHODS Six Neisseria species were isolated from human saliva. The epithelial cell lines were stimulated with bacterial culture supernatants before viral infection. Changes in the viral susceptibility were assessed. RESULTS Culture supernatants of two Neisseria species were found to affect cells susceptible to influenza viral infection and suppress influenza viral replication. The mechanism underlying the suppression of N. perflava was further investigated. This activity was observed in the 10-30 kDa protein range fractionated by ultrafiltration. Although viral replication was suppressed by stimulation with bacterial proteins, the infection efficiency of the virus and cytokine production were unaffected. Replication of SARS-CoV-2 and human rhinovirus were also suppressed. CONCLUSION Viral infection was performed after supernatant stimulation, suggesting that exposure to oral bacteria directly affects viral infection in the surrounding cells. This effect has been observed for several viruses. Viral genome replication in cells may be suppressed by enhanced expression of viral replication suppression genes. Further analyses are required to elucidate the detailed underlying mechanisms.
Collapse
Affiliation(s)
- Keisuke Nishioka
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Maki Nakagawa
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yoko Tanino
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Clinical Investigation, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
4
|
Gu W, Zhang H, Zhang Z, Xu M, Li X, Han Z, Fu X, Li X, Wang X, Zhang C. Continuous Oral Administration of the Superantigen Staphylococcal Enterotoxin C2 Activates Intestinal Immunity and Modulates the Gut Microbiota in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405039. [PMID: 39248343 PMCID: PMC11538665 DOI: 10.1002/advs.202405039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/28/2024] [Indexed: 09/10/2024]
Abstract
Staphylococcal Enterotoxin C2 (SEC2), a classical superantigen, is an antitumor immunotherapy agent. However, the injectable formulation of SEC2 limits its clinical application. Here, it is reported that oral administration of SEC2 activates the intestinal immune system and benefits intestinal health in a mouse model. These results indicate that intact SEC2 is detected in the stomach, intestine, and serum after oral administration. Continuous oral administration of SEC2 activates immune cells in gut-associated lymphoid tissues, promoting extensive differentiation and proliferation of CD4+ and CD8+ T cells and CD19+ B cells, leading to increased production of cytokines and secretory immunoglobulin A. SEC2 also enhances intestinal barrier function, as demonstrated by an increased villus length/crypt depth ratio and elevated expression of mucins and tight junction proteins. Additionally, SEC2 indirectly influenced gut microbiota, reinforcing potential probiotics and short-chain fatty acid synthesis. Enhanced differentiation of T and B cells in the spleen, coupled with elevated serum interleukin-2 levels, suggests systemic immune enhancement following oral administration of SEC2. These findings provide a scientific basis for the development of SEC2 as an oral immunostimulant for immune enhancement and anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Wu Gu
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- University of Chinese Academy of SciencesNo.1 Yanqihu East Rd, Huairou DistrictBeijing101408P. R. China
| | - Huiwen Zhang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Best Health (Guangdong) Bio‐Technology Co., Ltd.Center Building, Minke Park, Xinhui Economic Development ZoneJiangmen529100P. R. China
| | - Zhichun Zhang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- University of Chinese Academy of SciencesNo.1 Yanqihu East Rd, Huairou DistrictBeijing101408P. R. China
| | - Mingkai Xu
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Xiang Li
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Zhiyang Han
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- University of Chinese Academy of SciencesNo.1 Yanqihu East Rd, Huairou DistrictBeijing101408P. R. China
| | - Xuanhe Fu
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
- Department of ImmunologyShenyang Medical CollegeNo. 146 Huanghe North StreetShenyang110034P. R. China
| | - Xu Li
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Xiujuan Wang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| | - Chenggang Zhang
- Institute of Applied EcologyChinese Academy of Sciences72 WenHua RoadShenyang110016P. R. China
- Key Laboratory of Superantigen Research of Liao Ning ProvinceNo. 72 WenHua RoadShenyang110016P. R. China
| |
Collapse
|
5
|
Naorem RS, Pangabam BD, Bora SS, Fekete C, Teli AB. Immunoinformatics Design of a Multiepitope Vaccine (MEV) Targeting Streptococcus mutans: A Novel Computational Approach. Pathogens 2024; 13:916. [PMID: 39452787 PMCID: PMC11509883 DOI: 10.3390/pathogens13100916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Dental caries, a persistent oral health challenge primarily linked to Streptococcus mutans, extends its implications beyond dental decay, affecting over 4 billion individuals globally. Despite its historical association with childhood, dental caries often persists into adulthood with prevalence rates ranging from 60 to 90% in children and 26 to 85% in adults. Currently, there is a dearth of multiepitope vaccines (MEVs) specifically designed to combat S. mutans. To address this gap, we employed an immunoinformatics approach for MEV design, identifying five promising vaccine candidates (PBP2X, PBP2b, MurG, ATP-F, and AGPAT) based on antigenicity and conservation using several tools including CELLO v.2.5, Vaxign, v2.0, ANTIGENpro, and AllerTop v2.0 tools. Subsequent identification of linear B-cell and T-cell epitopes by SVMTrip and NetCTL/NetMHC II tools, respectively, guided the construction of a MEV comprising 10 Cytotoxic T Lymphocyte (CTL) epitopes, 5 Helper T Lymphocyte (HTL) epitopes, and 5 linear B-cell epitopes, interconnected by suitable linkers. The resultant MEV demonstrated high antigenicity, solubility, and structural stability. In silico immune simulations showcased the MEV's potential to elicit robust humoral and cell-mediated immune responses. Molecular docking studies revealed strong interactions between the MEV construct and Toll-Like Receptors (TLRs) and Major Histocompatibility Complex (MHC) molecules. Remarkably, the MEV-TLR-4 complexes exhibited a low energy score, high binding affinity, and a low dissociation constant. The Molecular Dynamic (MD) simulation analysis suggested that MEV-TLR-4 complexes had the highest stability and minimal conformational changes indicating equilibrium within 40 nanosecond time frames. Comprehensive computational analyses strongly support the potential of the proposed MEV to combat dental caries and associated infections. The study's computational assays yielded promising results, but further validation through in vitro and in vivo experiments is needed to assess its efficacy and safety.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India; (R.S.N.); (S.S.B.)
| | - Bandana Devi Pangabam
- Department of Molecular Biology and Microbiology, University of Pecs, Ifusag utja. 6, 7624 Pecs, Hungary;
| | - Sudipta Sankar Bora
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India; (R.S.N.); (S.S.B.)
| | - Csaba Fekete
- Department of Molecular Biology and Microbiology, University of Pecs, Ifusag utja. 6, 7624 Pecs, Hungary;
| | - Anju Barhai Teli
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785001, India; (R.S.N.); (S.S.B.)
- Department of Biochemistry, Jorhat Medical College and Hospital, Jorhat 785001, India
| |
Collapse
|
6
|
Lee S, Portlock T, Le Chatelier E, Garcia-Guevara F, Clasen F, Oñate FP, Pons N, Begum N, Harzandi A, Proffitt C, Rosario D, Vaga S, Park J, von Feilitzen K, Johansson F, Zhang C, Edwards LA, Lombard V, Gauthier F, Steves CJ, Gomez-Cabrero D, Henrissat B, Lee D, Engstrand L, Shawcross DL, Proctor G, Almeida M, Nielsen J, Mardinoglu A, Moyes DL, Ehrlich SD, Uhlen M, Shoaie S. Global compositional and functional states of the human gut microbiome in health and disease. Genome Res 2024; 34:967-978. [PMID: 39038849 PMCID: PMC11293553 DOI: 10.1101/gr.278637.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 06/05/2024] [Indexed: 07/24/2024]
Abstract
The human gut microbiota is of increasing interest, with metagenomics a key tool for analyzing bacterial diversity and functionality in health and disease. Despite increasing efforts to expand microbial gene catalogs and an increasing number of metagenome-assembled genomes, there have been few pan-metagenomic association studies and in-depth functional analyses across different geographies and diseases. Here, we explored 6014 human gut metagenome samples across 19 countries and 23 diseases by performing compositional, functional cluster, and integrative analyses. Using interpreted machine learning classification models and statistical methods, we identified Fusobacterium nucleatum and Anaerostipes hadrus with the highest frequencies, enriched and depleted, respectively, across different disease cohorts. Distinct functional distributions were observed in the gut microbiomes of both westernized and nonwesternized populations. These compositional and functional analyses are presented in the open-access Human Gut Microbiome Atlas, allowing for the exploration of the richness, disease, and regional signatures of the gut microbiota across different cohorts.
Collapse
Affiliation(s)
- Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), 61005, Gwangju, Republic of Korea
| | - Theo Portlock
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | | | - Fernando Garcia-Guevara
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Frederick Clasen
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | | | - Nicolas Pons
- University Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
| | - Neelu Begum
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Azadeh Harzandi
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Ceri Proffitt
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Dorines Rosario
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Stefania Vaga
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Junseok Park
- Department of Bio and Brain Engineering, KAIST, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Kalle von Feilitzen
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Fredric Johansson
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Cheng Zhang
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - Lindsey A Edwards
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE5 9NU, United Kingdom
| | - Vincent Lombard
- INRAE, USC1408 Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille 13288, France
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille 13288, France
| | - Franck Gauthier
- University Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
| | - Claire J Steves
- Department of Twin Research & Genetic Epidemiology, King's College London, London WC2R 2LS, United Kingdom
| | - David Gomez-Cabrero
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
- Translational Bioinformatics Unit, Navarrabiomed, Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Doheon Lee
- Department of Bio and Brain Engineering, KAIST, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Lars Engstrand
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, 171 65 Stockholm, Sweden
| | - Debbie L Shawcross
- Institute of Liver Studies, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London SE5 9NU, United Kingdom
| | - Gordon Proctor
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Mathieu Almeida
- University Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
- BioInnovation Institute, DK-2200 Copenhagen N, Denmark
| | - Adil Mardinoglu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom
| | - Stanislav Dusko Ehrlich
- University Paris-Saclay, INRAE, MetaGenoPolis, 78350 Jouy-en-Josas, France
- Department of Clinical and Movement Neurosciences, University College London, London NW3 2PF, United Kingdom
| | - Mathias Uhlen
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden;
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, SE1 9RT, United Kingdom;
- Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, SE-171 21, Sweden
| |
Collapse
|
7
|
Lee M, Kaul A, Ward JM, Zhu Q, Richards M, Wang Z, González A, Parks CG, Beane Freeman LE, Umbach DM, Motsinger-Reif AA, Knight R, London SJ. House dust metagenome and pulmonary function in a US farming population. MICROBIOME 2024; 12:129. [PMID: 39026261 PMCID: PMC11256371 DOI: 10.1186/s40168-024-01823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/25/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Chronic exposure to microorganisms inside homes can impact respiratory health. Few studies have used advanced sequencing methods to examine adult respiratory outcomes, especially continuous measures. We aimed to identify metagenomic profiles in house dust related to the quantitative traits of pulmonary function and airway inflammation in adults. Microbial communities, 1264 species (389 genera), in vacuumed bedroom dust from 779 homes in a US cohort were characterized by whole metagenome shotgun sequencing. We examined two overall microbial diversity measures: richness (the number of individual microbial species) and Shannon index (reflecting both richness and relative abundance). To identify specific differentially abundant genera, we applied the Lasso estimator with high-dimensional inference methods, a novel framework for analyzing microbiome data in relation to continuous traits after accounting for all taxa examined together. RESULTS Pulmonary function measures (forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC ratio) were not associated with overall dust microbial diversity. However, many individual microbial genera were differentially abundant (p-value < 0.05 controlling for all other microbial taxa examined) in relation to FEV1, FVC, or FEV1/FVC. Similarly, fractional exhaled nitric oxide (FeNO), a marker of airway inflammation, was unrelated to overall microbial diversity but associated with differential abundance for many individual genera. Several genera, including Limosilactobacillus, were associated with a pulmonary function measure and FeNO, while others, including Moraxella to FEV1/FVC and Stenotrophomonas to FeNO, were associated with a single trait. CONCLUSIONS Using state-of-the-art metagenomic sequencing, we identified specific microorganisms in indoor dust related to pulmonary function and airway inflammation. Some were previously associated with respiratory conditions; others were novel, suggesting specific environmental microbial components contribute to various respiratory outcomes. The methods used are applicable to studying microbiome in relation to other continuous outcomes. Video Abstract.
Collapse
Affiliation(s)
- Mikyeong Lee
- Immunity Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), Durham, NC, 27709, USA.
| | - Abhishek Kaul
- Department of Mathematics and Statistics, Washington State University, Pullman, WA, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, NIEHS, Durham, NC, USA
| | - Qiyun Zhu
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, USA
| | | | - Ziyue Wang
- Biostatistics and Computational Biology Branch, NIEHS, Durham, NC, USA
| | - Antonio González
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Christine G Parks
- Immunity Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), Durham, NC, 27709, USA
| | - Laura E Beane Freeman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, NIEHS, Durham, NC, USA
| | | | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Stephanie J London
- Immunity Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), Durham, NC, 27709, USA
| |
Collapse
|
8
|
Dotimas LG, Ojo B, Kaur A, Alake S, Dixon M, Rassi GDE, Ice JA, Zhao J, Emerson SR, Smith BJ, Lucas EA. Wheat germ supplementation has modest effects on gut health markers but improves glucose homeostasis markers in adults classified as overweight: A randomized controlled pilot study. Nutr Res 2024; 127:13-26. [PMID: 38820937 DOI: 10.1016/j.nutres.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 06/02/2024]
Abstract
Wheat germ (WG), a by-product of flour milling, is rich in bioactive substances that may help improve health complications associated with increased adiposity. This study investigated the effects of WG on gut health, metabolic, and inflammatory markers in adults classified as overweight. We hypothesized that WG, because of its many bioactive components, would improve gut health and metabolic, and inflammatory markers in overweight adults. Forty adults (18-45 years old) and with a body mass index between 25 and 30 kg/m2 participated in this single-blinded randomized controlled pilot study. Participants consumed the study supplements containing 30 g of either cornmeal (control, CL) or WG daily for 4 weeks. Primary outcome variables were gut health markers including gut microbiota, gut integrity markers, and fecal short-chain fatty acids, whereas secondary outcome variables included metabolic and inflammatory parameters assessed at baseline and at the end of supplementation. Thirty-nine participants (n = 19 and 20 for CL and WG group, respectively) completed the study. The genus Faecalibacterium was significantly higher in the WG group compared to CL post-supplementation but no significant changes in other gut health markers, short-chain fatty acids, inflammatory markers, and lipid profiles were observed. Compared with baseline, WG improved markers of glucose homeostasis including insulin (P = .02), homeostatic model assessment of insulin resistance (P = .03), glycated hemoglobin (P = .07), and the pro-inflammatory adipokine, resistin (P = .04). However, these parameters after intervention were not different with control. Our findings suggest that WG supplementation have modest effects on gut health but may provide an economical option for individuals to improve glycemic control.
Collapse
Affiliation(s)
- Levin G Dotimas
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA
| | - Babajide Ojo
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Amritpal Kaur
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA
| | - Sanmi Alake
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Madison Dixon
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA
| | | | - John A Ice
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA; US Department of Veterans Affairs, Oklahoma City, OK, USA
| | - Jiangchao Zhao
- Animal Science Department, University of Arkansas, Fayetteville, AR, USA
| | - Sam R Emerson
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA; Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University (OSU), Stillwater, OK, USA.
| |
Collapse
|
9
|
Nguyen HV, Trinh ATV, Bui LNH, Hoang ATL, Tran QTL, Trinh TT. Streptococcus raffinosi sp. nov., isolated from human breast milk samples. Int J Syst Evol Microbiol 2024; 74. [PMID: 38958657 DOI: 10.1099/ijsem.0.006442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Novel Gram-positive, catalase-negative, α-haemolytic cocci were isolated from breast milk samples of healthy mothers living in Hanoi, Vietnam. The 16S rRNA gene sequences of these strains varied by 0-2 nucleotide polymorphisms. The 16S rRNA gene sequence of one strain, designated as BME SL 6.1T, showed the highest similarity to those of Streptococcus salivarius NCTC 8618T (99.4 %), Streptococcus vestibularis ATCC 49124T (99.4 %), and Streptococcus thermophilus ATCC 19258T (99.3 %) in the salivarius group. Whole genome sequencing was performed on three selected strains. Phylogeny based on 631 core genes clustered the three strains into the salivarius group, and the strains were clearly distinct from the other species in this group. The average nucleotide identity (ANI) value of strain BME SL 6.1T exhibited the highest identity with S. salivarius NCTC 8618T (88.4 %), followed by S. vestibularis ATCC 49124T (88.3 %) and S. thermophilus ATCC 19258T (87.4 %). The ANI and digital DNA-DNA hybridization values between strain BME SL 6.1T and other species were below the cut-off value (95 and 70 %, respectively), indicating that it represents a novel species of the genus Streptococcus. The strains were able to produce α-galactosidase and acid from raffinose and melibiose. Therefore, we propose to assign the strains to a new species of the genus Streptococcus as Streptococcus raffinosi sp. nov. The type strain is BME SL 6.1T (=VTCC 12812T=NBRC 116368T).
Collapse
Affiliation(s)
- Ha Viet Nguyen
- VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Anh Thi Van Trinh
- VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Linh Nguyen Hai Bui
- VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Anh Thi Lan Hoang
- VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Quyen Thi Le Tran
- VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| | - Trung Thanh Trinh
- VNU-Institute of Microbiology and Biotechnology, Vietnam National University, Hanoi, Vietnam
| |
Collapse
|
10
|
Senthil Kumar S, Johnson MDL, Wilson JE. Insights into the enigma of oral streptococci in carcinogenesis. Microbiol Mol Biol Rev 2024; 88:e0009523. [PMID: 38506551 PMCID: PMC11338076 DOI: 10.1128/mmbr.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYThe genus Streptococcus consists of a taxonomically diverse group of Gram-positive bacteria that have earned significant scientific interest due to their physiological and pathogenic characteristics. Within the genus Streptococcus, viridans group streptococci (VGS) play a significant role in the oral ecosystem, constituting approximately 80% of the oral biofilm. Their primary role as pioneering colonizers in the oral cavity with multifaceted interactions like adherence, metabolic signaling, and quorum sensing contributes significantly to the complex dynamics of the oral biofilm, thus shaping oral health and disease outcomes. Perturbations in oral streptococci composition drive oral dysbiosis and therefore impact host-pathogen interactions, resulting in oral inflammation and representing VGS as an opportunistic pathogen. The association of oral streptococci in tumors across distant organs, spanning the esophagus, stomach, pancreas, and colon, illuminates a potential association between oral streptococci, inflammation, and tumorigenesis. This finding emphasizes the need for further investigations into the role of oral streptococci in mucosal homeostasis and their involvement in carcinogenesis. Hence, here, we review the significance of oral streptococci in biofilm dynamics and how the perturbation may impact mucosal immunopathogenesis in the context of cancer, with a vision of exploiting oral streptococci for cancer intervention and for the development of non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- Valley Fever Center
for Excellence, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
- BIO5 Institute, The
University of Arizona College of
Medicine, Tucson,
Arizona, USA
- Asthma and Airway
Disease Research Center, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
| | - Justin E. Wilson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| |
Collapse
|
11
|
Aguzie IO, Obioha AM, Unachukwu CE, Okpasuo OJ, Anunobi TJ, Ugwu KO, Ubachukwu PO, Dibua UME. Hand contamination and hand hygiene knowledge and practices among commercial transport users after the SARS-CoV-2 virus (COVID-19) scare, Enugu State, Nigeria. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0002627. [PMID: 38820394 PMCID: PMC11142581 DOI: 10.1371/journal.pgph.0002627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/06/2024] [Indexed: 06/02/2024]
Abstract
Contaminated hands are one of the most common modes of microorganism transmission that are responsible for many associated infections in healthcare, food industries, and public places such as transportation parks. Public health approaches during COVID-19 pandemic have shown that hand hygiene practices and associated knowledge are critical measure to control the spread of infectious agent. Hence, assessment of commercial transport users' knowledge, belief and practices on hand hygiene, and potential contamination with infectious agents which is the aim of the study, aligns with general health concern of quantifying contamination risk levels to predict disease outbreaks. This study utilized a randomized sampling approach to select 10 frequently used commercial parks within two districts in the State: Enugu and Nsukka. The parameters analysed include a cross-sectional questionnaire survey, hand swab and hand washed samples collected from dominant hand of participants. A total of 600 participants responded to the questionnaire survey, while 100 participants' hand swabs were examined for microbial contamination. This study recorded a high prevalence of fungal (90.0%) and bacterial (87.0%) species; 20 species of fungus were identified with prevalence range of 1% to 14%; 21 bacterial species were isolated with prevalence range of 1% to 16%. These species were identified as either opportunistic, non-invasive, or pathogenic, which may constitute a health concern amongst immunocompromised individuals within the population. Aspergillus spp. (14%), was the most common fungal species that was exclusively found amongst Nsukka commercial users, while E. coli was the most prevalent isolated bacterial species amongst Nsukka (12%) and Enugu (20%) commercial park users. Prevalence of fungal contamination in Nsukka (94.0%; 47/50) and Enugu (86.0%; 43/50) were both high. Prevalence of bacterial contamination was higher in Enugu than Nsukka but not significantly (47[94.0%] vs. 40[80.0%], p = 0.583). A greater number of participants (99.3%) were aware of the importance of hand hygiene, however with low compliance rate aside "after using the toilet" (80%) and "before eating" (90%), other relevant hand washing and sanitizing practices were considered less important. With these observations, we can emphatically say that despite the COVID-19 scare, commercial park users within the sampled population do not efficiently practice quality hand wash and hygiene measures, hence, risking the widespread of infectious agents in situation of disease outbreak or among immunocompromised individuals.
Collapse
Affiliation(s)
- Ifeanyi O. Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Ahaoma M. Obioha
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Chisom E. Unachukwu
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Onyekachi J. Okpasuo
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Toochukwu J. Anunobi
- Department of Science Laboratory Technology, Federal Polytechnic, Idah, Kogi State, Nigeria
| | - Kenneth O. Ugwu
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| | - Patience O. Ubachukwu
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Nigeria
| | - Uju M. E. Dibua
- Department of Microbiology, University of Nigeria, Nsukka, Nigeria
| |
Collapse
|
12
|
Geistlinger L, Mirzayi C, Zohra F, Azhar R, Elsafoury S, Grieve C, Wokaty J, Gamboa-Tuz SD, Sengupta P, Hecht I, Ravikrishnan A, Gonçalves RS, Franzosa E, Raman K, Carey V, Dowd JB, Jones HE, Davis S, Segata N, Huttenhower C, Waldron L. BugSigDB captures patterns of differential abundance across a broad range of host-associated microbial signatures. Nat Biotechnol 2024; 42:790-802. [PMID: 37697152 PMCID: PMC11098749 DOI: 10.1038/s41587-023-01872-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/20/2023] [Indexed: 09/13/2023]
Abstract
The literature of human and other host-associated microbiome studies is expanding rapidly, but systematic comparisons among published results of host-associated microbiome signatures of differential abundance remain difficult. We present BugSigDB, a community-editable database of manually curated microbial signatures from published differential abundance studies accompanied by information on study geography, health outcomes, host body site and experimental, epidemiological and statistical methods using controlled vocabulary. The initial release of the database contains >2,500 manually curated signatures from >600 published studies on three host species, enabling high-throughput analysis of signature similarity, taxon enrichment, co-occurrence and coexclusion and consensus signatures. These data allow assessment of microbiome differential abundance within and across experimental conditions, environments or body sites. Database-wide analysis reveals experimental conditions with the highest level of consistency in signatures reported by independent studies and identifies commonalities among disease-associated signatures, including frequent introgression of oral pathobionts into the gut.
Collapse
Affiliation(s)
- Ludwig Geistlinger
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Chloe Mirzayi
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Fatima Zohra
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Rimsha Azhar
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Shaimaa Elsafoury
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Clare Grieve
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Jennifer Wokaty
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Samuel David Gamboa-Tuz
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Pratyay Sengupta
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | | | - Aarthi Ravikrishnan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Rafael S Gonçalves
- Center for Computational Biomedicine, Harvard Medical School, Boston, MA, USA
| | - Eric Franzosa
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Karthik Raman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology (IIT) Madras, Chennai, India
- Robert Bosch Centre for Data Science and Artificial Intelligence, Indian Institute of Technology (IIT) Madras, Chennai, India
- Centre for Integrative Biology and Systems mEdicine (IBSE), Indian Institute of Technology (IIT) Madras, Chennai, India
| | - Vincent Carey
- Channing Division of Network Medicine, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Jennifer B Dowd
- Leverhulme Centre for Demographic Science, University of Oxford, Oxford, UK
| | - Heidi E Jones
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA
| | - Sean Davis
- Departments of Biomedical Informatics and Medicine, University of Colorado Anschutz School of Medicine, Denver, CO, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- Istituto Europeo di Oncologia (IEO) IRCSS, Milan, Italy
| | - Curtis Huttenhower
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Levi Waldron
- Institute for Implementation Science in Population Health, City University of New York School of Public Health, New York, NY, USA.
- Department of Epidemiology and Biostatistics, City University of New York School of Public Health, New York, NY, USA.
- Department CIBIO, University of Trento, Trento, Italy.
| |
Collapse
|
13
|
Choi GH, Fugaban JII, Dioso CM, Bucheli JEV, Holzapfel WH, Todorov SD. Safety and Beneficial Properties of Bacteriocinogenic Lactococcus lactis and Pediococcus pentosaceus Strains, and Their Effect Versus Oral Cavity Related and Antibiotic-Resistant Pathogens. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10245-z. [PMID: 38564170 DOI: 10.1007/s12602-024-10245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Pediococcus pentosaceus 732, Lactococcus lactis subsp. lactis 431, and Lactococcus lactis 808, bacteriocinogenic strains previously isolated from kimchi and banana, were investigated for their safety, beneficial properties and in vitro inhibition of pathogens such as Listeria monocytogenes ATCC 15313 and Staphylococcus simulans KACC 13241 and Staphylococcus auricularis KACC 13252. The results of performed physiological, biochemical, and biomolecular tests suggest that these strains can be deemed safe, as no virulence genes were detected in their DNA. Notably, only the gad gene associated with GABA production was identified in the DNA isolated of Lc. lactis 808 and Lc. lactis subsp. lactis 431 strains. All tested LAB strains exhibited γ-hemolysins and were non-producers of gelatinase and biogenic amines, which suggested their safety potential. Additionally, they were relatively susceptible to antibiotics except for streptomycin, tobramycin, and vancomycin for Pd. pentosaceus 732. The growth of Pd. pentosaceus 732, Lc. lactis subsp. lactis 431, and Lc. lactis 808 and their survival were minimally affected by up to 3% ox bile and low pH (except pH 2.0 and 4.0). Moreover, these LAB strains were not inhibited by various commercial extracts as well as most of the tested medications tested in the study. They did not produce proteolytic enzymes but exhibited production of D/L-lactic acid and β-galactosidase. They were also hydrophilic. Furthermore, their survival in artificial saliva, gastric simulation, and enteric passage was measured followed by a challenge test to assess their ability to inhibit the selected oral pathogens in an oral saliva model conditions.
Collapse
Affiliation(s)
- Gee Hyeun Choi
- ProBacLab, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea
| | - Joanna Ivy Irorita Fugaban
- ProBacLab, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea
- National Food Institute, Technical University of Denmark, Building 202, Rm. 3.234, Kongens Lyngby, 2800, Kemitorvet, Denmark
| | - Clarizza May Dioso
- HEM Laboratory, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea
| | - Jorge Enrique Vazquez Bucheli
- ProBacLab, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea
- HEM Laboratory, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea
| | - Wilhelm Heinrich Holzapfel
- HEM Laboratory, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea
| | - Svetoslav Dimitrov Todorov
- ProBacLab, Department of Advanced Convergence, Handong Global University, 37554, Pohang, Gyeongbuk, Republic of Korea.
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- CISAS - Center for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, 4900-347, Viana Do Castelo, Portugal.
| |
Collapse
|
14
|
Kim HR, Joe C, Hwang ET, Gu MB, Kim BC. Group selective aptamers: Broad-spectrum recognition of target groups in Cronobacter species and implementation of electrochemical biosensors as receptors. Biosens Bioelectron 2024; 246:115843. [PMID: 38006700 DOI: 10.1016/j.bios.2023.115843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Aptamers are a versatile class of receptors with a high affinity and selectivity for specific targets. Although their ability to recognize individual targets has been extensively studied, some scenarios require the development of receptors capable of identifying all target groups. This study investigated the use of aptamers to achieve the broad-spectrum recognition of groups instead of individual targets. Aptamers were screened for selectively distinct groups of Cronobacter species associated with foodborne diseases. Seven Cronobacter spp. were divided into Group A (C. sakazakii, C. malonaticus, C. turicensis, and C. muytjensii) and Group B (C. dublinensis, C. condimenti, and C. universalis). Aptamers with exclusive selectivity for each group were identified, allowing binding to the species within their designated group while excluding those from the other group. The screened aptamers demonstrated reliable affinity and specificity with dissociation constants ranging from 1.3 to 399.7 nM for Group A and 4.0-24.5 nM for Group B. These aptamers have also been successfully employed as receptors in an electrochemical biosensor platform, enabling the selective detection of each group based on the corresponding aptamer (limit of detection was 7.8 and 3.2 CFU for Group A and Group B, respectively). The electrochemical sensor effectively detected the extent of infection in each group in powdered infant formula samples. This study highlights the successful screening and application of group-selective aptamers as sensing receptors, emphasizing their potential for diverse applications in different fields such as food safety, environmental monitoring, and clinical diagnostics, where the selective biosensing of target groups is crucial.
Collapse
Affiliation(s)
- Hye Ri Kim
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Cheulmin Joe
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ee Taek Hwang
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Man Bock Gu
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
| | - Byoung Chan Kim
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea; Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea.
| |
Collapse
|
15
|
Chen EY, Mahurkar-Joshi S, Liu C, Jaffe N, Labus JS, Dong TS, Gupta A, Patel S, Mayer EA, Chang L. The Association Between a Mediterranean Diet and Symptoms of Irritable Bowel Syndrome. Clin Gastroenterol Hepatol 2024; 22:164-172.e6. [PMID: 37517631 PMCID: PMC10849937 DOI: 10.1016/j.cgh.2023.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND & AIMS Low adherence to Mediterranean diet (MD) has been shown to be associated with a higher prevalence of irritable bowel syndrome (IBS), but its association with IBS symptoms is not established. We aim to assess the association between MD and IBS symptoms, identify components of MD associated with IBS symptoms, and determine if a symptom-modified MD is associated with changes in the gut microbiome. METHODS One hundred and six Rome +IBS and 108 health control participants completed diet history and gastrointestinal symptom questionnaires. Adherence to MD was measured using Alternate Mediterranean Diet and Mediterranean Diet Adherence Screener. Sparse partial least squares analysis identified MD food items associated with IBS symptoms. Stool samples were collected for 16S ribosomal RNA gene sequencing and microbial composition analysis in IBS subjects. RESULTS Alternate Mediterranean Diet and Mediterranean Diet Adherence Screener scores were similar between IBS and health control subjects and did not correlate with Irritable Bowel Syndrome Severity Scoring System, abdominal pain, or bloating. Among IBS participants, a higher consumption of fruits, vegetables, sugar, and butter was associated with a greater severity of IBS symptoms. Multivariate analysis identified several MD foods to be associated with increased IBS symptoms. A higher adherence to symptom-modified MD was associated with a lower abundance of potentially harmful Faecalitalea, Streptococcus, and Intestinibacter, and higher abundance of potentially beneficial Holdemanella from the Firmicutes phylum. CONCLUSIONS A standard MD was not associated with IBS symptom severity, although certain MD foods were associated with increased IBS symptoms. Our study suggests that standard MD may not be suitable for all patients with IBS and likely needs to be personalized in those with increased symptoms.
Collapse
Affiliation(s)
- Ellie Y Chen
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Swapna Mahurkar-Joshi
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, California; UCLA Goodman-Luskin Microbiome Center, Los Angeles, California
| | - Cathy Liu
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, California; UCLA Goodman-Luskin Microbiome Center, Los Angeles, California
| | - Nancee Jaffe
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California
| | - Jennifer S Labus
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, California; UCLA Goodman-Luskin Microbiome Center, Los Angeles, California
| | - Tien S Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; UCLA Goodman-Luskin Microbiome Center, Los Angeles, California
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, California; UCLA Goodman-Luskin Microbiome Center, Los Angeles, California
| | - Shravya Patel
- University of California, Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, California; UCLA Goodman-Luskin Microbiome Center, Los Angeles, California
| | - Lin Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California, Los Angeles, Los Angeles, California; G. Oppenheimer Center for Neurobiology of Stress and Resilience, Los Angeles, California; UCLA Goodman-Luskin Microbiome Center, Los Angeles, California.
| |
Collapse
|
16
|
Wang Y, Liu Y, Yang K, Yang L, Zhang S, Ba Y, Zhou G. The bioaerosols generated from the sludge treatment process: Bacterial and fungal variation characteristics, source tracking, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166193. [PMID: 37567309 DOI: 10.1016/j.scitotenv.2023.166193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Bioaerosols generated from sludge treatment processes in wastewater treatment plants (WWTPs) may spread infectious diseases. This study investigated the generation characteristics, source, and associated risks of bioaerosols produced during sludge treatment processes. The results showed that the concentration range of total suspended particles was 49 ± 3 to 354 ± 10 μg/m3, and the primary water-soluble ions in bioaerosols were NH4+, SO42- and Cl-. The bacterial concentration in bioaerosols was 50 ± 5 to 1296 ± 261 CFU/m3, with the highest concentration in the biochemical reaction tank. The dominant bacteria in bioaerosols included Bacteroides, Cetobacterium, Romboutsia, Lactobacillus and Turicibacter, while the dominant fungi were Aspergillus, Alternaria, Cladosporium and Fusarium. Pathogenic microorganisms such as Escherichia and Aspergillus were detected in all treatment processes. The results of principal component analysis showed that the bacterial composition in bioaerosols was similar of different technological processes, while the fungal species composition was different. The dominant microbial composition of sludge and bioaerosols was relatively close. The Source Tracker results indicated that sludge was the main source of airborne bacteria in the sludge dewatering house, as well as the main source of airborne fungi in the plate-frame pressure filtration tank and the sloping plate sedimentation tank. The non-carcinogenic risk in each stage was low (1.22 × 10-9-3.99 × 10-2). However, Bugbase phenotype prediction results showed that the bioaerosols in the anaerobic sedimentation tank may have potential pathogenicity. Therefore, the management and control of bioaerosols from the sludge treatment should be strengthened.
Collapse
Affiliation(s)
- Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Yang Liu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Kai Yang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Liying Yang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Song Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Yue Ba
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Guoyu Zhou
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| |
Collapse
|
17
|
Benhadda F, Zykwinska A, Colliec-Jouault S, Sinquin C, Thollas B, Courtois A, Fuzzati N, Toribio A, Delbarre-Ladrat C. Marine versus Non-Marine Bacterial Exopolysaccharides and Their Skincare Applications. Mar Drugs 2023; 21:582. [PMID: 37999406 PMCID: PMC10672628 DOI: 10.3390/md21110582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteria are well-known to synthesize high molecular weight polysaccharides excreted in extracellular domain, which constitute their protective microenvironment. Several bacterial exopolysaccharides (EPS) are commercially available for skincare applications in cosmetic products due to their unique structural features, conferring valuable biological and/or textural properties. This review aims to give an overview of bacterial EPS, an important group of macromolecules used in cosmetics as actives and functional ingredients. For this purpose, the main chemical characteristics of EPS are firstly described, followed by the basics of the development of cosmetic ingredients. Then, a focus on EPS production, including upstream and downstream processes, is provided. The diversity of EPS used in the cosmetic industry, and more specifically of marine-derived EPS is highlighted. Marine bacteria isolated from extreme environments are known to produce EPS. However, their production processes are highly challenging due to high or low temperatures; yield must be improved to reach economically viable ingredients. The biological properties of marine-derived EPS are then reviewed, resulting in the highlight of the challenges in this field.
Collapse
Affiliation(s)
- Fanny Benhadda
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Sylvia Colliec-Jouault
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | | | | | - Nicola Fuzzati
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Alix Toribio
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Christine Delbarre-Ladrat
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| |
Collapse
|
18
|
Huang J, Dai X, Wu Z, Hu X, Sun J, Tang Y, Zhang W, Han P, Zhao J, Liu G, Wang X, Mao S, Wang Y, Call DR, Liu J, Wang L. Conjugative transfer of streptococcal prophages harboring antibiotic resistance and virulence genes. THE ISME JOURNAL 2023; 17:1467-1481. [PMID: 37369704 PMCID: PMC10432423 DOI: 10.1038/s41396-023-01463-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
Prophages play important roles in the transduction of various functional traits, including virulence factors, but remain debatable in harboring and transmitting antimicrobial resistance genes (ARGs). Herein we characterize a prevalent family of prophages in Streptococcus, designated SMphages, which harbor twenty-five ARGs that collectively confer resistance to ten antimicrobial classes, including vanG-type vancomycin resistance locus and oxazolidinone resistance gene optrA. SMphages integrate into four chromosome attachment sites by utilizing three types of integration modules and undergo excision in response to phage induction. Moreover, we characterize four subtypes of Alp-related surface proteins within SMphages, the lethal effects of which are extensively validated in cell and animal models. SMphages transfer via high-frequency conjugation that is facilitated by integrative and conjugative elements from either donors or recipients. Our findings explain the widespread of SMphages and the rapid dissemination of ARGs observed in members of the Streptococcus genus.
Collapse
Affiliation(s)
- Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xingyang Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zuowei Wu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Xiao Hu
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Junjie Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yijun Tang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wanqiu Zhang
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peizhao Han
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiaqi Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangjin Liu
- Key Lab of Animal Bacteriology, Ministry of Agriculture, OIE Reference Lab for Swine Streptococcosis, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoming Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shengyong Mao
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Douglas R Call
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, 99164, USA
| | - Jinxin Liu
- Ruminant Nutrition and Feed Engineering Technology Research Center, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, National Center for International Research on Animal Gut Nutrition, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
Diouf FS, Beye M, Gaye M, Mbaye B, Alibar S, Sarr M, Dubourg G, Lagier JC, Sokhna C, Fenollar F, Fournier PE, Lo CI. Description of Streptococcus thalassemiae sp. nov., a Bacterium Isolated from Human Blood. Int J Microbiol 2023; 2023:3802590. [PMID: 37559874 PMCID: PMC10409578 DOI: 10.1155/2023/3802590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 08/11/2023] Open
Abstract
Blood is a precious biological liquid that is normally sterile. Therefore, bacteria in the bloodstream are shown a priori anomaly. A blood culture is systematically performed to diagnose the cause of the bacteremia. Indeed, a patient received in our service had a thalassemia major and underwent a genoidentical transplant. Then, a blood test was performed to diagnose a four-day fever. In this context, we have isolated strain Marseille-Q2617 from the blood sample. It revealed a new bacterial strain that belongs to the genus Streptococcus. It is a Gram-positive coccus, nonmotile, and nonspore forming. The major fatty acid found is hexadecanoic acid, with 49.5%. A taxonomic method was used to characterize the strain by studying their phenotypic, phylogenetic, and genomic characteristics. In addition, sequence analysis of the 16S rRNA gene shows that the strain Marseille-Q2617 has 99.94% sequence similarity to Streptococcus mitis. Average nucleotide identity (ANI) analysis for strain Marseille-Q2617T showed the highest similarity of 92.9% with S. mitis. The DNA-DNA hybridization value obtained (50.2%) between strain Marseille-Q2607 and S. mitis, its closest related species, was below the recommended threshold (<70%). Strain Marseille-Q2617T has a genome size of 2.02 Mbp with 40.5 mol% of G + C content. Based on these results, we propose a new species of the genus Streptococcus, for which the name Streptococcus thalassemiae sp. nov., Marseille-Q2617T (=CSUR Q2617 = CECT 30109) was proposed.
Collapse
Affiliation(s)
- Fatou Samba Diouf
- Aix Marseille University, IRD, AP-HM, MEPHI, Marseille, France
- IHU-Mediterranean Infection, Marseille, France
| | - Mamadou Beye
- IHU-Mediterranean Infection, Marseille, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Mapenda Gaye
- Aix Marseille University, IRD, AP-HM, MEPHI, Marseille, France
- IHU-Mediterranean Infection, Marseille, France
| | - Babacar Mbaye
- Aix Marseille University, IRD, AP-HM, MEPHI, Marseille, France
- IHU-Mediterranean Infection, Marseille, France
| | - Stephane Alibar
- Aix Marseille University, IRD, AP-HM, MEPHI, Marseille, France
- IHU-Mediterranean Infection, Marseille, France
| | - Mariema Sarr
- Aix Marseille University, IRD, AP-HM, MEPHI, Marseille, France
- IHU-Mediterranean Infection, Marseille, France
| | - Gregory Dubourg
- Aix Marseille University, IRD, AP-HM, MEPHI, Marseille, France
- IHU-Mediterranean Infection, Marseille, France
| | - Jean-Christophe Lagier
- Aix Marseille University, IRD, AP-HM, MEPHI, Marseille, France
- IHU-Mediterranean Infection, Marseille, France
| | - Cheikh Sokhna
- Aix Marseille University, IRD, AP-HM, MEPHI, Marseille, France
- IHU-Mediterranean Infection, Marseille, France
- Campus Commun UCAD-IRD of Hann, Dakar, Senegal
| | - Florence Fenollar
- IHU-Mediterranean Infection, Marseille, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Pierre-Edouard Fournier
- IHU-Mediterranean Infection, Marseille, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Cheikh Ibrahima Lo
- IHU-Mediterranean Infection, Marseille, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
20
|
Hansen KE, Murali S, Chaves IZ, Suen G, Ney DM. Glycomacropeptide Impacts Amylin-Mediated Satiety, Postprandial Markers of Glucose Homeostasis, and the Fecal Microbiome in Obese Postmenopausal Women. J Nutr 2023; 153:1915-1929. [PMID: 37116657 DOI: 10.1016/j.tjnut.2023.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/08/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND Obesity with metabolic syndrome is highly prevalent and shortens lifespan. OBJECTIVES In a dose-finding crossover study, we evaluated the effect of glycomacropeptide (GMP) on satiety, glucose homeostasis, amino acid concentrations, inflammation, and the fecal microbiome in 13 obese women. METHODS Eligible women were ≤10 yr past menopause with a body mass index [BMI (in kg/m2)] of 28 to 35 and no underlying inflammatory condition affecting study outcomes. Participants consumed GMP supplements (15 g GMP + 10 g whey protein) twice daily for 1 wk and thrice daily for 1 wk, with a washout period between the 2 wk. Women completed a meal tolerance test (MTT) on day 1 (soy MTT) and day 7 (GMP MTT) of each week. During each test, subjects underwent measures of glucose homeostasis, satiety, cytokines, and the fecal microbiome compared with that of usual diet, and rated the acceptability of consuming GMP supplements. RESULTS The mean ± SE age of the 13 women was 57 ± 1 yr, with a median of 8 yr (range: 3-9 yr) past menopause and a BMI of 30 (IQR: 29-32). GMP was highly acceptable to participants, permitting high adherence. Metabolic effects were similar for twice or thrice daily GMP supplementation. Glucose, insulin, and cytokine concentrations were no different. The postprandial area under the curve (AUC) for glucagon concentrations was significantly lower, and the insulin-glucagon ratio was significantly higher with GMP than that with the soy MTT. Postprandial AUC amylin concentration was significantly higher with GMP than that with the soy MTT and correlated with C-peptide (P < 0.001; R2 = 0.52) and greater satiety. Ingestion of GMP supplements twice daily reduced members of the genus Streptococcus (P = 0.009) and thrice daily consumption reduced overall α diversity. CONCLUSIONS GMP is shown to increase amylin concentrations, improve glucose homeostasis, and alter the fecal microbiome. GMP can be a helpful nutritional supplement in obese postmenopausal women at risk for metabolic syndrome. Further investigation is warranted. This trial was registered at clinicaltrials.gov as NCT05551091.
Collapse
Affiliation(s)
- Karen E Hansen
- Department of Medicine, University of Wisconsin School of Medicine & Public Health, Madison, WI, United States
| | - Sangita Murali
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Ibrahim Z Chaves
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Denise M Ney
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
21
|
Gordon-Lipkin EM, Banerjee P, Thompson E, Kruk S, Franco JLM, McGuire PJ. Epitope-level profiling in children with mitochondrial disease reveals limitations in the antibacterial antibody repertoire. Mol Genet Metab 2023; 139:107581. [PMID: 37104980 PMCID: PMC10330363 DOI: 10.1016/j.ymgme.2023.107581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Immunometabolic studies in mice have suggested the importance of oxidative phosphorylation (OXPHOS) in humoral immunity. However, there are important distinctions between murine and human immunity. Furthermore, translational studies on the role of OXPHOS in humoral immunity are nearly absent from the biomedical literature. Children with primary OXPHOS deficiency (i.e., mitochondrial disease, MtD), are an important patient population for demonstrating the functional effects of this bioenergetic defect on humoral immunity. METHODS To define whether OXPHOS deficiency extended to human B cells, we performed extracellular flux analysis on lymphoblastoid B cell lines from children with MtD and controls (N = 4/group). To expand the immune phenotype of B cell OXPHOS deficiency, we conducted a cross-sectional multiplex serology study of the antibacterial antibody repertoire in children with MtD (N = 16) and controls (N = 16) using phage display and immunoprecipitation sequencing (PhIPseq). The PhIPseq library contained >3000 peptides (i.e., epitopes) covering >40 genera and > 150 species of bacteria that infect humans. RESULTS B cell lymphoblastoid cell lines from children with MtD displayed depressed baseline oxygen consumption, ATP production and reserve capacity, indicating that OXPHOS deficiency extended to these key cells in humoral immunity. Characterization of the bacterial exposome revealed comparable bacterial species between the two groups, mostly Streptococcus and Staphylococcus. The most common species of bacteria was S. pneumoniae. By interrogating the antibacterial antibody repertoire, we found that children with MtD had less robust antibody fold changes to common epitopes. Furthermore, we also found that children with MtD failed to show a direct relationship between the number of bacterial epitopes recognized and age, unlike controls. OXPHOS deficiency extends to B cells in children with MtD, leading to limitations in the antibacterial antibody repertoire. Furthermore, the timing of bacterial exposures was asynchronous, suggesting different periods of increased exposure or susceptibility. CONCLUSIONS Overall, the antibacterial humoral response is distinctive in children with MtD, suggesting an important role for OXPHOS in B cell function.
Collapse
Affiliation(s)
- Eliza M Gordon-Lipkin
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Payal Banerjee
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Elizabeth Thompson
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Shannon Kruk
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Jose Luis Marin Franco
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Peter J McGuire
- Metabolism, Infection and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America.
| |
Collapse
|
22
|
Chow EWL, Mei Pang L, Wang Y. Impact of the host microbiota on fungal infections: new possibilities for intervention? Adv Drug Deliv Rev 2023; 198:114896. [PMID: 37211280 DOI: 10.1016/j.addr.2023.114896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Many human fungal pathogens are opportunistic. They are primarily benign residents of the human body and only become infectious when the host's immunity and microbiome are compromised. Bacteria dominate the human microbiome, playing an essential role in keeping fungi harmless and acting as the first line of defense against fungal infection. The Human Microbiome Project, launched by NIH in 2007, has stimulated extensive investigation and significantly advanced our understanding of the molecular mechanisms governing the interaction between bacteria and fungi, providing valuable insights for developing future antifungal strategies by exploiting the interaction. This review summarizes recent progress in this field and discusses new possibilities and challenges. We must seize the opportunities presented by researching bacterial-fungal interplay in the human microbiome to address the global spread of drug-resistant fungal pathogens and the drying pipelines of effective antifungal drugs.
Collapse
Affiliation(s)
- Eve W L Chow
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Li Mei Pang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648
| | - Yue Wang
- A*STAR Infectious Diseases Laboratories (ID Labs), Agency for Science and Technology Research (A*STAR), 8A Biomedical Grove, #05-13 Immunos, Singapore 138648; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore.
| |
Collapse
|
23
|
Patel P, Nandi A, Verma SK, Kaushik N, Suar M, Choi EH, Kaushik NK. Zebrafish-based platform for emerging bio-contaminants and virus inactivation research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162197. [PMID: 36781138 PMCID: PMC9922160 DOI: 10.1016/j.scitotenv.2023.162197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/08/2023] [Indexed: 05/27/2023]
Abstract
Emerging bio-contaminants such as viruses have affected health and environment settings of every country. Viruses are the minuscule entities resulting in severe contagious diseases like SARS, MERS, Ebola, and avian influenza. Recent epidemic like the SARS-CoV-2, the virus has undergone mutations strengthen them and allowing to escape from the remedies. Comprehensive knowledge of viruses is essential for the development of targeted therapeutic and vaccination treatments. Animal models mimicking human biology like non-human primates, rats, mice, and rabbits offer competitive advantage to assess risk of viral infections, chemical toxins, nanoparticles, and microbes. However, their economic maintenance has always been an issue. Furthermore, the redundancy of experimental results due to aforementioned aspects is also in examine. Hence, exploration for the alternative animal models is crucial for risk assessments. The current review examines zebrafish traits and explores the possibilities to monitor emerging bio-contaminants. Additionally, a comprehensive picture of the bio contaminant and virus particle invasion and abatement mechanisms in zebrafish and human cells is presented. Moreover, a zebrafish model to investigate the emerging viruses such as coronaviridae and poxviridae has been suggested.
Collapse
Affiliation(s)
- Paritosh Patel
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India; Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, 18323 Hwaseong, Republic of Korea
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, Odisha, India
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, South Korea.
| |
Collapse
|
24
|
Strauss JC, Haskey N, Ramay HR, Ghosh TS, Taylor LM, Yousuf M, Ohland C, McCoy KD, Ingram RJM, Ghosh S, Panaccione R, Raman M. Weighted Gene Co-Expression Network Analysis Identifies a Functional Guild and Metabolite Cluster Mediating the Relationship between Mucosal Inflammation and Adherence to the Mediterranean Diet in Ulcerative Colitis. Int J Mol Sci 2023; 24:ijms24087323. [PMID: 37108484 PMCID: PMC10138710 DOI: 10.3390/ijms24087323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Diet influences the pathogenesis and clinical course of inflammatory bowel disease (IBD). The Mediterranean diet (MD) is linked to reductions in inflammatory biomarkers and alterations in microbial taxa and metabolites associated with health. We aimed to identify features of the gut microbiome that mediate the relationship between the MD and fecal calprotectin (FCP) in ulcerative colitis (UC). Weighted gene co-expression network analysis (WGCNA) was used to identify modules of co-abundant microbial taxa and metabolites correlated with the MD and FCP. The features considered were gut microbial taxa, serum metabolites, dietary components, short-chain fatty acid and bile acid profiles in participants that experienced an increase (n = 13) or decrease in FCP (n = 16) over eight weeks. WGCNA revealed ten modules containing sixteen key features that acted as key mediators between the MD and FCP. Three taxa (Faecalibacterium prausnitzii, Dorea longicatena, Roseburia inulinivorans) and a cluster of four metabolites (benzyl alcohol, 3-hydroxyphenylacetate, 3-4-hydroxyphenylacetate and phenylacetate) demonstrated a strong mediating effect (ACME: -1.23, p = 0.004). This study identified a novel association between diet, inflammation and the gut microbiome, providing new insights into the underlying mechanisms of how a MD may influence IBD. See clinicaltrials.gov (NCT04474561).
Collapse
Affiliation(s)
- Jaclyn C Strauss
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Natasha Haskey
- Department of Biology, Irving K Barber Faculty of Science, University of British Columbia-Okanagan, 3137 University Way, Kelowna, BC V1V 1V7, Canada
| | - Hena R Ramay
- International Microbiome Centre, HRIC 4AA08 Foothills Campus, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Tarini Shankar Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, College Road, National University of Ireland, T12 K8AF Cork, Ireland
| | - Lorian M Taylor
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Munazza Yousuf
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Christina Ohland
- International Microbiome Centre, HRIC 4AA08 Foothills Campus, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Kathy D McCoy
- International Microbiome Centre, HRIC 4AA08 Foothills Campus, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Richard J M Ingram
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Subrata Ghosh
- APC Microbiome Ireland, College of Medicine and Health, University College Cork, College Road, National University of Ireland, T12 K8AF Cork, Ireland
| | - Remo Panaccione
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Maitreyi Raman
- Department of Medicine, Cumming School of Medicine, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
25
|
Praseetha S, Sukumaran ST, Dan M, Augustus AR, Pandian SK, Sugathan S. The Anti-Biofilm Potential of Linalool, a Major Compound from Hedychium larsenii, against Streptococcus pyogenes and Its Toxicity Assessment in Danio rerio. Antibiotics (Basel) 2023; 12:545. [PMID: 36978412 PMCID: PMC10044342 DOI: 10.3390/antibiotics12030545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
The anti-biofilm and anti-virulence potential of the essential oil (E.O.) extracted from Hedychium larsenii M. Dan & Sathish was determined against Streptococcus pyogenes. A crystal violet assay was employed to quantify the biofilm. Linalool, a monoterpene alcohol from the E.O., showed concentration-dependent biofilm inhibition, with a maximum of 91% at a concentration of 0.004% (v/v). The AlamarBlueTM assay also confirmed Linalool's non-bactericidal anti-biofilm efficacy (0.004%). Linalool treatment impeded micro-colony formation, mature biofilm architecture, surface coverage, and biofilm thickness and impaired cell surface hydrophobicity and EPS production. Cysteine protease synthesis was quantified using the Azocasein assay, and Linalool treatment augmented its production. This suggests that Linalool destabilizes the biofilm matrix. It altered the expression of core regulons covRS, mga, srv, and ropB, and genes associated with virulence and biofilm formation, such as speB, dltA, slo, hasA, and ciaH, as revealed by qPCR analysis. Cytotoxicity analysis using human kidney cells (HEK) and the histopathological analysis in Danio rerio proved Linalool to be a druggable molecule against the biofilms formed by S. pyogenes. This is the first report on Linalool's anti-biofilm and anti-virulence potential against S. pyogenes.
Collapse
Affiliation(s)
- Sarath Praseetha
- Department of Biotechnology, Kariavattom Campus, University of Kerala, Thiruvananthapuram Pin-695 581, Kerala, India
| | - Swapna Thacheril Sukumaran
- Department of Botany, Kariavattom Campus, University of Kerala, Thiruvananthapuram Pin-695 581, Kerala, India
| | - Mathew Dan
- Plant Genetic Resource Division, Jawaharlal Nehru Tropical Botanic Garden & Research Institute, Palode, Thiruvananthapuram Pin-695 562, Kerala, India
| | - Akshaya Rani Augustus
- Department of Biotechnology, Alagappa University, Karaikudi Pin-630 003, Tamil Nadu, India
| | | | - Shiburaj Sugathan
- Department of Botany, Kariavattom Campus, University of Kerala, Thiruvananthapuram Pin-695 581, Kerala, India
| |
Collapse
|
26
|
Lactiplantibacillus plantarum KAU007 Extract Modulates Critical Virulence Attributes and Biofilm Formation in Sinusitis Causing Streptococcus pyogenes. Pharmaceutics 2022; 14:pharmaceutics14122702. [PMID: 36559194 PMCID: PMC9780990 DOI: 10.3390/pharmaceutics14122702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/09/2022] Open
Abstract
Streptococcus pyogenes is one of the most common bacteria causing sinusitis in children and adult patients. Probiotics are known to cause antagonistic effects on S. pyogenes growth and biofilm formation. In the present study, we demonstrated the anti-biofilm and anti-virulence properties of Lactiplantibacillus plantarum KAU007 against S. pyogenes ATCC 8668. The antibacterial potential of L. plantarum KAU007 metabolite extract (LME) purified from the cell-free supernatant of L. plantarum KAU007 was evaluated in terms of minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC). LME was further analyzed for its anti-biofilm potential using crystal violet assay and microscopic examination. Furthermore, the effect of LME was tested on the important virulence attributes of S. pyogenes, such as secreted protease production, hemolysis, extracellular polymeric substance production, and cell surface hydrophobicity. Additionally, the impact of LME on the expression of genes associated with biofilm formation and virulence attributes was analyzed using qPCR. The results revealed that LME significantly inhibited the growth and survival of S. pyogenes at a low concentration (MIC, 9.76 µg/mL; MBC, 39.06 µg/mL). Furthermore, LME inhibited biofilm formation and mitigated the production of extracellular polymeric substance at a concentration of 4.88 μg/mL in S. pyogenes. The results obtained from qPCR and biochemical assays advocated that LME suppresses the expression of various critical virulence-associated genes, which correspondingly affect various pathogenicity markers and were responsible for the impairment of virulence and biofilm formation in S. pyogenes. The non-hemolytic nature of LME and its anti-biofilm and anti-virulence properties against S. pyogenes invoke further investigation to study the role of LME as an antibacterial agent to combat streptococcal infections.
Collapse
|
27
|
Chatterjee S, Damle SG, Iyer N. A study on genetic and mutans streptococcal transmissibility of dental caries. J Oral Maxillofac Pathol 2022; 26:604. [PMID: 37082046 PMCID: PMC10112085 DOI: 10.4103/jomfp.jomfp_201_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/10/2022] [Accepted: 07/06/2022] [Indexed: 04/22/2023] Open
Abstract
Background Dental caries is characterized by an interplay between environmental and genetic factors. Aim The aim of this study was to analyse the transmissibilities of high caries risk chromosomal loci at 5q 12.1-13.3 and low caries risk chromosomal loci at 13q31.1 and Streptococcus mutans (S. mutans) in family units. Materials This prospective cohort study was performed on 56 families grouped into four: (a) Group I: 18 families of children with caries affected primary teeth; (b) Group II: 21 families of children with caries in permanent teeth; (c) Group III: 6 families of children with no caries in primary teeth and (d) Group IV: 12 families of children with no caries in permanent teeth. Blood, saliva and plaque samples were collected from consenting study participants. Isolated DNAs were subjected to polymerase chain reactions using suitable primers. Data collected was analysed with ANOVA and Chi-squared test. Results Wide expression of chromosome loci 5q12.1-13.3 was obtained in both blood and saliva samples. For chromosome loci 13q31.1, no expression was found in saliva samples, hence indicating its local absence. For the GtfB expression, transmissibility was common for a single band expressing S. mutans. Conclusion This study reflects upon newer findings in the field of genetic research on dental caries.
Collapse
Affiliation(s)
- Shailja Chatterjee
- Department of Oral and Maxillofacial Pathology, Yamuna Institute of Dental Sciences and Research, Yamuna Nagar, Haryana, India
| | - Satyawan G. Damle
- Former Vice-chancellor, M. M. (Deemed to be) University, Mullana, Ambala, Haryana, India
| | - Nageshwar Iyer
- Former Principal, MM College of Dental Sciences and Research, M. M. (Deemed to be) University, Mullana, Ambala, Haryana, India
| |
Collapse
|
28
|
Bergmann S, Fulde M, Siemens N. Editorial: Streptococci in infectious diseases - pathogenic mechanisms and host immune responses. Front Microbiol 2022; 13:988671. [PMID: 36033862 PMCID: PMC9405650 DOI: 10.3389/fmicb.2022.988671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Simone Bergmann
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Marcus Fulde
- Centre for Infection Medicine, Institute of Microbiology and Epizootics, Free University of Berlin, Berlin, Germany
| | - Nikolai Siemens
- Department of Molecular Genetics and Infection Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
29
|
Airborne Prokaryotic, Fungal and Eukaryotic Communities of an Urban Environment in the UK. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioaerosols often contain human pathogens and allergens affecting public health. However, relatively little attention has been given to bioaerosols compared with non-biological aerosols. In this study, we aimed to identify bioaerosol compositions in Manchester, UK by applying high throughput sequencing methods and to find potential sources. Samples were collected at Manchester Air Quality Super Site at the Firs Environmental Research Station in November 2019 and in February 2020. Total DNA has been extracted and sequenced targeting the 16S rRNA gene of prokaryotes, ITS region of fungal DNA and 18S rRNA gene of eukaryotes. We found marine environment-associated bacteria and archaea were relatively more abundant in the February 2020 samples compared with the November 2019 samples, consistent with the North West marine origin based on wind back-trajectory analysis. In contrast, an OTU belonging to Methylobacterium, which includes many species resistant to heavy metals, was relatively more abundant in November 2019 when there were higher metal concentrations. Fungal taxa that fruit all year were relatively more abundant in the February 2020 samples while autumn fruiting species generally had higher relative abundance in the November 2019 samples. There were higher relative abundances of land plants and algae in the February 2020 samples based on 18S rRNA gene sequencing. One of the OTUs belonging to the coniferous yew genus Taxus was more abundant in the February 2020 samples agreeing with the usual pollen season of yews in the UK which is from mid-January until late April. The result from this study suggests a potential application of bioaerosol profiling for tracing the source of atmospheric particles.
Collapse
|
30
|
Krishnamoorthy S, Steiger AK, Nelson WC, Egbert RG, Wright AT. An activity-based probe targeting the streptococcal virulence factor C5a peptidase. Chem Commun (Camb) 2022; 58:8113-8116. [PMID: 35770883 DOI: 10.1039/d2cc01517j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of profiling strategies to provide high resolution understanding of enzymes involved in bacterial infections remains an important need. These strategies help resolve enzyme mechanisms of actions and can guide therapeutic development. We have developed a selective new activity-based probe (ABP) targeting a highly conserved surface bound enzyme, C5a peptidase, present in several pathogenic Streptococci. We demonstrate our probe inhibits C5a peptidase activity and enables detection of C5a peptidase expressing pathogens in microbial mixtures. Our profiling strategy selectively labels the pathogen by phenotype and enables specific isolation of the live bacteria providing a route for further in-depth investigation. This study paves the way towards a rapid detection, isolation, and characterization pipeline for existing and emerging strains of most common pathogenic Streptococci.
Collapse
Affiliation(s)
| | - Andrea K Steiger
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
| | - William C Nelson
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
| | - Robert G Egbert
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
| | - Aaron T Wright
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA. .,The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, 99163, USA
| |
Collapse
|
31
|
Abstract
Recent rapid and large-scale urbanization has had a profound impact on human lifestyles and is associated with an increased risk of many diseases. Recent studies have revealed large differences in the human gut microbiota across populations in countries at different stages of urbanization. However, few studies have analyzed the impact of ongoing urbanization within the same geographic region. In this study, we sampled 214 participants in communities of different urbanization levels within two provinces of China and reconstructed draft prokaryotic genomes with metagenome sequences. The genomes were clustered into 447 species-level operational taxonomic units (OTUs), among which 196 did not have genomes in public reference databases according to the GTDB-Tk pipeline. The novel OTUs comprised 19.1% abundance in rural participants and 16.0% in urban participants, increasing the proportion of classified reads from 47.6% to 65.3% across all samples. Among the unknown OTUs, 26 OTUs present in rural samples were absent in urban participants, while 70 unknown OTUs were more abundant in rural than urban participants, suggesting potential loss and growth suppression of novel human symbionts during urbanization. Moreover, there were a higher number of genes, especially transporters, identified in genomes assembled from urban samples. This change in gene functionality indicates that urbanization not only altered the community structure of the human gut microbiota but also impacted its functional capacity. Taken together, these data show a dramatic change in the microbiota with urbanization and suggest the importance of cataloging microbial diversity from rural populations while these communities still exist. IMPORTANCE Previous studies have reported the differences in human gut microbiota across populations of different urbanization levels, but most of the studies focused on populations across different geographic regions. In this study, we analyzed the impact of ongoing urbanization in neighborhoods within the same geographic region. By assembling shotgun metagenome sequences, we reconstructed prokaryotic genomes from human gut microbiota and found that the novel bacterial OTUs were less abundant and less prevalent in urban participants than in rural participants, indicating potential loss and suppression of novel human symbionts during urbanization. Genes, including transporters and antibiotic resistance genes, were enriched in genomes of urban origins, suggesting change in functional potential of the microbiota. These findings suggest the significant influence of urbanization on human gut microbiota and the necessity of exploring the microbial diversity of rural populations.
Collapse
|
32
|
Glucosylceramide Changes Bacterial Metabolism and Increases Gram-Positive Bacteria through Tolerance to Secondary Bile Acids In Vitro. Int J Mol Sci 2022; 23:ijms23105300. [PMID: 35628110 PMCID: PMC9141989 DOI: 10.3390/ijms23105300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/12/2022] Open
Abstract
Glucosylceramide is present in many foods, such as crops and fermented foods. Most glucosylceramides are not degraded or absorbed in the small intestine and pass through the large intestine. Glucosylceramide exerts versatile effects on colon tumorigenesis, skin moisture, cholesterol metabolism and improvement of intestinal microbes in vivo. However, the mechanism of action has not yet been fully elucidated. To gain insight into the effect of glucosylceramide on intestinal microbes, glucosylceramide was anaerobically incubated with the dominant intestinal microbe, Blautia coccoides, and model intestinal microbes. The metabolites of the cultured broth supplemented with glucosylceramide were significantly different from those of broth not treated with glucosylceramide. The number of Gram-positive bacteria was significantly increased upon the addition of glucosylceramide compared to that in the control. Glucosylceramide endows intestinal microbes with tolerance to secondary bile acid. These results first demonstrated that glucosylceramide plays a role in the modification of intestinal microbes.
Collapse
|
33
|
Boutet E, Djerroud S, Perreault J. Small RNAs beyond Model Organisms: Have We Only Scratched the Surface? Int J Mol Sci 2022; 23:ijms23084448. [PMID: 35457265 PMCID: PMC9029176 DOI: 10.3390/ijms23084448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/27/2023] Open
Abstract
Small RNAs (sRNAs) are essential regulators in the adaptation of bacteria to environmental changes and act by binding targeted mRNAs through base complementarity. Approximately 550 distinct families of sRNAs have been identified since their initial characterization in the 1980s, accelerated by the emergence of RNA-sequencing. Small RNAs are found in a wide range of bacterial phyla, but they are more prominent in highly researched model organisms compared to the rest of the sequenced bacteria. Indeed, Escherichia coli and Salmonella enterica contain the highest number of sRNAs, with 98 and 118, respectively, with Enterobacteriaceae encoding 145 distinct sRNAs, while other bacteria families have only seven sRNAs on average. Although the past years brought major advances in research on sRNAs, we have perhaps only scratched the surface, even more so considering RNA annotations trail behind gene annotations. A distinctive trend can be observed for genes, whereby their number increases with genome size, but this is not observable for RNAs, although they would be expected to follow the same trend. In this perspective, we aimed at establishing a more accurate representation of the occurrence of sRNAs in bacteria, emphasizing the potential for novel sRNA discoveries.
Collapse
|
34
|
Zhang B, Jiang M, Zhao J, Song Y, Du W, Shi J. The Mechanism Underlying the Influence of Indole-3-Propionic Acid: A Relevance to Metabolic Disorders. Front Endocrinol (Lausanne) 2022; 13:841703. [PMID: 35370963 PMCID: PMC8972051 DOI: 10.3389/fendo.2022.841703] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
The increasing prevalence of metabolic syndrome has become a serious public health problem. Certain bacteria-derived metabolites play a key role in maintaining human health by regulating the host metabolism. Recent evidence shows that indole-3-propionic acid content can be used to predict the occurrence and development of metabolic diseases. Supplementing indole-3-propionic acid can effectively improve metabolic disorders and is considered a promising metabolite. Therefore, this article systematically reviews the latest research on indole-3-propionic acid and elaborates its source of metabolism and its association with metabolic diseases. Indole-3-propionic acid can improve blood glucose and increase insulin sensitivity, inhibit liver lipid synthesis and inflammatory factors, correct intestinal microbial disorders, maintain the intestinal barrier, and suppress the intestinal immune response. The study of the mechanism of the metabolic benefits of indole-3-propionic acid is expected to be a potential compound for treating metabolic syndrome.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- College of Life Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Minjie Jiang
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Song
- Zhejiang University of Traditional Chinese Medicine, Hangzhou, China
| | - Weidong Du
- Zhejiang Traditional Chinese Medicine Hospital, Hangzhou, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
35
|
Scheithauer TP, Davids M, Winkelmeijer M, Verdoes X, Aydin Ö, de Brauw M, van de Laar A, Meijnikman AS, Gerdes VE, van Raalte D, Herrema H, Nieuwdorp M. Compensatory intestinal antibody response against pro-inflammatory microbiota after bariatric surgery. Gut Microbes 2022; 14:2031696. [PMID: 35130127 PMCID: PMC8824225 DOI: 10.1080/19490976.2022.2031696] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are growing burdens for individuals and the health-care system. Bariatric surgery is an efficient, but drastic treatment to reduce body weight, normalize glucose values, and reduce low-grade inflammation. The gut microbiome, which is in part controlled by intestinal antibodies, such as IgA, is involved in the development of both conditions. Knowledge of the effect of bariatric surgery on systemic and intestinal antibody response is limited. Here, we determined the fecal antibody and gut microbiome response in 40 T2D and non-diabetic (ND) obese individuals that underwent bariatric surgery (N = 40). Body weight, fasting glucose concentrations and inflammatory parameters decreased after bariatric surgery, whereas pro-inflammatory bacterial species such as lipopolysaccharide (LPS), and flagellin increased in the feces. Simultaneously, concentrations of LPS- and flagellin-specific intestinal IgA levels increased with the majority of pro-inflammatory bacteria coated with IgA after surgery. Finally, serum antibodies decreased in both groups, along with a lower inflammatory tone. We conclude that intestinal rearrangement by bariatric surgery leads to expansion of typical pro-inflammatory bacteria, which may be compensated by an improved antibody response. Although further evidence and mechanistic insights are needed, we postulate that this apparent compensatory antibody response might help to reduce systemic inflammation by neutralizing intestinal immunogenic components and thereby enhance intestinal barrier function after bariatric surgery.
Collapse
Affiliation(s)
- Torsten P.M. Scheithauer
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,CONTACT Torsten P.M. Scheithauer Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Location AMC, Amsterdam, AZ1105, The Netherlands
| | - Mark Davids
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Maaike Winkelmeijer
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Xanthe Verdoes
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Ömrüm Aydin
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Maurits de Brauw
- Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | | | - Abraham S. Meijnikman
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands
| | - Victor E.A. Gerdes
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Daniël van Raalte
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Diabetes Center; Department of Internal Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Hilde Herrema
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of (Experimental) Vascular Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands,Department of Surgery, Spaarne Gasthuis, Hoofddorp, The Netherlands,Diabetes Center; Department of Internal Medicine, Amsterdam University Medical Center (UMC), Amsterdam, The Netherlands
| |
Collapse
|
36
|
Xie M, Pu H, Hu Q, Su A, Mariga AM, Li X, Yang W. Effects of A
w
Storage Condition on Quality Deterioration of Dried Cabbages. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Minhao Xie
- Key Laboratory of Grains and Oils Quality Control and Processing Collaborative Innovation Center for Modern Grain Circulation and Safety and College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Haoliang Pu
- Key Laboratory of Grains and Oils Quality Control and Processing Collaborative Innovation Center for Modern Grain Circulation and Safety and College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Qiuhui Hu
- Key Laboratory of Grains and Oils Quality Control and Processing Collaborative Innovation Center for Modern Grain Circulation and Safety and College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Anxiang Su
- Key Laboratory of Grains and Oils Quality Control and Processing Collaborative Innovation Center for Modern Grain Circulation and Safety and College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| | - Alfred Mugambi Mariga
- School of Agriculture and Food Science Meru University of Science Technology P.O. Box 972‐60400 Meru Kenya
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China
| | - Wenjian Yang
- Key Laboratory of Grains and Oils Quality Control and Processing Collaborative Innovation Center for Modern Grain Circulation and Safety and College of Food Science and Engineering, Nanjing University of Finance and Economics Nanjing 210023 China
| |
Collapse
|
37
|
First Report of Streptococcus ruminantium in Wildlife: Phenotypic Differences with a Spanish Domestic Ruminant Isolate. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Streptococcus ruminantium is a recent reclassification of the former Streptococcus suis serovar 33. Although knowledge about S. suis is extensive, information on S. ruminantium host range and pathogenic potential is still scarce. This bacterium has been isolated from lesions in domestic ruminants, but there are no reports in wild animals. Here, we provide information on lesions associated with S. ruminantium in Pyrenean chamois (Rupicapra pyrenaica) and domestic sheep from NE Spain, as well as phenotypic biopatterns and antimicrobial resistance (AMR) of the isolates. Overall, lesions caused by S. ruminantium were similar to those caused by S. suis, excluding polyserositis. Heterogeneity of the phenotypic profiles was observed within the S. ruminantium strains by VITEK-2, resulting in only two tests common to all S. ruminantium isolates and different from S. suis: Alpha-Galactosidase and Methyl-B-D-Glucopyranoside, both positive for S. suis and negative for S. ruminantium strains. Isolates from Pyrenean chamois were susceptible to all antimicrobials tested, except danofloxacin, whereas the domestic sheep isolate was resistant to tetracycline. In conclusion, S. ruminantium can cause infection and be associated with pathology in both wild and domestic ruminants. Due to its phenotypic diversity, a specific PCR is optimal for identification in routine diagnosis.
Collapse
|
38
|
Lemaire C, Le Gallou B, Lanotte P, Mereghetti L, Pastuszka A. Distribution, Diversity and Roles of CRISPR-Cas Systems in Human and Animal Pathogenic Streptococci. Front Microbiol 2022; 13:828031. [PMID: 35173702 PMCID: PMC8841824 DOI: 10.3389/fmicb.2022.828031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/10/2022] [Indexed: 12/26/2022] Open
Abstract
Streptococci form a wide group of bacteria and are involved in both human and animal pathologies. Among pathogenic isolates, differences have been highlighted especially concerning their adaptation and virulence profiles. CRISPR-Cas systems have been identified in bacteria and many streptococci harbor one or more systems, particularly subtypes I-C, II-A, and III-A. Since the demonstration that CRISPR-Cas act as an adaptive immune system in Streptococcus thermophilus, a lactic bacteria, the diversity and role of CRISPR-Cas were extended to many germs and functions were enlarged. Among those, the genome editing tool based on the properties of Cas endonucleases is used worldwide, and the recent attribution of the Nobel Prize illustrates the importance of this tool in the scientific world. Another application is CRISPR loci analysis, which allows to easily characterize isolates in order to understand the interactions of bacteria with their environment and visualize species evolution. In this review, we focused on the distribution, diversity and roles of CRISPR-Cas systems in the main pathogenic streptococci.
Collapse
Affiliation(s)
- Coralie Lemaire
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Brice Le Gallou
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Philippe Lanotte
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
- *Correspondence: Philippe Lanotte,
| | - Laurent Mereghetti
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| | - Adeline Pastuszka
- Université de Tours, INRAE, Infectiologie et Santé Publique, BRMF, Tours, France
- Service de Bactériologie-Virologie, Centre Hospitalier Régional Universitaire de Tours, Tours, France
| |
Collapse
|
39
|
Lee IPA, Andam CP. Frequencies and characteristics of genome-wide recombination in Streptococcus agalactiae, Streptococcus pyogenes, and Streptococcus suis. Sci Rep 2022; 12:1515. [PMID: 35087075 PMCID: PMC8795270 DOI: 10.1038/s41598-022-04995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/05/2022] [Indexed: 11/08/2022] Open
Abstract
Streptococcus consists of ecologically diverse species, some of which are important pathogens of humans and animals. We sought to quantify and compare the frequencies and characteristics of within-species recombination in the pan-genomes of Streptococcus agalactiae, Streptococcus pyogenes and Streptococcus suis. We used 1081, 1813 and 1204 publicly available genome sequences of each species, respectively. Based on their core genomes, S. agalactiae had the highest relative rate of recombination to mutation (11.5743) compared to S. pyogenes (1.03) and S. suis (0.57). The proportion of the species pan-genome that have had a history of recombination was 12.85%, 24.18% and 20.50% of the pan-genomes of each species, respectively. The composition of recombining genes varied among the three species, and some of the most frequently recombining genes are implicated in adhesion, colonization, oxidative stress response and biofilm formation. For each species, a total of 22.75%, 29.28% and 18.75% of the recombining genes were associated with prophages. The cargo genes of integrative conjugative elements and integrative and mobilizable elements contained genes associated with antimicrobial resistance and virulence. Homologous recombination and mobilizable pan-genomes enable the creation of novel combinations of genes and sequence variants, and the potential for high-risk clones to emerge.
Collapse
Affiliation(s)
| | - Cheryl P Andam
- University at Albany, State University of New York, New York, 12222, USA.
| |
Collapse
|
40
|
Wu S, Bhat ZF, Gounder RS, Mohamed Ahmed IA, Al-Juhaimi FY, Ding Y, Bekhit AEDA. Effect of Dietary Protein and Processing on Gut Microbiota-A Systematic Review. Nutrients 2022; 14:453. [PMID: 35276812 PMCID: PMC8840478 DOI: 10.3390/nu14030453] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022] Open
Abstract
The effect of diet on the composition of gut microbiota and the consequent impact on disease risk have been of expanding interest. The present review focuses on current insights of changes associated with dietary protein-induced gut microbial populations and examines their potential roles in the metabolism, health, and disease of animals. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol was used, and 29 highly relevant articles were obtained, which included 6 mouse studies, 7 pig studies, 15 rat studies, and 1 in vitro study. Analysis of these studies indicated that several factors, such as protein source, protein content, dietary composition (such as carbohydrate content), glycation of protein, processing factors, and protein oxidation, affect the digestibility and bioavailability of dietary proteins. These factors can influence protein fermentation, absorption, and functional properties in the gut and, consequently, impact the composition of gut microbiota and affect human health. While gut microbiota can release metabolites that can affect host physiology either positively or negatively, the selection of quality of protein and suitable food processing conditions are important to have a positive effect of dietary protein on gut microbiota and human health.
Collapse
Affiliation(s)
- Shujian Wu
- Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China;
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, China
- Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangzhou 510070, China
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, Guangzhou 510070, China
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Jammu 180009, India;
| | - Rochelle S. Gounder
- Department of Food Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (I.A.M.A.); (F.Y.A.-J.)
| | - Fahad Y. Al-Juhaimi
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia; (I.A.M.A.); (F.Y.A.-J.)
| | - Yu Ding
- Department of Food Science and Technology, Institute of Food Safety and Nutrition, College of Science & Engineering, Jinan University, Guangzhou 510632, China
| | | |
Collapse
|
41
|
Interactions of Muscovy duck reovirus, gut microbiota, and host innate immunity: Transcriptome and gut microbiota analysis. Vet Microbiol 2021; 264:109286. [PMID: 34856425 DOI: 10.1016/j.vetmic.2021.109286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/20/2022]
Abstract
It has been shown that Muscovy duck reovirus (MDRV) infection causes severe intestinal barrier damage and intestinal mucosal immune suppression. The health and balance of gut microbes is essential for the progression of intestinal infectious diseases. To investigate the interaction of MDRV, intestinal bacteria with host intestinal innate immunity, an MDRV contact-infection model was established in this study. High-throughput sequencing technology was used to sequence 16S rDNA and transcripts in ileal samples from experimental Muscovy ducklings. Our results suggest that intestinal opportunistic pathogens such as Streptococcus and Corynebacterium proliferated massively in MDRV-infected Muscovy ducklings. The body initiates antiviral and antibacterial immunity and actively fights the infection of gut microbes. The synthesis of peptidoglycan, lipopolysaccharide, and flagellin by intestinal bacteria activates the Toll-like receptor signaling pathway resulting in increased secretion of IFN-β, IL-1β, and IL-8. The RIG-I-like receptor signaling pathway is an important signaling pathway for the interaction between MDRV and the host. At the same time, we also observed that multiple genes in the JAK-STAT signaling pathway were significantly different. These genes are important targets for studying the immunosuppression caused by MDRV. In conclusion, we analyzed the interaction of MDRV, intestinal flora and host immune system during MDRV infection, which provides a basis for the further study on the mechanism of intestinal immunosuppression caused by MDRV.
Collapse
|
42
|
He Q, Huang J, Zheng T, Lin D, Zhang H, Li J, Sun Z. Treatment with mixed probiotics induced, enhanced and diversified modulation of the gut microbiome of healthy rats. FEMS Microbiol Ecol 2021; 97:6430860. [PMID: 34792102 DOI: 10.1093/femsec/fiab151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022] Open
Abstract
Previous studies demonstrated that multi-strain probitics could more strongly regulate intestinal cytokines and the mucosal barrier than the individual ingredient strains. Nevertheless, the potentially different gut microbiome modulation effects between multi-strain and single-strain probiotics treatments remain unexplored. Here, we administered three different Lactiplantibacillus plantarum strains or their mixture to healthy Wistar rats and compared the shift of gut microbiome among the treatment groups. A 4-week intervention with mixed probiotics induced more drastic and diversified gut microbiome modulation than single-strain probiotics administration (alpha diversity increased 8% and beta diversity increased 18.7%). The three single-strain probiotics treatments all converged the gut microbiota, decreasing between-individual beta diversity by 12.7% on average after the treatment, while multi-strain probiotics treatment diversified the gut microbiome and increased between-individual beta diversity by 37.2% on average. Covariation analysis of the gut microbes suggests that multi-strain probiotics could exert synergistic, modified and enhanced modulation effects on the gut microbiome based on strain-specific modulation effects of probiotics. The more heterogeneous responses to the multi-strain probiotics treatment suggest that future precision microbiome modulation should consider the potential interactions of the probiotic strains, and personalized response to probiotic formulas due to heterogenous gut microbial compositions.
Collapse
Affiliation(s)
- Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jiating Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Tingting Zheng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Dan Lin
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
| | - Jun Li
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture, Inner Mongolia Agricultural University, Huhhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
43
|
Awussi AA, Roux E, Humeau C, Hafeez Z, Maigret B, Chang OK, Lecomte X, Humbert G, Miclo L, Genay M, Perrin C, Dary-Mourot A. Role of the Sortase A in the Release of Cell-Wall Proteinase PrtS in the Growth Medium of Streptococcus thermophilus 4F44. Microorganisms 2021; 9:microorganisms9112380. [PMID: 34835505 PMCID: PMC8623714 DOI: 10.3390/microorganisms9112380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
Growth of the lactic acid bacterium Streptococcus thermophilus in milk depends on its capacity to hydrolyze proteins of this medium through its surface proteolytic activity. Thus, strains exhibiting the cell envelope proteinase (CEP) PrtS are able to grow in milk at high cellular density. Due to its LPNTG motif, which is possibly the substrate of the sortase A (SrtA), PrtS is anchored to the cell wall in most S. thermophilus strains. Conversely, a soluble extracellular PrtS activity has been reported in the strain 4F44. It corresponds, in fact, to a certain proportion of PrtS that is not anchored to the cell wall but rather is released in the growth medium. The main difference between PrtS of strain 4F44 (PrtS4F44) and other PrtS concerns the absence of a 32-residue imperfect duplication in the prodomain of the CEP, postulated as being required for the maturation and correct subsequent anchoring of PrtS. In fact, both mature (without the prodomain at the N-terminal extremity) and immature (with the prodomain) forms are found in the soluble PrtS4F44 form along with an intact LPNTG at their C-terminal extremity. Investigations we present in this work show that (i) the imperfect duplication is not implied in PrtS maturation; (ii) the maturase PrtM is irrelevant in PrtS maturation which is probably automaturated; and (iii) SrtA allows for the PrtS anchoring in S. thermophilus but the SrtA of strain 4F44 (SrtA4F44) displays an altered activity.
Collapse
Affiliation(s)
- Ahoefa Ablavi Awussi
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Emeline Roux
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | | | - Zeeshan Hafeez
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Bernard Maigret
- CNRS, Inria, LORIA, Université de Lorraine, F-54000 Nancy, France;
| | - Oun Ki Chang
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
- Hazard Substance Analysis Division, Gwangju Regional Office of Food and Drug Safety, Gwangju 10031, Korea
| | - Xavier Lecomte
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Gérard Humbert
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Laurent Miclo
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Magali Genay
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Clarisse Perrin
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
| | - Annie Dary-Mourot
- CALBINOTOX, Université de Lorraine, F-54000 Nancy, France; (A.A.A.); (E.R.); (Z.H.); (O.K.C.); (X.L.); (G.H.); (L.M.); (M.G.); (C.P.)
- Correspondence:
| |
Collapse
|
44
|
Ronco T, Aragao FM, Saaby L, Christensen JB, Permin A, Williams AR, Thamsborg SM, Olsen RH. A new phenothiazine derivate is active against Clostridioides difficile and shows low cytotoxicity. PLoS One 2021; 16:e0258207. [PMID: 34597343 PMCID: PMC8486139 DOI: 10.1371/journal.pone.0258207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/21/2021] [Indexed: 01/01/2023] Open
Abstract
The rapid evolution of antibiotic resistance in Clostridioides difficile and the consequent effects on prevention and treatment of C. difficile infections (CDIs) are matters of concern for public health. Thioridazine, a compound belonging to the phenothiazine group, has previous shown antimicrobial activity against C. difficile. The purpose of this present study was to investigate the potential of a novel phenothiazine derivative, JBC 1847, as an oral antimicrobial for treatment of intestinal pathogens and CDIs. The minimal inhibition concentration and the minimum bactericidal concentration of JBC 1847 against C. difficile ATCC 43255 were determined 4 μg/mL and high tolerance after oral administration in mice was observed (up to 100 mg/kg bodyweight). Pharmacokinetic modeling was conducted in silico using GastroPlusTM, predicting low (< 10%) systemic uptake after oral exposure and corresponding low Cmax in plasma. Impact on the intestinal bacterial composition after four days of treatment was determined by 16s rRNA MiSeq sequencing and revealed only minor impact on the microbiota in non-clinically affected mice, and there was no difference between colony-forming unit (CFU)/gram fecal material between JBC 1847 and placebo treated mice. The cytotoxicity of the compound was assessed in Caco-2 cell-line assays, in which indication of toxicity was not observed in concentrations up to seven times the minimal bactericidal concentration. In conclusion, the novel phenothiazine derivative demonstrated high antimicrobial activity against C. difficile, had low predicted gastrointestinal absorption, low intestinal (in vitro) cytotoxicity, and only induced minor changes of the healthy microbiota, altogether supporting that JBC 1847 could represent a novel antimicrobial candidate. The clinical importance hereof calls for future experimental studies in CDI models.
Collapse
Affiliation(s)
- Troels Ronco
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Francisca Maria Aragao
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Saaby
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jørn B. Christensen
- Department of Chemistry, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stig M. Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rikke H. Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
45
|
Özkan ER, Öztürk Hİ, Demirci T, Akın N. Detection of biofilm formation, virulence factor genes, antibiotic-resistance, adherence properties, and some beneficial properties of cheese origin S. infantarius, S. gallolyticus, and S. lutetiensis strains belonging to the S. bovis/S. equinus complex. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
46
|
Virulence factors and antibiotic resistance properties of Streptococcus species isolated from hospital cockroaches. 3 Biotech 2021; 11:321. [PMID: 34194905 DOI: 10.1007/s13205-021-02874-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 06/01/2021] [Indexed: 10/21/2022] Open
Abstract
Hospital cockroaches are probable sources of pathogenic bacteria. The present investigation was performed to assess the antibiotic resistance properties and distribution of virulence factors in the Streptococcus spp. isolated from hospital cockroaches. Six hundred and sixty cockroach samples were collected. Cockroaches were washed with normal saline, and the achieved saline was used for bacterial culture. Isolated Streptococcus spp. were subjected to disk diffusion. The distribution of virulence factors and antibiotic resistance genes were assessed using a polymerase chain reaction. The prevalence of S. pyogenes, S. agalactiae, and S. pneumonia amongst examined samples was 4.82%, 1.66%, and 6.96%, respectively. Cfb (53.93%), cyl (52.8%), scaa (51.68%) and glna (50.56%) were the most commonly detected virulence factors. Pbp2b (71.91%), pbp2x (58.42%), mefA (46.06%), ermB (46.06%) and tetM (46.06%) were the most commonly detected antibiotic resistance genes. Streptococcal spp. harbored the highest prevalence of resistance against tetracycline (80.89%), trimethoprim (65.16%), and penicillin (56.17%). To the best of our knowledge, this is the first prevalence report of virulence factors and antibiotic resistance genes in the Streptococcal spp. isolated from American, German, and oriental hospital cockroaches in Iran. Our findings indicated a certain role for cockroaches in nosocomial pathogens transmission in the hospital environment.
Collapse
|
47
|
Fu DJ, Ramachandran A, Miller C. Streptococcus pluranimalium meningoencephalitis in a horse. J Vet Diagn Invest 2021; 33:956-960. [PMID: 34109867 DOI: 10.1177/10406387211023465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A 3-y-old, female Quarter Horse with a history of acute neurologic signs was found dead and was submitted for postmortem examination. Areas of petechial and ecchymotic hemorrhage were present on cross-sections of the cerebrum, cerebellum, and brainstem. Histologic examination of the brain revealed severe, purulent meningoencephalitis and vasculitis with a myriad of intralesional gram-positive cocci. Streptococcus pluranimalium was identified from formalin-fixed, paraffin-embedded tissue obtained from sites with active lesions by PCR and nucleotide sequencing of bacterial 16S ribosomal RNA. S. pluranimalium should be considered as a cause of meningoencephalitis in a horse.
Collapse
Affiliation(s)
- Dah-Jiun Fu
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Akhilesh Ramachandran
- Oklahoma Animal Disease Diagnostic Laboratory, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Craig Miller
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
48
|
Jabbour N, Lartigue MF. An Inventory of CiaR-Dependent Small Regulatory RNAs in Streptococci. Front Microbiol 2021; 12:669396. [PMID: 34113330 PMCID: PMC8186281 DOI: 10.3389/fmicb.2021.669396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/30/2021] [Indexed: 01/01/2023] Open
Abstract
Bacteria adapt to the different environments encountered by rapid and tightly controlled regulations involving complex networks. A first line of control is transcriptional with regulators such as two-component systems (TCSs) that respond to physical and chemical perturbations. It is followed by posttranscriptional regulations in which small regulatory RNAs (sRNAs) may affect RNA translation. Streptococci are opportunistic pathogens for humans and farm animals. The TCS CiaRH is highly conserved among this genus and crucial in bacterial survival under stressful conditions. In several streptococcal species, some sRNAs belong to the CiaRH regulon and are called csRNAs for cia-dependent sRNAs. In this review, we start by focusing on the Streptococcus species harboring a CiaRH TCS. Then the role of CiaRH in streptococcal pathogenesis is discussed in the context of recent studies. Finally, we give an overview of csRNAs and their functions in Streptococci with a focus on their importance in bacterial adaptation and virulence.
Collapse
Affiliation(s)
| | - Marie-Frédérique Lartigue
- Université de Tours, INRAE, ISP, Tours, France.,Centre Hospitalier Universitaire de Tours, Service de Bactériologie, Virologie, et Hygiène Hospitalière, Tours, France
| |
Collapse
|
49
|
Rousseaux A, Brosseau C, Le Gall S, Piloquet H, Barbarot S, Bodinier M. Human Milk Oligosaccharides: Their Effects on the Host and Their Potential as Therapeutic Agents. Front Immunol 2021; 12:680911. [PMID: 34108974 PMCID: PMC8180913 DOI: 10.3389/fimmu.2021.680911] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Breastmilk is known to be very important for infants because it provides nutrients and immunological compounds. Among these compounds, human milk oligosaccharides (HMOs) represent the third most important component of breastmilk after lipids and lactose. Several experiments demonstrated the beneficial effects of these components on the microbiota, the immune system and epithelial barriers, which are three major biological systems. Indeed, HMOs induce bacterial colonization in the intestinal tract, which is beneficial for health. The gut bacteria can act directly and indirectly on the immune system by stimulating innate immunity and controlling inflammatory reactions and by inducing an adaptive immune response and a tolerogenic environment. In parallel, HMOs directly strengthen the intestinal epithelial barrier, protecting the host against pathogens. Here, we review the molecular mechanisms of HMOs in these different compartments and highlight their potential use as new therapeutic agents, especially in allergy prevention.
Collapse
Affiliation(s)
- Anaïs Rousseaux
- INRAE, Biopolyméres Interactions Assemblages, Nantes, France
| | - Carole Brosseau
- INRAE, Biopolyméres Interactions Assemblages, Nantes, France
| | - Sophie Le Gall
- INRAE, Biopolyméres Interactions Assemblages, Nantes, France.,INRAE, Bioressources: Imagerie, Biochimie & Structure, Nantes, France
| | - Hugues Piloquet
- Centre Hospitalier Universitaire Nantes, UMR1280 PhAN, Nantes, France
| | | | - Marie Bodinier
- INRAE, Biopolyméres Interactions Assemblages, Nantes, France
| |
Collapse
|
50
|
Husso A, Lietaer L, Pessa-Morikawa T, Grönthal T, Govaere J, Van Soom A, Iivanainen A, Opsomer G, Niku M. The Composition of the Microbiota in the Full-Term Fetal Gut and Amniotic Fluid: A Bovine Cesarean Section Study. Front Microbiol 2021; 12:626421. [PMID: 33995290 PMCID: PMC8119756 DOI: 10.3389/fmicb.2021.626421] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
The development of a healthy intestinal immune system requires early microbial exposure. However, it remains unclear whether microbial exposure already begins at the prenatal stage. Analysis of such low microbial biomass environments are challenging due to contamination issues. The aims of the current study were to assess the bacterial load and characterize the bacterial composition of the amniotic fluid and meconium of full-term calves, leading to a better knowledge of prenatal bacterial seeding of the fetal intestine. Amniotic fluid and rectal meconium samples were collected during and immediately after elective cesarean section, performed in 25 Belgian Blue cow-calf couples. The samples were analyzed by qPCR, bacterial culture using GAM agar and 16S rRNA gene amplicon sequencing. To minimize the effects of contaminants, we included multiple technical controls and stringently filtered the 16S rRNA gene sequencing data to exclude putative contaminant sequences. The meconium samples contained a significantly higher amount of bacterial DNA than the negative controls and 5 of 24 samples contained culturable bacteria. In the amniotic fluid, the amount of bacterial DNA was not significantly different from the negative controls and all samples were culture negative. Bacterial sequences were identified in both sample types and were primarily of phyla Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, with some individual variation. We conclude that most calves encounter in utero maternal-fetal transmission of bacterial DNA, but the amount of bacterial DNA is low and viable bacteria are rare.
Collapse
Affiliation(s)
- Aleksi Husso
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Leen Lietaer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tiina Pessa-Morikawa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Thomas Grönthal
- Central Laboratory, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Jan Govaere
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ann Van Soom
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Antti Iivanainen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Geert Opsomer
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mikael Niku
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|