1
|
Du H, Xiong H, Zeng S, Chen F. Effects of Bcl-2 protein molecules and IκB kinase on the cell death of glioma cells: a study based on the chemical molecular extract of Erigeron breviscapus. Int J Biol Macromol 2025; 311:144070. [PMID: 40345283 DOI: 10.1016/j.ijbiomac.2025.144070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/17/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Bcl-2 protein is an important factor in the regulation of apoptosis. This study focused on the role of Bcl-2 protein in this process by evaluating the growth inhibition effect of EBE on glioma cells C6 and U251 and the possible mechanism of inducing apoptosis. The apoptosis rate was measured by flow cytometry and the growth inhibition effect of EBE was evaluated by cell proliferation assay. The gene expression changes of C6 and U251 cells treated with EBE were analyzed by qPCR, and the chemical components of EBE were identified by high performance liquid chromatography (HPLC). All experiments were statistically analyzed to ensure the reliability of the results. The results showed that EBE significantly inhibited the growth of C6 and U251 cells and effectively induced apoptosis. In C6 cells, after EBE treatment, the expression level of Bcl-2 gene was significantly decreased, while the expression of pro-apoptotic gene was significantly increased. Similar results were observed in U251 cells, further confirming the inhibitory effect of EBE on Bcl-2 protein. Chemical composition analysis confirmed the existence of multiple components in EBE that exert anticancer effects. The study showed that the extract of Erigeron breviscapus promoted the apoptosis of glioma cells by down-regulating the expression of Bcl-2 protein. This discovery provides a new idea for the treatment of glioma and lays a foundation for the development of Bcl-2 related targeted therapy strategies.
Collapse
Affiliation(s)
- Hanghang Du
- Chongqing Meilun Meihuan Plastic Surgery Hospital, 400020 Chongqing, China
| | - Haofeng Xiong
- Department of Neurosurgery, People's Hospital of Chongqing Banan District, Banan Hospital of Chongqing Medical University, 401320 Chongqing, China
| | - Shi Zeng
- Department of Neurosurgery, People's Hospital of Chongqing Banan District, Banan Hospital of Chongqing Medical University, 401320 Chongqing, China.
| | - Fei Chen
- Department of Neurosurgery, Chongqing Hospital of Traditional Chinese Medicine, 400021 Chongqing, China.
| |
Collapse
|
2
|
Das DJ, Barman D, Famhawite V, Hati Boruah JL, Pathak AK, Puro KN, Baishya R. Ethanolic extract of Akhuni induces ROS-mediated apoptosis through ERK and AKT signalling pathways: Insights from metabolic profiling and molecular docking studies. Free Radic Biol Med 2025; 228:137-149. [PMID: 39746579 DOI: 10.1016/j.freeradbiomed.2024.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Akhuni, an ethnic food of northeast India, induces ROS-mediated apoptosis in cancer cells. This is the first report on the anticancer potential of Akhuni. Akhuni is a traditional fermented soybean product known for its umami taste and delicacy, commonly used in Northeast India's cuisine. The current work demonstrates the antiproliferative potential of Akhuni ethanolic extract (AKET) against B16-F10 and MDA-MB-231 cancer cells and its mechanism of action supported by metabolic profiling and molecular docking. The investigation evaluated cytotoxicity, cell cycle distribution, caspase activity, apoptosis-related gene and protein expression, and oxidative stress imposed by excess reactive oxygen species (ROS) in both cell types. Phytochemical characterization of AKET was performed using HPLC. The growth of both cells is concentration-dependently inhibited after AKET treatment in MTT and flow cytometry experiments, leading to an arrest in the cell cycle at the G2 phase. Intracellular ROS levels increased in response to AKET treatment, suggesting that ROS in both cells triggered the mitochondrial pathway. Compared to the untreated cells, qRT-PCR analysis showed that AKET significantly reduced Cdk2 and Bcl-2 and increased the mRNA expression levels of Caspase-9, Bax, FasL, and Bid. Additionally, Caspase-8, Caspase-3, and the protein p53 were significantly upregulated in AKET-treated cells, as confirmed by both real-time and ELISA assays. In both the B16-F10 and MDA-MB-231 cell lines, the Western blot analysis showed that AKET caused an elevation of the expression of the Bax protein and downregulation of the Erk1/2, Akt, and Bcl2 proteins. Six isoflavones were identified from AKET through HPLC analysis. Molecular docking results indicate compounds in the AKET extract like daidzein, genistein and glycitein act as potent inhibitors of the key oncoprotein, AKT. These findings suggest that AKET has an anticancer effect through ROS-mediated ERK1/2 and AKT signalling pathways.
Collapse
Affiliation(s)
- Deep Jyoti Das
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Dipankar Barman
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Vanlalhruaii Famhawite
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Jyoti Lakshmi Hati Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR- North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Amit Kumar Pathak
- Chemical Science and Technology Division, CSIR- North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
| | - K Nusalu Puro
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India
| | - Rinku Baishya
- Centre for Pre-clinical Studies, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, Assam, 785006, India; AcSIR-Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
3
|
Afzaal M, Saeed F, Islam F, Ateeq H, Asghar A, Shah YA, Ofoedu CE, Chacha JS. Nutritional Health Perspective of Natto: A Critical Review. Biochem Res Int 2022; 2022:5863887. [PMID: 36312453 PMCID: PMC9616652 DOI: 10.1155/2022/5863887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022] Open
Abstract
Natto, a traditional soy food fermented by Bacillus subtilis, is made by steaming or cooking soaked soybean seeds, inoculating them with the bacteria, and then letting them sit for an incubation period. Natto soya has grown popular because of its nutritional importance and health advantages. As a result, farmers have more opportunities, thanks to the natto soybean market. For the natto soybean market to remain stable and grow, improved soybean cultivars with enhanced natto quality traits are essential. Natto's high-quality attributes are influenced by the bacteria strain, processing parameters, and soybean variety. Natto has a specific flavor and aroma with a slimy, sticky consistency. Natto possesses various therapeutic potentials and contains a range of essential nutrients and bioactive compounds, i.e., nattokinase, soybean isoflavone, γ-polyglutamic acid, vitamin K2, and biogenic amines. Bacterial species, processing conditions, and cultivars of soybean determine the quality characteristics of natto. Natto food is higher in menaquinone-7 and contains 100 times more menaquinone-7 than most cheeses. The present review highlights the production technology, microbiology, nutritional composition, and therapeutic potentials of natto.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Farhan Saeed
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Fakhar Islam
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Huda Ateeq
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Aasma Asghar
- Department of Home Economics, Government College University, Faisalabad, Pakistan
| | - Yasir Abbas Shah
- Department of Food Science, Government College University, Faisalabad, Pakistan
| | - Chigozie E. Ofoedu
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri, Imo State, Nigeria
| | - James S. Chacha
- Department of Food Science and Agroprocessing, Sokoine University of Agriculture, P.O. Box 3006, Chuo Kikuu, Morogoro, Tanzania
| |
Collapse
|
4
|
Qiao Y, Zhang K, Zhang Z, Zhang C, Sun Y, Feng Z. Fermented soybean foods: A review of their functional components, mechanism of action and factors influencing their health benefits. Food Res Int 2022; 158:111575. [PMID: 35840260 DOI: 10.1016/j.foodres.2022.111575] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/27/2022]
Abstract
After thousands of years of evolution and development, traditional fermented soybean foods, with their unique charm, have gained a stable place in the global market. With the explosive development of modern biological technologies, some traditional fermented soybean foods that possess health-promoting benefits are gradually appearing. Physiologically active substances in fermented soybean foods have received extensive attention in recent decades. This review addresses the potential health benefits of several representative fermented soybean foods, as well as the action mechanism and influencing factors of their functional components. Phenolic compounds, low-molecular-weight peptides, melanoidins, furanones and 3-hydroxyanthranilic acid are the antioxidative components predominantly found in fermented soybean foods. Angiotensin I-converting enzyme inhibitory peptides and γ-aminobutyric acid isolated from fermented soy foods provide potential selectivity for hypertension therapy. The potential anti-inflammatory bioactive components in fermented soybean foods include γ-linolenic acid, butyric acid, soy sauce polysaccharides, 2S albumin and isoflavone glycones. Deoxynojirimycin, genistein, and betaine possess high activity against α-glucosidase. Additionally, fermented soybean foods contain neuroprotective constituents, including indole alkaloids, nattokinase, arbutin, and isoflavone vitamin B12. The anticancer activities of fermented soybean foods are associated with surfactin, isolavone, furanones, trypsin inhibitors, and 3-hydroxyanthranilic acid. Nattokinase is highly correlated with antioxidant activity. And a high level of menaquinones-7 is linked to protection against neurodegenerative diseases. Sufficiently recognizing and exploiting the health benefits and functional components of traditional fermented soybean foods could provide a new strategy in the development of the food fermentation industry.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Kenan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China
| | - Yan Sun
- Heilongjiang Tobacco Industry Co., Ltd. Harbin Cigarette Factory, Harbin 150027, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, No.600, Changjiang Road, Harbin 150030, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| |
Collapse
|
5
|
Chen Y, Qin F, Dong M. Dynamic Changes in Microbial Communities and Physicochemical Characteristics During Fermentation of Non-post Fermented Shuidouchi. Front Nutr 2022; 9:926637. [PMID: 35769377 PMCID: PMC9235352 DOI: 10.3389/fnut.2022.926637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/23/2022] [Indexed: 11/20/2022] Open
Abstract
Non-post fermented Shuidouchi is a Chinese spontaneously fermented soybean food with multifunctionality in human health. The functionality and safety of this plant-based food will be affected by the microorganisms during fermentation. In this study, microbial diversity was investigated using culture-dependent and culture-independent methods. The functional metabolites such as polyamines and alkylpyrazines were also determined at different time points during fermentation. We found that Bacillus was the most dominant microbe throughout the fermentation process, while the temperature was the most important influencing factor. During fermentation, the microbial diversity increased at a moderate temperature and decreased at a high temperature (52°C). High temperature caused the prosperity of the spore-producing bacteria such as Bacillus (more than 90% relative abundance in bacteria) and Aneurinibacillus (2% or so relative abundance in bacteria), and the inhibition of fungi. Furthermore, it was found by correlation analysis that the relative abundances of Bacillus and Aneurinibacillus were positively correlated with the relative content of amino acid metabolism pathway and the content of most alkylpyrazines and biogenic amines. Meanwhile, the relative abundances of many non-dominant bacteria were negatively correlated with the content of biogenic amines and positively correlated with the relative content of carbohydrate metabolism pathway. These effects were helpful to control the biogenic amine contents under the safety limits, increasing the alkylpyrazine type and product functionality. A two-stage temperature control strategy—a moderate temperature (35–42°C) first, then a high temperature (52°C)—was concluded from the spontaneous fermentation of non-post fermented Shuidouchi. This strategy could improve the safety of product by inhibiting or sterilizing the thermolabile microbes. The non-post fermented Shuidouchi product is rich in functional compounds such as polyamines and alkylpyrazines.
Collapse
Affiliation(s)
- Yuyong Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Feng Qin
- Jiangsu Agri-Animal Husbandry Vocational College, Taizhou, China
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Mingsheng Dong,
| |
Collapse
|
6
|
Abstract
The growing interest in the consumption and study of traditionally fermented food worldwide has led to the development of numerous scientific investigations that have focused on analyzing the microbial and nutritional composition and the health effects derived from the consumption of these foods. Traditionally fermented foods and beverages are a significant source of nutrients, including proteins, essential fatty acids, soluble fiber, minerals, vitamins, and some essential amino acids. Additionally, fermented foods have been considered functional due to their prebiotic content, and the presence of specific lactic acid bacterial strains (LAB), which have shown positive effects on the balance of the intestinal microbiota, providing a beneficial impact in the treatment of diseases. This review presents a bibliographic compilation of scientific studies assessing the effect of the nutritional content and LAB profile of traditional fermented foods on different conditions such as obesity, diabetes, and gastrointestinal disorders.
Collapse
|
7
|
Kim IS, Hwang CW, Yang WS, Kim CH. Current Perspectives on the Physiological Activities of Fermented Soybean-Derived Cheonggukjang. Int J Mol Sci 2021; 22:5746. [PMID: 34072216 PMCID: PMC8198423 DOI: 10.3390/ijms22115746] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Cheonggukjang (CGJ, fermented soybean paste), a traditional Korean fermented dish, has recently emerged as a functional food that improves blood circulation and intestinal regulation. Considering that excessive consumption of refined salt is associated with increased incidence of gastric cancer, high blood pressure, and stroke in Koreans, consuming CGJ may be desirable, as it can be made without salt, unlike other pastes. Soybeans in CGJ are fermented by Bacillus strains (B. subtilis or B. licheniformis), Lactobacillus spp., Leuconostoc spp., and Enterococcus faecium, which weaken the activity of putrefactive bacteria in the intestines, act as antibacterial agents against pathogens, and facilitate the excretion of harmful substances. Studies on CGJ have either focused on improving product quality or evaluating the bioactive substances contained in CGJ. The fermentation process of CGJ results in the production of enzymes and various physiologically active substances that are not found in raw soybeans, including dietary fiber, phospholipids, isoflavones (e.g., genistein and daidzein), phenolic acids, saponins, trypsin inhibitors, and phytic acids. These components prevent atherosclerosis, oxidative stress-mediated heart disease and inflammation, obesity, diabetes, senile dementia, cancer (e.g., breast and lung), and osteoporosis. They have also been shown to have thrombolytic, blood pressure-lowering, lipid-lowering, antimutagenic, immunostimulatory, anti-allergic, antibacterial, anti-atopic dermatitis, anti-androgenetic alopecia, and anti-asthmatic activities, as well as skin improvement properties. In this review, we examined the physiological activities of CGJ and confirmed its potential as a functional food.
Collapse
Affiliation(s)
- Il-Sup Kim
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu 41566, Korea;
| | - Cher-Won Hwang
- Global Leadership School, Handong Global University, Pohang 37554, Korea
| | | | - Cheorl-Ho Kim
- Molecular and Cellular Glycobiology Unit, Department of Biological Sciences, SungKyunKwan University, Suwon 16419, Korea
- Samsung Advanced Institute of Health Science and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
8
|
Preventive Effects of Different Fermentation Times of Shuidouchi on Diphenoxylate-Induced Constipation in Mice. Foods 2019; 8:foods8030086. [PMID: 30832248 PMCID: PMC6463192 DOI: 10.3390/foods8030086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 12/31/2022] Open
Abstract
This study compares the prevention effects of Shuidouchi with different fermentation times on constipation in mice. Shuidouchi is a short-time fermented soybean product. By improving its processing technology, it can incur better biological activity and become a health food. The Shuidouchi-treated mice were evaluated using constipation-related kits, quantitative polymerase chain reaction (qPCR), and Western blot assays. After the mice were fed 72-h-fermented Shuidouchi (72-SDC) for 9 d, the defecation time to excrete the first black stool was lower than that of the control and 24-SDC and 48-SDC groups, but was much higher than that of the normal group. The gastrointestinal (GI) transit of the small intestine of the 72-SDC group was higher than that of the control and the 24-SDC and 48-SDC groups, but lower that of the normal group. Meanwhile, 72-SDC could significantly increase the levels of ghrelin, endothelin-1 (ET-1), vasoactive intestinal peptide (VIP), and acetylcholinesterase (AchE) in the serum of constipated mice compared to the levels in mice in the control group. Moreover, 72-SDC could raise c-Kit, stem cell factor (SCF), glial cell-derived neurotrophic factor (GNDF), neuronal nitric oxide synthase (nNOS), and endothelial nitric oxide synthase (eNOS) messenger RNA (mRNA) and protein expression levels, and reduce transient receptor potential cation channel subfamily V member 1 (TRPV1) and inducible nitric oxide synthase (iNOS) expression levels in small-intestinal tissue compared to the levels in the control group. Meanwhile, 72-SDC also raised ghrelin mRNA expression in gastric tissue and transient receptor potential ankyrin 1 (TRPA1) mRNA expression in colon tissue compared to the control group mice; these effects were stronger than those of 24-SDC and 48-SDC. Shuidouchi has good preventative effects on constipation and performs best when fermented for at least 72 h.
Collapse
|
9
|
Process Design of the Antioxidant Shuidouchi and Its Effect on Preventing Dextran Sulfate Sodium (DSS)-Induced Colitis in Mice via Antioxidant Activity. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app9010005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Shuidouchi is a traditionally fermented soybean product in China. Shuidouchi production requires a variety of processes; however, the production process has not been standardized. It can be developed into high-quality products with enhanced health effects by improving the design of its fermentation process and increasing the content of its active ingredients. In this study, a single-factor experiment was conducted that established different process conditions to determine the fermentation conditions that achieve the highest content of active ingredients and the best in vitro antioxidant effect. The effect of Shuidouchi on the prevention of dextran sulfate sodium-induced colitis in mice was also observed. The obtained results indicated that the optimal process conditions involved soaking for 12 h, placement in a glass container, and fermentation at 35 °C for 48 h. Shuidouchi that was fermented under such conditions had the highest level of soybean isoflavones and exerted greater antioxidant effects than if fermented under other conditions. The Shuidouchi extract (soaking twice the quantity of water for 12 h, placing in a glass container, and fermenting at 35 °C for 48 h) obtained by using the optimal fermentation process can prevent the shortening of the colon and increase the weight-to-length ratio of the colon that is caused by colitis. Shuidouchi extraction not only effectively reduces the disease activity index and the levels of serum endothelin (ET), substance P (SP), and interleukin-10 (IL-10), it also increases the levels of somatostatin (SS), vasoactive intestinal peptide (VIP), and interleukin-2 (IL-2) of mice with colitis. In addition, Shuidouchi extraction increased the levels of glutathione (GSH) and superoxide dismutase (SOD) in colitis mice; in contrast, Shuidouchi decreased the levels of myeloperoxidase (MPO) and malondialdehyde (MDA) in the colon of mice with colitis. Further detection of mRNA in colon tissues showed that Shuidouchi extraction can upregulate the expression of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), c-Kit, and the stem cell factor (SCF). Furthermore, it can downregulate the expression of inducible nitric oxide synthase (iNOS), interleukin-8 (IL-8), and C-X-C chemokine receptor type 2 (CXCR2) in the colon of mice with colitis. Further experimental results showed that Shuidouchi could reduce the protein expression of interleukin 6 (IL-6), IL-12, and tumor necrosis factor-α (TNF-α) in colitic mice. Therefore, the improved processing of Shuidouchi inhibits colitis, which is directly related to the high content of soybean isoflavones.
Collapse
|
10
|
Ali MW, Shahzad R, Bilal S, Adhikari B, Kim ID, Lee JD, Lee IJ, Kim BO, Shin DH. Comparison of antioxidants potential, metabolites, and nutritional profiles of Korean fermented soybean ( Cheonggukjang) with Bacillus subtilis KCTC 13241. Journal of Food Science and Technology 2018; 55:2871-2880. [PMID: 30065396 DOI: 10.1007/s13197-018-3202-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 12/19/2017] [Accepted: 05/09/2018] [Indexed: 12/29/2022]
Abstract
This study was carried out to determine the effect of different concentrations of Bacillus subtilis (0, 1, 3, 5, and 7%) on the antioxidant potential and biochemical constituents of traditional Korean fermented soybean, Cheonggukjang (CKJ). The antioxidant capacity was studied using the reducing power, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) assays and the total phenolic contents (TPC) were measured using the Folin-Ciocalteu method. CKJ prepared using 1% B. subtilis revealed the highest TPC (5.99 mg/g), total amino acids (7.43 mg/g), DPPH (94.24%), and ABTS (86.03%) radical-scavenging activity and had the highest value of palmitic acid (11.65%), stearic acid (2.87%), and linolenic acid (11.76%). Results showed that the calcium, iron, sodium, and zinc contents increased in the CKJ prepared using 7% B. subtilis from 1481.38 to 1667.32, 41.38 to 317.00, 48.01 to 310.07, and 32.82 to 37.18 mg/kg respectively. In conclusion, the present results indicate that the fermentation of soybean with B. subtilis (KCTC 13241) significantly augments the nutritional and antioxidant potential of CKJ and it can be recommended as a health-promoting food source.
Collapse
Affiliation(s)
- Muhammad Waqas Ali
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Raheem Shahzad
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Saqib Bilal
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Bishnu Adhikari
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Il-Doo Kim
- 2International Institute of Agriculture Research and Development, Kyungpook National University, Daegu, 41566 South Korea
| | - Jeong-Dong Lee
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - In-Jung Lee
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| | - Byung Oh Kim
- 3School of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566 Korea
| | - Dong-Hyun Shin
- 1Plant Resource Development Laboratory, School of Applied Biosciences, Kyungpook National University, Daegu, 41566 Korea
| |
Collapse
|
11
|
Metabolomics reveals the effect of garlic on antioxidant- and protease-activities during Cheonggukjang (fermented soybean paste) fermentation. Food Res Int 2016. [DOI: 10.1016/j.foodres.2016.01.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
12
|
Lim JS, Garcia CV, Lee SP. Optimized Production of GABA and γ-PGA in a Turmeric and Roasted Soybean Mixture Co-fermented by Bacillus subtilis and Lactobacillus plantarum. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2016. [DOI: 10.3136/fstr.22.209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Jong-Soon Lim
- The Center for Traditional Microorganism Resources (TMR), Keimyung University
| | | | - Sam-Pin Lee
- The Center for Traditional Microorganism Resources (TMR), Keimyung University
- Department of Food Science and Technology, Keimyung University
| |
Collapse
|
13
|
Suo H, Qian Y, Feng X, Wang H, Zhao X, Song JL. Free Radical Scavenging Activity and Cytoprotective Effect of Soybean Milk Fermented with L
actobacillus Fermentum
Zhao. J Food Biochem 2015. [DOI: 10.1111/jfbc.12223] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Huayi Suo
- College of Food Science; Southwest University; Chongqing China
| | - Yu Qian
- Department of Biological and Chemical Engineering
- Chongqing Collaborative Innovation Center of Functional Food; Chongqing University of Education; Chongqing 400067 China
| | - Xia Feng
- Department of Biological and Chemical Engineering
- Chongqing Collaborative Innovation Center of Functional Food; Chongqing University of Education; Chongqing 400067 China
| | - Hongwei Wang
- College of Food Science; Southwest University; Chongqing China
| | - Xin Zhao
- Department of Biological and Chemical Engineering
- Chongqing Collaborative Innovation Center of Functional Food; Chongqing University of Education; Chongqing 400067 China
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene; School of Public Health; Gulin Medical University; 109 North 2nd Huan Cheng Road Gulin Guangxi 541004 China
| |
Collapse
|
14
|
Suo H, Feng X, Zhu K, Wang C, Zhao X, Kan J. Shuidouchi (Fermented Soybean) Fermented in Different Vessels Attenuates HCl/Ethanol-Induced Gastric Mucosal Injury. Molecules 2015; 20:19748-63. [PMID: 26540032 PMCID: PMC6332132 DOI: 10.3390/molecules201119654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/20/2015] [Indexed: 12/27/2022] Open
Abstract
Shuidouchi (Natto) is a fermented soy product showing in vivo gastric injury preventive effects. The treatment effects of Shuidouchi fermented in different vessels on HCl/ethanol-induced gastric mucosal injury mice through their antioxidant effect was determined. Shuidouchi contained isoflavones (daidzein and genistein), and GVFS (glass vessel fermented Shuidouchi) had the highest isoflavone levels among Shuidouchi samples fermented in different vessels. After treatment with GVFS, the gastric mucosal injury was reduced as compared to the control mice. The gastric secretion volume (0.47 mL) and pH of gastric juice (3.1) of GVFS treated gastric mucosal injury mice were close to those of ranitidine-treated mice and normal mice. Shuidouchi could decrease serum motilin (MTL), gastrin (Gas) level and increase somatostatin (SS), vasoactive intestinal peptide (VIP) level, and GVFS showed the strongest effects. GVFS showed lower IL-6, IL-12, TNF-α and IFN-γ cytokine levels than other vessel fermented Shuidouchi samples, and these levels were higher than those of ranitidine-treated mice and normal mice. GVFS also had higher superoxide dismutase (SOD), nitric oxide (NO) and malonaldehyde (MDA) contents in gastric tissues than other Shuidouchi samples. Shuidouchi could raise IκB-α, EGF, EGFR, nNOS, eNOS, Mn-SOD, Gu/Zn-SOD, CAT mRNA expressions and reduce NF-κB, COX-2, iNOS expressions as compared to the control mice. GVFS showed the best treatment effects for gastric mucosal injuries, suggesting that glass vessels could be used for Shuidouchi fermentation in functional food manufacturing.
Collapse
Affiliation(s)
- Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
- Chongqing Engineering Research Center of Regional Food, Chongqing 400715, China.
| | - Xia Feng
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Kai Zhu
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Cun Wang
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Xin Zhao
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Collaborative Innovation Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
| | - Jianquan Kan
- College of Food Science, Southwest University, Chongqing 400715, China.
- Chongqing Engineering Research Center of Regional Food, Chongqing 400715, China.
| |
Collapse
|
15
|
Suo H, Song JLE, Zhou Y, Liu Z, Yi R, Zhu K, Xie J, Zhao X. Induction of apoptosis in HCT-116 colon cancer cells by polysaccharide of Larimichthys crocea swim bladder. Oncol Lett 2014; 9:972-978. [PMID: 25624917 PMCID: PMC4301533 DOI: 10.3892/ol.2014.2756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 11/21/2014] [Indexed: 12/23/2022] Open
Abstract
Larimichthys crocea swim bladder is a traditional food and medicine widely used in China. The in vitro anticancer effects of polysaccharide of L. crocea swim bladder (PLCSB) in HCT-116 human colon cancer cells was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. At concentrations ranging between 0 and 800 μg/ml PLCSB, cancer cell viability was decreased by PLCSB in a concentration-dependent manner. In particular, 400 μg/ml PLCSB significantly (P<0.05) induced apoptosis, which was demonstrated by 4,6-diamidino-2-phenylindole staining and flow cytometry analysis. To elucidate the mechanisms underlying the anticancer effect of PLCSB in HCT-116 cancer cells, the expression of apoptosis and metastasis-associated genes was analyzed by reverse transcription-polymerase chain reaction and western blot analysis. A total of 400 μg/ml PLCSB significantly induced apoptosis in HCT-116 cells (P<0.05) via the upregulation Bax, p53, p21, apoptotic protease activating factor 1, caspase-3, -8, and -9, as well as Fas and the downregulation of B-cell lymphoma 2 (Bcl-2), Bcl-extra large and Fas ligand (L). The results of this study demonstrated that PLCSB exhibits an anticancer effect on HCT-116 colon cancer cells, in vitro.
Collapse
Affiliation(s)
- Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
| | - Jia-LE Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin, Guangxi 541004, P.R. China ; Department of Food Science and Nutrition, Pusan National University, Busan 609735, Republic of Korea
| | - Yalin Zhou
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Zhenhu Liu
- Science and Technology Administration, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Ruokun Yi
- Department of Food Science and Nutrition, Pusan National University, Busan 609735, Republic of Korea
| | - Kai Zhu
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Jie Xie
- College of Food Science, Southwest University, Chongqing 400715, P.R. China
| | - Xin Zhao
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, P.R. China ; Institute of Functional Ecological Food, Chongqing University of Education, Chongqing 400067, P.R. China
| |
Collapse
|