1
|
Garrido Ruiz PA, Rodriguez ÁO, Corchete LA, Zelaya Huerta V, Pasco Peña A, Caballero Martínez C, González-Carreró Fojón J, Catalina Fernández I, López Duque JC, Zaldumbide Dueñas L, Mosteiro González L, Astudillo MA, Hernández-Laín A, Camacho Urkaray EN, Viguri Diaz MA, Orfao A, Tabernero MD. Paired Primary and Recurrent Rhabdoid Meningiomas: Cytogenetic Alterations, BAP1 Gene Expression Profile and Patient Outcome. BIOLOGY 2024; 13:350. [PMID: 38785832 PMCID: PMC11117813 DOI: 10.3390/biology13050350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Rhabdoid meningiomas (RM) are a rare meningioma subtype with a heterogeneous clinical course which is more frequently associated with recurrence, even among tumors undergoing-complete surgical removal. Here, we retrospectively analyzed the clinical-histopathological and cytogenetic features of 29 tumors, from patients with recurrent (seven primary and 14 recurrent tumors) vs. non-recurrent RM (n = 8). Recurrent RM showed one (29%), two (29%) or three (42%) recurrences. BAP1 loss of expression was found in one third of all RM at diagnosis and increased to 100% in subsequent tumor recurrences. Despite both recurrent and non-recurrent RM shared chromosome 22 losses, non-recurrent tumors more frequently displayed extensive losses of chromosome 19p (62%) and/or 19q (50%), together with gains of chromosomes 20 and 21 (38%, respectively), whereas recurrent RM (at diagnosis) displayed more complex genotypic profiles with extensive losses of chromosomes 1p, 14q, 18p, 18q (67% each) and 21p (50%), together with focal gains at chromosome 17q22 (67%). Compared to paired primary tumors, recurrent RM samples revealed additional losses at chromosomes 16q and 19p (50% each), together with gains at chromosomes 1q and 17q in most recurrent tumors (67%, each). All deceased recurrent RM patients corresponded to women with chromosome 17q gains, although no statistical significant differences were found vs. the other RM patients.
Collapse
Grants
- GRS 2315/A/21 Consejería de Sanidad JCYL, Gerencia Regional de Salud, Spain
- Consejería de Sanidad JCYL, Gerencia Regional de Salud, Spain GRS 2132/A/20
- CB16/12/00400 CIBERONC, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain
- FICUS-CIC donations Asociación René Rodríguez Tobar (Santa Cruz de La Palma, Canarias, Spain
Collapse
Affiliation(s)
- Patricia Alejandra Garrido Ruiz
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain; (P.A.G.R.); (Á.O.R.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
| | - Álvaro Otero Rodriguez
- Neurosurgery Service of the University Hospital of Salamanca, 37007 Salamanca, Spain; (P.A.G.R.); (Á.O.R.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
| | - Luis Antonio Corchete
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
| | - Victoria Zelaya Huerta
- Pathology Service of the University Hospital of Pamplona, 31008 Pamplona, Spain; (V.Z.H.); (A.P.P.); (C.C.M.)
| | - Alejandro Pasco Peña
- Pathology Service of the University Hospital of Pamplona, 31008 Pamplona, Spain; (V.Z.H.); (A.P.P.); (C.C.M.)
| | - Cristina Caballero Martínez
- Pathology Service of the University Hospital of Pamplona, 31008 Pamplona, Spain; (V.Z.H.); (A.P.P.); (C.C.M.)
| | | | | | | | - Laura Zaldumbide Dueñas
- Pathology Service of the University Hospital Cruces, 48903 Barakaldo, Spain; (L.Z.D.); (L.M.G.)
| | | | | | - Aurelio Hernández-Laín
- Pathology Service of the University Hospital 12 Octubre, Universidad Complutense, 28041 Madrid, Spain;
| | | | | | - Alberto Orfao
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBERONC (CB16/12/00400), Institute of Health Carlos III, 37007 Salamanca, Spain
| | - María Dolores Tabernero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (L.A.C.); (A.O.)
- Centre for Cancer Research (CIC-IBMCC; CSIC/USAL; IBSAL) and Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Biomedical Research Networking Centre on Cancer–CIBERONC (CB16/12/00400), Institute of Health Carlos III, 37007 Salamanca, Spain
| |
Collapse
|
2
|
Simon M, Gousias K. Grading meningioma resections: the Simpson classification and beyond. Acta Neurochir (Wien) 2024; 166:28. [PMID: 38261164 PMCID: PMC10806026 DOI: 10.1007/s00701-024-05910-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/06/2023] [Indexed: 01/24/2024]
Abstract
Technological (and also methodological) advances in neurosurgery and neuroimaging have prompted a reappraisal of Simpson's grading of the extent of meningioma resections. To the authors, the published evidence supports the tenets of this classification. Meningioma is an often surgically curable dura-based disease. An extent of meningioma resection classification needs to account for a clinically meaningful variation of the risk of recurrence depending on the aggressiveness of the management of the (dural) tumor origin.Nevertheless, the 1957 Simpson classification undoubtedly suffers from many limitations. Important issues include substantial problems with the applicability of the grading paradigm in different locations. Most notably, tumor location and growth pattern often determine the eventual extent of resection, i.e., the Simpson grading does not reflect what is surgically achievable. Another very significant problem is the inherent subjectivity of relying on individual intraoperative assessments. Neuroimaging advances such as the use of somatostatin receptor PET scanning may help to overcome this central problem. Tumor malignancy and biology in general certainly influence the role of the extent of resection but may not need to be incorporated in an actual extent of resection grading scheme as long as one does not aim at developing a prognostic score. Finally, all attempts at grading meningioma resections use tumor recurrence as the endpoint. However, especially in view of radiosurgery/radiotherapy options, the clinical significance of recurrent tumor growth varies greatly between cases.In summary, while the extent of resection certainly matters in meningioma surgery, grading resections remains controversial. Given the everyday clinical relevance of this issue, a multicenter prospective register or study effort is probably warranted (including a prominent focus on advanced neuroimaging).
Collapse
Affiliation(s)
- Matthias Simon
- Department of Neurosurgery, Evangelisches Klinikum Bethel, Universitätsklinikum OWL, Bielefeld, Germany.
| | - Konstantinos Gousias
- Department of Neurosurgery, St. Marien Academic Hospital Luenen, University of Muenster, Luenen, Germany
- Medical School, University of Nicosia, Nicosia, Cyprus
- Department of Neurosurgery, Athens Medical Center, Athens, Greece
| |
Collapse
|
3
|
Teske N, Biczok A, Quach S, Dekorsy FJ, Forbrig R, Bodensohn R, Niyazi M, Tonn JC, Albert NL, Schichor C, Ueberschaer M. Postoperative [ 68Ga]Ga-DOTA-TATE PET/CT imaging is prognostic for progression-free survival in meningioma WHO grade 1. Eur J Nucl Med Mol Imaging 2023; 51:206-217. [PMID: 37642702 PMCID: PMC10684417 DOI: 10.1007/s00259-023-06400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/12/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE Tumor resection represents the first-line treatment for symptomatic meningiomas, and the extent of resection has been shown to be of prognostic importance. Assessment of tumor remnants with somatostatin receptor PET proves to be superior to intraoperative estimation with Simpson grading or MRI. In this preliminary study, we evaluate the prognostic relevance of postoperative PET for progression-free survival in meningiomas. METHODS We conducted a post hoc analysis on a prospective patient cohort with resected meningioma WHO grade 1. Patients received postoperative MRI and [68Ga]Ga-DOTA-TATE PET/CT and were followed regularly with MRI surveillance scans for detection of tumor recurrence/progression. RESULTS We included 46 patients with 49 tumors. The mean age at diagnosis was 57.8 ± 1.7 years with a male-to-female ratio of 1:1.7. Local tumor progression occurred in 7/49 patients (14%) after a median follow-up of 52 months. Positive PET was associated with an increased risk for progression (*p = 0.015) and a lower progression-free survival (*p = 0.029), whereas MRI was not. 20 out of 20 patients (100%) with negative PET findings remained recurrence-free. The location of recurrence/progression on MRI was adjacent to regions where postoperative PET indicated tumor remnants in all cases. Gross tumor volumes were higher on PET compared to MRI (*p = 0.032). CONCLUSION Our data show that [68Ga]Ga-DOTA-TATE PET/CT is highly sensitive in revealing tumor remnants in patients with meningioma WHO grade 1. Negative PET findings were associated with a higher progression-free survival, thus improving surveillance. In patients with tumor remnants, additional PET can optimize adjuvant radiotherapy target planning of surgically resected meningiomas.
Collapse
Affiliation(s)
- Nico Teske
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| | - Annamaria Biczok
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Stefanie Quach
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Franziska J Dekorsy
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Raphael Bodensohn
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
- Bavarian Center for Cancer Research (BZKF), Erlangen, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Nathalie L Albert
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian Schichor
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Moritz Ueberschaer
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| |
Collapse
|
4
|
Gousias K, Trakolis L, Simon M. Meningiomas with CNS invasion. Front Neurosci 2023; 17:1189606. [PMID: 37456997 PMCID: PMC10339387 DOI: 10.3389/fnins.2023.1189606] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023] Open
Abstract
CNS invasion has been included as an independent criterion for the diagnosis of a high-grade (WHO and CNS grade 2 and 3) meningioma in the 2016 and more recently in the 2021 WHO classification. However, the prognostic role of brain invasion has recently been questioned. Also, surgical treatment for brain invasive meningiomas may pose specific challenges. We conducted a systematic review of the 2016-2022 literature on brain invasive meningiomas in Pubmed, Scopus, Web of Science and the Cochrane Library. The prognostic relevance of brain invasion as a stand-alone criterion is still unclear. Additional and larger studies using robust definitions of histological brain invasion and addressing the issue of sampling errors are clearly warranted. Although the necessity of molecular profiling in meningioma grading, prognostication and decision making in the future is obvious, specific markers for brain invasion are lacking for the time being. Advanced neuroimaging may predict CNS invasion preoperatively. The extent of resection (e.g., the Simpson grading) is an important predictor of tumor recurrence especially in higher grade meningiomas, but also - although likely to a lesser degree - in benign tumors, and therefore also in brain invasive meningiomas with and without other histological features of atypia or malignancy. Hence, surgery for brain invasive meningiomas should follow the principles of maximal but safe resections. There are some data to suggest that safety and functional outcomes in such cases may benefit from the armamentarium of surgical adjuncts commonly used for surgery of eloquent gliomas such as intraoperative monitoring, awake craniotomy, DTI tractography and further advanced intraoperative brain tumor visualization.
Collapse
Affiliation(s)
- Konstantinos Gousias
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, Luenen, Germany
- Medical School, Westfaelische Wilhelms University of Muenster, Muenster, Germany
- Medical School, University of Nicosia, Nicosia, Cyprus
| | - Leonidas Trakolis
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, Luenen, Germany
| | - Matthias Simon
- Department of Neurosurgery, Bethel Clinic, Medical School, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Abstract
Meningiomas comprise a histologically and clinically diverse set of tumors arising from the meningothelial lining of the central nervous system. In the past decade, remarkable progress has been made in deciphering the biology of these common neoplasms. Nevertheless, effective systemic or molecular therapies for meningiomas remain elusive and are active areas of preclinical and clinical investigation. Thus, standard treatment modalities for meningiomas are limited to maximal safe resection, radiotherapy, or radiosurgery. This review examines the history, clinical rationale, and future directions of radiotherapy and radiosurgery as integral and effective treatments for meningiomas.
Collapse
Affiliation(s)
- William C Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stephen T Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL 60611, USA
| | - C Leland Rogers
- Radiation Oncology, GammaWest Cancer Services, Salt Lake City, UT, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
6
|
Maier AD. Malignant meningioma. APMIS 2022; 130 Suppl 145:1-58. [DOI: 10.1111/apm.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
- Department of Pathology, Rigshospitalet Copenhagen University Hospital Copenhagen Denmark
| |
Collapse
|
7
|
Yu ZY, Chung MH, Wang PW, Wu YC, Liao HC, Hueng DY. Letter to the Editor. Outcome of malignant meningioma. J Neurosurg 2022; 137:1563-1564. [PMID: 35623366 DOI: 10.3171/2022.3.jns22645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zong-Yu Yu
- 1Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Hsuan Chung
- 1Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Peng-Wei Wang
- 1Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Chieh Wu
- 1Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiang-Chih Liao
- 1Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Dueng-Yuan Hueng
- 1Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
8
|
The role of bevacizumab for treatment-refractory intracranial meningiomas: a single institution's experience and a systematic review of the literature. Acta Neurochir (Wien) 2022; 164:3011-3023. [PMID: 36117185 DOI: 10.1007/s00701-022-05348-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Meningiomas account for over 30% of all primary brain tumors. While surgery can be curative for these tumors, several factors may lead to a higher likelihood of recurrence. For recurrent meningiomas, bevacizumab may be considered as a therapeutic agent, but literature regarding its efficacy is sparse. Thus, we present a systematic review of the literature and case series of patients from our institution with treatment-refractory meningiomas who received bevacizumab. METHODS Patients at our institution who were diagnosed with recurrent meningioma between January 2000 and September 2020 and received bevacizumab monotherapy were included in this study. Bevacizumab duration and dosages were noted, as well as progression-free survival (PFS) after the first bevacizumab injection. A systematic review of the literature was also performed. RESULTS Twenty-three patients at our institution with a median age of 55 years at initial diagnosis qualified for this study. When bevacizumab was administered, 2 patients had WHO grade I meningiomas, 10 patients had WHO grade II meningiomas, and 11 patients had WHO grade III meningiomas. Median PFS after the first bevacizumab injection was 7 months. Progression-free survival rate at 6 months was 57%. Two patients stopped bevacizumab due to hypertension and aphasia. Systematic review of the literature showed limited ability for bevacizumab to control tumor growth. CONCLUSION Bevacizumab is administered to patients with treatment-refractory meningiomas and, though its effectiveness is limited, outperforms other systemic therapies reported in the literature. Further studies are required to identify a successful patient profile for utilization of bevacizumab.
Collapse
|
9
|
Pettersson-Segerlind J, Fletcher-Sandersjöö A, von Vogelsang AC, Persson O, Kihlström Burenstam Linder L, Förander P, Mathiesen T, Edström E, Elmi-Terander A. Long-Term Follow-Up, Treatment Strategies, Functional Outcome, and Health-Related Quality of Life after Surgery for WHO Grade 2 and 3 Intracranial Meningiomas. Cancers (Basel) 2022; 14:cancers14205038. [PMID: 36291821 PMCID: PMC9600120 DOI: 10.3390/cancers14205038] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/03/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Meningiomas are the most common group of primary intracranial tumors. While the majority are classified as WHO grade 1, WHO grade 2 and 3 meningiomas have poorer outcomes, even after gross total resection, and often require supplementary treatment. Long-term follow-up data regarding the progression-free survival (PFS) and overall survival (OS) for grade 2 and 3 tumors are scarce, and data evaluating the routine use of supplementary radiotherapy and radiosurgery have been inconclusive. Furthermore, few studies have reported data on the health-related quality of life (HRQoL), anxiety, and depression for these patients. In this population-based cohort study, we reviewed 51 cases of WHO grade 2 and 3 meningiomas. We found that the median OS was 13 years for grade 2 and 1.4 years for grade 3 meningiomas. Meningioma was the cause of death in 93% of the patients who passed away. The surviving patients showed HRQoL measures comparable to that of the general population, with the exception of significantly more anxiety and depression. All patients who worked preoperatively returned to work after their treatment. Abstract Progression-free survival (PFS) and overall survival (OS) for WHO grade 2 and 3 intracranial meningiomas are poorly described, and long-term results and data evaluating the routine use of supplementary fractionated radiotherapy (RT) or stereotactic radiosurgery (SRS) has been inconclusive. The aim of this study was to determine the long-term PFS and OS at a center that does not employ routine adjuvant RT. For this purpose, a retrospective population-based cohort study was conducted of all WHO grade 2 and 3 meningiomas surgically treated between 2005 and 2013. The cohort was uniformly defined according to the WHO 2007 criteria to allow comparisons to previously published reports. Patient records were reviewed, and patients were then prospectively contacted for structured quality-of-life assessments. In total, 51 consecutive patients were included, of whom 43 were WHO grade 2 and 8 were grade 3. A Simpson grade 1–2 resection was achieved in 62%. The median PFS was 31 months for grade 2 tumors, and 3.4 months for grade 3. The median OS was 13 years for grade 2, and 1.4 years for grade 3. The MIB-1-index was significantly associated with an increased risk for recurrence (p = 0.018, OR 1.12). The median PFS was significantly shorter for high-risk tumors compared to the low-risk group (10 vs. 46 months; p = 0.018). The surviving meningioma patients showed HRQoL measures comparable to that of the general population, with the exception of significantly more anxiety and depression. All patients who worked before surgery returned to work after their treatment. In conclusion, we confirm dismal prognoses in patients with grade 2 and 3 meningiomas, with tumor-related deaths resulting in severely reduced OS. However, the cohort was heterogenous, and a large subgroup of both grade 2 and 3 meningiomas was alive at 10 years follow-up, suggesting that a cure is possible. In addition, fractionated radiotherapy and chemotherapy had little benefit when introduced for recurrent and progressive diseases.
Collapse
Affiliation(s)
- Jenny Pettersson-Segerlind
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Alexander Fletcher-Sandersjöö
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ann-Christin von Vogelsang
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Oscar Persson
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lars Kihlström Burenstam Linder
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Petter Förander
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Tiit Mathiesen
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department of Neurosurgery, Rigshospitalet, Institute of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Erik Edström
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Adrian Elmi-Terander
- Department of Neurosurgery, Karolinska University Hospital, 171 64 Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Correspondence:
| |
Collapse
|
10
|
Jensen LR, Maier AD, Lomstein A, Graillon T, Hrachova M, Bota D, Ruiz-Patiño A, Arrieta O, Cardona AF, Rudà R, Furtner J, Roeckle U, Clement P, Preusser M, Scheie D, Broholm H, Kristensen BW, Skjøth-Rasmussen J, Ziebell M, Munch TN, Fugleholm K, Walter MA, Mathiesen T, Mirian C. Somatostatin analogues in treatment-refractory meningioma: a systematic review with meta-analysis of individual patient data. Neurosurg Rev 2022; 45:3067-3081. [PMID: 35984552 DOI: 10.1007/s10143-022-01849-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Treatment-refractory meningiomas have a dismal prognosis and limited treatment options. Meningiomas express high-densities of somatostatin receptors (SSTR), thus potentially susceptible to antitumorigenic effects of somatostatin analogues (SSA). Evidence for SSA in meningiomas is scarce, and it is unclear if published literature would either (1) support wider use of SSA, if (2) more evidence is desirable, or if (3) available evidence is sufficient to discard SSA. We addressed the need for more evidence with a systematic review and meta-analysis. We performed an individual patient data (IPD) meta-analysis. Main outcomes were toxicity, best radiological response, progression-free survival, and overall survival. We applied multivariable logistic regression models to estimate the effect of SSA on the probability of obtaining radiological disease control. The predictive performance was evaluated using area under the curve and Brier scores. We included 16 studies and compiled IPD from 8/9 of all previous cohorts. Quality of evidence was overall ranked "very low." Stable disease was reported in 58% of patients as best radiological response. Per 100 mg increase in total SSA dosage, the odds ratios for obtaining radiological disease control was 1.42 (1.11 to 1.81, P = 0.005) and 1.44 (1.00 to 2.08, P = 0.05) for patients treated with SSA as monodrug therapy vs SSA in combination with everolimus, respectively. Low quality of evidence impeded exact quantification of treatment efficacy, and the association between response and treatment may represent reverse causality. Yet, the SSA treatment was well tolerated, and beneficial effect cannot be disqualified. A prospective trial without bias from inconsistent study designs is warranted to assess SSA therapy for well-defined meningioma subgroups.
Collapse
Affiliation(s)
- Lasse Rehné Jensen
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Atle Lomstein
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Graillon
- Department of Neurosurgery, Hospital La Timone, Aix Marseille University, APHM, INSERM, MMG, Marseille, France
| | - Maya Hrachova
- Department of Neurosurgery, University of Oklahoma Health Science Center, Oklahoma, OK, USA
| | - Daniela Bota
- Department of Neurology, UC Irvine Medical Center, Orange, CA, USA
- Department of Neurological Surgery, UC Irvine Medical Center, Orange, CA, USA
| | | | - Oscar Arrieta
- Thoracic Oncology Unit, Instituto Nacional de Cancerología (INCaN), Mexico City, México
| | | | - Roberta Rudà
- Department of Neurology, Castelfranco Veneto/Treviso, Treviso, Italy
- Department of Neuro-Oncology, City of Health and Science Hospital and University of Turin, Turin, Italy
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ulrich Roeckle
- Department of Neurology and Brain Tumor Center, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Paul Clement
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Louvain, Belgium
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - David Scheie
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Helle Broholm
- Department of Pathology, Center of Diagnostic Investigation, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Jane Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Ziebell
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tina Nørgaard Munch
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Kåre Fugleholm
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Martin A Walter
- Department of Nuclear Medicine, University Hospital of Geneva, Geneva, Switzerland
- Gesundheitswissenschaften Und Medizin EN, University of Lucerne, Lucerne, Switzerland
| | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Christian Mirian
- Department of Neurosurgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
11
|
Corniola MV, Meling TR. Management of Recurrent Meningiomas: State of the Art and Perspectives. Cancers (Basel) 2022; 14:cancers14163995. [PMID: 36010988 PMCID: PMC9406695 DOI: 10.3390/cancers14163995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Intracranial meningiomas account for 30% to 40% of the primary lesions of the central nervous system. Surgery is the mainstay treatment whenever symptoms related to an intra-cranial meningioma are encountered. However, the management of recurrences after initial surgery, which are not uncommon, is still a matter of debate. Here, we present the alternatives described in the management of meningioma recurrence (radiotherapy, stereotaxic radiosurgery, protontherapy, and chemotherapy, among others). Their overall results are compared to surgery and future perspectives are presented. Abstract Background: While meningiomas often recur over time, the natural history of repeated recurrences and their management are not well described. Should recurrence occur, repeat surgery and/or use of adjuvant therapeutic options may be necessary. Here, we summarize current practice when it comes to meningioma recurrence after initial surgical management. Methods: A total of N = 89 articles were screened. N = 41 articles met the inclusion criteria and N = 16 articles failed to assess management of meningioma recurrence. Finally, N = 24 articles were included in our review. Results: The articles were distributed as follows: studies on chemotherapy (N = 14), radiotherapy, protontherapy, and stereotaxic radiosurgery (N = 6), boron-neutron capture therapy (N = 2) and surgery (N = 3). No study seems to provide serious alternatives to surgery in terms of progression-free and overall survival. Recurrence can occur long after the initial surgery and also affects WHO grade 1 meningiomas, even after initial gross total resection at first surgery, emphasizing the need for a long-term and comprehensive follow-up. Conclusions: Surgery still seems to be the state-of-the-art management when it comes to meningioma recurrence, since none of the non-surgical alternatives show promising results in terms of progression-free and overall survival.
Collapse
Affiliation(s)
- Marco Vincenzo Corniola
- Service de Neurochirurgie, Pôle des Neurosciences, Centre Hospitalier Universitaire de Rennes, 35000 Rennes, France
- Faculté de Médecine, Université de Rennes 1, 35000 Rennes, France
- Faculté de Médecine, Université de Genève, 1205 Geneve, Switzerland
- Laboratoire du Traitement de Signal, Unité Médicis, INSERM UMR 1099 LTSI, Université de Rennes 1, 35000 Rennes, France
| | - Torstein R. Meling
- Faculté de Médecine, Université de Genève, 1205 Geneve, Switzerland
- Department of Neurosurgery, Geneva University Hospitals, 1205 Geneva, Switzerland
- Besta NeuroSim Center, Fondazione IRCCS, Istituto Neurologico Carlo Basta, 20133 Milano, Italy
- Correspondence:
| |
Collapse
|
12
|
The Role of [ 68Ga]Ga-DOTA-SSTR PET Radiotracers in Brain Tumors: A Systematic Review of the Literature and Ongoing Clinical Trials. Cancers (Basel) 2022; 14:cancers14122925. [PMID: 35740591 PMCID: PMC9221214 DOI: 10.3390/cancers14122925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/10/2022] [Accepted: 06/12/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary [68Ga]Ga-DOTA-SSTR PET imaging has recently been introduced in the management of patients with brain tumors, mostly meningiomas and pituitary adenomas or carcinomas. The current literature demonstrated the superior diagnostic accuracy of this imaging modality, especially for lesions difficult to be detected or characterized on conventional imaging protocols, such as skull base or transosseous meningiomas. [68Ga]Ga-DOTA-SSTR PET tracers also seem to provide superior volume contouring for radiotherapy planning and may also be used to evaluate the tumor’s overexpression of somatostatin receptors for devising patient-tailored peptide receptor radionuclide therapy. In this review, we comprehensively analyzed the current literature discussing the implementation of [68Ga]Ga-DOTA-SSTR PET imaging in brain tumors, further presenting ongoing clinical trials and suggesting potential future applications. Abstract Background: The development of [68Ga]Ga-DOTA-SSTR PET tracers has garnered interest in neuro-oncology, to increase accuracy in diagnostic, radiation planning, and neurotheranostics protocols. We systematically reviewed the literature on the current uses of [68Ga]Ga-DOTA-SSTR PET in brain tumors. Methods: PubMed, Scopus, Web of Science, and Cochrane were searched in accordance with the PRISMA guidelines to include published studies and ongoing trials utilizing [68Ga]Ga-DOTA-SSTR PET in patients with brain tumors. Results: We included 63 published studies comprising 1030 patients with 1277 lesions, and 4 ongoing trials. [68Ga]Ga-DOTA-SSTR PET was mostly used for diagnostic purposes (62.5%), followed by treatment planning (32.7%), and neurotheranostics (4.8%). Most lesions were meningiomas (93.6%), followed by pituitary adenomas (2.8%), and the DOTATOC tracer (53.2%) was used more frequently than DOTATATE (39.1%) and DOTANOC (5.7%), except for diagnostic purposes (DOTATATE 51.1%). [68Ga]Ga-DOTA-SSTR PET studies were mostly required to confirm the diagnosis of meningiomas (owing to their high SSTR2 expression and tracer uptake) or evaluate their extent of bone invasion, and improve volume contouring for better radiotherapy planning. Some studies reported the uncommon occurrence of SSTR2-positive brain pathology challenging the diagnostic accuracy of [68Ga]Ga-DOTA-SSTR PET for meningiomas. Pre-treatment assessment of tracer uptake rates has been used to confirm patient eligibility (high somatostatin receptor-2 expression) for peptide receptor radionuclide therapy (PRRT) (i.e., neurotheranostics) for recurrent meningiomas and pituitary carcinomas. Conclusion: [68Ga]Ga-DOTA-SSTR PET studies may revolutionize the routine neuro-oncology practice, especially in meningiomas, by improving diagnostic accuracy, delineation of radiotherapy targets, and patient eligibility for radionuclide therapies.
Collapse
|
13
|
Bergner A, Maier AD, Mirian C, Mathiesen TI. Adjuvant radiotherapy and stereotactic radiosurgery in grade 3 meningiomas - a systematic review and meta-analysis. Neurosurg Rev 2022; 45:2639-2658. [PMID: 35543810 DOI: 10.1007/s10143-022-01773-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Malignant meningioma is a rare, aggressive form of meningioma. Radiation is commonly included in treatment guidelines either as adjuvant radiotherapy (RT) or stereotactic radiosurgery (SRS). Nevertheless, the treatment recommendations are not supported by prospective comparative trials and systematical, critical evaluation of supportive evidence is lacking. For this systematic review, studies analyzing the effectiveness of adjuvant RT and SRS in grade 3 (gr. 3) meningioma were reviewed. Thirty studies met the inclusion criteria for qualitative synthesis, and 6 studies were assessed in quantitative analysis. In quantitative analysis, the weighted average of hazard ratios for adjuvant RT in univariate analyses of overall survival (OS) was 0.55 (CI: 0.41; 0.69). The median 5-year OS after adjuvant RT in gr. 3 meningiomas was 56.3%, and the median OS ranged from 24 to 80 months for patients treated with adjuvant RT versus 13 to 41.2 months in patients not treated. For SRS, the 3-year progression free survival was 0% in one study and 57% in another. The 2-year OS ranged from 25 to 75% in 2 studies. The quality of evidence was rated as "very low" in 14 studies analyzed, and considerable allocation bias was detected. Treatment toxicity was reported in 47% of the studies. The severity, according to the CTCAE, ranged from grades I-V and 5.3 to 100% of patients experienced complications. Adjuvant RT is usually considered standard of care for WHO grade 3 meningiomas, although supporting evidence was of low quality. Better evidence from registries and prospective trials can improve the evidence base for adjuvant fractionated RT in malignant meningiomas.
Collapse
Affiliation(s)
- Amon Bergner
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - Andrea Daniela Maier
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Pathology, Rigshospitalet, Copenhagen, Denmark
| | - Christian Mirian
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Tiit Illimar Mathiesen
- Department of Neurosurgery, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Copenhagen, Denmark.,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Why we need new classification models in meningioma management. Acta Neurochir (Wien) 2022; 164:1381-1383. [PMID: 35067786 DOI: 10.1007/s00701-022-05127-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022]
|